TPS3711 [TI]

36V 电压检测器;
TPS3711
型号: TPS3711
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

36V 电压检测器

文件: 总24页 (文件大小:1356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
TPS3711 36V 电压检测器  
1 特性  
3 说明  
1
宽电源电压范围:1.8V 36V  
可调节阈值:低至 400mV  
针对欠压检测的开漏输出  
低静态电流:7μA(典型值)  
高阈值精度:  
TPS3711 宽电源电压比较器在 1.8V 36V 的电压范  
围内运行。该器件具有一个内部基准电压为 400mV 的  
高精度比较器以及一个额定电压为 25V 的开漏输出,  
用于实现欠压检测。监视电压可使用外部电阻进行设  
置。  
0.75%(整个温度范围内)  
0.25%(典型值)  
SENSE 引脚的电压降至负向阈值以下时,OUT 被  
驱动为低电平;当 SENSE 引脚的电压升至正向阈值以  
上时,OUT 被驱动为高电平。TPS3711 的比较器内置  
实现噪声抑制的滞后特性,可避免触发错误,从而确保  
输出稳定运行。  
内部滞后:5.5mV(典型值)  
温度范围:-40°C +125°C  
封装:小外形尺寸晶体管 (SOT)-6  
TPS3711 采用 SOT-6 封装,额定工作结温范围为  
–40°C +125°C。  
2 应用  
工业控制系统  
嵌入式计算模块  
器件信息 (1)  
数字信号处理器 (DSP)、微控制器和微处理器  
笔记本和台式计算机  
器件型号  
TPS3711  
封装  
封装尺寸(标称值)  
SOT (6)  
2.90mm x 1.60mm  
便携式和电池供电类产品  
(1) 要了解所有可用封装,请见数据表末尾的封装选项附录。  
现场可编程门阵列 (FPGA) 和专用集成电路 (ASIC)  
系统  
典型应用  
典型误差与结温之间的关系  
1.8 V to 36 V  
400  
399.9  
399.8  
399.7  
399.6  
399.5  
399.4  
399.3  
VMON  
0.01 F  
VPULLUP  
0 V to 25 V  
RP  
VDD  
R1  
To a reset or  
enable input  
of the system  
SENSE  
OUT  
399.2  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
R2  
399.1  
399  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBVS272  
 
 
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
11 器件和文档支持 ..................................................... 16  
11.1 文档支持 ............................................................... 16  
11.2 社区资源................................................................ 16  
11.3 ....................................................................... 16  
11.4 静电放电警告......................................................... 16  
11.5 术语表 ................................................................... 16  
12 机械、封装和可订购信息....................................... 16  
7
4 修订历史记录  
Changes from Original (November 2015) to Revision A  
Page  
Changed input pin voltage maximum value from 1.7 V to 6.5 V............................................................................................ 4  
Added tablenote .................................................................................................................................................................... 4  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
OUT  
GND  
1
2
3
6
5
4
GND  
VDD  
GND  
SENSE  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
GND  
2, 4, 6  
Ground. Connect all three pins to ground.  
Comparator open-drain output. This pin is driven low when the voltage at this comparator is  
OUT  
SENSE  
VDD  
1
3
5
O
less than VIT–. The output goes high when the sense voltage rises above VIT+  
.
Comparator input. This pin is connected to the voltage to be monitored with the use of an  
external resistor divider. When the voltage at this pin drops below the threshold voltage VIT–  
OUT is driven low.  
I
,
Supply-voltage input. Connect a 1.8-V to 36-V supply to VDD to power the device. It is good  
analog design practice to place a 0.1-µF ceramic capacitor close to this pin.  
I
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
(1)  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VDD  
40  
28  
(2)  
Voltage  
VOUT  
V
VSENSE  
7
Current  
Output pin current  
Operating junction, TJ  
Storage, Tstg  
40  
mA  
°C  
–40  
-40  
125  
125  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX  
36  
6.5(1)  
UNIT  
VDD  
Supply pin voltage  
Input pin voltage  
Output pin voltage  
Pullup voltage  
V
V
VSENSE  
VOUT  
VPULLUP  
IOUT  
0
25  
V
0
25  
V
Output pin current  
Junction temperature  
0
10  
mA  
°C  
TJ  
–40  
25  
125  
(1) Operating Vsense at 1.7 V or higher and at 125°C continuously for 10 years or more would cause a degradation of accuracy spec to 1.5%  
maximum.  
6.4 Thermal Information  
TPS3711  
(1)  
THERMAL METRIC  
DDC (SOT)  
6 PINS  
201.6  
47.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
50.8  
RθJC(bot)  
N/A  
(1) 有关传统和新热指标的更多信息,请参见应用报告《半导体和 IC 封装热指标》(文献编号:SPRA953)。  
4
版权 © 2015–2018, Texas Instruments Incorporated  
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
6.5 Electrical Characteristics  
Over the operating temperature range of TJ = –40°C to +125°C, 1.8 V VDD < 36 V, and pullup resistor RP = 100 kΩ (unless  
otherwise noted). Typical values are at TJ = 25°C and VDD = 12 V.  
PARAMETER  
Power-on reset voltage(1)  
TEST CONDITIONS  
VOL 0.2 V  
MIN  
TYP  
MAX UNIT  
V(POR)  
VIT–  
0.8  
403  
413  
V
SENSE pin negative input threshold voltage VDD = 1.8 V to 36 V  
397  
400  
400  
mV  
mV  
VIT+  
SENSE pin positive input threshold voltage  
SENSE pin hysteresis voltage  
VDD = 1.8 V to 36 V  
405.5  
VHYS  
VOL  
2
5.5  
12  
mV  
mV  
(HYS = VIT+ – VIT–  
)
VDD = 1.8 V, IOUT = 3 mA  
VDD = 5 V, IOUT = 5 mA  
130  
150  
+1  
+1  
10  
250  
250  
+25  
+15  
300  
11  
Low-level output voltage  
VDD = 1.8 V and 36 V, VSENSE = 6.5 V  
VDD = 1.8 V and 36 V, VSENSE = 0.1 V  
VDD = 1.8 V and 36 V, VOUT = 25 V  
VDD = 1.8 V – 36 V  
–25  
–15  
IIN  
Input current (at SENSE pin)  
nA  
ID(leak)  
IDD  
Open-drain leakage current  
Supply current  
Undervoltage lockout(2)  
nA  
µA  
V
8
UVLO  
VDD falling  
1.3  
1.5  
1.7  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. If less than V(POR), the output is undetermined.  
(2) When VDD falls below UVLO, OUT is driven low. The output cannot be determined if less than V(POR)  
.
版权 © 2015–2018, Texas Instruments Incorporated  
5
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.6 Timing Requirements  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VDD = 24 V, ±10-mV input overdrive,  
RL = 100 kΩ, VOH = 0.9 × VDD, VOL = 250 mV  
tpd(HL)  
High-to-low propagation delay(1)  
9.9  
µs  
VDD = 24 V, ±10-mV input overdrive,  
RL = 100 kΩ, VOH = 0.9 × VDD, VOL = 250 mV  
tpd(LH)  
td(start)  
tr  
Low-to-high propagation delay(1)  
Startup delay  
28.1  
155  
2.7  
µs  
µs  
µs  
(2)  
VDD = 5 V  
VDD = 12 V, 10-mV input overdrive,  
RL = 100 kΩ, CL = 10 pF, VO = (0.1 to 0.9) × VDD  
Output rise time  
VDD = 12 V, 10-mV input overdrive,  
RL = 100 kΩ, CL = 10 pF, VO = (0.9 to 0.1) × VDD  
tf  
Output fall time  
0.12  
µs  
(1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).  
(2) During power on, VDD must exceed 1.8 V for at least 150 µs (typ) before the output state reflects the input condition.  
VDD  
V(POR)  
VIT+  
VHYS  
SENSE  
OUT  
VITœ  
tpd(LH)  
tpd(HL)  
tpd(LH)  
t d(start)  
1. Timing Diagram  
6
版权 © 2015–2018, Texas Instruments Incorporated  
 
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
6.7 Typical Characteristics  
at TJ = 25°C and VDD = 12 V (unless otherwise noted)  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Supply Voltage (V)  
Overdrive (%)  
VDD = 24 V, minimum pulse duration required to trigger output  
high-to-low transition, SENSE = negative spike below VIT–  
3. Minimum Pulse Duration vs  
Threshold Overdrive Voltage  
2. Supply Current vs Supply Voltage  
409  
408.5  
408  
400  
399.9  
399.8  
399.7  
399.6  
399.5  
399.4  
399.3  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
407.5  
407  
406.5  
406  
405.5  
405  
399.2  
VDD = 1.8 V  
VDD = 12 V  
VDD = 36 V  
404.5  
399.1  
404  
399  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
4. SENSE Positive Input Threshold Voltage (VIT+) vs  
5. SENSE Negative Input Threshold Voltage (VIT–) vs  
Temperature  
Temperature  
3500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
VIT+ Threshold (mV)  
VIT- Threshold (mV)  
VDD = 1.8 V  
VDD = 1.8 V  
6. SENSE Positive Input Threshold Voltage (VIT+  
)
7. SENSE Negative Input Threshold Voltage (VIT–)  
Distribution  
Distribution  
版权 © 2015–2018, Texas Instruments Incorporated  
7
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C and VDD = 12 V (unless otherwise noted)  
12  
3
2.5  
2
VDD = 1.8 V  
VDD = 36 V  
10  
8
1.5  
1
6
0.5  
0
VDD = 1.8V  
VDD = 36 V  
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Input step ±200 mV  
Input step ±200 mV  
8. Propagation Delay vs Temperature  
9. Propagation Delay vs Temperature  
(High-to-Low Transition at SENSE)  
(Low-to-High Transition at SENSE)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Output Sink Current (mA)  
Output Sink Current (mA)  
VDD = 1.8 V  
VDD = 12 V  
10. Output Voltage Low vs Output Sink Current  
11. Output Voltage Low vs Output Sink Current  
195  
180  
165  
150  
135  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
VDD = 5 V  
12. Startup Delay vs Temperature  
8
版权 © 2015–2018, Texas Instruments Incorporated  
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
7 Detailed Description  
7.1 Overview  
The TPS3711 combines a comparator and a precision reference for undervoltage detection. The TPS3711  
features a wide supply voltage range (1.8 V to 36 V) and a high-accuracy threshold voltage of 400 mV (0.75%  
over temperature) with built-in hysteresis. The output is rated to 25 V and can sink up to 10 mA.  
Set the input pin (SENSE) to monitor any voltage above 0.4 V by using an external resistor divider network.  
SENSE has very low input leakage current, allowing the use of a large resistor divider without sacrificing system  
accuracy. The relationship between the input and the output is shown in 1. Broad voltage thresholds are  
supported that enable the device to be used in a wide array of applications.  
1. Truth Table  
CONDITION  
SENSE > VIT+  
SENSE < VIT–  
OUTPUT  
OUT high  
OUT low  
STATUS  
Output high impedance  
Output asserted  
7.2 Functional Block Diagram  
VDD  
SENSE  
OUT  
VIT-  
GND  
版权 © 2015–2018, Texas Instruments Incorporated  
9
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Pin (SENSE)  
The TPS3711 combines a comparator with a precision reference voltage. The comparator has one external input  
and one internal input connected to the internal reference. The falling threshold on SENSE is designed and  
trimmed to be equal to the reference voltage (400 mV). This configuration optimizes the device accuracy. The  
comparator also has built-in hysteresis that proves immunity to noise and ensures stable operation.  
The comparator input swings from ground to 6.5 V (7.0 V absolute maximum), regardless of the device supply  
voltage used. Although not required in most cases, it is good analog design practice to place a 1-nF to 10-nF  
bypass capacitor at the comparator input for noisy applications in order to reduce sensitivity to transient voltage  
changes on the monitored signal.  
For the comparator, the output (OUT) is driven to logic low when the input SENSE voltage drops below VIT–  
.
When the voltage exceeds VIT+, OUT goes to a high-impedance state; see 1.  
7.3.2 Output Pin (OUT)  
In a typical TPS3711 application, the output is connected to a reset or enable input of the processor [such as a  
digital signal processor (DSP), application-specific integrated circuit (ASIC), or other processor type] or the output  
is connected to the enable input of a voltage regulator [such as a dc-dc converter or low-dropout regulator  
(LDO)].  
The TPS3711 provides an open-drain output (OUT); use a pullup resistor to hold the line high when the output  
goes to a high-impedance state. Connect this pullup resistor to a voltage rail that meets the logic requirements of  
the downstream device. The TPS3711 output can be pulled up to 25 V, independent of the device supply  
voltage. To ensure the proper voltage level, give some consideration when choosing the pullup resistor value.  
The pullup resistor value is determined by VOL, output capacitive loading, and the open-drain leakage current  
(ID(leak)). These values are specified in the Electrical Characteristics table.  
1 and the Input Pin (SENSE) section describe how the output is asserted or high impedance. See 1 for a  
timing diagram that describes the relationship between threshold voltage and the respective output.  
7.4 Device Functional Modes  
7.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 155 µs, the OUT signal corresponds to the voltage on  
SENSE, as listed in 1.  
7.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUT signal is asserted regardless of the voltage on SENSE.  
7.4.3 Power On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND  
(V(POR)), OUT is in a high-impedance state.  
10  
版权 © 2015–2018, Texas Instruments Incorporated  
 
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS3711 is used as a precision voltage supervisor in several different configurations. The monitored voltage  
(VMON), VDD voltage, and output pullup voltage can be independent voltages or connected in any configuration.  
The following sections show the connection configurations and the voltage limitations for each configuration.  
8.1.1 Input and Output Configurations  
13 to 14 show examples of the various input and output configurations.  
1.8 V to 25 V  
0.01 F  
RP  
VDD  
SENSE  
R1  
To a reset or  
enable input  
OUT  
of the system  
R2  
GND  
13. Monitoring the Same Voltage as VDD  
1.8 V to 36 V  
VMON  
0.01 F  
VPULLUP  
0 V to 25 V  
RP  
VDD  
R1  
To a reset or  
enable input  
of the system  
SENSE  
OUT  
R2  
GND  
NOTE: The input can monitor a voltage higher than VDD (max) with the use of an external resistor divider network.  
14. Monitoring a Voltage Other than VDD  
版权 © 2015–2018, Texas Instruments Incorporated  
11  
 
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Application Information (接下页)  
8.1.2 Immunity to Input Pin Voltage Transients  
The TPS3711 is immune to short voltage transient spikes on the input pin. Sensitivity to transients depends on  
both transient duration and amplitude; see 3, Minimum Pulse Duration vs Threshold Overdrive Voltage.  
8.2 Typical Application  
VMON  
24 V  
0.01 F  
VPULLUP  
+
3.3 V  
œ
100 k  
VDD  
2 MΩ  
To a reset or  
enable input  
SENSE  
OUT  
of the system  
37.4 kΩ  
GND  
15. 24-V, 10% Comparator  
2. Design Parameters  
8.2.1 Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
24-V nominal, falling (VMON(UV)  
threshold  
)
Monitored voltage  
VMON(UV) = 21.8 V ±2.7%  
10% nominal (21.6 V)  
Output logic voltage  
3.3-V CMOS  
30 µA  
3.3-V CMOS  
24 µA  
Maximum current consumption  
8.2.2 Detailed Design Procedure  
8.2.2.1 Resistor Divider Selection  
The resistor divider values and target threshold voltage can be calculated by using 公式 1 to determine VMON(UV)  
.
R1  
R2  
VMON(UV) = 1 +  
× V  
IT-  
÷
«
where  
R1 and R2 are the resistor values for the resistor divider on the SENSE pin  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
(1)  
Choose an RTOTAL ( = R1 + R2) so that the current through the divider is approximately 100 times higher than the  
input current at the SENSE pin. Use resistors with high values to minimize current consumption (as a result of  
low input bias current) without adding significant error to the resistive divider. For details on sizing input resistors,  
refer to application report SLVA450, Optimizing Resistor Dividers at a Comparator Input, available for download  
from www.ti.com.  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
 
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
8.2.2.2 Pullup Resistor Selection  
To ensure the proper logic-high voltage level (VHI), select a pullup resistor value where the pullup voltage divided  
by the pullup resistor value does not exceed the sink-current capability of the device. Confirm this voltage level  
by verifying that the pullup voltage minus the open-drain leakage current (ID(leak) ) multiplied by the resistor is  
greater than the desired VHI. These values are specified in the Electrical Characteristics .  
Use 公式 2 to calculate the value of the pullup resistor.  
VHI - Vpullup  
Vpullup  
Ç RP Ç  
ID(leak)  
IOUT  
(2)  
8.2.2.3 Input Supply Capacitor  
Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1-μF low  
equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be  
necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power  
source.  
8.2.3 Application Curves  
10  
9
8
7
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Overdrive (%)  
16. 24-V Window Monitor Output Response  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
 
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS3711 has a 40-V absolute maximum rating on the VDD pin, with a recommended maximum operating  
condition of 36 V. If the voltage supply that provides power to VDD is susceptible to any large voltage transient  
that may exceed 40 V, or if the supply exhibits high voltage slew rates greater than 1 V/µs, then place an RC  
filter between the supply and VDD to filter any high-frequency transient surges on the VDD pin. In these cases, a  
100-Ω resistor and 0.01-µF capacitor are required, as shown in 17.  
100  
0.01 F  
+
œ
VPULLUP  
VDD  
SENSE  
R1  
To a reset or  
enable input  
OUT  
of the system  
R2  
GND  
17. Using an RC Filter to Remove High-Frequency Disturbances on VDD  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
 
TPS3711  
www.ti.com.cn  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
Place R1 and R2 close to the device to minimize noise coupling into the SENSE node.  
Place the VDD decoupling capacitor close to the device.  
Avoid using long traces for the VDD supply node. The VDD capacitor (CVDD), along with parasitic inductance  
from the supply to the capacitor, might form an LC tank and create ringing with peak voltages above the  
maximum VDD voltage. If long traces are unavoidable, see 17 for an example of filtering VDD.  
10.2 Layout Example  
Pullup  
Voltage  
RP1  
Output  
Flag  
6
5
1
CVDD  
Input  
Supply  
2
3
4
R1  
R2  
Monitored  
Voltage  
18. Recommended Layout  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
TPS3711  
ZHCSED3A NOVEMBER 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
如需相关文档,请参见下列应用报告(可从 TI 网站 www.ti.com 获取):  
优化比较器输入上的电阻分压器SLVA450  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3711DDCR  
TPS3711DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
11BO  
11BO  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3711DDCR  
TPS3711DDCT  
SOT-  
23-THIN  
DDC  
DDC  
6
6
3000  
250  
179.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
179.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3711DDCR  
TPS3711DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
213.0  
213.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS3711DDCR

36V 电压检测器 | DDC | 6 | -40 to 125
TI

TPS3711DDCT

36V 电压检测器 | DDC | 6 | -40 to 125
TI

TPS3760

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器
TI

TPS3760-Q1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器
TI

TPS3760A012DYYR

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760A012DYYRQ1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760E012DYYR

具有感应功能、超低静态电流和延迟的 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3760E012DYYRQ1

具有感应功能、超低 IQ 和延迟的汽车类 65V 过压或欠压监控器 | DYY | 14 | -40 to 125
TI

TPS3779

Low-Power, Dual-Voltage Detector in Small SON Package
TI

TPS3779-Q1

汽车类、推挽式、双通道、低功耗、高精度电压检测器
TI

TPS3779ADBVR

Push-pull, low-power, dual-voltage detector in a small &#181;SON package 6-SOT-23 -40 to 125
TI

TPS3779ADBVT

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI