TPS5120 [TI]

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER; 双输出,两相同步降压型DC / DC控制器
TPS5120
型号: TPS5120
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
双输出,两相同步降压型DC / DC控制器

输出元件 控制器
文件: 总20页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏꢉ ꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E – AUGUST 2000 – REVISED MARCH 2003  
DBT PACKAGE  
(TOP VIEW)  
D
Independent Dual-Outputs Operate 180°  
Out of Phase  
D
D
D
D
D
Wide Input Voltage Range: 4.5-V 28-V  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
INV1  
FB1  
SOFTSTART1  
PWM/SKIP  
CT  
LH1  
OUT1_u  
LL1  
OUT1_d  
OUTGND1  
TRIP1  
2
Adjustable Output Voltage Down to 0.9 V  
3
Pin-Selectable PWM/SKIP Mode for High  
Efficiency Under Light Loads  
4
5
Synchronous Buck Operation Allows up to  
95% Efficiency  
6
5V_STBY  
GND  
7
V
CC  
8
Separate Standby Control and Overcurrent  
Protection for Each Channel  
REF  
STBY1  
STBY2  
TRIP2  
9
VREF5  
REG5V_IN  
OUTGND2  
OUT2_d  
LL2  
10  
11  
12  
13  
14  
15  
D
Programmable Short-Circuit Protection  
FLT  
D
Low Supply (1 mA) and Shutdown (1 nA)  
Current  
POWERGOOD  
SOFTSTART2  
FB2  
D
D
D
Power Good Output  
OUT2_u  
LH2  
INV2  
High-Speed Error Amplifiers  
Sequencing Easily Achieved by Selecting  
Softstart Capacitor Values.  
D
D
5-V Linear Regulator Power Internal IC  
Circuitry  
30-Pin TSSOP Packaging  
description  
The TPS5120 is a dual channel, high-efficiency synchronous buck controller where the outputs run 180 degrees  
out of phase, which lowers the input current ripple, thereby reducing the input capacitance cost. The PWM/SKIP  
pin allows the operating mode to switch from PWM mode to skip mode under light load conditions. The skip  
mode enables a lower operating frequency and shortens the pulse width to the low-side MOSFET, increasing  
the efficiency under light load conditions. These two modes, along with synchronous-rectifier drivers, dead time,  
and very low quiescent current, allow power to be conserved and the battery life to be extended under all load  
conditions. The 1.5 A (typical) high-side and low-side MOSFET drivers on-chip are designed to drive less  
expensive N-channel MOSFETs. The resistorless current protection and fixed high-side driver voltage simplify  
the power supply design and reduce the external parts count. Each channel is independent, offering a separate  
controller, overcurrent protection, and standby control. Sequencing is flexible and can be tailored by choosing  
different softstart capacitor values. Other features, such as undervoltage lockout, power good, overvoltage,  
undervoltage, and programmable short-circuit protection promote system reliability.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002, Texas Instruments Incorporated  
ꢀꢤ  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢀꢍ  
ꢁꢏ  
ꢑꢒ  
ꢊꢐ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
typical design  
V
I
R1  
R2  
Q1  
C1  
U1  
TPS5120DBT  
R7  
R3  
C3  
L1  
GND  
D1  
C11  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
LH1  
INV1  
V
O
1
Q2  
OUT1_u  
FB1  
C4  
3
4
5
6
LL1  
OUT1_d  
OUTGND1  
TRIP1  
SOFTSTART1  
PWM/SKIP  
CT  
C13  
C5  
C6  
C15  
5V_STBY  
GND  
R8  
R9  
7
8
Vcc  
TRIP2  
REF  
9
VREF5  
STBY1  
STBY2  
FLT  
C16  
10  
11  
12  
REG5V_IN  
OUTGND2  
OUT2_d  
C7  
C8  
POWERGOOD  
SOFTSTART2  
FB2  
13  
14  
LL2  
OUT2_u  
LH2  
C12  
C14  
D2  
Q3  
Q4  
15  
16  
V
O
2
INV2  
R4  
R10  
L2  
C10  
C15  
R5  
R6  
Figure 1. EVM Typical Design  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
functional block diagram  
SOFTSTART1  
SOFTSTART1  
LH1  
PWM Comp.  
_
Skip Comp.  
DLY  
OUT1_u  
_
+
LL1  
+
DLY  
OUT1_d  
FB1  
_
OUTGND1  
INV1  
+
+
_
Err Amp.  
LSD Trip  
+
0.85 V  
(  
VTRIP1)  
V
CC  
CT  
+
HSD Trip  
_
OSC  
TRIP1  
OVP1  
_
Current Comp.  
FLT  
Current  
Protection  
Trigger  
UVLO  
SIGNAL  
STBY1  
+
0.85 V+12%  
V
VTRIP1  
CC  
OVP2  
_
STBY2  
V
CC  
+
0.85 V+12%  
V
VTRIP2  
UVP1  
CC  
+
_
Timer  
_
+
TRIP2  
0.85 V 19.4%  
Phase  
UVP2  
+
Inverter  
HSD Trip  
_
_
0.85 V 19.4%  
+
LSD Trip  
( VTRIP2)  
FB2  
V
CC  
OUTGND2  
OUT2_d  
Err Amp.  
_
INV2  
+
+
DLY  
DLY  
PWM Comp.  
LL2  
PWM/SKIP  
_
_
+
OUT2_u  
+
Skip Comp.  
LH2  
UVLO  
SIGNAL  
0.85 V  
SOFTSTART2  
_
SOFTSTART2  
SFT1  
SFT2  
+
5.0 V  
UVLO  
Comp.  
VCC  
VREF5  
_
+
V
REG5V_IN  
5 VREG  
ref  
_
+
STBY1  
INV1  
4.5 V  
STBY2  
REF  
PGcomp1  
0.85 V  
0.85 V7%  
POWERGOOD  
5V_STBY  
INV2  
+
_
INV1  
+
_
GND  
_
+
INV2  
PGcomp4  
0.85 V +7%  
PGcomp3  
0.85 V +7%  
PGcomp2  
0.85 V 7%  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
AVAILABLE OPTIONS  
PACKAGE  
T
A
EVM  
TSSOP  
(DBT)  
TPS5120DBT  
TPS5120EVM-151  
40°C to 85°C  
TPS5120DBTR  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
5
CT  
I/O External capacitor from CT to GND for adjusting the triangle oscillator  
FB1  
FB2  
GND  
INV1  
INV2  
LH1  
LH2  
LL1  
2
O
O
Feedback output of CH1 error amplifier  
Feedback output of CH2 error amplifier  
Control GND  
14  
7
1
I
I
Inverting input of the CH1 error amplifier, skip comparator, and OVP1/UVP1 comparator  
Inverting input of the CH2 error amplifier, skip comparator, and OVP2/UVP2 comparator  
15  
30  
16  
28  
I/O Bootstrap capacitor connection for CH1 high-side gate drive  
I/O Bootstrap capacitor connection for CH2 high-side gate drive  
I/O Bootstrap this pin low for CH1 high-side gate driving return and output current protection. Connect this pin to  
the junction of the high-side and low-side FETs for a floating drive configuration.  
LL2  
18  
I/O Bootstrap this pin low for CH2 high-side gate driving return and output current protection. Connect this pin to  
the junction of the high-side and low-side FETs for a floating drive configuration.  
OUT1_d  
27  
19  
29  
17  
26  
20  
12  
O
O
O
O
Gate drive output for CH1 low-side gate drive  
Gate drive output for CH2 low-side gate drive  
Gate drive output for CH1 high-side switching FETs  
Gate drive output for CH2 high-side switching FETs  
Ground for CH1 FET drivers  
OUT2_d  
OUT1_u  
OUT2_u  
OUTGND1  
OUTGND2  
POWERGOOD  
Ground for CH2 FET drivers  
O
I
Power good open-drain output. When low, POWERGOOD reports an output fail condition. PG comparators  
monitor both SMPSs over voltage and UVLO of VREF5. The threshold is ±7%. When the SMPS starts up, the  
POWERGOOD pins output goes high. POWERGOOD also monitors VREF5s UVLO output.  
PWM/SKIP  
4
PWM/SKIP mode select pin. The PWM/SKIP pin is used to change the outputs operating mode. If this terminal  
is lower than 0.5 V, it works in PWM mode. When a minimum voltage of 2 V is applied, the device operates in  
skip mode. In light load condition (< 0.2 A), the skip mode gives a short pulse to the low-side FETs instead of a  
full pulse. With this control, switching frequency is lowered and switching loss is reduced. Also, the output  
capacitor energy discharging through the output inductor and low-side FETs is stopped. Therefore, TPS5120  
achieves a higher efficiency in light load conditions.  
REF  
8
O
I
0.85-V reference voltage output. The 0.85-V reference voltage is used for setting the output voltage and the  
voltage protection. This reference voltage is dropped down from a 5-V regulator.  
REG5V_IN  
FLT  
21  
11  
3
External 5-V input  
I/O Fault latch timer pin. An external capacitor is connected between FLT and GND to set the FLT enable time up.  
SOFTSTART1  
I/O External capacitor from SOFTSTART1 to GND for CH1 softstart control. Separate soft-start terminals make it  
possible to set the start-up time of each output independently.  
SOFTSTART2  
13  
I/O External capacitor from SOFTSTART2 to GND for CH2 softstart control. Separate soft-start terminals make it  
possible to set the start-up time of each output independently.  
STBY1  
STBY2  
TRIP1  
9
I
I
I
Standby control for CH1. SMPS1 can be switched into standby mode separately by grounding the STBY1 pin.  
Standby control for CH2. SMPS2 can be switched into standby mode separately by grounding the STBY2 pin.  
External resistor connection for CH1 output current control  
10  
25  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
Terminal Functions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
23  
24  
22  
6
TRIP2  
I
External resistor connection for CH2 output current control  
Supply voltage input  
V
CC  
VREF5  
O
I
5-V internal regulator output  
5V_STBY  
5-V linear regulator control  
detailed description  
switching-mode power supply (SMPS) 1, 2  
TPS5120 includes dual SMPS controllers that operate 180° out of phase and at the same frequency. Both  
channels have standby and softstart.  
5-V regulator  
An internal linear voltage regulator is used for the high-side driver bootstrap voltage and source of VREF  
(0.85 V). When the 5-V regulator is disconnected from the MOSFET drivers, it is only used for the source of  
VREF. Since the input voltage range is from 4.5 V to 28 V, this feature offers a fixed voltage for the bootstrap  
voltage so that the drive design is much easier. It is also used for powering the low-side driver. The tolerance  
is 4%. The 5-V regulator is disabled when STBY1, STBY2, and 5V_STBY are all set low.  
5-V switch  
If the internal 5-V switch senses the 5-V input from the REG5V_IN pin, the internal 5-V linear regulator is  
disconnected from the MOSFET drivers. The external 5 V is then used for both the low-side driver and the  
high-side bootstrap, thus, increasing the efficiency.  
error amplifier  
Each channel has its own error amplifier to regulate the output voltage of the synchronous buck converter. It  
is used in the PWM mode for the high output current condition (> 0.2 A). The unity gain bandwidth is 2.5 MHz.  
This decreases the amplifier delay during fast load transients and contributes to a fast transient response.  
skip comparator  
In skip mode, each channel has its own hysteretic comparator to regulate the output voltage of the synchronous  
buck converter. The hysteresis is set internally and is typically set at 9 mV. The delay from the comparator input  
to the driver output is typically 1.2 µs.  
low-side driver  
The low-side driver is designed to drive low r  
N-channel MOSFETs. The maximum drive voltage is 5 V from  
ds(on)  
VREF5. The current rating of the driver is typically 1.5 A at source and sink.  
high-side driver  
The high-side driver is designed to drive low r  
N-channel MOSFETs. The current rating of the driver is 1.2 A  
ds(on)  
at source and sink. When configured as a floating driver, the bias voltage to the driver is developed from VREF5,  
limiting the maximum drive voltage between OUTx_u and LLx to 5 V. The maximum voltage that can be applied  
between LHx and OUTGND is 33 V.  
deadtime  
Deadtime prevents shoot through current from flowing through the main power FETs during switching transitions  
by actively controlling the turnon time of the MOSFETs drivers.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
detailed description (continued)  
current protection  
Overcurrent protection is achieved by comparing the drain-to-source voltage of the high-side and low-side  
MOSFET devices to a set-point voltage. This voltage is set using an external resistor between V and the  
CC  
TRIP1 or TRIP2 terminals. If the drain-to-source voltage up exceeds the set-point voltage during high-side  
conduction, the current limit circuit terminates the high-side driver pulse. If the set-point voltage is exceeded  
during low-side conduction, the low-side pulse is extended through the next cycle. Together this action has the  
effect of decreasing the output voltage until the undervoltage protection circuit is activated and the fault latch  
is set and both the high and low-side MOSFET drivers are shut off.  
overvoltage protection  
For overvoltage protection (OVP), the TPS5120 monitors INV pin voltage. When the INV voltage is higher than  
0.95 V (+12%), the OVP comparator output goes high and the FLT timer starts to charge an external capacitor  
connected to FLT. After a set time, the FLT circuit latches the MOSFET drivers off.  
undervoltage protection  
For undervoltage protection (UVP), the TPS5120 monitors INV pin voltage. When the INV voltage is lower than  
0.68 V (19.4%), the OVP comparator output goes high, and the FLT timer starts to charge an external capacitor  
connected to FLT. Also, when the current comparator triggers the OCP, the UVP comparator detects the under  
voltage output and starts the FLT capacitor charge. After a set time, the FLT circuit latches off all of the MOSFET  
drivers.  
FLT  
When an OVP or UVP comparator output goes high, the FLT circuit starts to charge the FLT capacitor. If the  
FLT pin voltage goes beyond a constant level, the TPS5120 latches the MOSFET drivers. At this time, the state  
of MOSFET is different depending on the OVP alert and the UVP alert. Also, the enable time used to latch the  
MOSFET driver is decided by the capacity of the FLT capacitor. The charging constant current value is also  
different depending on whether it is an OVP alert or a UVP alert. The difference is shown in the following  
equation:  
FLT source current (OVP) = FLT source current (UVP) × 5  
shutdown  
The TPS5120 can be shut down by grounding STBY1, STBY2, and 5V_STBY. The shutdown current is as low  
as 1 µA.  
UVLO  
When the input voltage goes up to about 4 V, the TPS5120 is operational. When the input voltage is lower than  
the turnon value, the device is turned off. The typical hysteresis voltage is 40 mV.  
phase Inverter  
Phase inverter controls the phase of SMPS1 and SMPS 2. SMPS1 operates in phase with the OSC. SMPS2  
operates 180° out of phase from SMPS1. This allows smaller input capacitors to be used.  
oscillator  
TPS5120 has a triangle oscillator generator internal to the IC. The oscillation frequency is set by the size of the  
capacitor connected to the CT pin. The voltage amplitude is 0.43 V ~ 1.17 V.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
Table 1. Logic Chart  
5V_STBY  
STBY1  
STBY2  
SMPS1  
Disable  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Enable  
SMPS2  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
5 V REGULATOR  
Disable  
POWERGOOD  
L
L
L
L
L
H
L
Disable  
Enable  
Active  
Active  
L
H
H
L
Enable  
L
H
L
Enable  
Active  
L
H
H
H
H
Enable  
L
H
L
Enable  
Active  
H
H
Enable  
Active  
H
Enable  
Active  
PG is set high during a softstart.  
POWERGOOD timing sequence  
T
SS  
H
POWERGOOD  
STBY1  
L
H
L
H
STBY2  
L
0.91 V  
0.85 V  
0.78 V  
INV1  
0 V  
0.91 V  
INV2  
0.85 V  
0.78 V  
0 V  
During a softstart, this channels powergood comparator output is fixed low (POWERGOOD output is high).  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 30 V  
CC  
Input voltage: INV1, INV2, CT, PWM/SKIP, REG5V_IN, SOFTSTART1, SOFTSTART2, . . . . . 0.3 V to 7 V  
FLT, POWERGOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
STBY1, STBY2, 5V_STBY, TRIP1, TRIP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 30 V  
Output voltage: LL1, LL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 V to 30 V  
OUT1_u, OUT2_u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 V to 35 V  
LH1, LH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 35 V  
OUT1_d, OUT2_d, 5V_OUT, FB1, FB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 3 V  
OUT1_u, LH1 to LL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
OUT2_u, LH2 to LL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Power dissipation (T 25°C), P  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 mW  
A
D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to the network ground terminal unless otherwise noted.  
2. This rating is specified at duty = 10% on output rise and fall each pulse. Each pulse width (rise and fall) for the peak current should  
not exceed 2 µs.  
3. See Dissipation Rating Table for free-air temperature range above 25°C.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
POWER DISSIPATION  
= 85°C  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
T
A
A
DBT  
874 mW  
6.993 mW/°C  
454 mW  
recommended operating conditions  
MIN NOM  
MAX  
28  
UNIT  
Supply voltage, V  
CC  
4.5  
V
INV1, INV2, CT, PWM/SKIP, SOFTSTART1, SOFTSTART2, FLT  
REG5V_IN, POWERGOOD  
6
0.1  
5.5  
28  
STBY1, STBY2, 5V_STBY  
Input voltage, V  
V
I
OUT1_u, OUT2_u, LH1, LH2  
33  
TRIP1, TRIP2  
0.1  
40  
28  
Oscillator frequency, f  
osc  
300  
500  
85  
kHz  
Operating free-air temperature range, T  
°C  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
electrical characteristics over recommended free-air temperature range, V  
otherwise noted)  
= 7 V (unless  
CC  
reference voltage  
PARAMETER  
Reference voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
ref  
0.85  
V
T
= 25°C,  
I = 50 µA  
I = 50 µA  
I = 50 µA  
I = 50 µA  
1%  
1.5%  
2%  
1%  
1.5%  
2%  
3
A
T
A
= 20°C to 85°C,  
= 40°C to 85°C,  
V
Reference voltage tolerance  
ref(tol)  
T
A
R
R
Line regulation  
Load regulation  
V
= 4.5 V to 28 V,  
0.05  
0.15  
mV  
mV  
(egin)  
(egl)  
CC  
I = 0.1 µA to 1 mA  
5
oscillator  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
300  
1.1  
MAX  
1.2  
UNIT  
f
Frequency  
PWM mode, CT = 44 pF,  
DC  
T
A
= 25 °C  
kHz  
osc  
V
High level output voltage  
Low level output voltage  
V
V
OH  
OL  
f
= 300 kHz  
1.17  
0.5  
osc  
DC  
0.4  
0.6  
V
f
= 300 kHz  
0.43  
osc  
error amplifier  
PARAMETER  
Input offset voltage  
TEST CONDITIONS  
= 25°C  
A
MIN  
TYP  
MAX  
UNIT  
mV  
V
IO  
T
2
10  
Open-loop voltage gain  
Unity-gain bandwidth  
Output sink current  
50  
dB  
2.5  
0.7  
0.9  
MHz  
mA  
I
I
V
V
= 1 V  
= 1 V  
0.3  
0.2  
(snk)  
O
Output source current  
mA  
(src)  
O
skip comparator  
PARAMETER  
PARAMETER  
PARAMETER  
TEST CONDITIONS  
SKIP mode  
MIN  
MIN  
TYP  
MAX  
MAX  
MAX  
UNIT  
V
Hysteresis window  
9
mV  
hys  
duty control  
TEST CONDITIONS  
300 kHz, V = 0 V  
TYP  
UNIT  
DUTY  
Maximum duty cycle  
83%  
I
control  
TEST CONDITIONS  
STBY1, STBY2  
MIN  
2.2  
TYP  
UNIT  
V
V
High-level input voltage  
V
IH  
PWM/SKIP, 5V_STBY  
STBY1, STBY2  
2.2  
0.3  
0.3  
Low-level input voltage  
V
IL  
PWM/SKIP, 5V_STBY  
5-V internal switch  
PARAMETER  
TEST CONDITIONS  
MIN  
4.2  
4.1  
30  
TYP  
MAX  
4.8  
UNIT  
V
V
V
(TO_H)  
(TO_L)  
hys  
Threshold  
Hysteresis  
V
4.7  
200  
mV  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
electrical characteristics over recommended free-air temperature range, V  
otherwise noted) (continued)  
= 7 V (unless  
CC  
5-V regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
T
= 0 mA to 50 mA,  
= 25°C  
V
CC  
= 5.5 V to 28 V,  
O
A
V
O
Output voltage  
4.8  
5.2  
V
R
R
Line regulation  
V
= 5.5 V to 28 V,  
I =10 mA  
V = 5.5 V  
20  
40  
mV  
mV  
mA  
(egin)  
(egl)  
CC  
Load regulation  
I = 1 mA to 10 mA,  
5VREG = 0 V,  
CC  
= 25°C  
A
I
Short circuit output current  
T
65  
3.6  
3.5  
OS  
V
V
V
4.2  
4.1  
(TO_H)  
(TO_L)  
hys  
UVLO threshold voltage  
Hysteresis  
5V_OUT voltage  
5V_OUT voltage  
V
30  
150  
mV  
output drivers  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
MAX  
UNIT  
A
OUT_u sink current  
V
O
V
O
V
O
V
O
= 3 V  
= 2 V  
= 3 V  
= 2 V  
= 25°C  
OUT_u source current  
OUT_d sink current  
OUT_d source current  
TRIP pin current  
1.5  
1.5  
A
A
1.5  
13  
A
I
T
A
11.5  
14.5  
µA  
(TRIP)  
soft start  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.3  
3.7  
2.5  
MAX  
UNIT  
I
Soft start current  
1.6  
2.9  
µA  
(SOFT)  
V
(TO_H)  
(TO_L)  
Threshold voltage (SKIP mode)  
V
V
output voltage monitor  
PARAMETER  
OVP comparator threshold  
TEST CONDITIONS  
MIN  
0.91  
0.64  
0.75  
0.88  
TYP  
0.95  
0.68  
0.78  
0.91  
13  
MAX  
0.99  
0.72  
0.81  
0.94  
UNIT  
V
V
V
V
UVP comparator threshold  
PG comparator 1, 2 threshold  
PG comparator 3, 4 threshold  
Turnon  
PG propagation delay from INV to POWERGOOD  
Timer latch current source  
µs  
Turnoff  
1.2  
UVP protection  
OVP protection  
1.5  
8
2.3  
3.1  
15  
µA  
11.5  
supply current  
PARAMETER  
Supply current  
Shutdown current  
TEST CONDITIONS  
T = 25°C, CT = 0 V, INV = 0 V  
A
MIN  
TYP  
1.1  
MAX  
1.5  
UNIT  
mA  
I
I
CC  
STBY 1, STBY2, 5V_STBY = 0 V  
0.001  
10  
µA  
CC(S)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
QUIESCENT CURRENT  
vs  
QUIESCENT CURRENT (SHUTDOWN)  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.30  
1.25  
1200  
1000  
800  
V
CC  
= 28 V  
V
= 28 V  
CC  
1.20  
1.15  
V
= 7 V  
CC  
600  
400  
200  
0
V
= 4.5 V  
CC  
0
1.10  
1.05  
V
CC  
= 4.5 V  
100  
V
CC  
= 7 V  
50  
0
50  
150  
50  
50  
100  
150  
T
Junction Temperature °C  
J
T
Junction Temperature °C  
J
Figure 2  
Figure 3  
DRIVE OUTPUT CURRENT (OUT_u)  
DRIVE OUTPUT CURRENT (OUT_u)  
vs  
vs  
DRIVE OUTPUT VOLTAGE  
DRIVE OUTPUT VOLTAGE  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
T = 40 °C  
J
T = 40 °C  
J
T = 25 °C  
J
T = 85 °C  
J
T = 85 °C  
J
T = 125 °C  
J
T = 20 °C  
T = 25 °C  
T = 125 °C  
J
J
J
T = 20 °C  
J
1.5  
2.5  
3.5  
4.5  
0.5  
1.5  
2.5  
3.5  
2
3
4
1
2
3
V
O
Drive Output Voltage (OUT_u) V  
V
O
Drive Output Voltage (OUT_u) V  
Figure 4  
Figure 5  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
DRIVE OUTPUT CURRENT (OUT_d)  
DRIVE OUTPUT CURRENT (OUT_d)  
vs  
vs  
DRIVE OUTPUT VOLTAGE  
DRIVE OUTPUT VOLTAGE  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
2.00  
1.80  
1.60  
1.40  
1.20  
T = 40 °C  
T = 20 °C  
J
J
T = 40 °C  
T = 20 °C  
J
J
T = 25 °C  
J
T = 85 °C  
J
1.00  
0.80  
T = 25 °C  
T = 125 °C  
J
J
T = 85 °C  
J
T = 125 °C  
J
1.5  
2.5  
3.5  
4.5  
2
3
4
0.5  
1.5  
2.5  
3.5  
1
2
3
V
Drive Output Voltage (OUT_d) V  
O
V
Drive Output Voltage (OUT_d) V  
O
Figure 6  
Figure 7  
OSCILLATOR OUTPUT VOLTAGE  
vs  
OSCILLATOR OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
500  
495  
490  
485  
480  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 28 V  
V
V
V
= 4.5 V,  
= 7 V,  
= 28 V  
CC  
CC  
CC  
50  
50  
0
50  
100  
150  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 8  
Figure 9  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
ERROR AMPLIFIER OUTPUT VOLTAGE  
vs  
ERROR AMPLIFIER INPUT OFFSET VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
V
CC  
= 28 V  
= 28 V  
V
V
= 4.5 V,  
= 7 V  
CC  
CC  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 10  
Figure 11  
ERROR AMPLIFIER OUTPUT VOLTAGE  
SKIP COMPARATOR HYSTERESIS VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
V
CC  
= 28 V  
V
CC  
= 7 V  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 28 V  
V
CC  
= 4.5 V  
50  
50  
0
50  
100  
150  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 12  
Figure 13  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
VREF5 SHORT-CIRCUIT OUTPUT CURRENT  
vs  
VREF5 OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
5.20  
JUNCTION TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
T
J
= 125 °C  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
4.50  
V
CC  
= 28 V  
T
= 85 °C  
J
V
CC  
= 7 V  
T
J
= 25 °C  
V
= 4.5 V  
0
CC  
T
= 20 °C  
30  
T = 40 °C  
J
J
50  
50  
100  
150  
10  
20  
40  
50  
60  
0
I
Output Current mA  
T
J
Junction Temperature °C  
O
Figure 15  
Figure 14  
UVLO HYSTERESIS VOLTAGE  
vs  
UVLO THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
4.00  
3.90  
3.80  
3.70  
3.60  
3.50  
140  
120  
100  
80  
V
(TO_H)  
60  
V
(TO_L)  
40  
20  
0
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
Junction Temperature °C  
J
Figure 16  
Figure 17  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
REG5V_IN HYSTERESIS VOLTAGE  
vs  
REG5V_IN THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
140  
120  
100  
80  
4.7  
4.7  
4.6  
4.6  
4.5  
4.5  
4.4  
V
(TO_L)  
60  
V
40  
(TO_H)  
20  
0
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 18  
Figure 19  
SOFTSTART CURRENT  
vs  
OVP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.30  
2.28  
2.26  
2.24  
2.22  
2.20  
2.18  
2.16  
2.14  
2.12  
2.10  
956  
V
CC  
V
CC  
= 7 V,  
= 28 V  
954  
952  
950  
948  
946  
944  
V
CC  
V
CC  
= 7 V,  
= 28 V  
V
CC  
= 4.5 V  
V
= 4.5 V  
CC  
50  
50  
0
50  
100  
150  
0
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 20  
Figure 21  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
SCP (OVP) SOURCE CURRENT  
vs  
POWERGOOD THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
950  
925  
900  
875  
850  
825  
800  
775  
750  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11.0  
V(TO_H)  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 28 V  
V
CC  
V
CC  
= 7 V,  
= 28 V  
V
CC  
V
CC  
V
CC  
= 4.5 V,  
= 7 V,  
= 28 V  
V
CC  
= 4.5 V  
V(TO_L)  
0
50  
50  
0
50  
100  
150  
50  
100  
150  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 23  
Figure 22  
TRIP SINK CURRENT  
vs  
SCP (OVP) SOURCE CURRENT  
vs  
TRIP INPUT VOLTAGE  
JUNCTION TEMPERATURE  
14.0  
13.8  
13.6  
13.4  
13.2  
13.0  
12.8  
12.6  
12.4  
12.2  
12.0  
2.40  
2.38  
2.35  
2.33  
2.30  
2.28  
2.25  
2.23  
2.20  
T
J
= 125 °C  
T
J
= 85 °C  
V
CC  
V
CC  
= 7 V,  
= 28 V  
T
= 25 °C  
J
T
= 20 °C  
J
V
= 4.5 V  
CC  
T
J
= 40 °C  
0
4
8
12  
16  
20  
24  
28  
32  
50  
0
50  
100  
150  
TRIP Input Voltage V  
V
I
T
J
Junction Temperature °C  
Figure 24  
Figure 25  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
OUTPUT MAXIMUM DUTY CYCLE  
vs  
OSCILLATOR FREQUENCY  
vs  
JUNCTION TEMPERATURE  
CAPACITANCE  
85.0  
84.5  
84.0  
83.5  
83.0  
82.5  
82.0  
81.5  
81.0  
1000  
V
= 7 V,  
V
CC  
V
CC  
= 7 V,  
= 28 V  
CC  
T
J
= 25 °C  
100  
V
= 4.5 V  
CC  
f
= 300 kHz  
100  
osc  
10  
0
50  
50  
100  
150  
200  
250  
0
50  
150  
T
J
Junction Temperature °C  
CT Capacitance pF  
Figure 26  
Figure 27  
SOFTSTART TIME  
vs  
SCP DELAY TIME  
vs  
SOFTSTART CAPACITANCE  
CAPACITANCE  
100 k  
10 k  
1 k  
100 k  
10 k  
1 k  
100  
100  
10  
10  
1
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
Softstart Capacitance pF  
SCP Capacitance pF  
Figure 28  
Figure 29  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆ  
ꢇ ꢈꢉꢊ ꢋꢈ ꢀ ꢁꢈ ꢀꢌ ꢀꢍ ꢋ ꢎꢁꢏ ꢉꢂ ꢐ ꢂ ꢑꢒ ꢓꢏꢔ ꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀ ꢔꢋ ꢊ ꢊꢐ ꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
TYPICAL CHARACTERISTICS  
DRIVER DEAD TIME (OUT_u FALL)  
DRIVER DEAD RISE TIME (OUT_u RISE)  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
175.0  
172.5  
170.0  
167.5  
100  
95  
90  
85  
80  
75  
70  
V
= 4.5 V  
CC  
V
CC  
V
CC  
= 7 V,  
= 28 V  
V
CC  
= 4.5 V  
165.0  
162.5  
V
V
= 7 V,  
= 28 V  
CC  
CC  
50  
0
50  
100  
150  
50  
0
50  
100  
T
Junction Temperature °C  
J
T
J
Junction Temperature °C  
Figure 30  
Figure 31  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈ ꢉꢊ ꢋ ꢈꢀꢁ ꢈꢀꢌ ꢀꢍ ꢋꢎꢁ ꢏꢉꢂꢐ ꢂꢑ ꢒꢓꢏꢔꢋ ꢒꢋ ꢈꢂ ꢕꢈꢓ ꢖ ꢇꢓꢗ ꢇꢓ ꢓꢋ ꢒꢀꢔ ꢋ ꢊꢊ ꢐꢔ  
SLVS278E AUGUST 2000 REVISED MARCH 2003  
MECHANICAL DATA  
DBT (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
30 PINS SHOWN  
0,27  
0,17  
M
0,50  
30  
0,08  
16  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
15  
0°ā8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
38  
44  
50  
DIM  
7,90  
7,70  
7,90  
7,70  
9,80  
9,60  
11,10  
12,60  
12,40  
A MAX  
10,90  
A MIN  
4073252/D 09/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

TPS5120-EP

DUAL OUTPUT, TWO-PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120-Q1

DUAL OUTPUT, TWO-PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS51200

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200-EP

灌电流/拉电流 DDR 终端稳压器
TI

TPS51200-Q1

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200-Q1_15

Sink and Source DDR Termination Regulator
TI

TPS51200A-Q1

灌电流和拉电流 DDR 终端稳压器
TI

TPS51200AQDRCRQ1

灌电流和拉电流 DDR 终端稳压器 | DRC | 10 | -40 to 125
TI

TPS51200AQDRCTQ1

灌电流和拉电流 DDR 终端稳压器 | DRC | 10 | -40 to 125
TI

TPS51200DRCR

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200DRCRG4

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200DRCT

SINK/SOURCE DDR TERMINATION REGULATOR
TI