TPS51200AQDRCRQ1 [TI]

灌电流和拉电流 DDR 终端稳压器 | DRC | 10 | -40 to 125;
TPS51200AQDRCRQ1
型号: TPS51200AQDRCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

灌电流和拉电流 DDR 终端稳压器 | DRC | 10 | -40 to 125

双倍数据速率 光电二极管 接口集成电路 稳压器
文件: 总38页 (文件大小:1694K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
TPS51200A-Q1 灌电流和拉电流 DDR 终端稳压器  
1 特性  
2 应用  
1
符合面向汽车应用的 AEC-Q100 AEC-Q100 标  
准:  
用于 DDRDDR2DDR3、低功耗 DDR3 和  
DDR4 的存储器终端稳压器  
笔记本电脑、台式机、服务器  
器件温度等级 1:  
–40°C TA 125°C  
电信和数据通信、GSM 基站、液晶 (LCD) 电视和  
等离子 (PDP) 电视、复印机和打印机、机顶盒  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C4B  
3 说明  
扩展的可靠性测试  
TPS51200A-Q1 器件是一款灌电流和拉电流双倍数据  
速率 (DDR) 终端稳压器,专门针对低输入电压、低成  
本、低噪声的空间受限型系统而设计。  
输入电压:支持 2.5V 3.3V 电源轨  
VLDOIN 电压范围:1.1V 3.5V  
具有压降补偿功能的灌电流和拉电流终端稳压器  
所需最小输出电容为 20μF(通常为 3 × 10μF  
MLCC),用于存储器终端 应用 (DDR)  
此器件可保持快速的瞬态响应,最低仅需 20μF 输出电  
容。此器件支持遥感功能,并且可满足 DDR、  
DDR2DDR3、低功耗 DDR3 DDR4 VTT 总线终  
端的所有电源要求。  
用于监视输出稳压的 PGOOD  
EN 输入  
REFIN 输入允许直接或通过电阻分压器灵活进行输  
入跟踪  
此外,该器件还提供一个开漏 PGOOD 信号来监测输  
出稳压,并提供一个 EN 信号在 S3(挂起至 RAM)  
期间针对 DDR 应用进行 VTT 放电。  
远程检测 (VOSNS)  
±10mA 缓冲基准 (REFOUT)  
内置软启动、UVLO OCL  
热关断  
此器件采用高效散热型 VSON-10 封装,具有绿色环保  
和无铅的特性。该器件的额定温度范围为 –40°C 至  
125°C。  
符合 DDRDDR2 JEDEC 规范;支持 DDR3、低  
功耗 DDR3 DDR4 VTT 应用  
器件信息(1)  
带外露散热焊盘的 VSON-10 封装  
器件型号  
封装  
VSON (10)  
封装尺寸(标称值)  
TPS51200A-Q1  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化的 DDR 应用  
1
REFIN  
VIN 10  
3.3 VIN  
VDDQ  
TPS51200A-Q1  
VLDOIN  
VTT  
2
3
4
5
VLDOIN  
VO  
PGOOD  
9
8
7
6
PGOOD  
GND  
EN  
PGND  
VOSNS  
SLP_S3  
VTTREF  
REFOUT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD58  
 
 
 
 
 
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................ 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 12  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application ................................................. 14  
Power Supply Recommendations...................... 25  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
10.3 Thermal Considerations........................................ 27  
11 器件和文档支持 ..................................................... 29  
11.1 器件支持................................................................ 29  
11.2 文档支持................................................................ 29  
11.3 接收文档更新通知 ................................................. 29  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 29  
11.6 静电放电警告......................................................... 29  
11.7 术语表 ................................................................... 29  
12 机械、封装和可订购信息....................................... 29  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2018) to Revision A  
Page  
已添加 扩展的可靠性测试添加到特性列表中的项目 ............................................................................................................. 1  
已更改 将文档状态从预告信息更改生产数据.................................................................................................................. 1  
Updated device number error in schematic illustrations ...................................................................................................... 14  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON With Exposed Thermal Pad  
Top View  
REFIN  
VLDOIN  
VO  
1
2
3
4
10 VIN  
9
8
7
PGOOD  
GND  
EN  
Thermal  
Pad  
PGND  
VOSNS  
5
6
REFOUT  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
For DDR VTT application, connect EN to SLP_S3. For any other applications, use EN as the ON/OFF  
function. Keep EN voltage equal or lower than VIN voltage at all times.  
EN  
7
I
GND  
8
4
9
1
O
I
Ground. Signal ground. Connect to negative pin of the output capacitor.  
Power ground output for the LDO  
PGND(1)  
PGOOD  
REFIN  
PGOOD output. Indicates regulation.  
Reference input  
Reference output. Connect to GND through 0.1-μF ceramic capacitor. If there is REFOUT capacitor at DDR  
side, keep the total capacitance on REFOUT pin below 1 μF. The REFOUT pin can not be open.  
REFOUT  
VIN  
6
O
I
2.5-V or 3.3-V power supply A ceramic decoupling capacitor with a value between 1-μF and 4.7-μF is  
required.  
10  
VLDOIN  
VO  
2
3
5
I
O
I
Supply voltage for the LDO.  
Power output for the LDO. Minimum 20-μF capacitance is required. No maximum capacitance limit.  
Voltage sense output for the LDO. Connect to positive pin of the output capacitor or the load.  
VOSNS  
(1) Thermal pad connection. See 35 in the Thermal Considerations section for additional information.  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN, VLDOIN, VOSNS, REFIN  
3.6  
6.5  
0.3  
3.6  
6.5  
150  
150  
Input voltage(2)  
EN  
V
PGND to GND  
VO, REFOUT  
PGOOD  
Output voltage(2)  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground pin unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
Corner pins (1, 5, 6, and 10)  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
UNIT  
V
Supply voltage  
VIN  
2.375  
–0.1  
0.5  
3.500  
3.5  
EN, VLDOIN, VOSNS  
REFIN  
1.8  
Voltage range  
VO, PGOOD  
REFOUT  
–0.1  
–0.1  
–0.1  
–40  
3.5  
1.8  
PGND  
0.1  
Operating free-air temperature, TA  
125  
°C  
6.4 Thermal Information  
TPS51200A-Q1  
DRC (VSON)  
10 PINS  
55.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
62.2  
28.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.1  
ψJB  
27.9  
RθJCbot  
12.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
6.5 Electrical Characteristics  
Over recommended free-air temperature range, VVIN = 3.3 V, VVLDOIN = 1.8 V, VREFIN = 0.9 V, VVOSNS = 0.9 V, VEN = VVIN, COUT  
= 3 × 10 μF and circuit shown in the 简化的 DDR 应用 section (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
IIN  
Supply current  
TA = 25 °C, VEN = 3.3 V, No Load  
0.7  
65  
1
80  
mA  
TA = 25 °C, VEN = 0 V, VREFIN = 0, No Load  
TA = 25 °C, VEN = 0 V, VREFIN > 0.4 V, No Load  
TA = 25 °C, VEN = 3.3 V, No Load  
IIN(SDN)  
Shutdown current  
μA  
200  
1
400  
50  
ILDOIN  
Supply current of VLDOIN  
μA  
μA  
ILDOIN(SDN)  
Shutdown current of VLDOIN  
TA = 25 °C, VEN = 0 V, No Load  
0.1  
50  
INPUT CURRENT  
IREFIN  
Input current, REFIN  
VEN = 3.3 V  
1
μA  
VO OUTPUT  
1.25  
0.9  
V
mV  
V
VREFOUT = 1.25 V (DDR1), IO = 0 A  
VREFOUT = 0.9 V (DDR2), IO = 0 A  
VREFOUT = 0.75 V (DDR3), IO = 0 A  
VREFOUT = 0.675 V (DDR3L), IO = 0 A  
VREFOUT = 0.6 V (DDR4), IO = 0 A  
–15  
–15  
–15  
-15  
15  
15  
15  
15  
mV  
V
0.75  
0.675  
0.6  
VVOSNS  
Output DC voltage, VO  
mV  
V
mV  
V
-15  
–25  
3
15  
25  
mV  
mV  
A
VVOTOL  
IVOSRCL  
IVOSNCL  
IDSCHRG  
Output voltage tolerance to REFOUT  
VO source current Limit  
VO sink current Limit  
–2A < IVO < 2A  
With reference to REFOUT, VOSNS = 90% × VREFOUT  
With reference to REFOUT, VOSNS = 110% × VREFOUT  
VREFIN = 0 V, VVO = 0.3 V, VEN = 0 V, TA = 25°C  
4.5  
5.5  
25  
3.5  
A
Discharge current, VO  
18  
POWERGOOD COMPARATOR  
PGOOD window lower threshold with respect to REFOUT  
PGOOD window upper threshold with respect to REFOUT  
PGOOD hysteresis  
–23.5%  
17.5%  
–20%  
20%  
5%  
–17.5%  
23.5%  
VTH(PG)  
VO PGOOD threshold  
VPGOODLOW  
IPGOODLK  
Output low voltage  
Leakage current(1)  
ISINK = 4 mA  
0.4  
1
V
VOSNS = VREFIN (PGOOD high impedance), PGOOD = VIN  
+ 0.2 V  
μA  
REFIN AND REFOUT  
VREFIN  
REFIN voltage range  
0.5  
1.8  
V
mV  
mV  
V
VREFINUVLO  
VREFINUVHYS  
VREFOUT  
REFIN undervoltage lockout  
REFIN undervoltage lockout hysteresis  
REFOUT voltage  
REFIN rising  
360  
390  
20  
420  
REFIN  
–10 mA IREFOUT 10 mA, 0.6 V VREFIN 1.25 V  
–1 mA IREFOUT 1 mA, 0.6 V VREFIN 1.25 V  
VREFOUT = 0.5 V  
–15  
-12  
10  
15  
12  
VREFOUTTOL  
REFOUT voltage tolerance to VREFIN  
mV  
IREFOUTSRCL  
IREFOUTSNCL  
REFOUT source current limit  
REFOUT sink current limit  
40  
40  
mA  
mA  
VREFOUT = 1.5 V  
10  
UVLO / EN LOGIC THRESHOLD  
Wake up, TA = 25°C  
Hysteresis  
Enable  
2.2  
1.7  
2.3  
50  
2.375  
V
mV  
V
VVINUVLO  
UVLO threshold  
VENIH  
High-level input voltage  
Low-level input voltage  
Hysteresis voltage  
VENIL  
Enable  
0.3  
1
V
VENYST  
IENLEAK  
Enable  
0.5  
V
Logic input leakage current  
EN, TA = 25°C  
–1  
μA  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
150  
25  
TSDN  
Thermal shutdown threshold(1)  
°C  
(1) Ensured by design. Not production tested.  
Copyright © 2018, Texas Instruments Incorporated  
5
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6.6 Switching Characteristics  
Over recommended free-air temperature range, VVIN = 3.3 V,VVLDOIN = 1.8 V, VREFIN = 0.9 V, VVOSNS = 0.9 V, VEN = VVIN, COUT  
= 3 × 10 μF and circuit shown in the 简化的 DDR 应用 section (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWERGOOD COMPARATOR  
Startup rising edge, VOSNS within  
15% of REFOUT  
TPGSTUPDLY  
TPBADDLY  
PGOOD startup delay  
PGOOD bad delay  
2
ms  
VOSNS is outside of the ±20%  
PGOOD window  
10  
μs  
6.7 Typical Characteristics  
For 1 through 18, 3 × 10-μF MLCCs (0805) are used on the output.  
1.3  
1.28  
1.26  
1.24  
1.22  
940  
TA  
TA  
œ 40°C  
0°C  
25°C  
85°C  
œ 40°C  
930  
920  
0°C  
25°C  
85°C  
910  
900  
890  
880  
870  
1.2  
1.18  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 3.3 V  
0
1
2
3
œ3  
œ2  
œ1  
0
1
2
3
Output Current (A)  
DDR  
VVIN = 3.3 V  
DDR2  
1. Load Regulation  
2. Load Regulation  
790  
780  
770  
720  
710  
700  
690  
680  
670  
660  
650  
640  
TA  
TA  
œ40°C  
0°C  
25°C  
85°C  
œ 40°C  
0°C  
25°C  
85°C  
760  
750  
740  
730  
720  
710  
700  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 3.3 V  
0
1
2
3
3
œ3  
œ2  
œ1  
0
1
2
Output Current (mA)  
DDR3  
VVIN = 3.3 V  
DDR3L  
3. Load Regulation  
4. Load Regulation  
6
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
For 1 through 18, 3 × 10-μF MLCCs (0805) are used on the output.  
670  
650  
630  
1.3  
1.25  
1.2  
TA  
œ 40°C  
0°C  
25°C  
85°C  
1.15  
1.1  
610  
590  
1.05  
TA  
1
0.95  
0.9  
œ 40°C  
0°C  
25°C  
85°C  
570  
550  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 3.3 V  
0
1
2
3
œ3  
œ2  
œ1  
Output Current (A)  
VVIN =2.5 V  
0
1
2
3
LP DDR3 or DDR4  
DDR  
5. Load Regulation  
6. Load Regulation  
1
0.95  
0.9  
800  
825  
750  
725  
700  
675  
650  
TA  
œ 40°C  
0°C  
25°C  
85°C  
0.85  
0.8  
TA  
œ 40°C  
0°C  
25°C  
85°C  
0.75  
0.8  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 2.5 V  
0
1
2
3
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 2.5 V  
0
1
2
3
DDR2  
DDR3  
8. Load Regulation  
7. Load Regulation  
720  
710  
700  
690  
680  
670  
660  
650  
640  
630  
620  
750  
700  
650  
600  
550  
500  
TA  
TA  
œ40°C  
0°C  
25°C  
85°C  
œ 40°C  
0°C  
25°C  
85°C  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 2.5 V  
0
1
2
3
3
œ3  
œ2  
œ1  
Output Current (mA)  
VVIN = 2.5 V  
0
1
2
LP DDR3 or DDR4  
DDR3L  
10. Load Regulation  
9. Load Regulation  
版权 © 2018, Texas Instruments Incorporated  
7
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
For 1 through 18, 3 × 10-μF MLCCs (0805) are used on the output.  
1.255  
1.254  
1.253  
1.252  
1.251  
1.25  
905  
904  
903  
902  
901  
900  
899  
898  
897  
TA  
TA  
œ 40°C  
25°C  
85°C  
œ 40°C  
25°C  
85°C  
1.249  
1.248  
1.247  
œ15  
œ10  
œ5  
0
5
10  
15  
œ15  
œ10  
œ5  
0
5
10  
15  
REFOUT Output Current (mA)  
REFOUT Output Current (mA)  
DDR  
DDR2  
11. REFOUT Load Regulation  
12. REFOUT Load Regulation  
755  
754  
753  
752  
751  
750  
749  
748  
747  
680  
TA  
TA  
œ40°C  
25°C  
85°C  
œ 40°C  
25°C  
85°C  
679  
678  
677  
676  
675  
674  
673  
672  
15  
DDR3L  
œ15  
œ10  
œ5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
REFOUT Output Current (mA)  
REFOUT Output Current (mA)  
DDR3  
13. REFOUT Load Regulation  
14. REFOUT Load Regulation  
1.4  
605  
604  
603  
602  
601  
600  
599  
598  
597  
TA  
œ 40°C  
25°C  
85°C  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VOUT (V)  
0.6  
0.75  
0.9  
1.25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
œ15  
œ10  
œ5  
REFOUT Output Current (mA)  
LP DDR3 or DDR4  
0
5
10  
15  
Output Current (A)  
16. DROPOUT Voltage vs Output Current  
15. REFOUT Load Regulation  
8
版权 © 2018, Texas Instruments Incorporated  
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
For 1 through 18, 3 × 10-μF MLCCs (0805) are used on the output.  
200  
60  
200  
150  
60  
50  
50  
150  
40  
30  
40  
30  
100  
50  
100  
50  
20  
20  
0
0
10  
0
10  
0
œ50  
œ50  
œ100  
œ150  
œ200  
œ100  
œ150  
œ200  
œ10  
œ10  
Gain  
Phase  
Gain  
Phase  
œ20  
œ30  
œ20  
œ30  
1 k  
10 k  
100 k  
1 M  
10 M  
1 k  
10 k  
100 k  
1 M  
10 M  
Frequency (Hz)  
Frequency (Hz)  
DDR2  
DDR3  
17. Gain and Phase vs Frequency  
18. Gain and Phase vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
9
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS51200A-Q1 device is a sink and source, double data-rate (DDR) termination regulator specifically  
designed for low-input voltage, low-cost, and low-noise systems where space is a key consideration.  
The TPS51200A-Q1 device is designed to provide proper termination voltage and a 10-mA buffered reference  
voltage for DDR memory which includes the following DDR specifications (core voltage, reference voltage) with  
minimal external components: DDR (2.5 V, 1.25 V), DDR2 (1.8 V, 0.9 V), DDR3 (1.5 V, 0.75 V), LP DDR3 or  
DDR4 (1.2 V, 0.6 V).  
7.2 Functional Block Diagram  
2
6
VLDOIN  
REFIN  
1
+
REFOUT  
2.3 V  
UVLO  
+
VIN 10  
Gm  
DchgREF  
DchgVTT  
VOSNS  
5
3
VO  
+
ENVTT  
EN  
7
8
Gm  
4
9
PGND  
REFINOK  
GND  
PGOOD  
+
+
Start-up  
Delay  
UDG-08019  
7.3 Feature Description  
7.3.1 Sink and Source Regulator (VO Pin)  
The TPS51200A-Q1 device is a sink and source (sink/source) tracking termination regulator specifically designed  
for low input voltage, low-cost, and low external-component count systems where space is a key application  
parameter. The TPS51200A-Q1 device integrates a high-performance, low-dropout (LDO) linear regulator that is  
capable of both sourcing and sinking current. The LDO regulator employs a fast feedback loop so that small  
ceramic capacitors can be used to support the fast load transient response. To achieve tight regulation with  
minimum effect of trace resistance, a remote sensing pin, VOSNS, must be connected to the positive pin of the  
output capacitors as a separate trace from the high current path from the VO pin.  
7.3.2 Reference Input (REFIN Pin)  
The output voltage, VO, is regulated to the REFOUT pin. When the REFIN pin is configured for standard DDR  
termination applications, the REFIN pin can be set by an external equivalent ratio voltage divider connected to  
the memory supply bus (VDDQ). The TPS51200A-Q1 device supports the REFIN voltage from 0.5 V to 1.8 V,  
making the device versatile and ideal for many types of low-power LDO applications.  
10  
版权 © 2018, Texas Instruments Incorporated  
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
Feature Description (接下页)  
7.3.3 Reference Output (REFOUT Pin)  
When the device is configured for DDR termination applications, the REFOUT pin generates the DDR VTT  
reference voltage for the memory application. The device is capable of supporting both a sourcing and sinking  
load of 10 mA. The REFOUT pin becomes active when the REFIN voltage rises to 0.390 V and the VIN pin is  
above the UVLO threshold. When the REFOUT pin is less than 0.375 V, it is disabled and subsequently  
discharges to the GND pin through an internal 10-kMOSFET. The REFOUT pin is independent of the EN pin  
state.  
7.3.4 Soft-Start Sequencing  
The soft-start function of the VO pin is achieved through a current clamp. The current clamp allows the output  
capacitors to be charged with low and constant current, providing a linear ramp-up of the output voltage. When  
the VO pin is outside of the powergood window, the current clamp level is one-half of the full overcurrent limit  
(OCL) level. When the VO pin rises or falls within the PGOOD window, the current clamp level switches to the  
full OCL level. The soft-start function is completely symmetrical and works not only from GND to the REFOUT  
voltage, but also from the VLDOIN pin to the REFOUT voltage.  
7.3.5 Enable Control (EN Pin)  
When the EN pin is driven high, the TPS51200A-Q1 VO-regulator begins normal operation. When the EN pin is  
driven low, the VO pin discharges to the GND pin through an internal 18-MOSFET. The REFOUT pin remains  
on when the EN pin is driven low.  
7.3.6 Powergood Function (PGOOD Pin)  
The TPS51200A-Q1 device provides an open-drain PGOOD output that goes high when the VO output is within  
±20% of the REFOUT pin. The PGOOD pin deasserts within 10 μs after the output exceeds the size of the  
powergood window. During initial VO startup, the PGOOD pin asserts high 2 ms (typ) after the VO pin enters  
power good window. Because the PGOOD pin is an open-drain output, a 100-k, pullup resistor between the  
PGOOD pin and a stable active supply voltage rail is required.  
7.3.7 Current Protection (VO Pin)  
The LDO has a constant overcurrent limit (OCL). Note that the OCL level reduces by one-half when the output  
voltage is not within the powergood window. This reduction is a non-latch protection.  
7.3.8 UVLO Protection (VIN Pin)  
For the VIN undervoltage-lockout (UVLO) protection, the device monitors the VIN voltage. When the VIN voltage  
is lower than the UVLO threshold voltage, both the VO and REFOUT regulators are powered off. This shutdown  
is a non-latch protection.  
7.3.9 Thermal Shutdown  
The TPS51200A-Q1 device monitors the junction temperature. If the device junction temperature exceeds the  
threshold value, (typically 150°C), the VO and REFOUT regulators are both shut off, discharged by the internal  
discharge MOSFETs. This shutdown is a non-latch protection.  
版权 © 2018, Texas Instruments Incorporated  
11  
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
The TPS51200A-Q1 device can be used in an application system where either a 2.5-V rail or a 3.3-V rail is  
available. The minimum input voltage requirement is 2.375 V. If a 2.5-V rail is used, ensure that the absolute  
minimum voltage (both DC and transient) at the device pin is be 2.375 V or greater. The voltage tolerance for a  
2.5-V rail input is between –5% and 5% accuracy, or better.  
7.4.1 S3 and Pseudo-S5 Support  
The TPS51200A-Q1 device provides S3 support by an EN function. The EN pin can be connected to an SLP_S3  
signal in the end application. Both the REFOUT and VO pin are on when EN = high (S0 state). The REFOUT pin  
is maintained while the VO pin is turned off and discharged through an internal discharge MOSFET when EN =  
low (S3 state). When EN = low and the REFIN voltage is less than 0.390 V, the TPS51200A-Q1 device enters  
pseudo-S5 state. Both the VO and REFOUT outputs are turned off and discharged to the GND pin through  
internal MOSFETs when pseudo-S5 support is engaged (S4/S5 state). 19 shows a typical startup and  
shutdown timing diagram for an application that uses S3 and pseudo-S5 support. It is also allowed to turn on  
VLDOIN earlier than VIN during power on, and turn off VIN earlier than VLDOIN during power off.  
7.4.2 Tracking Startup and Shutdown  
The TPS51200A-Q1 device also supports tracking startup and shutdown when the EN pin is tied directly to the  
system bus and not used to turn on or turn off the device. During tracking startup, the VO pin follows the  
REFOUT pin when the REFIN voltage is greater than 0.39 V. The REFIN pin follows the rise of the VDDQ rail  
though a voltage divider. The typical soft-start time for the VDDQ rail is approximately 3 ms, however this soft-  
star time can vary depending on the system configuration. The SS time of the VO output no longer depends on  
the OCL setting, but is a function of the SS time of the VDDQ rail. PGOOD is asserted 2 ms after the VO pin is  
within ±20% of the REFOUT pin. During tracking shutdown, the VO pin falls following the REFOUT pin until the  
REFOUT pin reaches 0.37 V. When the REFOUT pin falls below 0.37 V, the internal discharge MOSFETs are  
turned on and quickly discharge both the REFOUT and VO pins to GND. The PGOOD pin is deasserted when  
the VO pin is beyond the ±20% range of the REFOUT pin. 20 shows the typical timing diagram for an  
application that uses tracking startup and shutdown.  
3.3VIN  
V
VDDQ  
= 1.5 V  
VLDOIN  
REFIN  
REFOUT  
(VTTREF)  
EN  
(S3_SLP)  
V
t
= 0.75 V  
VO  
t
SS .  
VO  
C
x V  
O
OUT  
=
SS  
I
OOCL  
PGOOD  
2 ms  
19. Typical Timing Diagram for S3 and Pseudo-S5 Support  
12  
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
Device Functional Modes (接下页)  
3.3VIN  
EN  
VLDOIN  
REFIN  
REFOUT  
(VTTREF)  
tSS determined  
by the SS time  
of VLDOIN  
V
= 0.75 V  
VO  
VO  
PGOOD  
2 ms  
20. Typical Timing Diagram of Tracking Startup and Shutdown  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS51200A-Q1 device is specifically designed to power up the memory termination rail (as shown in 21).  
The DDR memory termination structure determines the main characteristics of the VTT rail, which is to be able to  
sink and source current while maintaining acceptable VTT tolerance. See 22 for typical characteristics for a  
single memory cell.  
8.2 Typical Application  
8.2.1 VTT DIMM Applications  
DDR3 240 Pin Socket  
VO  
TPS51200A-Q1  
10 µF  
10 µF  
10 µF  
UDG-08022  
21. Typical Application Diagram for DDR3 VTT DIMM using TPS51200A-Q1  
8.2.1.1 Design Parameters  
Use the information listed in 1 as the design parameters.  
1. DDR, DDR2, DDR3, LP DDR3 and DDR4 Termination Technology and Differences  
LP DDR3 or  
DDR4  
PARAMETER  
DDR  
DDR2  
DR3  
FSB Data Rates  
200, 266, 333 and 400 MHz  
400, 533, 677 and 800 MHz  
800, 1066, 1330 and 1600 MHz  
Same as DDR3  
On-die termination for data group. VTT On-die termination for data group. VTT  
Motherboard termination to VTT  
for all signals  
Termination  
termination for address, command and  
control signals  
termination for address, command and  
control signals  
Same as DDR3  
Same as DDR3  
Not as demanding  
Not as demanding  
Only  
34  
signals  
(address,  
Only  
34  
signals  
(address,  
Termination Current Max source/sink transient  
Demand  
command, control) tied to VTT  
command, control) tied to VTT  
currents of up to 2.6 A to 2.9 A  
ODT handles data signals  
ODT handles data signals  
Less than 1 A of burst current  
2.5-V Core and I/O 1.25-V VTT 1.8-V Core and I/O 0.9-V VTT  
Less than 1A of burst current  
1.5-V Core and I/O 0.75-V VTT  
1.2-V Core and I/O  
0.6-V VTT  
Voltage Level  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 VIN Capacitor  
Add a ceramic capacitor, with a value between 1-μF and 4.7-μF, placed close to the VIN pin, to stabilize the bias  
supply (2.5-V rail or 3.3-V rail) from any parasitic impedance from the supply.  
8.2.1.2.2 VLDO Input Capacitor  
Depending on the trace impedance between the VLDOIN bulk power supply to the device, a transient increase of  
source current is supplied mostly by the charge from the VLDOIN input capacitor. Use a 10-μF (or greater)  
ceramic capacitor to supply this transient charge. Provide more input capacitance as more output capacitance is  
used at the VO pin. In general, use one-half of the COUT value for input.  
8.2.1.2.3 Output Capacitor  
For stable operation, the total capacitance of the VO output pin must be greater than 20 μF. Attach three, 10-μF  
ceramic capacitors in parallel to minimize the effect of equivalent series resistance (ESR) and equivalent series  
inductance (ESL). If the ESR is greater than 2 m, insert an R-C filter between the output and the VOSNS input  
to achieve loop stability. The R-C filter time constant must be almost the same as or slightly lower than the time  
constant of the output capacitor and its ESR.  
8.2.1.2.4 Output Tolerance Consideration for VTT DIMM Applications  
22 shows the typical characteristics for a single memory cell.  
V
V
TT  
DDQ  
Q1  
Q2  
25 W  
R
S
20 W  
Receiver  
Ouput  
Buffer  
(Driver)  
V
V
IN  
OUT  
V
SS  
UDG-08023  
22. DDR Physical Signal System Bi-Directional SSTL Signaling  
In 22, when Q1 is on and Q2 is off:  
The current flows from VDDQ via the termination resistor to VTT  
VTT sinks current  
In 22, when Q2 is on and Q1 is off:  
The current flows from VTT via the termination resistor to GND  
VTT sources current  
Because VTT accuracy has a direct impact on the memory signal integrity, it is imperative to understand the  
tolerance requirement on VTT. Based on JEDEC VTT specifications for DDR and DDR2 (JEDEC standard: DDR  
JESD8-9B May 2002; DDR2 JESD8-15A Sept 2003).  
VTTREF – 40 mV < VTT < VTTREF + 40 mV, for both DC and AC conditions  
The specification indicates that VTT must keep track of VTTREF for proper signal conditioning.  
The TPS51200A-Q1 device ensures the regulator output voltage to be:  
VTTREF –25 mV < VTT < VTTREF + 25 mV, for both DC and AC conditions and –2 A < IVTT < 2 A  
版权 © 2018, Texas Instruments Incorporated  
15  
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
The regulator output voltage is measured at the regulator side, not the load side. The tolerance is applicable to  
DDR, DDR2, DDR3 and low-power DDR3/DDR4 applications (see 1 for detailed information). To meet the  
stability requirement, a minimum output capacitance of 20 μF is needed. Considering the actual tolerance on the  
MLCC capacitors, three 10-μF ceramic capacitors are sufficient to meet the above requirement.  
The TPS51200A-Q1 device is designed as a Gm driven LDO. The voltage droop between the reference input  
and the output regulator is determined by the transconductance and output current of the device. The typical Gm  
is 250 S at 2 A and changes with respect to the load to conserve the quiescent current (that is, the Gm is very  
low at no load condition). The Gm LDO regulator is a single pole system. Its unity gain bandwidth for the voltage  
loop is only determined by the output capacitance, as a result of the bandwidth nature of the Gm (see 公式 1).  
Gm  
F
=
UGBW  
2´ p´ C  
OUT  
where  
FUGBW is the unity gain bandwidth  
Gm is transconductance  
COUT is the output capacitance  
(1)  
This type of regulator has two limitations on the output bulk capacitor requirement. To maintain stability, the zero  
location contributed by the ESR of the output capacitors must be greater than the –3-dB point of the current loop.  
This constraint means that higher ESR capacitors must not be used in the design. In addition, the impedance  
characteristics of the ceramic capacitor must be well understood to prevent the gain peaking effect around the  
Gm –3-dB point because of the large ESL, the output capacitor and parasitic inductance of the VO trace.  
23. Bode Plot for a Typical DDR3 Configuration  
23 shows the bode plot simulation for a typical DDR3 configuration of the TPS51200A-Q1 device, where:  
VIN = 3.3 V  
VVLDOIN = 1.5 V  
VVO = 0.75 V  
IIO = 2 A  
3 × 10-μF capacitors included  
ESR = 2.5 mΩ  
ESL = 800 pH  
The unity-gain bandwidth is approximately 1 MHz and the phase margin is 52°. The 0-dB level is crossed, the  
gain peaks because of the ESL effect. However, the peaking is kept well below 0 dB.  
24 shows the load regulation and 25 shows the transient response for a typical DDR3 configuration. When  
the regulator is subjected to ±1.5-A load step and release, the output voltage measurement shows no difference  
between the DC and AC conditions.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
8.2.1.3 Application Curves  
790  
780  
770  
TA  
œ 40°C  
0°C  
25°C  
85°C  
760  
750  
740  
730  
720  
710  
700  
œ3  
œ2  
œ1  
Output Current (A)  
VVIN = 3.3 V  
0
1
2
3
DDR3  
24. Output Current vs Output voltage  
25. Transient Waveform  
版权 © 2018, Texas Instruments Incorporated  
17  
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.2 Design Example 1  
This design example describes a 3.3-VIN, DDR2 configuration.  
TPS51200A-Q1  
REFIN  
R1  
10 k  
VVDDQ = 1.8 V  
VVLDOIN = VVDDQ = 1.8 V  
VVTT = 0.9 V  
1
2
VIN 10  
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
R3  
100 kꢀ  
C6  
4.7 µF  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
SLP_S3  
VTTREF  
10 µF  
REFOUT  
C5  
0.1 µF  
UDG-08028  
26. 3.3-VIN, DDR2 Configuration  
8.2.2.1 Design Parameters  
For this design example, use the parameters listed in 2.  
2. Design Example 1 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 k  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
8.2.3 Design Example 2  
This design example describes a 3.3-VIN, DDR3 configuration.  
TPS51200A-Q1  
REFIN  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
1
2
VIN 10  
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
R3  
100 k  
C6  
4.7 µF  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
SLP_S3  
VTTREF  
REFOUT  
C5  
0.1 µF  
UDG-08029  
27. 3.3-VIN, DDR3 Configuration  
8.2.3.1 Design Parameters  
For this design example, use the parameters listed in 3.  
3. Design Example 2 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.4 Design Example 3  
This design example describes a 2.5-VIN, DDR3 configuration.  
TPS51200A-Q1  
REFIN  
R1  
10 k  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
1
2
VIN 10  
2.5 VIN  
R2  
10 kꢀ  
C4  
1000 pF  
C6  
4.7 µF  
R3  
100 kꢀ  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
SLP_S3  
VTTREF  
REFOUT  
C5  
0.1 µF  
UDG-08030  
28. 2.5-VIN, DDR3 Configuration  
8.2.4.1 Design Parameters  
For this design example, use the parameters listed in 4.  
4. Design Example 3 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
Resistor  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
20  
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
8.2.5 Design Example 4  
This design example describes a 3.3-VIN, LP DDR3 or DDR4 configuration.  
TPS51200A-Q1  
VVDDQ = 1.2 V  
VVLDOIN = VVDDQ = 1.2 V  
VVTT = 0.6 V  
1
2
REFIN  
VIN 10  
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
C6  
4.7 µF  
R3  
100 kꢀ  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
SLP_S3  
VTTREF  
REFOUT  
C5  
0.1 µF  
UDG-08031  
29. 3.3-VIN, LP DDR3 or DDR4 Configuration  
8.2.5.1 Design Parameters  
For this design example, use the parameters listed in 5.  
5. Design Example 4 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
版权 © 2018, Texas Instruments Incorporated  
21  
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.6 Design Example 5  
This design example describes a 3.3-VIN, DDR3 tracking configuration.  
TPS51200A-Q1  
REFIN VIN 10  
R1  
10 k  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
1
2
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
C6  
4.7 µF  
R3  
100 kꢀ  
VLDOIN  
PGOOD  
9
PGOOD  
C8  
10 µF  
C7  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
REFOUT  
VTTREF  
C5  
0.1 µF  
UDG-08032  
30. 3.3-VIN, DDR3 Tracking Configuration  
8.2.6.1 Design Parameters  
For this design example, use the parameters listed in 6.  
6. Design Example 5 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
22  
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
8.2.7 Design Example 6  
This design example describes a 3.3-VIN, LDO configuration.  
TPS51200A-Q1  
REFIN VIN 10  
2.5 V  
VVLDOIN = VVLDOREF = 2.5 V  
VVLDO = 1.8 V  
1
2
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
R3  
100 kꢀ  
C6  
4.7 µF  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
ENABLE  
REFOUT  
REFOUT  
C5  
0.1 µF  
UDG-08033  
31. 3.3-VIN, LDO Configuration  
8.2.7.1 Design Parameters  
For this design example, use the parameters listed in 7.  
7. Design Example 6 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1  
R2  
R3  
10 kΩ  
Resistor  
3.86 kΩ  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
版权 © 2018, Texas Instruments Incorporated  
23  
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8.2.8 Design Example 7  
This design example describes a 3.3-VIN, DDR3 configuration with Low Pass Filter (LPF).  
TPS51200A-Q1  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
1
2
REFIN  
VIN 10  
3.3 VIN  
R2  
10 k  
C4  
1000 pF  
C6  
4.7 µF  
R3  
100 kꢀ  
VLDOIN  
PGOOD  
9
PGOOD  
C7  
10 µF  
C8  
10 µF  
3
4
5
VO  
GND  
EN  
8
7
6
R4(1)  
C1  
10 µF  
C2  
10 µF  
C3  
10 µF  
PGND  
VOSNS  
SLP_S3  
VTTREF  
REFOUT  
C5  
0.1 µF  
C9(1)  
UDG-08034  
32. 3.3-VIN, DDR3 Configuration with LPF  
8.2.8.1 Design Parameters  
For this design example, use the parameters listed in 8.  
8. Design Example 7 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
Resistor  
100 kΩ  
R4(1)  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
0.1 μF  
Capacitor  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
C9(1)  
(1) The values of R4 and C9 must be chosen to reduce the parasitic effect of the trace (between VO and the output MLCCs) and the output  
capacitors (ESR and ESL).  
24  
版权 © 2018, Texas Instruments Incorporated  
 
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply with a range between 2.375 V and 3.5 V. This  
input supply must be well regulated. TI recommends adding at least one 1-µF to 4.7-µF ceramic capacitor at the  
VIN pin.  
10 Layout  
10.1 Layout Guidelines  
Consider the following points before starting the layout design.  
The input bypass capacitor for VLDOIN must be placed as close as possible to the pin with short and wide  
connections.  
The output capacitor for VO must be placed close to the pin with short and wide connection to avoid  
additional ESR or ESL trace inductance.  
VOSNS must be connected to the positive node of VO output capacitors as a separate trace from the high  
current power line. This configuration is strongly recommended to avoid additional ESR, ESL, or both. If  
sensing the voltage at the point of the load is required, TI recommends to attach the output capacitors at that  
point. Also, it is recommended to minimize any additional ESR, ESL, or both of ground trace between the  
GND pin and the output capacitors.  
Consider adding low-pass filter at VOSNS if the ESR of the VO output capacitors is larger than 2 m.  
REFIN can be connected separately from VLDOIN. Remember that this sensing potential is the reference  
voltage of REFOUT. Avoid any noise-generating lines.  
The negative node of the VO output capacitors and the REFOUT capacitor must be tied together by avoiding  
common impedance to the high current path of the VO source/sink current.  
The GND and PGND pins must be connected to the thermal land underneath the die pad with multiple vias  
connecting to the internal system ground planes (for better result, use at least two internal ground planes).  
Use as many vias as possible to reduce the impedance between PGND/GND and the system ground plane.  
Also, place bulk caps close to the DIMM load point, route the VOSNS to the DIMM load sense point.  
To effectively remove heat from the package, properly prepare the thermal land. Apply solder directly to the  
thermal pad of the package. The wide traces of the component and the side copper connected to the thermal  
land pad help to dissipate heat. Numerous vias 0,33 mm in diameter connected from the thermal land to the  
internal/solder side ground planes must also be used to help dissipation.  
See the TPS51200-EVM User's Guide (SLUU323) for detailed layout recommendations.  
10.1.1 LDO Design Guidelines  
The minimum input to output voltage difference (headroom) decides the lowest usable supply voltage  
transconductance to drive a certain load. For device, a minimum of 300 mV (VLDOINMIIN – VOMAX) is needed to  
support a Gm driven sourcing current of 2 A based on a design of VIN = 3.3 V and COUT = 3 × 10 μF. Because  
the TPS51200A-Q1 device is essentially a Gm driven LDO, the impedance characteristics are both a function of  
the 1 / Gm and RDS(on) of the sourcing MOSFET (see 33). The current inflection point of the design is between  
2 A and 3 A. When ISRC is less than the inflection point, the LDO is considered to be operating in the Gm region;  
when ISRC is greater than the inflection point but less than the overcurrent limit point, the LDO is operating in the  
RDS(on) region. The maximum sourcing RDS(on) is 0.144 with VIN = 3 V and TJ = 125°C.  
版权 © 2018, Texas Instruments Incorporated  
25  
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Layout Guidelines (接下页)  
1/Gm  
1/RDS(on)  
Inflection  
Point  
(between  
2 A and 3 A)  
Overcurrent  
Limit  
Source Current, ISRC (A)  
UDG-08026  
33. Impedance Characteristics  
10.2 Layout Example  
REFIN  
VLDOIN  
VO  
1
2
3
4
5
10  
9
VIN  
PGOOD  
GND  
8
PGND  
VOSNS  
7
EN  
6
REFOUT  
34. Layout Example  
26  
版权 © 2018, Texas Instruments Incorporated  
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
10.3 Thermal Considerations  
Because the TPS51200A-Q1 device is a linear regulator, the VO current flows in both source and sink directions,  
thereby dissipating power from the device. When the device is sourcing current, the voltage difference between  
VLDOIN and VO times IO (IIO) current becomes the power dissipation as shown in 公式 2.  
P
=
V
(
- V  
x I  
O _SRC  
)
DISS _SRC  
VLDOIN  
VO  
(2)  
In this case, if VLDOIN is connected to an alternative power supply lower than the VDDQ voltage, overall power  
loss can be reduced. For the sink phase, VO voltage is applied across the internal LDO regulator, and the power  
dissipation, PDISS_SNK can be calculated by 公式 3.  
P
= V ´ I  
VO O _SNK  
DISS _SNK  
(3)  
Because the device does not sink and source current at the same time and the IO current may vary rapidly with  
time, the actual power dissipation must be the time average of the above dissipations over the thermal relaxation  
duration of the system. Another source of power consumption is the current used for the internal current control  
circuitry from the VIN supply and the VLDOIN supply. This can be estimated as 5 mW or less during normal  
operatiing conditions. This power must be effectively dissipated from the package.  
Maximum power dissipation allowed by the package is calculated by 公式 4.  
PPKG = (TJ(MAX) – TA(MAX)) / RθJA  
T
J(max) ´ TA(max)  
PPKG  
=
RqJA  
where  
TJ(MAX) is 125°C  
TA(MAX) is the maximum ambient temperature in the system  
RθJA is the thermal resistance from junction to ambient  
(4)  
The thermal performance of an LDO depends on the printed circuit board (PCB) layout. The TPS51200A-Q1  
device is housed in a thermally-enhanced package that has an exposed die pad underneath the body. For  
improved thermal performance, this die pad must be attached to ground via thermal land on the PCB. This  
ground trace acts as a both a heatsink and heatspreader. The typical thermal resistance, RθJA, 55.7°C/W, is  
achieved based on a land pattern of 3 mm × 1,9 mm with four vias (0,33-mm via diameter, the standard thermal  
via size) without air flow (see 35).  
Land Pad  
3 mm × 1.9 mm  
Exposed Thermal  
Die Pad,  
2.48 mm × 1.74 mm  
UDG-08018  
35. Recommend Land Pad Pattern for TPS51200A-Q1  
版权 © 2018, Texas Instruments Incorporated  
27  
 
 
 
 
TPS51200A-Q1  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Thermal Considerations (接下页)  
TT on top of package  
TB on PCB surface  
1 mm  
36. Package Thermal Measurement  
To further improve the thermal performance of this device, using a larger than recommended thermal land as  
well as increasing the number of vias helps lower the thermal resistance from junction to thermal pad. The typical  
thermal resistance from junction to thermal pad, RθJP, is 12.1°C/W (based on the recommend land pad and four  
standard thermal vias).  
28  
版权 © 2018, Texas Instruments Incorporated  
TPS51200A-Q1  
www.ti.com.cn  
ZHCSIL4A JUNE 2018REVISED DECEMBER 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
TPS51200-EVM 用户指南》,SLUU323  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS51200AQDRCRQ1  
TPS51200AQDRCTQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
512AQ  
512AQ  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS51200AQDRCRQ1  
TPS51200AQDRCTQ1  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS51200AQDRCRQ1  
TPS51200AQDRCTQ1  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
338.0  
205.0  
355.0  
200.0  
50.0  
33.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS51200AQDRCTQ1

灌电流和拉电流 DDR 终端稳压器 | DRC | 10 | -40 to 125
TI

TPS51200DRCR

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200DRCRG4

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200DRCT

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200DRCTG4

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200MDRCTEP

灌电流/拉电流 DDR 终端稳压器 | DRC | 10 | -55 to 125
TI

TPS51200QDRCRQ1

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200_1

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51206

2-A Peak Sink/Source DDR Termination Regulator with VTTREF Buffered Reference
TI

TPS51206DSQR

具有用于 DDR2/3/3L/4 的 VTTREF 缓冲基准的 2A 峰值灌电流/拉电流 DDR 终端稳压器 | DSQ | 10 | -40 to 105
TI

TPS51206DSQT

具有用于 DDR2/3/3L/4 的 VTTREF 缓冲基准的 2A 峰值灌电流/拉电流 DDR 终端稳压器 | DSQ | 10 | -40 to 105
TI

TPS5120DBT

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI