TPS386060RGPR [TI]

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer; 四路电源电压监控器,具有可编程延迟和看门狗定时器
TPS386060RGPR
型号: TPS386060RGPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
四路电源电压监控器,具有可编程延迟和看门狗定时器

监控
文件: 总28页 (文件大小:899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
Quad Supply Voltage Supervisors  
with Programmable Delay and Watchdog Timer  
Check for Samples: TPS386000 TPS386020 TPS386040 TPS386060  
1
FEATURES  
DESCRIPTION  
2
4 Complete SVS Modules on 1 Silicon Platform  
Programmable Delay Time: 1.4ms to 10s  
Very Low Quiescent Current: 12μA typ  
Threshold Accuracy: 0.25% typ  
The TPS3860x0 family of voltage supervisors can  
monitor four power rails that are greater than 0.4V  
with a 0.25% (typical) threshold accuracy. Each of the  
four supervisory circuits (SVS-n) assert a RESETn or  
RESETn output signal when the SENSEm input  
voltage drops below the programmed threshold. With  
external resistors, the threshold of each SVS-n can  
be programmed (where n = 1, 2, 3, 4 and m = 1, 2, 3,  
4L, 4H).  
Adjustable Threshold Down to 0.4V  
SVS-1: Manual Reset (MR) Input  
SVS-4: Window Comparator or Low-Voltage  
Sensing with VREF (1.2V) Pin  
Each SVS-n has a programmable delay before  
releasing RESETn or RESETn, and the delay time  
can be set from 1.4ms to 10s through the CTn pin  
connection. Only SVS-1 has an active-low manual  
reset (MR) input; a logic-low input to MR asserts  
RESET1 or RESET1.  
Watchdog Timer with Dedicated Output  
Well-Controlled RESETn Output During  
Power-Up  
TPS386000: Open-Drain RESETn and WDO  
TPS386020: Open-Drain RESETn and WDO  
TPS386040: Push-Pull RESETn and WDO  
TPS386060: Push-Pull RESETn and WDO  
Package: 4mm x 4mm, 20-pin QFN  
SVS-4 monitors the threshold window using two  
comparators. The extra comparator can be  
configured as a fifth SVS to monitor negative voltage  
with voltage reference output VREF.  
The TPS3860x0 has a very low quiescent current of  
12μA (typical) and is available in a small, 4mm x  
4mm, QFN-20 package.  
APPLICATIONS  
Analog Sequencing  
All DSP and Microcontroller Applications  
All FPGA/ASIC Applications  
Sequence: VIN  
VCC41(positive)&VCC42(neagtive)  
VCC3  
VCC42  
VCC2  
VCC1  
VCC-  
AMP  
VCC+  
VCC41  
EN4 DC-DC  
LDO  
VCC3  
VCC2  
VCC1  
EN3 DC-DC  
LDO  
RP5 RP4 RP3 RP2 RP1  
VCC  
Sub CPU  
MSP430  
MR  
VREF  
WDO  
VCC1  
VCC2  
VCC3  
CLK  
EN2 DC-DC  
LDO  
WDI  
RS3H  
RS2H  
RS1H  
DSP  
CPU  
FPGA  
SENSE1  
RESET1  
RESET2  
RESET3  
RESET4  
RESET  
SENSE2  
SENSE3  
SENSE4L  
TPS386000  
Pos  
and  
VIN  
RS41H  
Neg  
DC-DC  
SENSE4H  
CT1  
CT2  
CT3  
CT4  
GND  
RS42L  
CT1  
CT2  
CT3  
CT4  
RS42H  
RS41L  
RS3L  
RS2L  
RS1L  
Figure 1. TPS386000 Typical Application Circuit  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
PRODUCT  
DESCRIPTION  
TPS3860x0yyy z  
x is device configuration option  
xx x = 0: Open-drain, active low  
xx x = 2: Open-drain, active high  
xx x = 4: Push-pull, active low  
xx x = 6: Push-pull, active high  
yyy is package designator  
z is package quantity  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating junction temperature range, unless otherwise noted.  
TPS3860x0  
–0.3 to 7.0  
UNIT  
V
Input voltage range, VVCC  
CT pin voltage range, VCT1, VCT2, VCT3, VCT4  
–0.3 to VVCC + 0.3  
V
Other voltage ranges: VRESET1, VRESET2, VRESET3, VRESET4, VMR, VSENSE1  
VSENSE2, VSENSE3, VSENSE4L, VSENSE4H, VWDI, VWDO  
,
–0.3 to 7.0  
V
RESETn , RESETn, WDO, WDO, VREF pin current  
Continuous total power dissipation  
5
mA  
See Dissipation Ratings Table  
(2)  
Operating virtual junction temperature range, TJ  
–40 to +150  
–40 to +125  
–65 to +150  
2
°C  
°C  
°C  
kV  
V
Operating ambient temperature range  
Storage temperature range, TSTG  
Human body model (HBM)  
ESD rating  
Charged device model (CDM)  
500  
(1) Stresses beyond those listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the recommended  
operating conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
DISSIPATION RATINGS  
TA < +25°C  
DERATING FACTOR  
ABOVE TA > +25°C  
TA = +70°C  
POWER RATING  
TA = +85°C  
POWER RATING  
PACKAGE  
POWER RATING  
RGP  
2.86W  
28.6mW/°C  
1.57W  
1.24W  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
ELECTRICAL CHARACTERISTICS  
Over the operating temperature range of TJ = –40°C to +125°C, 1.8V < VVCC < 6.5V, RRESETn (n = 1, 2, 3, 4) = 100kto VVCC  
(TPS386000, TPS386020 only), CRESETn (n = 1, 2, 3, 4L, 4H) = 50pF to GND, RWDO = 100kto VVCC, CWDO = 50pF to GND,  
VMR = 100kto VVCC, WDI = GND, and CTn (n = 1, 2, 3, 4) = open, unless otherwise noted. Typical values are at TJ = +25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VVCC  
Input supply range  
1.8  
6.5  
V
VVCC = 3.3V, RESETn or RESETn not  
asserted, WDI toggling(1), no output load,  
and VREF open  
11  
13  
19  
μA  
IVCC  
Supply current (current into VCC pin)  
VVCC = 6.5V, RESETn or RESETn not  
asserted, WDI toggling(1), no output load,  
and VREF open  
22  
μA  
Power-up reset  
voltage(2) (3)  
TPS386000,  
TPS386040  
VOL (max) = 0.2V, IRESETn = 15μA  
0.9  
V
VITN  
Negative-going input threshold voltage SENSE1, SENSE2, SENSE3, SENSE4L  
Positive-going input threshold voltage SENSE4H  
396  
396  
400  
400  
3.5  
404  
404  
mV  
mV  
mV  
mV  
nA  
nA  
nA  
V
VITP  
VHYSN  
VHYSP  
ISENSE  
Hysteresis (positive-going) on VITN  
Hysteresis (negative-going) on VITP  
Input current at SENSEm pin  
SENSE1, SENSE2, SENSE3, SENSE4L  
SENSE4H  
10  
3.5  
10  
VSENSEm = 0.42V  
–25  
245  
1
+25  
CT1  
CCT1 > 220pF, VCT1 = 0.5V(4)  
300  
300  
1.238  
355  
CTn pin charging  
current  
ICT  
CT2, CT3, CT4 CCTn > 220pF, VCTn = 0.5V(4)  
235  
365  
VTH(CTn) CTn pin threshold  
CCTn > 220pF  
1.180  
0
1.299  
0.3VVCC  
VIL  
VIH  
MR and WDI logic low input  
MR and WDI logic high input  
V
0.7VVCC  
V
All  
IOL = 1mA  
0.4  
0.3  
0.4  
0.3  
V
Low-level RESETn  
or RESETn output  
voltage  
TPS386000,  
TPS386040  
SENSEn = 0V, 1.3V < VVCC < 1.8V,  
IOL = 0.4mA(2)  
V
V
V
VOL  
All  
IOL = 1mA  
Low-level WDO  
output voltage  
TPS386020,  
TPS386060  
SENSEn = 0V, 1.3V < VVCC < 1.8V,  
IOL = 0.4mA(2)  
TPS386040,  
TPS386060  
IOL = –1mA  
VVCC – 0.4  
VVCC – 0.3  
VVCC – 0.4  
VVCC – 0.3  
V
V
V
V
High-level RESETn  
or RESETn output  
voltage  
SENSEn = 0V, 1.3V < VVCC < 1.8V,  
IOL = –0.4mA(2)  
TPS386060  
VOH  
TPS386040,  
TPS386060  
IOL = –1mA  
High-level WDO  
output voltage  
SENSEn = 0V, 1.3V < VVCC < 1.8V,  
IOL = –0.4mA(2)  
TPS386040  
RESETn, RESETn,  
WDO, and WDO  
leakage current  
TPS386000,  
TPS386020  
VRESETn = 6.5V, RESETn, RESETn, WDO,  
and WDO are logic high  
ILKG  
–300  
1.18  
300  
nA  
VREF  
CIN  
Reference voltage output  
Input pin capacitance  
1μA < IVREF < 0.2mA (source only, no sink)  
1.20  
5
1.22  
V
CTn: 0V to VVCC, other pins: 0V to 6.5V  
pF  
SENSEm: 1.05VITN 0.95VITN or  
0.95VITP 1.05VITP  
4
μs  
Input pulse width to SENSEm and MR  
pins  
tW  
MR: 0.7VCC 0.3VVCC  
CTn = open  
1
20  
ns  
ms  
ms  
14  
24  
tD  
RESETn or RESETn delay time  
Watchdog timer timeout period  
CTn = VVCC  
225  
300  
375  
Start from RESET1 or RESET1 release or  
last WDI transition  
tWDT  
450  
600  
750  
ms  
(1) Toggling WDI for a period less than tWDT negatively affects IVCC  
.
(2) These specifications are beyond the recommended VVCC range, and only define RESETn or RESETn output performance during VCC  
ramp up.  
(3) The lowest supply voltage (VVCC) at which RESETn or RESETn becomes active; tRISE(VCC) 15μs/V.  
(4) CTn (where n = 1, 2, 3, or 4) are constant current charging sources working from a range of 0V to VTH(CTn), and the device is tested at  
VCTn = 0.5V. For ICT performance between 0V and VTH(CTn), see Figure 26 .  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
FUNCTIONAL BLOCK DIAGRAMS  
VCC  
WDO  
WDI  
WDT  
VREF  
VREF  
RESET1  
SENSE1  
Delay  
0.4V  
MR  
CT1  
RESET2  
SENSE2  
Delay  
0.4V  
CT2  
RESET3  
SENSE3  
Delay  
0.4V  
CT3  
RESET4  
SENSE4L  
Delay  
0.4V  
SENSE4H  
CT4  
GND  
Figure 2. TPS386000 Block Diagram  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
VCC  
WDO  
WDI  
WDT  
VREF  
VREF  
RESET1  
SENSE1  
Delay  
0.4V  
MR  
CT1  
RESET2  
SENSE2  
Delay  
0.4V  
CT2  
RESET3  
SENSE3  
Delay  
0.4V  
CT3  
RESET4  
SENSE4L  
Delay  
0.4V  
SENSE4H  
CT4  
GND  
Figure 3. TPS386020 Block Diagram  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
VCC  
WDO  
WDI  
WDT  
VREF  
VREF  
SENSE1  
Delay  
RESET1  
0.4V  
MR  
CT1  
SENSE2  
Delay  
RESET2  
0.4V  
CT2  
SENSE3  
Delay  
RESET3  
0.4V  
CT3  
SENSE4L  
Delay  
RESET4  
0.4V  
SENSE4H  
CT4  
GND  
Figure 4. TPS386040 Block Diagram  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
VCC  
WDO  
WDI  
WDT  
VREF  
VREF  
SENSE1  
Delay  
RESET1  
0.4V  
MR  
CT1  
SENSE2  
Delay  
RESET2  
0.4V  
CT2  
SENSE3  
Delay  
RESET3  
0.4V  
CT3  
SENSE4L  
Delay  
RESET4  
0.4V  
SENSE4H  
CT4  
GND  
Figure 5. TPS386060 Block Diagram  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
PIN CONFIGURATIONS  
RGP PACKAGE  
QFN-20  
(TOP VIEW)  
1
2
3
4
5
15  
14  
13  
12  
11  
MR  
CT4  
CT3  
CT2  
CT1  
RESET1  
VCC  
1
2
3
4
5
15  
14  
13  
12  
11  
MR  
CT4  
CT3  
CT2  
CT1  
RESET1  
VCC  
TPS386000  
TPS386040  
TPS386020  
TPS386060  
VREF  
GND  
VREF  
GND  
(Thermal Pad)  
(Thermal Pad)  
NC  
NC  
PIN ASSIGNMENTS  
PIN  
NAME  
NO.  
DESCRIPTION  
VCC  
GND  
14  
12  
Supply voltage. Connecting a 0.1μF ceramic capacitor close to this pin is recommended.  
Ground  
When the voltage at this terminal drops below the  
threshold voltage (VITN), RESET1 is asserted.  
SENSE1  
SENSE2  
SENSE3  
SENSE4L  
10  
9
Monitor voltage input to SVS-1  
Monitor voltage input to SVS-2  
Monitor voltage input to SVS-3  
When the voltage at this terminal drops below the  
threshold voltage (VITN), RESET2 is asserted.  
When the voltage at this terminal drops below the  
threshold voltage (VITN), RESET3 is asserted.  
8
Falling monitor voltage input to SVS-4. When the voltage at this terminal drops below the threshold  
voltage (VITN), RESET4 or RESET4 is asserted.  
7
Rising monitor voltage input to SVS-4. When the voltage at this terminal exceeds the threshold voltage  
(VITP), RESET4 or RESET4 is asserted. This pin can also be used to monitor the negative voltage rail  
in combination with VREF pin.  
SENSE4H  
6
CT1  
CT2  
CT3  
5
4
3
Reset delay programming pin for SVS-1  
Reset delay programming pin for SVS-2  
Reset delay programming pin for SVS-3  
Connecting this pin to VCC through a 40kto  
200kresistor, or leaving it open, selects a fixed  
delay time (see the Electrical Characteristics).  
Connecting a capacitor > 220pF between this pin  
and GND selects the programmable delay time  
(see the Reset Delay Time section).  
CT4  
2
Reset delay programming pin for SVS-4  
Reference voltage output. By connecting a resistor network between this pin and the negative power  
rail, SENSE4H can monitor the negative power rail. This pin is intended to only source current into  
resistor(s). Do not connect only capacitors and do not connect resistor(s) to a higher voltage than this  
pin.  
VREF  
13  
MR  
1
Manual reset input for SVS-1. Logic low level of this pin asserts RESET1 or RESET1.  
Watchdog timer (WDT) trigger input. Inputting either a positive or negative logic edge every 610ms (typ)  
prevents WDT time out at the WDO or WDO pin. Timer starts from releasing event of RESET1 or  
RESET1.  
WDI  
20  
NC  
11  
Not connected. It is recommended to connect this pin to the GND pin (pin 12), which is next to this pin.  
This is the IC substrate. This pad must be connected only to GND or to the floating thermal pattern on  
the printed circuit board (PCB).  
(Thermal Pad)  
(PAD)  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
PIN ASSIGNMENTS (continued)  
PIN  
NAME  
TPS386000  
RESET1  
NO.  
DESCRIPTION  
15  
16  
17  
18  
Active low reset output of SVS-1  
Active low reset output of SVS-2  
Active low reset output of SVS-3  
Active low reset output of SVS-4  
RESETn is an open-drain output pin. When  
RESETn is asserted, this pin remains in a  
low-impedance state. When RESETn is released,  
this pin goes to a high-impedance state after the  
delay time programmed by CTn.  
RESET2  
RESET3  
RESET4  
Watchdog timer output. This is an open-drain output pin. When WDT times out, this pin goes to a  
low-impedance state to GND. If there is no WDT timeout, this pin stays in a high-impedance state.  
WDO  
19  
TPS386020  
RESET1  
RESET2  
RESET3  
RESET4  
15  
16  
17  
18  
Active high reset output of SVS-1  
Active high reset output of SVS-2  
Active high reset output of SVS-3  
Active high reset output of SVS-4  
RESETn is open-drain output pin. When RESETn  
is asserted, this pin remains in a high impedance  
state. When RESETn is released, this pin goes to  
a low-impedance state after the delay time  
programmed by CTn.  
Watchdog timer output. This is an open-drain output pin. When WDT times out, this pin goes to a  
high-impedance state. If there is no WDT timeout, this pin stays in a low-impedance state to GND.  
WDO  
19  
TPS386040  
RESET1  
RESET2  
RESET3  
RESET4  
15  
16  
17  
18  
Active low reset output of SVS-1  
Active low reset output of SVS-2  
Active low reset output of SVS-3  
Active low reset output of SVS-4  
RESETn is a push-pull logic buffer output pin.  
When RESETn is asserted, this pin remains logic  
low. When RESETn is released, this pin goes to  
logic high after the delay time programmed by  
CTn.  
Watchdog timer output. This is a push-pull output pin. When WDT times out, this pin goes to logic low.  
If there is no WDT timeout, this pin stays in logic high.  
WDO  
19  
TPS386060  
RESET1  
RESET2  
RESET3  
RESET4  
15  
16  
17  
18  
Active high reset output of SVS-1  
RESETn is a push-pull logic buffer output pin.  
Active high reset output of SVS-2  
Active high reset output of SVS-3  
Active high reset output of SVS-4  
When RESETn is asserted, this pin remains logic  
high. When RESETn is released, this pin goes to  
logic low after the delay time programmed by CTn.  
Watchdog timer output. This is a push-pull output pin. When WDT times out, this pin goes to logic high.  
If there is no WDT timeout, this pin stays in logic low.  
WDO  
19  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, and VCC = 3.3V, with all four options (TPS386000, TPS386020, TPS386040, and TPS386060) having the  
same characteristics, unless otherwise noted.  
TPS386040  
TPS386040  
SUPPLY CURRENT vs SUPPLY VOLTAGE  
RESETn TIMEOUT Period vs CTn  
10000  
1000  
100  
10  
20  
18  
16  
14  
12  
10  
8
+125°C  
+85°C  
+105°C  
+85°C  
+25°C  
+25°C  
0°C  
0°C  
+125°C  
-40°C  
6
4
-40°C  
2
NOTE: UVLO released at approximately 1.5V.  
1
0
0.0001  
0.001  
0.01  
CT (mF)  
0.1  
1
0
1
2
3
4
5
6
7
VCC (V)  
Figure 6.  
Figure 7.  
TPS386040  
TPS386040  
RESETn TIMEOUT PERIOD vs TEMPERATURE (CTn = Open)  
RESETn TIMEOUT PERIOD vs TEMPERATURE (CTn = VCC)  
25  
360  
CT1  
CT3  
340  
320  
20  
15  
10  
5
CT2  
CT4  
CT1  
CT3  
300  
280  
260  
240  
CT2  
CT4  
0
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 8.  
Figure 9.  
TPS386040  
TPS386040  
RESETn TIMEOUT PERIOD vs TEMPERATURE (CTn = 0.1µF)  
WDO TIMEOUT PERIOD vs TEMPERATURE  
550  
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
500  
450  
VCC = 1.8V  
VCC = 3.3V  
CT3  
CT4  
400  
350  
300  
250  
CT1  
CT2  
VCC = 6.5V  
NOTE: These curves contain variance of capacitor values.  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 10.  
Figure 11.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, and VCC = 3.3V, with all four options (TPS386000, TPS386020, TPS386040, and TPS386060) having the  
same characteristics, unless otherwise noted.  
TPS386040  
SENSEn MINIMUM PULSE WIDTH  
TPS386040  
vs SENSEn THRESHOLD OVERDRIVE VOLTAGE  
SENSE1 THRESHOLD VOLTAGE vs TEMPERATURE  
100  
408  
2mV » 0.5%  
406  
VITN + VHYSN, VCC = 6.5V  
SENSE4H  
10  
404  
SENSE4L  
VITN + VHYSN, VCC = 1.8V  
402  
SENSE2  
SENSE1  
SENSE3  
VITN + VHYSN, VCC = 3.3V  
VITN, VCC = 6.5V  
1
400  
VITN, VCC = 1.8V  
VITN, VCC = 3.3V  
398  
396  
NOTE: See Figure 27 for the measurement technique.  
0.1  
0.1  
1
10  
100  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Overdrive (%)  
Temperature (°C)  
Figure 12.  
Figure 13.  
TPS386040  
TPS386040  
SENSE2 THRESHOLD VOLTAGE vs TEMPERATURE  
SENSE3 THRESHOLD VOLTAGE vs TEMPERATURE  
408  
408  
2mV » 0.5%  
2mV » 0.5%  
406  
406  
VITN + VHYSN, VCC = 6.5V  
VITN + VHYSN, VCC = 3.3V  
VITN + VHYSN, VCC = 6.5V  
404  
404  
VITN + VHYSN, VCC = 1.8V  
VITN + VHYSN, VCC = 1.8V  
VITN, VCC = 3.3V  
402  
402  
VITN + VHYSN, VCC = 3.3V  
400  
400  
VITN, VCC = 1.8V  
VITN, VCC = 6.5V  
VITN, VCC = 3.3V  
VITN, VCC = 6.5V  
398  
396  
398  
VITN, VCC = 1.8V  
396  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 14.  
Figure 15.  
TPS386040  
TPS386040  
SENSE4L THRESHOLD VOLTAGE vs TEMPERATURE  
SENSE4H THRESHOLD VOLTAGE vs TEMPERATURE  
408  
404  
2mV » 0.5%  
2mV » 0.5%  
406  
402  
VITP + VHYSP, VCC = 3.3V  
VITP + VHYSP, VCC = 6.5V  
VITN + VHYSN, VCC = 6.5V  
VITN + VHYSN, VCC = 3.3V  
404  
400  
VITN + VHYSN, VCC = 1.8V  
VITP, VCC = 1.8V  
VITP + VHYSP, VCC = 1.8V  
402  
398  
396  
394  
392  
VITN, VCC = 1.8V  
400  
VITP, VCC = 6.5V  
VITN, VCC = 6.5V  
VITN, VCC = 3.3V  
398  
396  
VITP, VCC = 6.5V  
70 90 110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
Temperature (°C)  
Temperature (°C)  
Figure 16.  
Figure 17.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, and VCC = 3.3V, with all four options (TPS386000, TPS386020, TPS386040, and TPS386060) having the  
same characteristics, unless otherwise noted.  
OUTPUT VOLTAGE LOW vs OUTPUT CURRENT  
OUTPUT VOLTAGE LOW AT 1mA vs TEMPERATURE  
0.200  
0.200  
All RESETn, RESETn, WDO, and WDO  
All RESETn, RESETn, WDO, and WDO  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0
0.180  
0.160  
VCC = 1.8V  
0.140  
VCC = 1.8V, +25°C  
VCC = 3.3V  
0.120  
0.100  
0.080  
VCC = 3.3V, +25°C  
0.060  
VCC = 6.5V  
0.040  
0.020  
0
VCC = 6.5V, +25°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Output Sink Current (mA)  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 18.  
Figure 19.  
OUTPUT VOLTAGE HIGH vs OUTPUT CURRENT  
OUTPUT VOLTAGE HIGH AT 1mA vs TEMPERATURE  
0
0
VCC = 6.5V, +25°C  
All RESETn, RESETn, WDO, and WDO  
VCC = 6.5V  
-0.050  
-0.050  
VCC = 1.8V, +25°C  
VCC = 3.3V, +25°C  
-0.100  
-0.150  
-0.200  
-0.250  
-0.100  
VCC = 3.3V  
-0.150  
VCC = 1.8V  
-0.200  
All RESETn, RESETn, WDO, and WDO  
-0.250  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Output Source Current (mA)  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 20.  
Figure 21.  
TPS386040  
TPS386040  
VREF OUTPUT LOAD REGULATION (VCC = 1.8V)  
VREF OUTPUT LOAD REGULATION (VCC = 3.3V)  
1.200  
1.200  
0°C  
1.198  
1.196  
1.194  
1.192  
1.190  
1.188  
1.198  
1.196  
1.194  
1.192  
1.190  
1.188  
0°C  
+25°C  
+25°C  
+85°C  
-40°C  
+85°C  
-40°C  
+105°C  
+125°C  
+105°C  
+125°C  
NOTE: Y-Axis (1.188V to 1.2V) is 1% of 1.2V.  
NOTE: Y-Axis (1.188V to 1.2V) is 1% of 1.2V.  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Load (mA)  
Load (mA)  
Figure 22.  
Figure 23.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, and VCC = 3.3V, with all four options (TPS386000, TPS386020, TPS386040, and TPS386060) having the  
same characteristics, unless otherwise noted.  
TPS386040  
TPS386040  
VREF OUTPUT LOAD REGULATION (VCC = 6.5V)  
VREF AT 0µA vs TEMPERATURE  
1.207  
1.207  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
NOTE: Y-Axis (1.195V to 1.207V) is 1% of 1.2V.  
NOTE: Y-Axis (1.195V to 1.207V) is 1% of 1.2V.  
VCC = 6.5V  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
0°C  
VCC = 3.3V  
-40°C  
+25°C  
+85°C  
VCC = 1.8V  
+105°C  
+125°C  
0
50  
100  
150  
200  
Load (mA)  
250  
300  
350  
400  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 24.  
Figure 25.  
TPS386040  
CT1 TO CT4 PIN CHARGING CURRENT vs TEMPERATURE OVER CT PIN VOLTAGE  
0.33  
0.32  
0.1V  
0.31  
0V  
0.3V  
0.5V  
0.30  
0.29  
0.28  
0.27  
1.1V  
0.9V  
0.7V  
NOTE: Min and max values of Y-axis are 10% of 0.3mA.  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 26.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
PARAMETRIC MEASUREMENT INFORMATION  
TEST CIRCUIT  
Z1  
X1  
X2  
=
=
´ 100 (%)  
´ 100 (%)  
VITN = 0.42V  
VITN = 0.4V  
0.4  
Z2  
0.4  
Y1  
Y2  
Z1  
X1 and X2 are overdrive (%) values calculated  
from actual SENSEn voltage amplitudes  
measured as Z1 and Z2.  
Z2  
YN is the minimum pulse width that gives  
RESETn or RESETn transition.  
Greater ZN produces shorter YN.  
For SENSE4H, this graph should be inverted  
180 degrees on the voltage axis.  
Time  
Figure 27.  
GENERAL DESCRIPTION  
The TPS3860x0 multi-channel supervisory device  
family combines four complete SVS function sets into  
one IC. The design of each SVS channel is based on  
the single-channel supervisory device series,  
TPS3808. The TPS3860x0 is designed to assert  
RESETn or RESETn signals, as shown in Table 1,  
Table 2, Table 3, and Table 4. The RESETn or  
user-configurable delay time after the event of reset  
release (see the Reset Delay Time section). Each  
SENSEm (m = 1, 2, 3, 4L, 4H) pin can be set to any  
voltage threshold above 0.4V using an external  
resistor divider. A broad range of voltage threshold  
and reset delay time adjustments can be supported,  
allowing these devices to be used in a wide array of  
applications.  
RESETn outputs remain asserted during  
a
Table 1. SVS-1 Truth Table  
OUTPUT  
TPS386000  
TPS386040  
TPS386020  
TPS386060  
CONDITION  
STATUS  
MR = Low  
MR = Low  
MR = High  
SENSE1 < VITN  
SENSE1 > VITN  
SENSE1 < VITN  
RESET1 = Low  
RESET1 = Low  
RESET1 = Low  
RESET1 = High  
RESET1 = High  
RESET1 = High  
Reset asserted  
Reset asserted  
Reset asserted  
Reset released after  
delay  
MR = High  
SENSE1 > VITN  
RESET1 = High  
RESET1 = Low  
Table 2. SVS-2 Truth Table  
OUTPUT  
TPS386000  
TPS386020  
CONDITION  
SENSE2 < VITN  
SENSE2 > VITN  
TPS386040  
RESET2 = Low  
RESET2 = High  
TPS386060  
RESET2 = High  
RESET2 = Low  
STATUS  
Reset asserted  
Reset released after delay  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
 
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
Table 3. SVS-3 Truth Table  
OUTPUT  
TPS386000  
TPS386040  
TPS386020  
TPS386060  
CONDITION  
SENSE3 < VITN  
SENSE3 > VITN  
STATUS  
RESET3 = Low  
RESET3 = High  
RESET3 = High  
RESET3 = Low  
Reset asserted  
Reset released after delay  
Table 4. SVS-4 Truth Table  
OUTPUT  
TPS386000  
TPS386040  
TPS386020  
TPS386060  
CONDITION  
SENSE4H > VITP  
STATUS  
SENSE4L < VITN  
SENSE4L < VITN  
SENSE4L > VITN  
RESET4 = Low  
RESET4 = Low  
RESET4 = Low  
RESET4 = High  
RESET4 = High  
RESET4 = High  
Reset asserted  
Reset asserted  
Reset asserted  
SENSE4H < VITP  
SENSE4H > VITP  
Reset released after  
delay  
SENSE4L > VITN  
SENSE4H < VITP  
RESET4 = High  
RESET4 = Low  
Table 5. Watchdog Timer (WDT) Truth Table  
CONDITION  
OUTPUT  
RESET1 OR  
RESET1  
TPS386000  
TPS386040  
TPS386020  
TPS386060  
WDO  
WDO  
WDI PULSE INPUT  
STATUS  
Remains in WDT  
timeout  
Low  
High  
High  
High  
High  
Asserted  
Asserted  
Released  
Released  
Toggling  
WDO = low  
WDO = low  
WDO = low  
WDO = high  
Remains in WDT  
timeout  
Low  
Low  
Low  
610ms after last WDIor WDI↓  
WDO = high  
WDO = high  
WDO = high  
Remains in WDT  
timeout  
Toggling  
Remains in WDT  
timeout  
610ms after last WDIor WDI↓  
WDO = low  
WDO = high  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Asserted  
Asserted  
Released  
Released  
Toggling  
WDO = low  
WDO = low  
WDO = low  
WDO = high  
Normal operation  
Normal operation  
Normal operation  
Enters WDT timeout  
610ms after last WDIor WDIWDO = high  
Toggling  
WDO = high  
WDO = low  
610ms after last WDIor WDI↓  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
 
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
RESET OUTPUT  
VCC  
In a typical TPS3860x0 application, RESETn or  
RESETn outputs are connected to the reset input of a  
processor (DSP, CPU, FPGA, ASIC, etc.), or  
0.9V  
connected to the enable input of a voltage regulator  
(DC-DC, LDO, etc.)  
t
The TPS386000 and TPS386020 provide open-drain  
reset outputs. Pull-up resistors must be used to hold  
SENSE1  
these lines high when RESETn is not asserted, or  
when RESETn is asserted. By connecting pull-up  
resistors to the proper voltage rails (up to 6.5V),  
VHYSN  
RESETn or RESETn output nodes can be connected  
VITN  
to the other devices at the correct interface voltage  
levels. The pull-up resistor should be no smaller than  
10kbecause of the safe operation of the output  
t
transistors. By using wired-OR logic, any combination  
of RESETn can be merged into one logic signal.  
MR  
The TPS386040 and TPS386060 provide push-pull  
reset outputs. The logic high level of the outputs is  
determined by the VCC voltage. With this  
configuration, pull-up resistors are not required and  
some board area can be saved. However, all the  
interface logic levels should be examined. All  
t
RESETn or RESETn connections must be compatible  
with the VCC logic level.  
RESET1  
The RESETn or RESETn outputs are defined for  
VCC voltage higher than 0.9V. To ensure that the  
target processor(s) are properly reset, the VCC  
tD  
tD  
supply input should be fed by the available power rail  
as early as possible in application circuits. Table 1,  
Table 2, Table 3, and Table 4 are truth tables that  
describe how the outputs are asserted or released.  
Figure 28, Figure 29, Figure 30, and Figure 31 show  
the SVS-n timing diagrams. When the condition(s)  
are met, the device changes the state of SVS-n from  
asserted to released after a user-configurable delay  
time. However, the transitions from released-state to  
asserted-state are performed almost immediately with  
minimal propagation delay. Figure 30 describes  
relationship between threshold voltages (VITN and  
VHYSN) and SENSEm voltage; and all SVS-1, SVS-2,  
SVS-3, and SVS-4 have the same behavior of  
Figure 30.  
t
NOTE: The TPS386000 or TPS386040 is shown here using  
RESETn. The TPS386020 and TPS386060 use RESETn;  
therefore, the diagram of RESETn should be read as RESETn with  
the opposite polarity.  
Figure 28. SVS-1 Timing Diagram  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
VCC  
VCC  
0.9V  
0.9V  
t
t
SENSE2  
SENSE3  
VHYSN  
VHYSN  
VITN  
VITN  
t
t
RESET2  
RESET3  
tD  
tD  
tD  
t
t
NOTE: The TPS386000 or TPS386040 is shown here using  
RESETn. The TPS386020 and TPS386060 use RESETn;  
therefore, the diagram of RESETn should be read as RESETn with  
the opposite polarity.  
NOTE: The TPS386000 or TPS386040 is shown here using  
RESETn. The TPS386020 and TPS386060 use RESETn;  
therefore, the diagram of RESETn should be read as RESETn with  
the opposite polarity.  
Figure 29. SVS-2 Timing Diagram  
Figure 30. SVS-3 Timing Diagram  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
VCC  
MR  
t
0.9V  
RESET1  
t
SENSE4L  
t
WDI  
VHYSN  
VITN  
t
t
t
t
(Internal timer)  
Timeout  
tWDT  
SENSE4H  
Zero  
VITP  
VHYSP  
t
WDO  
t
RESET4  
NOTE: The TPS386000 or TPS386040 is shown here using  
RESETn and WDO. The TPS386020 and TPS386060 use  
RESETn and WDO; therefore, the diagrams of RESETn and WDO  
should be read as RESETn and WDO with the opposite polarities.  
Figure 32. WDT Timing Diagram  
tD  
NOTE: The TPS386000 or TPS386040 is shown here using  
RESETn. The TPS386020 and TPS386060 use RESETn;  
therefore, the diagram of RESETn should be read as RESETn with  
the opposite polarity.  
Figure 31. SVS-4 Timing Diagram  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
SENSE INPUT  
WINDOW COMPARATOR  
The SENSEm inputs are pins that allow any system  
voltages to be monitored. If the voltage at the  
SENSE1, SENSE2, SENSE3, or SENSE4L pins  
drops below VITN, then the corresponding reset  
outputs are asserted. If the voltage at the SENSE4H  
pin exceeds VITP, then RESET4 or RESET4 is  
asserted. The comparators have a built-in hysteresis  
to ensure smooth reset output assertions and  
deassertions. Although not required in most cases,  
for extremely noise applications, it is good analog  
design practice to place a 1nF to 10nF bypass  
capacitor at the SENSEm input in order to reduce  
sensitivity to transients, layout parasitics, and  
interference between power rails monitored by this  
device. A typical connection of resistor dividers are  
shown in Figure 33. All the SENSEm pins can be  
used to monitor voltage rails down to 0.4V. Threshold  
voltages can be calculated by following equations:  
The comparator at the SENSE4H pin has the  
opposite comparison polarity to the other SENSEm  
pins. In the configuration shown in Figure 33, this  
comparator monitors overvoltage of the VCC4 node;  
combined with the comparator at SENSE4L, SVS-4  
forms a window comparator.  
NEGATIVE VOLTAGE SENSING  
By using voltage reference output VREF, the SVS-4  
comparator can monitor negative voltage or positive  
voltage lower than 0.4V. Figure 1 shows this usage in  
an application circuit. SVS-4 monitors the positive  
and negative voltage power rail (for example, +15V  
and –15V supply to an op amp) and the RESET4 or  
RESET4 output status continues to be as described  
in Table 4. Note that RS42H is located at higher  
voltage position than RS42L. The threshold voltage  
calculations are shown in the following equations:  
VCC1_target = (1 + RS1H/RS1L) × 0.4 (V)  
VCC2_target = (1 + RS2H/RS2L) × 0.4 (V)  
VCC3_target = (1 + RS3H/RS3L) × 0.4 (V)  
VCC4_target1 = {1+ RS4H/(RS4M + RS4L)} × 0.4 (V)  
VCC4_target2 = {1+ (RS4H + RS4M)/RS4L} × 0.4 (V)  
VCC41_target = (1 + RS41H/RS41L) × 0.4 (V)  
VCC42_target = (1 + RS42L/RS42H) × 0.4 – RS42L/RS42H  
VREF  
×
= 0.4 – RS42L/RS42H × 0.8 (V)  
Where VCC4_target1 is the undervoltage threshold,  
and VCC4_target2 is the overvoltage threshold.  
Sequence: VIN  
VCC4  
VCC3  
VCC2  
VCC1  
VIN  
VCC4  
DC-DC  
LDO  
VCC3  
VCC2  
VCC1  
EN4 DC-DC  
LDO  
RP5 RP4 RP3 RP2 RP1  
VCC  
EN3 DC-DC  
LDO  
MR  
VREF  
VCC1 VCC2 VCC3 VCC4  
WDI  
WDO  
RESET1  
RESET2  
RESET3  
RESET4  
DSP  
CPU  
FPGA  
RS4H  
RS3H  
RS2H  
RS1H  
SENSE1  
CLK  
RESET  
EN2 DC-DC  
LDO  
SENSE2  
SENSE3  
SENSE4L  
TPS386000  
SENSE4H  
CT1  
CT2  
CT2  
CT3  
CT3  
CT4  
CT4  
GND  
RS4M  
RS4L  
CT1  
RS3L  
RS2L  
RS1L  
Figure 33. Typical Application Circuit (SVS-4: Window Comparator)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
SBVS105 SEPTEMBER 2009......................................................................................................................................................................................... www.ti.com  
RESET DELAY TIME  
logic high and SENSE1 is above its reset threshold,  
RESET1 or RESET1 is released after the  
user-configured reset delay time. Note that unlike the  
TPS3808 series, the TPS3860x0 does not integrate  
an internal pull-up resistor between MR and VCC.  
Each of the SVS-n channels can be configured  
independently in one of three modes. Table 6  
describes the delay time settings.  
Table 6. Delay Timing Selection  
To control the MR function from more than one logic  
signal, the logic signals can be combined by  
wired-OR into the MR pin using multiple NMOS  
transistors and one pull-up resistor.  
CTn CONNECTION  
Pull-up to VCC  
Open  
DELAY TIME  
300ms (typ)  
20 ms (typ)  
Capacitor to GND  
Programmable  
WATCHDOG TIMER  
The TPS3860x0 provides a watchdog timer with a  
dedicated watchdog error output, WDO or WDO. The  
WDO or WDO output enables application board  
designers to easily detect and resolve the hang-up  
status of a processor. As with MR, the watchdog  
timer function of the device is also tied to SVS-1.  
Figure 32 shows the timing diagram of the WDT  
function. Once RESET1 or RESET1 is released, the  
internal watchdog timer starts its countdown. Inputting  
a logic level transition at WDI resets the internal timer  
count and the timer restarts the countdown. If the  
TPS3860x0 fails to receive any WDI rising or falling  
edge within the WDT period, the WDT times out and  
asserts WDO or WDO. After WDO or WDO is  
asserted, the device holds the status with the internal  
latch circuit. To clear this timeout status, a reset  
assertion of RESET1 or RESET is required. That is, a  
negative pulse to MR, a SENSE1 voltage less than  
VITN, or a VCC power-down is required.  
To select the 300ms fixed delay time, the CTn pin  
should be pulled up to VCC using a resistor from  
40kto 200k. Please note that there is a pulldown  
transistor from CTn to GND that turns on every time  
the device powers on to determine and confirm CTn  
pin status; therefore, a direct connection of CTn to  
VCC causes a large current flow. To select the 20ms  
fixed delay time, the CTn pin should be left open. To  
program a user-defined adjustable delay time, an  
external capacitor must be connected between CTn  
and GND. The adjustable delay time can be  
calculated by the following equation:  
CCT (nF) = [tDELAY (ms) – 0.5(ms)] × 0.242  
Using this equation, a delay time can be set to  
between 1.4ms to 10s. The external capacitor should  
be greater than 220pF (nominal) so that the  
TPS3860x0 can distinguish it from an open CT pin.  
The reset delay time is determined by the time it  
takes an on-chip, precision 300nA current source to  
charge the external capacitor to 1.24V. When the  
RESETn or RESETn outputs are asserted, the  
corresponding capacitors are discharged. When the  
condition to release RESETn or RESETn occurs, the  
internal current sources are enabled and begin to  
charge the external capacitors. When the CTn  
To reset the processor by WDT timeout, WDO can be  
combined with RESET1 by using the wired-OR with  
the TPS386000 option.  
For legacy applications where the watchdog timer  
timout causes RESET1 to assert, connect WDO to  
MR; see Figure 33 for the connections and see  
Figure 34 and Figure 35 for the timing diagram. This  
legacy support configuration is available with the  
TPS386000 and TPS386040.  
voltage on  
a
capacitor reaches 1.24V, the  
corresponding RESETn or RESETn pins are  
released. Note that a low leakage type capacitor  
(such as ceramic) should be used, and that stray  
capacitance around this pin may cause errors in the  
reset delay time.  
IMMUNITY TO SENSEn VOLTAGE  
TRANSIENTS  
The TPS3860x0 is relatively immune to short  
negative transients on the SENSEn pin. Sensitivity to  
transients depends on threshold overdrive, as shown  
in the typical performance graph TPS386040  
SENSEn Minimum Pulse Width vs SENSEn  
Threshold Overdrive Voltage (Figure 12).  
MANUAL RESET  
The manual reset (MR) input allows external logic  
signal from other processors, logic circuits, and/or  
discrete sensors to initiate a device reset. Because  
MR is connected to SVS-1, the RESET1 or RESET1  
pin is intended to be connected to processor(s) as a  
primary reset source. A logic low at MR causes  
RESET1 or RESET1 to assert. After MR returns to a  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
TPS386000, TPS386020  
TPS386040, TPS386060  
www.ti.com......................................................................................................................................................................................... SBVS105 SEPTEMBER 2009  
Event 1  
Event 2  
Event 3  
WDI  
WDI  
Event 1  
t
RESET1  
RESET1  
t
t
t
MR = WDO  
tD  
MR = WDO  
tWDT  
(Internal timer)  
(Internal timer)  
NOTE: This configuration (connecting WDO and MR) is available  
only with the TPS386000 and TPS386040.  
NOTE: This configuration (connecting WDO and MR) is available  
only with the TPS386000 and TPS386040.  
Figure 34. Legacy WDT Configuration Timing  
Diagram  
Figure 35. Enlarged View of Event 1 from  
Figure 34  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS386000 TPS386020 TPS386040 TPS386060  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2009  
PACKAGING INFORMATION  
Orderable Device  
TPS386000RGPR  
TPS386000RGPT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGP  
20  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
RGP  
20  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS386020RGPR  
TPS386020RGPT  
TPS386040RGPR  
PREVIEW  
PREVIEW  
ACTIVE  
QFN  
QFN  
QFN  
RGP  
RGP  
RGP  
20  
20  
20  
3000  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS386040RGPT  
ACTIVE  
QFN  
RGP  
20  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS386060RGPR  
TPS386060RGPT  
PREVIEW  
PREVIEW  
QFN  
QFN  
RGP  
RGP  
20  
20  
3000  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Sep-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS386000RGPR  
TPS386000RGPT  
TPS386040RGPR  
TPS386040RGPT  
QFN  
QFN  
QFN  
QFN  
RGP  
RGP  
RGP  
RGP  
20  
20  
20  
20  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Sep-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS386000RGPR  
TPS386000RGPT  
TPS386040RGPR  
TPS386040RGPT  
QFN  
QFN  
QFN  
QFN  
RGP  
RGP  
RGP  
RGP  
20  
20  
20  
20  
3000  
250  
346.0  
190.5  
346.0  
190.5  
346.0  
212.7  
346.0  
212.7  
29.0  
31.8  
29.0  
31.8  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TPS386060RGPT

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS386596

Quad Reset Supervisor with Manual Reset Input

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS386596L33

Quad Reset Supervisor with Manual Reset Input

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS386596L33DGKR

Quad Reset Supervisor with Manual Reset Input

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS386596L33DGKT

Quad Reset Supervisor with Manual Reset Input

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3870-Q1

具有延时时间和手动复位功能的汽车类高精度过压复位 IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS38700

支持 I²C 和多达 12 个通道的电源序列发生器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS38700-Q1

支持 I²C 和多达 12 个通道的汽车电源序列发生器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS38700C03NRGERQ1

支持 I²C 和多达 12 个通道的汽车电源序列发生器 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS38700C04NRGER

支持 I²C 和多达 12 个通道的电源序列发生器 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3870J4080DSERQ1

具有延时时间和手动复位功能的汽车类高精度过压复位 IC | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3870J4330DSERQ1

具有延时时间和手动复位功能的汽车类高精度过压复位 IC | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI