TPS3710DSER [TI]

宽输入电压电压检测器 | DSE | 6 | -40 to 125;
TPS3710DSER
型号: TPS3710DSER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

宽输入电压电压检测器 | DSE | 6 | -40 to 125

光电二极管
文件: 总26页 (文件大小:959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS3710  
ZHCSE85 OCTOBER 2015  
TPS3710 VIN 压检测器  
1 特性  
3 说明  
TPS3710 宽电源电压检测器在 1.8V 18V 的电压范  
围内运行。 此器件具有一个内部基准电压为 400mV  
的高精度比较器和一个额定电压为 18V 的开漏输出,  
用于实现精确的电压检测。 可以使用外部电阻设置监  
视电压。  
1
宽电源电压范围:1.8V 18V  
可调节阈值:低至 400mV  
高阈值精度:  
在温度范围内为 1.0%  
0.25%(典型值)  
SENSE 引脚上的电压下降至低于 (VIT–) 时,OUT  
引脚被驱动至低电平,而当电压返回到对应阈值 (VIT+  
)
低静态电流:5.5μA(典型值)  
漏极开路输出  
之上时,OUT 引脚变为高电平。 TPS3701 的比较器  
均内置有滞后特性,可抑制短小毛刺脉冲,从而确保输  
出操作稳定而无错误触发。  
内部滞后:5.5mV(典型值)  
温度范围:-40°C +125°C  
封装:  
TPS3710 提供 SOT-6 封装和 1.5mm × 1.5mm  
WSON-6 封装,额定工作结温范围为 –40°C +125°  
C。  
小外形尺寸晶体管 (SOT)-6 封装  
1.5mm × 1.5mm 晶圆级小外形无引线  
(WSON)-6 封装  
器件信息 (1)  
部件号  
TPS3710  
封装  
封装尺寸(标称值)  
2.90mm x 1.60mm  
1.50mm x 1.50mm  
SOT (6)  
WSON (6)  
2 应用  
工业控制系统  
(1) 要了解所有可用封装,请见数据表末尾的封装选项附录。  
车载系统  
嵌入式计算模块  
数字信号处理器 (DSP)、微控制器、或者微处理器  
应用  
笔记本和台式计算机  
便携式和电池供电类产品  
现场可编程门阵列 (FPGA) 和专用集成电路 (ASIC)  
应用  
简化电路原理图  
上升输入阈值电压 (VIT+) 与温度间的关系  
401  
VMON  
1.8 V to 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
0.01 F  
400.6  
VPULLUP  
Up to 18 V  
400.2  
R1  
VDD  
SENSE  
RP  
399.8  
399.4  
399  
To a reset or enable  
input of the system.  
OUT  
R2  
GND  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS271  
 
 
 
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application .................................................. 13  
8.3 Do's and Don'ts....................................................... 14  
Power-Supply Recommendations...................... 15  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
11 器件和文档支持 ..................................................... 16  
11.1 器件支持................................................................ 16  
11.2 文档支持................................................................ 16  
11.3 社区资源................................................................ 16  
11.4 Trademarks........................................................... 16  
11.5 Electrostatic Discharge Caution............................ 16  
11.6 Glossary................................................................ 16  
12 机械、封装和可订购信息....................................... 16  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 10 月  
*
最初发布版本  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
DSE Package  
6-Pin WSON  
Top View  
OUT  
GND  
1
2
3
6
5
4
GND  
VDD  
GND  
GND  
VDD  
1
2
6
5
4
OUT  
GND  
GND  
3
SENSE  
SENSE  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
DDC  
DSE  
2, 4, 6  
1, 3, 5  
Connect all three pins to ground.  
SENSE comparator open-drain output. OUT is driven low when the voltage at this  
comparator is below (VIT-). The output goes high when the sense voltage returns above  
the respective threshold (VIT+).  
OUT  
1
6
O
This pin is connected to the voltage to be monitored with the use of an external resistor  
divider. When the voltage at this pin drops below the threshold voltage (VIT-), OUT is  
driven low.  
SENSE  
VDD  
3
5
4
2
I
I
Supply voltage input. Connect a 1.8-V to 18-V supply to VDD to power the device. Good  
analog design practice is to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
20  
UNIT  
VDD  
Voltage(2)  
OUT  
20  
V
SENSE  
7
Current  
OUT (output sink current)  
Operating junction, TJ  
Storage, Tstg  
40  
mA  
°C  
–40  
–65  
125  
150  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground pin.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX UNIT  
VDD  
VI  
Supply voltage  
Input voltage  
Output voltage  
18  
6.5  
18  
V
V
V
SENSE  
OUT  
VO  
0
6.4 Thermal Information  
TPS3710  
(1)  
THERMAL METRIC  
DDC (SOT)  
6 PINS  
204.6  
50.5  
DSE (WSON)  
6 PINS  
194.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
128.9  
54.3  
153.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
11.9  
ψJB  
52.8  
157.4  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
6.5 Electrical Characteristics  
Over the operating temperature range of TJ = –40°C to +125°C, and 1.8 V < VDD < 18 V (unless otherwise noted).  
Typical values are at TJ = 25°C and VDD = 5 V.  
PARAMETER  
TEST CONDITIONS  
VOLmax = 0.2 V, output sink current = 15 µA  
VDD = 1.8 V  
MIN  
TYP  
MAX UNIT  
(1)  
V(POR)  
VIT+  
Power-on reset voltage  
0.8  
404  
404  
400  
400  
12  
V
396  
396  
387  
387  
400  
400  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
mV  
VDD = 18 V  
VDD = 1.8 V  
394.5  
394.5  
5.5  
VIT–  
Vhys  
mV  
VDD = 18 V  
Hysteresis voltage (hys = VIT+ – VIT–  
)
mV  
nA  
I(SENSE) Input current (at the SENSE pin)  
VDD = 1.8 V and 18 V, VI = 6.5 V  
VDD = 1.3 V, output sink current = 0.4 mA  
VDD = 1.8 V, output sink current = 3 mA  
VDD = 5 V, output sink current = 5 mA  
VDD = 1.8 V and 18 V, VO = VDD  
VDD = 1.8 V, VO = 18 V  
VDD = 1.8 V, no load  
–25  
1
25  
250  
250  
250  
300  
300  
11  
VOL  
Low-level output voltage  
mV  
nA  
Ilkg(OD)  
Open-drain output leakage-current  
5.5  
6
VDD = 5 V  
13  
IDD  
Supply current  
µA  
V
VDD = 12 V  
6
13  
VDD = 18 V  
7
13  
(2)  
UVLO  
Undervoltage lockout  
VDD falling  
1.3  
1.7  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. Below V(POR), the output cannot be determined.  
(2) When VDD falls below UVLO, OUT is driven low. The output cannot be determined below V(POR)  
.
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
6.6 Timing Requirements  
over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
(1)  
(1)  
tpd(HL)  
High-to-low propagation delay  
Low-to-high propagation delay  
18  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
tpd(LH)  
td(start)  
29  
µs  
µs  
(2)  
Start-up delay  
150  
(1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).  
(2) During power on, VDD must exceed 1.8 V for at least 150 µs before the output is in a correct state.  
6.7 Switching Characteristics  
over operating temperature range (unless otherwise noted)  
PARAMETER  
Output rise time  
Output fall time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
tr  
tf  
2.2  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
0.22  
µs  
VDD  
V(POR)  
VIT+  
VITœ  
VHYS  
SENSE  
OUT  
tpd(LH)  
tpd(HL)  
tpd(LH)  
t d(start)  
Figure 1. Timing Diagram  
6
Copyright © 2015, Texas Instruments Incorporated  
 
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
6.8 Typical Characteristics  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
401  
400.6  
400.2  
399.8  
399.4  
399  
10  
9
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
8
7
6
5
4
3
2
1
0
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
0
2
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Supply Voltage (V)  
Temperature (èC)  
Figure 2. Supply Current (IDD) vs Supply Voltage (VDD  
)
Figure 3. Rising Input Threshold Voltage (VIT+) vs  
Temperature  
25  
23  
21  
19  
17  
15  
13  
11  
9
9
VDD = 1.8 V  
VDD = 18 V  
8
7
6
5
4
3
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
Figure 5. Propagation Delay vs Temperature  
(High-to-Low Transition at Sense)  
Figure 4. Hysteresis (Vhys) vs Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
16  
14  
12  
10  
8
6
4
VDD = 1.8 V  
VDD = 18 V  
2
0
2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
4
5.5  
7
8.5  
10  
11.5  
13  
14.5  
Temperature (èC)  
Positive-Going Input Threshold Overdrive (%)  
SENSE = negative spike below VIT–  
Figure 6. Propagation Delay vs Temperature  
(Low-to-High Transition at Sense)  
Figure 7. Minimum Pulse Width vs  
Threshold Overdrive Voltage  
Copyright © 2015, Texas Instruments Incorporated  
7
 
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
12  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
10  
8
6
4
600  
TJ = -40°C  
TJ = 0°C  
400  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
2
0
200  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 9. Output Voltage Low (VOL) vs  
Output Sink Current (–40°C)  
Figure 8. Supply Current (IDD) vs  
Output Sink Current  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
600  
600  
400  
400  
200  
200  
0
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 10. Output Voltage Low (VOL) vs  
Output Sink Current (0°C)  
Figure 11. Output Voltage Low (VOL) vs  
Output Sink Current (25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
600  
600  
400  
400  
200  
200  
0
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 12. Output Voltage Low (VOL) vs  
Output Sink Current (85°C)  
Figure 13. Output Voltage Low (VOL) vs  
Output Sink Current (125°C)  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS3710 provides precision voltage detection. The TPS3710 is a wide-supply voltage range (1.8 V to 18 V)  
device with a high-accuracy rising input threshold of 400 mV (1% over temperature) and built-in hysteresis. The  
output is also rated to 18 V, and can sink up to 40 mA.  
The TPS3710 asserts the output signal, as shown in Table 1. To monitor any voltage above 0.4 V, set the input  
using an external resistor divider network. Broad voltage thresholds are supported that enable the device for use  
in a wide array of applications.  
Table 1. TPS3710 Truth Table  
CONDITION  
SENSE > VIT+  
SENSE < VIT–  
OUTPUT  
OUT high  
OUT low  
STATUS  
Output not asserted  
Output asserted  
7.2 Functional Block Diagram  
VDD  
SENSE  
OUT  
VIT+  
GND  
Copyright © 2015, Texas Instruments Incorporated  
9
 
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input (SENSE)  
The TPS3710 comparator has two inputs: one external input, and one input connected to the internal reference.  
The comparator rising threshold is trimmed to be equal to the reference voltage (400 mV). The comparator also  
has a built-in falling hysteresis that makes the device less sensitive to supply-rail noise and provides stable  
operation.  
The comparator input (SENSE) is able to swing from ground to 6.5 V, regardless of the device supply voltage.  
Although not required in most cases, in order to reduce sensitivity to transients and layout parasitics for  
extremely noisy applications, place a 1-nF to 10-nF bypass capacitor at the comparator input.  
OUT is driven to logic low when the input SENSE voltage drops below (VIT-). When the voltage exceeds VIT+, the  
output (OUT) goes to a high-impedance state; see Figure 1.  
7.3.2 Output (OUT)  
In a typical TPS3710 application, the output is connected to a reset or enable input of the processor (such as a  
digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or  
application-specific integrated circuit [ASIC]) or the output is connected to the enable input of a voltage regulator  
(such as a dc-dc converter or low-dropout regulator [LDO]).  
The TPS3710 device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when the  
output goes to high impedance (not asserted). To connect the output to another device at the correct interface-  
voltage level, connect a pullup resistor to the proper voltage rail. The TPS3710 output can be pulled up to 18 V,  
independent of the device supply voltage.  
Table 1 and the Input (SENSE) section describe how the output is asserted or deasserted. See Figure 1 for a  
timing diagram that describes the relationship between threshold voltage and the respective output.  
7.3.3 Immunity to Input-Pin Voltage Transients  
The TPS3710 is relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients  
depends on both transient duration and amplitude; see Figure 7, Minimum Pulse Width vs Threshold Overdrive  
Voltage.  
7.4 Device Functional Modes  
7.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 150 µs, the OUT signal correspond to the voltage on  
SENSE as listed in Table 1.  
7.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUT signal is asserted regardless of the voltage on SENSE.  
7.4.3 Power-On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND (V(POR)),  
SENSE is in a high-impedance state.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS3710 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 V to  
18 V. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output  
rated to 18 V for precision voltage detection. The device can be used as a voltage monitor. The monitored  
voltage are set with the use of external resistors.  
8.1.1 VPULLUP to a Voltage Other Than VDD  
The output is often tied to VDD through a resistor. However, some applications may require the output to be  
pulled up to a higher or lower voltage than VDD to correctly interface with the reset and enable pins of other  
devices.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
Figure 14. Interfacing to a Voltage Other Than VDD  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
Application Information (continued)  
8.1.2 Monitoring VDD  
Many applications monitor the same rail that is powering VDD. In these applications the resistor divider is simply  
connected to the VDD rail.  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
R2  
VDD  
SENSE  
RP  
To a reset or enable  
input of the system.  
OUT  
GND  
Figure 15. Monitoring the Same Voltage as VDD  
8.1.3 Monitoring a Voltage Other Than VDD  
Some applications monitor rails other than the one that is powering VDD. In these types of applications the  
resistor divider used to set the desired threshold is connected to the rail that is being monitored.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
NOTE: The input can monitor a voltage greater than maximum VDD with the use of an external resistor divider  
network.  
Figure 16. Monitoring a Voltage Other Than VDD  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS3710  
www.ti.com.cn  
ZHCSE85 OCTOBER 2015  
8.2 Typical Application  
The TPS3710 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 to 18 V. The  
monitored voltage is set with the use of external resistors, so the device can be used either as a precision  
voltage monitor.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
2.21 M  
RP  
VDD  
SENSE  
49.9 kΩ  
To a reset or enable  
input of the system.  
OUT  
R2  
83.5 kΩ  
GND  
Figure 17. Wide VIN Voltage Monitor  
8.2.1 Design Requirements  
For this design example, use the values summarized in Table 2 as the input parameters.  
Table 2. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
12-V nominal rail with maximum falling  
threshold of 10%  
Monitored voltage  
VMON(UV)= 10.99 V (8.33%)  
8.2.2 Detailed Design Procedure  
8.2.2.1 Resistor Divider Selection  
The resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine  
VMON(UV)  
.
R1  
R2  
VMON(UV) = 1 +  
× V  
IT-  
÷
«
(1)  
where  
R1 and R2 are the resistor values for the resistor divider on the SENSEx pins  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
Choose RTOTAL ( = R1 + R2) so that the current through the divider is approximately 100 times higher than the  
input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result  
of low input bias current without adding significant error to the resistive divider. For details on sizing input  
resistors, refer to application report SLVA450, Optimizing Resistor Dividers at a Comparator Input, available for  
download from www.ti.com.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com.cn  
8.2.2.2 Pullup Resistor Selection  
To ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage  
divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated  
by verifying that the pullup voltage minus the output-leakage current (Ilkg(OD)) multiplied by the resistor is greater  
than the desired logic-high voltage. These values are specified in the Electrical Characteristics .  
Use Equation 2 to calculate the value of the pullup resistor.  
(VHI - VPU)  
VPU  
IO  
³ RPU  
³
Ilkg(OD)  
(2)  
8.2.2.3 Input Supply Capacitor  
Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1-μF low  
equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be  
necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power  
source.  
8.2.2.4 Sense Capacitor  
Although not required in most cases, for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor  
from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement  
reduces device sensitivity to transients.  
8.2.3 Application Curves  
401  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
400.6  
400.2  
399.8  
399.4  
399  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Figure 18. Rising Input Threshold Voltage (VIT+) vs Temperature  
8.3 Do's and Don'ts  
Do connect a 0.1-µF decoupling capacitor from VDD to GND for best system performance.  
If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.  
Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input  
current of the comparator without also accounting for the effect to the accuracy.  
Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the  
desired low-level output voltage (VOL).  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS3710  
www.ti.com  
ZHCSE85 OCTOBER 2015  
9 Power-Supply Recommendations  
These devices operate from an input voltage supply range between 1.8 V and 18 V.  
10 Layout  
10.1 Layout Guidelines  
Placing a 0.1-µF capacitor close to the VDD pin to reduce the input impedance to the device is good analog  
design practice.  
10.2 Layout Example  
Pullup  
Voltage  
RP1  
Output  
Flag  
6
5
1
CVDD  
Input  
Supply  
2
3
4
R1  
R2  
Monitored  
Voltage  
Figure 19. Layout Example  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS3710  
ZHCSE85 OCTOBER 2015  
www.ti.com  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
Table 3. 器件命名规则  
产品  
说明  
yyy 为封装标识符  
z 为封装数量  
TPS3710yyyz  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
优化比较器输入上的电阻分压器SLVA450  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
16  
Copyright © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3710DDCR  
TPS3710DDCT  
TPS3710DSER  
TPS3710DSET  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DSE  
DSE  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
11AO  
11AO  
1A  
NIPDAU  
NIPDAU  
NIPDAU  
ACTIVE  
ACTIVE  
WSON  
WSON  
1A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS3710DSET

宽输入电压电压检测器 | DSE | 6 | -40 to 125
TI

TPS3710QDSERQ1

汽车类宽输入电压 (18V) 电压检测器 | DSE | 6 | -40 to 125
TI

TPS3711

36V 电压检测器
TI

TPS3711DDCR

36V 电压检测器 | DDC | 6 | -40 to 125
TI

TPS3711DDCT

36V 电压检测器 | DDC | 6 | -40 to 125
TI

TPS3760

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器
TI

TPS3760-Q1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器
TI

TPS3760A012DYYR

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760A012DYYRQ1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760E012DYYR

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760E012DYYRQ1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3779

Low-Power, Dual-Voltage Detector in Small SON Package
TI