TPS51220ARSNR [TI]

采用 RSN/RTV 封装的适用于笔记本电脑电源的 3V 至 28V 同步峰值电流模式降压控制器 | RSN | 32 | -40 to 85;
TPS51220ARSNR
型号: TPS51220ARSNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 RSN/RTV 封装的适用于笔记本电脑电源的 3V 至 28V 同步峰值电流模式降压控制器 | RSN | 32 | -40 to 85

开关 控制器 开关式稳压器 开关式控制器 电脑 输出元件 电源电路 电视 开关式稳压器或控制器
文件: 总45页 (文件大小:839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller  
1
FEATURES  
2
Input Voltage Range: 4.5 V to 32 V  
Powergood Output for Each Channel  
Output Voltage Range: 1 V to 12 V  
OCL/OVP/UVP/UVLO Protections  
(OVP Disable Option)  
Selectable Light Load Operation  
(Continuous / Auto Skip / Out-Of-Audio™ Skip)  
Thermal Shutdown (Non-Latch)  
Output Discharge Function (Disable Option)  
Integrated Boot Strap MOSFET Switch  
QFN-32 (RTV) Package  
Programmable Droop Compensation  
Voltage Servo Adjustable Soft Start  
200-kHz to 1-MHz Fixed-Frequency PWM  
Selectable Current/D-CAP™ Mode Architecture  
180° Phase Shift Between Channels  
Resistor or Inductor DCR Current Sensing  
Adaptive Zero Crossing Circuit  
APPLICATIONS  
Notebook Computer System and I/O Bus  
Point of Load in LCD TV, MFP  
DESCRIPTION  
The TPS51220A is a dual synchronous buck regulator controller with two LDOs. It is optimized for 5-V/3.3-V  
system controller, enabling designers to cost effectively complete 2-cell to 4-cell notebook system power supply.  
The TPS51220A supports high efficiency, fast transient response, and 99% duty cycle operation. It supports  
supply input voltage ranging from 4.5 V to 32 V, and output voltages from 1 V to 12 V. Two types of control  
schemes can be chosen depending on the application. Peak current mode supports stability operation with lower  
ESR capacitor and output accuracy. The D-CAP mode supports fast transient response. The high duty (99%)  
operation and the wide input/output voltage range supports flexible design for small mobile PCs and a wide  
variety of other applications. The fixed frequency can be adjusted from 200 kHz to 1 MHz by a resistor, and each  
channel runs 180° out-of-phase. The TPS51220A can also synchronize to the external clock, and the interleaving  
ratio can be adjusted by its duty. The TPS51220A is available in the 32-pin 5x5 QFN package and is specified  
from –40°C to 85°C.  
TYPICAL APPLICATION CIRCUIT  
VREG5  
VBAT  
VBAT  
5V/100mA  
Q11  
Q12  
C12  
Q21  
C22  
C01  
C14  
C24  
L2  
L1  
PGND  
PGND  
VO2  
3.3V  
VO1  
5.0V  
PGND  
28  
PGND  
30  
C21  
GND  
27  
Q22  
C11  
32  
31  
29  
26  
25  
PGND  
PGND  
PGND  
PGND  
1
2
3
4
5
6
7
8
24  
23  
DRVH1  
V5SW  
DRVH2  
VIN  
VO1  
VBAT  
R01  
VREG3  
RF  
VREG3 22  
EN2 21  
3.3V/10mA  
C03  
GND EN1  
PGOOD1  
EN1  
EN2  
TPS51220A  
(QFN32)  
PGOOD1  
SKIPSEL1  
PGOOD2  
SKIPSEL2  
20  
19  
PGOOD2  
GND  
SKIPSEL1  
R14  
SKIPSEL2  
R24  
PowerPAD  
CSP1  
CSN1  
CSP2 18  
C13  
C23  
CSN2  
17  
9
10  
11  
12  
13  
14  
15  
16  
GND  
EN  
VO1  
VREG5  
VO2  
R21  
R23  
R11  
R12  
R22  
C 02  
R13  
GND  
GND  
GND  
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
Out-Of-Audio, D-CAP, PowerPAD are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN  
V5SW  
1.25V  
+
+
+
+
4.7V/ 4.5V  
4.7V/ 4.5V  
VREG3  
VREG5  
GND  
V5OK  
THOK  
+
4.2V/ 3.8V  
Ready  
GND  
+
VREF2  
150/ 140  
Deg-C  
1.25V  
GND  
GND  
CLK2  
CLK1  
OSC  
RF  
GND  
1V +5%/ 10%  
1V - 5%/ 10%  
+
+
PGOOD1  
Delay  
1V -30%  
1V +15%  
+
+
GND  
UVP  
OVP  
CLK1  
Ready  
Fault2  
SDN2  
FUNC  
Fault1  
SDN1  
COMP1  
VFB1  
Clamp (+)  
Clamp (-)  
Ramp  
Comp  
+
+
PWM  
CUR  
D-CAP  
VREG5  
1V  
+
+
VREF2  
VFB-AMP  
VBST1  
DRVH1  
SW1  
Enable/  
Soft-start  
Ramp  
Comp  
Control  
Logic  
EN1  
+
Skip  
CS-AMP  
CSN1  
CSP1  
TRIP  
+
OCP  
XCON  
+
VREG5  
100mV  
DRVL1  
AZC  
Discharge  
Control  
GND  
GND  
N-OCP  
+
100mV  
VREF2  
GND  
OOA  
Ctrl  
GND  
SKIPSEL1  
Channel-1 Switcher shown  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
TPS51220A  
–0.3 to 34  
–0.3 to 39  
–0.3 to 7  
–5 to 34  
UNIT  
VIN  
VBST1, VBST2  
VBST1, VBST2(3)  
SW1, SW2  
(2)  
Input voltage range  
V
CSP1, CSP2, CSN1, CSN2  
–1 to 13.5  
–0.3 to 7  
–1 to 7  
EN, EN1, EN2, VFB1, VFB2, TRIP, SKIPSEL1, SKIPSEL2, FUNC  
V5SW  
V5SW (to VREG5)(4)  
–7 to 7  
DRVH1, DRVH2  
–5 to 39  
V
V
(3)  
DRVH1, DRVH2  
–0.3 to 7  
Output voltage range(2)  
DRVL1, DRVL2, COMP1, COMP2, VREG5, RF, VREF2,  
PGOOD1, PGOOD2  
–0.3 to 7  
V
VREG3  
–0.3 to 3.6  
150  
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
Tstg  
–55 to 150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) Voltage values are with respect to the corresponding SW terminal.  
(4) When EN is high and V5SW is grounded, or voltage is applied to V5SW when EN is low.  
DISSIPATION RATINGS (2 oz. Trace and Copper Pad with Solder)  
TA < 25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
32-pin RTV  
1.7 W  
17 mW/°C  
0.7 W  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
TYP  
MAX  
32  
6
UNIT  
VIN  
Supply voltage  
V
V5SW  
–0.8  
–0.1  
–4.0  
–0.1  
–4.0  
–0.8  
VBST1, VBST2  
37  
37  
6
DRVH1, DRVH2  
DRVH1, DRVH2 (wrt SW1, 2)  
SW1, SW2  
32  
13  
I/O voltage  
V
CSP1, CSP2, CSN1, CSN2  
EN, EN1, EN2, VFB1, VFB2, TRIP, DRVL1, DRVL2, COMP1, COMP2,  
VREG5, RF, VREF2, PGOOD1, PGOOD2, SKIPSEL1, SKIPSEL2,  
FUNC  
–0.1  
6
VREG3  
–0.1  
–40  
3.5  
85  
TA  
Operating free-air temperature  
°C  
ORDERING INFORMATION  
ORDERABLE PART  
TA  
-40°C to 85°C  
PACKAGE(1)  
TRANSPORT MEDIA  
QUANTITY  
ECO PLAN  
NUMBER  
TPS51220ARTVT  
TPS51220ARTVR  
Tape and Reel  
Tape and Reel  
250  
Plastic Quad Flat Pack  
(32-Pin QFN)  
Green (RoHS  
and no Sb/Br)  
3000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN shutdown current, TA = 25°C,  
No Load, EN = 0V, V5SW = 0 V  
I(VINSDN)  
VIN shutdown current  
VIN Standby Current  
Vbat Standby Current  
7
80  
15  
µA  
µA  
µA  
VIN standby current, TA = 25°C, No Load,  
EN1 = EN2 = V5SW = 0 V  
I(VINSTBY)  
I(VBATSTBY)  
120  
Vbat standby current, TA = 25°C, No Load  
500  
SKIPSEL2 = 2V, EN2 = open, EN1 = V5SW = 0V(1)  
TRIP = 5 V  
0.8  
0.9  
mA  
mA  
V5SW current, TA = 25°C, No Load,  
ENx = 5V, VFBx = 1.05 V  
I(V5SW)  
V5SW Supply Current  
VREF2 Output Voltage  
TRIP = 0 V  
VREF2 OUTPUT  
V(VREF2)  
I(VREF2) < ±10 µA, TA = 25°C  
1.98  
1.97  
2.00  
2.00  
2.02  
2.03  
V
I(VREF2) < ±100 µA, 4.5V < VIN < 32 V  
VREG3 OUTPUT  
V5SW = 0 V, I(VREG3) = 0 mA, TA = 25°C  
3.279  
3.135  
10  
3.313  
3.300  
15  
3.347  
3.400  
20  
V(VREG3)  
VREG3 Output Voltage  
VREG3 Output Current  
V
V5SW = 0 V, 0 mA < I(VREG3) < 10 mA,  
5.5 V < VIN < 32 V  
I(VREG3)  
VREG3 = 3 V  
mA  
VREG5 OUTPUT  
V5SW = 0 V, I(VREG5) = 0 mA, TA = 25°C  
4.99  
4.90  
5.04  
5.03  
5.09  
5.15  
V
V5SW = 0 V, 0 mA < I(VREG5) < 100 mA,  
6 V < VIN < 32 V  
V(VREG5)  
VREG5 Output Voltage  
V5SW = 0 V, 0 mA < I(VREG5) < 100 mA,  
5.5 V < VIN < 32 V  
4.50  
5.03  
5.15  
V
V5SW = 0 V, VREG5 = 4.5 V  
V5SW = 5 V, VREG5 = 4.5 V  
Turning on  
100  
200  
150  
300  
4.7  
200  
400  
4.8  
I(VREG5)  
VREG5 Output Current  
Switchover Threshold  
mA  
4.55  
0.15  
V(THV5SW)  
V
Hysteresis  
0.20  
7.7  
0.25  
td(V5SW)  
Switchover Delay  
5V SW Ron  
Turning on  
ms  
R(V5SW)  
OUTPUT  
I(VREG5) = 100 mA  
0.5  
TA = 25°C, No Load  
0.9925  
0.990  
–50  
1.000  
1.000  
1.0075  
1.010  
50  
VFB Regulation Voltage  
Tolerance  
V(VFB)  
V
TA = –40°C to 85°C , No Load  
VFBx = 1.05 V, COMPx = 1.8 V, TA = 25°C  
I(VFB)  
VFB Input Current  
nA  
R(Dischg)  
CSNx Discharge Resistance ENx = 0 V, CSNx = 0.5 V, TA = 25°C  
20  
40  
VOLTAGE TRANSCONDUCTANCE AMPLIFIER  
Gmv  
VID  
Gain  
TA = 25°C  
500  
µS  
Differential Input Voltage  
Range  
–30  
30  
mV  
TA = 0 to 85°C  
27  
22  
33  
33  
µA  
µA  
COMP Maximum Sink  
Current  
I(COMPSINK)  
COMPx = 1.8 V  
COMPx = 1.8 V  
TA = –40 to 85°C  
COMP Maximum Source  
Current  
I(COMPSRC)  
VCOMP  
–33  
2.22  
1.77  
–43  
2.26  
1.81  
µA  
V
COMP Clamp Voltage  
2.18  
1.73  
COMP Negative Clamp  
Voltage  
VCOMPN  
V
(1) Specified by design. Detail external condition follows application circuit of Figure 57.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted)  
PARAMETER  
CURRENT AMPLIFIER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRIP = 0V/2V, CSNx = 5V, TA = 25°C(2)  
TRIP = 3.3V/5V, CSNx = 5V, TA = 25°C(2)  
3.333  
1.667  
GC  
VIC  
Gain  
Common mode Input  
Voltage Range  
0
13  
75  
V
Differential Input Voltage  
Range  
VID  
TA = 25°C  
–75  
mV  
POWERGOOD  
PG in from lower  
PG in from higher  
PG hysteresis  
92.5%  
95%  
105%  
5%  
5
97.5%  
V(THPG)  
PG threshold  
102.5%  
107.5%  
I(PG)  
PG sink Current  
PGOOD Delay  
PGOOD = 0.5 V  
Delay for PG in  
mA  
ms  
t(PGDLY)  
SOFTSTART  
t(SSDYL)  
t(SS)  
0.8  
1
1.2  
Soft Start Delay  
Soft Start Time  
Delay for Soft Start, ENx = Hi to SS-ramp starts  
Internal Soft Start  
200  
960  
µs  
µs  
FREQUENCY AND DUTY CONTROL  
f(SW)  
Switching Frequency  
Rf = 330 k  
Lo to Hi  
273  
0.7  
303  
1.3  
0.2  
333  
2
kHz  
V
V(THRF)  
RF Threshold  
Hysteresis  
V
Sync Input Frequency  
Range(2)  
f(SYNC)  
200  
1000  
kHz  
V(DRVH) = 90% to 10%, No Load, CCM/ OOA(2)  
V(DRVH) = 90% to 10%, No Load, Auto-skip  
V(DRVH) = 10% to 90%, No Load  
DRVH-off to DRVL-on  
120  
160  
290  
30  
40  
1
ns  
ns  
ns  
ns  
ns  
V
tONmin  
tOFFmin  
tD  
Minimum On Time  
Minimum Off Time  
Dead time  
250  
400  
50  
10  
30  
DRVL-off to DRVH-on  
70  
(2)  
V(DTH)  
V(DTL)  
DRVH-off threshold  
DRVL-off threshold  
DRVH to GND  
DRVL to GND(2)  
1
V
CURRENT SENSE  
TA = 0 to 85°C  
28  
27  
27  
25  
56  
55  
55  
54  
31  
31  
31  
31  
60  
60  
60  
60  
5
35  
37  
36  
42  
65  
68  
67  
72  
TRIP=0V/ 2V, 2V<CSNx<12.6V  
TRIP=0V/ 2V, 0.95V<CSNx<12.6V  
TRIP=3.3V/ 5V, 2V<CSNx<12.6V  
TRIP=3.3V/ 5V, 0.95V<CSNx<12.6V  
TA = –40 to 85°C  
TA = 0 to 85°C  
TA = –40 to 85°C  
TA = 0 to 85°C  
TA = –40 to 85°C  
TA = 0 to 85°C  
TA = –40 to 85°C  
Positive  
Current limit threshold  
(ultra-low voltage)  
V(OCL-ULV)  
mV  
mV  
Current limit threshold  
(low voltage)  
V(OCL-LV)  
Auto-Zero cross adjustable  
offset range  
VZCAJ  
0.95V < CSNx < 12.6V, Auto-skip  
0.95V < CSNx < 12.6V, OOA  
mV  
mV  
Negative  
–5  
Zero cross detection  
comparator Offset  
V(ZC)  
–4  
0
4
Negative current limit  
threshold  
(ultra-low voltage)  
TA = 0 to 85°C  
TA = –40 to 85°C  
TA = 0 to 85°C  
TA = –40 to 85°C  
–23  
–22  
–50  
–49  
–31  
–31  
–60  
–60  
–40  
–44  
–73  
–77  
V(OCLN-ULV)  
TRIP = 0V/2V, 0.95V < CSNx < 12.6V  
TRIP = 3.3V/5V, 0.95V < CSNx < 12.6V  
mV  
Negative current limit  
threshold  
(low voltage)  
V(OCLN-LV)  
(2) Specified by design.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted)  
PARAMETER  
OUTPUT DRIVERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Source, V(VBST-DRVH) = 0.1 V  
1.7  
1
5
R(DRVH)  
DRVH resistance  
DRVL resistance  
Sink, V(DRVH-SW) = 0.1 V  
Source, V(VREG5-DRVL) = 0.1 V  
Sink, V(DRVL-GND) = 0.1 V  
3
4
2
1.3  
0.7  
R(DRVL)  
UVP, OVP AND UVLO  
V(OVP)  
OVP Trip Threshold  
OVP detect  
UVP detect  
110%  
115%  
1.5  
120%  
t(OVPDLY)  
V(UVP)  
OVP Prop Delay  
UVP Trip Threshold  
UVP Delay  
µs  
65%  
0.8  
1.7  
75  
70%  
1
73%  
1.2  
t(UVPDLY)  
ms  
V
Wake up  
Hysteresis  
Wake up  
Hysteresis  
Wake up  
Hysteresis  
1.8  
1.9  
V(UVREF2)  
V(UVREG3)  
V(UVREG5)  
VREF2 UVLO Threshold  
VREG3 UVLO Threshold  
VREG5 UVLO Threshold  
100  
3.1  
125  
3.2  
mV  
3
V
0.10  
4.1  
0.35  
0.15  
4.2  
0.20  
4.3  
V
V
0.40  
0.44  
INTERFACE AND LOGIC THRESHOLD  
Wake up  
Hysteresis  
Wake up  
Hysteresis  
0.8  
0.1  
1
0.2  
1.2  
0.3  
V(EN)  
EN Threshold  
V
0.45  
0.1  
0.50  
0.2  
0.55  
0.3  
V(EN12)  
EN1/EN2 Threshold  
V
V
EN1/EN2 SS Start  
Threshold  
V(EN12SS)  
SS-ramp start threshold at external soft start  
1
(3)  
V(EN12SSEND)  
I(EN12)  
EN1/EN2 SS End Threshold SS-End threshold at external soft start  
2
2
V
EN1/EN2 Source Current  
VEN1/EN2 = 0V  
1.6  
2.4  
1.5  
2.1  
3.4  
µA  
Continuous  
Auto Skip  
1.9  
3.2  
3.8  
SKIPSEL1/SKIPSEL2  
Setting Voltage  
V(SKIPSEL)  
V
V
V
OOA Skip (min 1/8 Fsw)  
OOA Skip (min 1/16 Fsw)  
V(OCL-ULV), Discharge ON  
V(OCL-ULV), Discharge OFF  
V(OCL-LV), Discharge OFF  
V(OCL-LV), Discharge ON  
Current mode, OVP enable  
D-CAP mode, OVP disable  
D-CAP mode, OVP enable  
Current mode, OVP disable  
TRIP = 0 V  
1.5  
2.1  
3.4  
1.9  
3.2  
3.8  
V(TRIP)  
TRIP Setting Voltage  
FUNC Setting Voltage  
1.5  
2.1  
3.4  
1.9  
3.2  
3.8  
–1  
V(FUNC)  
1
1
1
1
I(TRIP)  
TRIP Input Current  
µA  
µA  
TRIP =5 V  
–1  
SKIPSELx = 0 V  
–1  
I(SKIPSEL)  
SKIPSEL Input Current  
SKIPSELx = 5 V  
–1  
BOOT STRAP SW  
V(FBST) Forward Voltage  
I(BSTLK) VBST Leakage Current  
THERMAL SHUTDOWN  
VVREG5-VBST, IF = 10 mA, TA = 25°C  
VVBST = 37 V, VSW = 32 V  
0.10  
0.01  
0.20  
1.5  
V
µA  
Shutdown temperature(3)  
Hysteresis(3)  
150  
10  
T(SDN)  
Thermal SDN Threshold  
°C  
(3) Specified by design.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
DEVICE INFORMATION  
PINOUT  
RTV PACKAGE  
(TOP VIEW)  
DRVH1  
V5SW  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
DRVH2  
VIN  
RF  
VREG3  
EN2  
TPS51120A  
EN1  
PGOOD1  
SKIPSEL1  
CSP1  
PGOOD2  
SKIPSEL2  
CSP2  
18  
17  
CSN2  
CSN1  
PIN FUNCTIONS  
PIN  
I/O  
DESCRIPTION  
NAME  
DRVH1  
DRVH2  
SW2  
NO.  
1
High-side MOSFET gate driver outputs. Source 1.7 , sink 1.0 , SW-node referenced floating driver. Drive  
O
voltage corresponds to VBST to SW voltage.  
24  
25  
32  
I/O  
O
I
High-side MOSFET gate driver returns.  
SW1  
Always alive 3.3 V, 10 mA low dropout linear regulator output. Bypass to (signal) GND with more than 1-µF  
ceramic capacitance. Runs from VIN supply or from VREG5 when it is switched over to V5SW input.  
VREG3  
22  
EN1  
EN2  
4
21  
5
Channel 1 and channel 2 SMPS Enable Pins. When turning on, apply greater than 0.55 V and less than 6 V.  
Connect to GND to disable. Adjustable soft-start capacitance to be attached here.  
PGOOD1  
PGOOD2  
SKIPSEL1  
Powergood window comparator outputs for channel 1 and channel 2. The recommended applied voltage  
should be less than 6 V, and the recommended pull-up resistance value is from 100 kto 1 M.  
O
I
20  
6
Skip mode selection pin.  
GND: Continuous conduction mode  
VREF2: Auto Skip  
SKIPSEL2  
19  
VREG3: OOA Auto Skip, maximum 7 skips (suitable for fsw < 400kHz)  
VREG5: OOA Auto Skip, maximum 15 skips (suitable for equal to or greater than 400kHz)  
CSP1  
CSP2  
7
Current sense comparator inputs (+). An RC network with high quality X5R or X7R ceramic capacitor should  
be used to extract voltage drop across DCR. 0.1-µF is a good value to start the design. See the current  
sensing scheme section for more details.  
I/O  
18  
CSN1  
CSN2  
VFB1  
8
Current sense comparator inputs (–). See the current sensing scheme section. Used as power supply for the  
current sense circuit for 5V or higher output voltage setting. Also, used for output discharge terminal.  
I
I
17  
9
SMPS voltage feedback Inputs. Connect the feedback resistors divider, and should be referred to (signal)  
GND.  
VFB2  
16  
10  
COMP1  
Loop compensation pin for current mode (error amplifier output). Connect R (and C if required) from this pin  
to VREF2 for proper loop compensation with current mode operation. Ramp compensation adjustable pin for  
D-CAP mode, connect R from this pin to VREF2. 10 kis a good value to start the design. 6 kto 20 kΩ  
can be chosen. See the D-CAP MODE section for more details.  
I
COMP2  
15  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
PIN FUNCTIONS (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Frequency setting pin. Connect a frequency setting resistor to (signal) GND. Connect to an external clock for  
synchronization.  
RF  
3
I/O  
Control architecture and OVP functions selection pin.  
GND: Current mode, OVP enable  
VREF2: D-CAP mode, OVP disable  
VREG3: D-CAP mode, OVP enable  
VREG5: Current mode, OVP disable  
FUNC  
VREF2  
TRIP  
11  
13  
14  
I
O
I
2-V reference output. Bypass to (signal) GND with 0.22-µF of ceramic capacitance.  
Overcurrent trip level and discharge mode selection pin.  
GND: V(OCL-ULV) , discharge on  
VREF2: V(OCL-ULV), discharge off  
VREG3: V(OCL-LV), discharge off  
VREG5: V(OCL-LV), discharge on  
VREF2 and VREG5 linear regulators enable pin. When turning on, apply greater than 1.2 V and less than 6  
V. Connect to GND to disable.  
EN  
12  
I
I
VBST1  
VBST2  
31  
26  
Supply inputs for high-side N-channel FET driver (boot strap terminal). Connect a capacitor (0.1-µF or  
greater is recommended) from this pin to respective SW terminal. Additional SB diode from VREG5 to this  
pin is an optional.  
DRVL1  
DRVL2  
30  
27  
O
I
Low-side MOSFET gate driver outputs. Source 1.3 , sink 0.7 , and GND referenced driver.  
VREG5 switchover power supply input pin. When EN1 is high, PGOOD1 indicates GOOD and V5SW  
voltage is higher than 4.8 V, switch-over function is enabled.  
Note: When switch-over is enabled, VREG5 output voltage is approximately equal to the V5SW input  
voltage.  
V5SW  
2
5-V, 100-mA low dropout linear regulator output. Bypass to (power) GND using a 10-µF ceramic capacitor.  
Runs from VIN supply. Internally connected to VBST and DRVL. Shuts off with EN. Switches over to V5SW  
when 4.8 V or above is provided.  
VREG5  
29  
O
Note: When switch-over (see above V5SW) is enabled, VREG5 output voltage is approximately equal to  
V5SW input voltage.  
VIN  
23  
28  
I
Supply input for 5-V and 3.3-V linear regulator. Typically connected to VBAT.  
Ground  
GND  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS  
INPUT VOLTAGE SHUTDOWN CURRENT  
INPUT VOLTAGE SHUTDOWN CURRENT  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
15  
12  
15  
12  
V = 12 V  
I
T
= 25°C  
A
9
6
9
6
3
0
3
0
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
V – Input Voltage – V  
I
T
– Junction Temperature – °C  
J
Figure 1.  
Figure 2.  
INPUT VOLTAGE STANDBY CURRENT  
INPUT VOLTAGE STANDBY CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE  
150  
120  
150  
120  
T
= 25°C  
V = 12 V  
I
A
90  
60  
90  
60  
30  
0
30  
0
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
T
– Junction Temperature – °C  
V – Input Voltage – V  
I
J
Figure 3.  
Figure 4.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
NO LOAD BATTERY CURRENT  
NO LOAD BATTERY CURRENT  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
EN = on  
EN1 = off  
EN2 = on  
EN = on  
EN1 = on  
EN2 = on  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 5.  
Figure 6.  
BATTERY CURRENT  
vs  
INPUT VOLTAGE  
VREF2 OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.02  
2.01  
2.00  
1.99  
1.98  
EN = on  
EN1 = on  
EN2 = off  
V = 12 V  
I
5
10  
15  
20  
25  
–100  
–50  
0
50  
100  
V – Input Voltage – V  
I
I
– VREF2 Output Current – mA  
VREF2  
Figure 7.  
Figure 8.  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
VREG3 OUTPUT VOLTAGE  
vs  
VREG5 OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
3.40  
3.35  
3.30  
3.25  
3.20  
5.10  
5.05  
5.00  
4.95  
4.90  
V = 12 V  
V = 12 V  
I
I
0
2
4
6
8
10  
0
20  
40  
60  
80  
100  
I
– 3-V Linear Regulator Output Current – mA  
I
– 5-V Linear Regulator Output Current – mA  
REG3  
REG5  
Figure 9.  
Figure 10.  
SWITCHING FREQUENCY  
vs  
JUNCTION TEMPERATURE  
FORWARD VOLTAGE OF BOOST SW  
vs  
JUNCTION TEMPERATURE  
330  
320  
0.25  
0.20  
R
= 330 kW  
RF  
310  
300  
0.15  
0.10  
290  
280  
270  
0.05  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T
– Junction Temperature – °C  
T
– Junction Temperature – °C  
J
J
Figure 11.  
Figure 12.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
OVP/UVP THRESHOLD VOLTAGE  
vs  
VBST LEAKAGE CURRENT  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
150  
130  
1.5  
1.2  
OVP  
UVP  
110  
90  
0.9  
0.6  
70  
50  
0.3  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T
– Junction Temperature – °C  
T
– Junction Temperature – °C  
J
J
Figure 13.  
Figure 14.  
CURRENT LIMIT THRESHOLD  
vs  
JUNCTION TEMPERATURE  
CURRENT LIMIT THRESHOLD  
vs  
JUNCTION TEMPERATURE  
66  
37  
V
(V)  
V
(V)  
CSN  
CSN  
1
5
1
5
64  
62  
35  
33  
12  
12  
60  
58  
31  
29  
56  
54  
27  
25  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T
– Junction Temperature – °C  
T
– Junction Temperature – °C  
J
J
Figure 15.  
Figure 16.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
5-V OUTPUT VOLTAGE  
vs  
3.3-V OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
3.40  
3.35  
3.30  
3.25  
3.20  
Auto-Skip Mode  
= 330 kHz  
Auto-Skip Mode  
= 330 kHz  
f
f
SW  
SW  
I
(A)  
I
(A)  
O
O
0
4
8
0
4
8
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 17.  
Figure 18.  
5-V EFFICIENCY  
vs  
OUTPUT CURRENT  
5-V EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
80  
100  
90  
Auto-Skip  
V = 8 V  
I
V = 12 V  
I
V = 20 V  
I
60  
40  
80  
70  
CCM  
OOA  
Current Mode  
Auto-Skip  
Current Mode  
20  
0
60  
50  
V = 12 V  
I
R
= 18 kW  
R
= 18 kW  
GV  
GV  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I
– 5-V Output Current – A  
I
– 5-V Output Current – A  
O1  
O1  
Figure 19.  
Figure 20.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
3.3-V EFFICIENCY  
vs  
OUTPUT CURRENT  
3.3-V EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
100  
80  
V = 8 V  
Auto-Skip  
I
V = 12 V  
V = 20 V  
I
I
80  
60  
40  
20  
CCM  
70  
60  
OOA  
V = 12 V  
V = 12 V  
I
Current Mode  
I
Current Mode  
50  
40  
R
= 12 kW  
R
= 12 kW  
GV  
5.0-V SMPS: ON  
GV  
5.0-V SMPS: ON  
0
0.001  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I
– 3.3-V Output Current – A  
I
– 3.3-V Output Current – A  
O2  
O2  
Figure 21.  
Figure 22.  
5-V SWITCHING FREQUENCY  
3.3-V SWITCHING FREQUENCY  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
CCM  
CCM  
OOA  
OOA  
Auto-Skip  
Auto-Skip  
0
0.001  
0
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I
– 3.3-V Output Current – A  
I
– 5-V Output Current – A  
O2  
O1  
Figure 23.  
Figure 24.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
5-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.3-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
Auto-Skip  
and  
OOA  
Auto-Skip  
OOA  
CCM  
CCM  
V = 12 V  
V = 12 V  
I
Current Mode  
I
Current Mode  
R
= 18 kW  
R
= 12 kW  
GV  
GV  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I
– 5-V Output Current – A  
I
– 3.3-V Output Current – A  
O2  
O1  
Figure 25.  
Figure 26.  
5-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.3-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
Auto-Skip  
and  
OOA  
Auto-Skip  
and  
OOA  
CCM  
CCM  
V = 12 V  
I
Current Mode  
V = 12 V  
I
Current Mode  
(Non-droop)  
(Non-droop)  
R
= 1 kW  
R
= 9.1 kW  
GV  
C = 1.8 nF  
GV  
C = 1.8 nF  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I
– 5-V Output Current – A  
I
– 3.3-V Output Current – A  
O1  
O2  
Figure 27.  
Figure 28.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
5-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.3-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
Auto-Skip  
and  
OOA  
Auto-Skip  
OOA  
CCM  
CCM  
V = 12 V  
V = 12 V  
I
D-CAP Mode  
I
D-CAP Mode  
R
= 10 kW  
R
= 10 kW  
GV  
GV  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I
– 3.3-V Output Current – A  
I
– 5-V Output Current – A  
O2  
O1  
Figure 29.  
Figure 30.  
5.0-V BODE-PLOT – GAIN AND PHASE  
3.3-V BODE-PLOT – GAIN AND PHASE  
vs  
vs  
FREQUENCY  
FREQUENCY  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
Phase  
Phase  
40  
40  
20  
45  
20  
45  
Gain  
Gain  
0
0
0
0
–20  
–40  
–60  
–80  
45  
–20  
–40  
–60  
–80  
45  
–90  
–135  
–180  
–90  
–135  
–180  
V
= 5.0 V  
V
= 3.3 V  
O
O
V = 12 V  
V = 12 V  
I
I
I
= 8 A  
I = 8 A  
O
O
100  
1 k  
10 k  
100 k  
1 M  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 31.  
f – Frequency – Hz  
Figure 32.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
5.0-V SWITCH-OVER WAVEFORMS  
VREG5 (100 mV/div)  
VO1 (100 mV/div)  
2 ms/div  
Figure 33.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
5.0-V START-UP WAVEFORMS  
3.3-V START-UP WAVEFORMS  
EN2 (5V/div)  
EN1 (5V/div)  
Vout1 (2V/div)  
Vout2 (2V/div)  
PGOOD2 (5V/div)  
1msec/div  
PGOOD1 (5V/div)  
1msec/div  
Figure 34.  
5.0-V SOFT-STOP WAVEFORMS  
Figure 35.  
3.3-V SOFT-STOP WAVEFORMS  
EN2 (5V/div)  
EN1 (5V/div)  
Vout1 (2V/div)  
Vout2 (2V/div)  
PGOOD2 (5V/div)  
PGOOD1 (5V/div)  
1msec/div  
1msec/div  
Figure 36.  
Figure 37.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
5.0-V LOAD TRANSIENT RESPONSE  
3.3-V LOAD TRANSIENT RESPONSE  
VI =12V, Auto-skip  
VI=12V, Auto-skip  
VO1 (100mV/div)  
VO2 (100mV/div)  
SW1 (10V/div)  
SW2 (10V/div)  
IO1 (5A/div)  
100 ms/div  
IO2 (5A/div)  
100 ms/div  
Figure 38.  
Figure 39.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
DETAILED DESCRIPTION  
ENABLE AND SOFT START  
When EN is Low, the TPS51220A is in the shutdown state. Only the 3.3-V LDO stays alive, and consumes 7 µA  
(typically). When EN becomes High, the TPS51220A is in the standby state. The 2-V reference and the 5-V LDO  
become enabled, and consume about 80 µA with no load condition, and are ready to turn on SMPS channels.  
Each SMPS channel is turned on when ENx becomes High. After ENx is set to high, the TPS51220A begins the  
softstart sequence, and ramps up the output voltage from zero to the target voltage in 0.96 ms. However, if a  
slower soft-start is required, an external capacitor can be tied from the ENx pin to GND. In this case, the  
TPS51220A charges the external capacitor with the integrated 2-µA current source. An approximate external  
soft-start time would be tEX-SS = CEX / IEN12, which means the time from ENx = 1 V to ENx = 2 V. The recommend  
capacitance is more than 2.2 nF.  
1) Internal  
Soft-start  
EN1  
Vout1  
200ms  
960ms  
EN1<2V  
EN1>1V  
2) External  
Soft-start  
EN1  
External  
Soft-start  
time  
Vout1  
Figure 40. Enable and Soft-start Timing  
Table 1. Enable Logic States  
EN  
GND  
Hi  
EN1  
EN2  
VREG3  
ON  
VREF2  
Off  
VREG5  
Off  
CH1  
Off  
CH2  
Off  
Don’t Care  
Don’t Care  
Lo  
Hi  
Lo  
Hi  
Lo  
Lo  
Hi  
Hi  
ON  
ON  
ON  
Off  
Off  
Hi  
ON  
ON  
ON  
ON  
Off  
Off  
Hi  
ON  
ON  
ON  
ON  
ON  
Hi  
ON  
ON  
ON  
ON  
3.3-V, 10-mA LDO (VREG3)  
A 3.3-V, 10-mA, linear regulator is integrated in the TPS51220A. This LDO services some of the analog circuit in  
the device and provides a handy standby supply for 3.3-V Always On voltage in the notebook system. Apply a  
2.2-µF (at least 1-µF), high quality X5R or X7R ceramic capacitor from VREG3 to (signal) GND in adjacent to the  
device.  
2-V, 100-µA Sink/Source Reference (VREF2)  
This voltage is used for the reference of the loop compensation network. Apply a 0.22-µF (at least 0.1-µF),  
high-quality X5R or X7R ceramic capacitor from VREF2 to (signal) GND in adjacent to the device.  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
5.0-V, 100-mA LDO (VREG5)  
A 5.0-V, 100-mA, linear regulator is integrated in the TPS51220A. This LDO services the main analog supply rail  
and provides the current for gate drivers until switch-over function becomes enable. Apply a 10-µF (at least  
4.7-µF), high-quality X5R or X7R ceramic capacitor from VREG5 to (power) GND in adjacent to the device.  
VREG5 SWITCHOVER  
When EN1 is high, PGOOD1 indicates GOOD and a voltage of more than 4.8 V is applied to V5SW, the internal  
5V-LDO is shut off and the VREG5 is shorted to V5SW by an internal MOSFET after an 7.7-ms delay. When the  
V5SW voltage becomes lower than 4.65 V, EN1 becomes low, or PGOOD1 indicates BAD, the internal switch is  
turned off, and the internal 5V-LDO resumes immediately.  
BASIC PWM OPERATIONS  
The main control loop of the SMPS is designed as a fixed frequency, pulse width modulation (PWM) controller. It  
supports two control schemes; a peak current mode and a proprietary D-CAP mode. Current mode achieves  
stable operation with any type of output capacitors, including low ESR capacitor(s) such as ceramic or specialty  
polymer capacitors. D-CAP mode does not require an external compensation circuit, and is suitable for relatively  
larger ESR capacitor(s) configuration. These control schemes are selected with FUNC pin. See Table 4.  
CURRENT MODE  
The current mode scheme uses the output voltage information and the inductor current information to regulate  
the output voltage. The output voltage information is sensed by VFBx pin. The signal is compared with the  
internal 1-V reference and the voltage difference is amplified by a transconductance amplifier (VFB-AMP). The  
inductor current information is sensed by CSPx and CSNx pins. The voltage difference is amplified by another  
transconductance amplifier (CS-AMP). The output of the VFB-AMP indicates the target peak inductor current. If  
the output voltage decreases, the TPS51220A increases the target inductor current to raise the output voltage.  
Alternatively, if the output voltage rises, the TPS51220A decreases the target inductor current to reduce the  
output voltage.  
At the beginning of each clock cycle, the high-side MOSFET is turned on, or becomes ‘ON’ state. The high-side  
MOSFET is turned off, or becomes OFF state, after the inductor current becomes the target value which is  
determined by the combination value of the output of the VFB-AMP and a ramp compensation signal. The ramp  
compensation signal is used to prevent sub-harmonic oscillation of the inductor current control loop. The  
high-side MOSFET is turned on again at the next clock cycle. By repeating the operation in this manner, the  
controller regulates the output voltage. The synchronous low-side or the rectifying MOSFET is turned on each  
OFF state to keep the conduction loss minimum.  
D-CAP™ MODE  
With the D-CAP mode operation, the PWM comparator compares VREF2 with the combination value of the  
COMP voltage, VFB-AMP output, and the ramp compensation signal. When the both signals are equal at the  
peak of the voltage sense signal, the comparator provides the OFF signal to the high-side MOSFET driver.  
Because the compensation network is implemented on the part and the output waveform itself is used as the  
error signal, external circuit is simplified. Another advantage is its inherent fast transient response. A trade-off is  
a sufficient amount of ESR required in the output capacitor. The D-CAP™ mode is suitable for relatively larger  
output ripple voltage application. The inductor current information is used for the overcurrent protection and light  
load operation.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
PWM FREQUENCY CONTROL  
The TPS51220A has a fixed frequency control scheme with 180° phase shift. The switching frequency can be  
determined by an external resistor which is connected between RF pin and GND, and can be calculated using  
Equation 1.  
5
1 × 10  
f
kHz =  
ù
û
é
sw  
ë
RF kΩ  
é
ù
û
ë
(1)  
TPS51220A can also synchronize to more than 2.5 V amplitude external clock by applying the signal to the RF  
pin. The set timing of channel 1 initiates at the raising edge (1.3 V typ) of the clock and channel 2 initiates at the  
falling edge (1.1 V typ). Therefore, the 50% duty signal makes both channels 180° phase shift.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
200  
300  
400  
500  
RF - Resistance - kW  
Figure 41. Switching Frequency vs RF  
LIGHT LOAD OPERATION  
The TPS51220A automatically reduces switching frequency at light load conditions to maintain high efficiency if  
Auto Skip or Out-of-Audio™ mode is selected by SKIPSELx. This reduction of frequency is achieved by skipping  
pulses. As the output current decreases from heavy load condition, the inductor current is also reduced and  
eventually comes to the point that its peak reaches a predetermined current, ILL(PEAK), which indicates the  
boundary between heavy-load condditions and light-load conditions. Once the top MOSFET is turned on, the  
TPS51220A does not allow it to be turned off until it reaches ILL(PEAK). This eventually causes an overvoltage  
condition to the output and pulse skipping. From the next pulse after zero-crossing is detected, ILL(PEAK) is limited  
by the ramp-down signal ILL(PEAK)RAMP, which starts from 25% of the overcurrent limit setting (IOCL(PEAK): (see the  
Current Protection section) toward 5% of IOCL(PEAK) over one switching cycle to prevent causing large ripple. The  
transition load point to the light load operation ILL(DC) can be calculated in Equation 2.  
I
LL(DC) + ILL(PEAK) * 0.5   IIND(RIPPLE)  
(2)  
(V - V  
) × V  
OUT  
1
IN  
OUT  
I
=
×
IND(RIPPLE)  
L × f  
V
SW  
IN  
(3)  
where  
fSW is the PWM switching frequency which is determined by RF resistor setting or external clock  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
 
 
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
I
= 0.2 - 0.13´ t ´ f  
´ t ´I  
)
SW  
OCL PEAK  
(
LL(PEAK)RAMP  
ON  
(
)
(4)  
Switching frequency versus output current in the light load condition is a function of L, f, VIN and VOUT, but it  
decreases almost proportionally to the output current from the ILL(DC), as described in Equation 2; while  
maintaining the switching synchronization with the clock. Due to the synchronization, the switching waveform in  
boundary load condition (close to ILL(DC)) appears as a sub-harmonic oscillation; however, it is the intended  
operation.  
If SKIPSELx is tied to GND, the TPS51220A works on a constant frequency of fSW regardless its load current.  
Inductor  
Current  
ILL(PEAK)  
ILL(DC)  
IIND(RIPPLE)  
0
Time  
Figure 42. Boundary Between Pulse Skipping and CCM  
20% of I  
I
Ramp Signal  
LL(PEAK)  
OCL  
I
at  
LL(PEAK)  
Light Load  
7% of I  
OCL  
t
ON  
1/f  
SW  
t – Time  
Figure 43. Inductor Current Limit at Pulse Skipping  
Table 2. Skip Mode Selection  
SKIPSELx  
GND  
VREF2  
VREG3  
VREG5  
OOA Skip (maximum 7  
skips, for <400 kHz)  
OOA Skip (maximum 15 skips, for  
equal to or greater than 400kHz)  
OPERATING MODE  
Continuous Conduction  
Auto Skip  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s) :TPS51220A  
 
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
OUT OF AUDIO SKIP OPERATION  
Out-Of-Audio™ (OOA) light-load mode is a unique control feature that keeps the switching frequency above  
acoustic audible frequencies toward virtually no load condition while maintaining state-of-the-art high conversion  
efficiency. When OOA is selected, the switching frequency is kept higher than audible frequency range in any  
load condition. The TPS51220A automatically reduced switching frequency at light-load conditions. The OOA  
control circuit monitors the states of both MOSFETs and forces an ON state if the predetermined number of  
pulses are skipped. The high-side MOSFET is turned on before the output voltage declines down to the target  
value, so that eventually an overvoltage condition is caused. The OOA control circuit detects this overvoltage  
condition and begins modulating the skip-mode on time to keep the output voltage.  
The TPS51220A supports a wide-switching frequency range, therefore, the OOA skip mode has two selections.  
See Table 2. When the 300-kHz switching frequency is selected, a maximum of seven (7) skips (SKIPSEL=3.3  
V) makes the lowest frequency at 37.5 kHz. If a 15-skip maximum is chosen, it becomes 18.8 kHz, hence the  
maximum 7 skip is suitable for less than 400 kHz, and the maximum 15 skip is 400 kHz or greater.  
99% DUTY CYCLE OPERATION  
In a low-dropout condition such as 5-V input to 5-V output, the basic control loop attempts to maintain 100% of  
the high-side MOSFET ON. However, with the N-channel MOSFET used for the top switch, it is not possible to  
use the 100% on-cycle to charge the boot strap capacitor. TPS51220A detects the 100% ON condition and  
asserts the OFF state at the appropriate time.  
HIGH-SIDE DRIVER  
The high-side driver is designed to drive high current, low RDS(on) N-channel MOSFET(s). The drive capability is  
represented by its internal resistance, which is 1.7for VBSTx to DRVHx, and 1for DRVHx to SWx. When  
configured as a floating driver, 5 V of bias voltage is delivered from VREG5 supply. The instantaneous drive  
current is supplied by the flying capacitor between VBSTx and SWx pins. The average drive current is equal to  
the gate charge at Vgs = 5V times switching frequency. This gate drive current as well as the low-side gate drive  
current times 5 V makes the driving power which needs to be dissipated mainly from TPS51220A package. A  
dead time to prevent shoot through is internally generated between high-side MOSFET off to low-side MOSFET  
on, and low-side MOSFET off to high-side MOSFET on.  
LOW-SIDE DRIVER  
The low-side driver is designed to drive high-current low-RDS(on) N-channel MOSFET(s). The drive capability is  
represented by its internal resistance, which are 1.3for VREG5 to DRVLx and 0.7for DRVLx to GND. The  
5-V bias voltage is delivered from VREG5 supply. The instantaneous drive current is supplied by an input  
capacitor connected between VREG5 and GND. The average drive current is also calculated by the gate charge  
at Vgs = 5 V times switching frequency.  
CURRENT SENSING SCHEME  
In order to provide both good accuracy and cost effective solution, the TPS51220A supports external resistor  
sensing and inductor DCR sensing. An RC network with high quality X5R or X7R ceramic capacitor should be  
used to extract voltage drop across DCR. 0.1µF is a good value to start the design. CSPx and CSNx should be  
connected to positive and negative terminal of the sensing device respectively. TPS51220A has an internal  
current amplifier. The gain of the current amplifier, Gc, is selected by TRIP terminal. In any setting, the output  
signal of the current amplifier becomes 100mV at the OCL setting point. This means that the current sensing  
amplifier normalize the current information signal based on the OCL setting. Attaching a RC network  
recommended even with a resistor sensing scheme to get an accurate current sensing; see the external parts  
selection session for detailed configurations.  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
ADAPTIVE ZERO CROSSING  
TPS51220A has an adaptive zero crossing circuit which performs optimization of the zero inductor current  
detection at skip mode operation. This function pursues ideal low-side MOSFET turning off timing and  
compensates inherent offset voltage of the ZC comparator and delay time of the ZC detection circuit. It prevents  
SW-node swing-up caused by too late detection and minimizes diode conduction period caused by too early  
detection. As a result, better light load efficiency is delivered.  
CURRENT PROTECTION  
TPS51220A has cycle-by-cycle overcurrent limiting control. If the inductor current becomes larger than the  
overcurrent trip level, TPS51220A turns off high-side MOSFET, turns on low-side MOSFET and waits for the next  
clock cycle.  
IOCL(PEAK) sets peak level of the inductor current. Thus, the dc load current at overcurrent threshold, IOCL(DC), can  
be calculated as follows;  
I
OCL(DC) + IOCL(PEAK) * 0.5   IIND(RIPPLE)  
(5)  
V
OCL  
I
+
OCL(PEAK)  
R
SENSE  
(6)  
where  
RSENSE is resistance of current sensing device  
V(OCL) is the overcurrent trip threshold voltage which is determined by TRIP pin voltages as shown in Table 3  
In an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output  
voltage tends to fall down, and it ultimately crosses the undervoltage protection threshold and shutdown.  
Table 3. OCL Trip and Discharge Selection  
TRIP  
GND  
V(OCL-ULV) (ULTRA-LOW VOLTAGE)  
Enable Disable  
VREF2  
VREG3  
VREG5  
V(OCL) (OCL TRIP VOLTAGE)  
DISCHARGE  
V(OCL-LV) (LOW VOLTAGE)  
Disable  
Enable  
POWERGOOD  
The TPS51220A has powergood output for both switcher channels. The powergood function is activated after  
softstart has finished. If the output voltage becomes within ±5% of the target value, internal comparators detect  
power good state and the powergood signal becomes high after 1ms internal delay. If the output voltage goes  
outside of ±10% of the target value, the powergood signal becomes low after 1.5µs internal delay. Apply voltage  
should be less than 6V and the recommended pull-up resistance value is from 100kto 1M.  
OUTPUT DISCHARGE CONTROL  
The TPS51220A discharges output when ENx is low. The TPS51220A discharges outputs using an internal  
MOSFET which is connected to CSNx and GND. The current capability of these MOSFETs is limited to  
discharge the output capacitor slowly. If ENx becomes high during discharge, MOSFETs are turning off, and  
some output voltage remains. SMPS changes over to soft-start. The PWM initiates after the target voltage  
overtakes the remaining output voltage. This function can be disabled as shown in Table 3.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s) :TPS51220A  
 
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
OVERVOLTAGE/UNDERVOLTAGE PROTECTION  
TPS51220A monitors the output voltage to detect overvoltage and undervoltage. When the output voltage  
becomes 15% higher than the target value, the OVP comparator output goes high and the circuit latches as the  
high-side MOSFET driver OFF and the low-side MOSFET driver ON, and shuts off another channel.  
When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes  
high and an internal UVP delay counter begins counting. After 1 ms, TPS51220A latches OFF both high-side and  
low-side MOSFETs, and shuts off another channel. This UVP function is enabled after soft-start has completed.  
OVP function can be disabled as shown in Table 4. The procedures for restarting from these protection states  
are:  
1. toggle EN  
2. toggle EN1 and EN2 or  
3. once hit UVLO  
Table 4. FUNC Logic States  
FUNC  
OVP  
GND  
Enable  
VREF2  
Disable  
VREG3  
Enable  
VREG5  
Disable  
CONTROL  
SCHEME  
Current mode  
D-CAP mode  
D-CAP mode  
Current mode  
UVLO PROTECTION  
The TPS51220A has undervoltage lockout protections (UVLO) for VREG5, VREG3 and VREF2. When the  
voltage is lower than UVLO threshold voltage, TPS51220A shuts off each output as shown inTable 5. This is  
non-latch protection.  
Table 5. UVLO Protection  
CH1/ CH2  
VREG5  
VREG3  
On  
VREF2  
On  
VREG5 UVLO  
VREG3 UVLO  
VREF2 UVLO  
Off  
Off  
Off  
Off  
Off  
Off  
On  
THERMAL SHUTDOWN  
The TPS51220A monitors the device temperature. If the temperature exceeds the threshold value, TPS51220A  
shuts off both SMPS and 5V-LDO, and decreases the VREG3 current limitation to 5 mA (typically). This is  
non-latch protection.  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
 
 
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
APPLICATION INFORMATION  
EXTERNAL PARTS SELECTION  
A buck converter using the TPS51220A consists of linear circuits and a switching modulator. Figure 44 and  
Figure 45 show basic scheme.  
Voltage divider  
VIN  
Switching Modulator  
Ramp  
comp.  
R1  
DRVH  
Lx  
VFB  
+
Gmv  
Rs  
PWM  
+
Control  
logic  
&
+
R2  
+
DRVL  
Driver  
1.0V  
ESR  
Co  
RL  
COMP  
VREF  
Gmc  
CSP  
Rgv  
Cc  
Rgc  
+
+
CSN  
2.0V  
Error Amplifier  
Figure 44. Simplified Current Mode Functional Blocks  
Voltage divider  
R1  
VIN  
Switching Modulator  
Ramp  
comp.  
DRVH  
Lx  
VFB  
+
Gmv  
PWM  
Rs  
Control  
logic  
+
+
R2  
&
Driver  
+
DRVL  
1.0V  
ESR  
Co  
RL  
COMP  
VREF  
Rgv  
+
2.0V  
Figure 45. Simplified D-CAP Mode Functional Blocks  
The external components can be selected by following manner.  
1. Determine output voltage dividing resistors (R1 and R2: shown in Figure 44) using the next equation  
R1 + ǒV  
Ǔ
* 1.0   R2  
OUT  
(7)  
For D-CAP mode, recommended R2 value is from 10kto 20k.  
2. Determine switching frequency. Higher frequency allows smaller output capacitances, however, degrade  
efficiency due to increase of switching loss. Frequency setting resistor for RF-pin can be calculated by;  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s) :TPS51220A  
 
 
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
1   105  
ƒsw [kHz]  
RF[kW] +  
(8)  
3. Choose the inductor. The inductance value should be determined to give the ripple current of  
approximately 25% to 50% of maximum output current. Recommended ripple current rate is about 30% to  
40% at the typical input voltage condition, next equation uses 33%.  
(V  
- VOUT ) × VOUT  
1
IN(TYP)  
L =  
×
0.33 x IOUT(MAX) x fSW  
V
IN(TYP)  
(9)  
The inductor also needs to have low DCR to achieve good efficiency, as well as enough room above peak  
inductor current before saturation.  
4. Determine the OCL trip voltage threshold, V(OCL), and select the sensing resistor.  
The OCL trip voltage threshold is determined by TRIP pin setting. To use a larger value improves the S/N  
ratio. Determine the sensing resistor using next equation. IOCL(PEAK) should be approximately 1.5 × IOUT(MAX)  
to 1.7 × IOUT(MAX)  
.
VOCL  
IOCL(PEAK)  
RSENSE  
+
(10)  
5. Determine Rgv. Rgv should be determined from preferable droop compensation value and is given by next  
equation based on the typical number of Gmv = 500µS.  
I
OUT(MAX)  
1
Rgv + 0.1   
  V  
 
OUT  
I
Gmv   Vdroop  
OCL(PEAK)  
(11)  
IOUT(MAX)  
VOUT[V]  
Rgv[kW] + 200   
 
IOCL(PEAK) Vdroop[mV]  
(12)  
If no-droop is preferred, attach a series RC network circuit instead of single resistor. Series resistance is  
determined using Equation 12 . Series capacitance can be arbitrarily chosen to meet the RC time constant,  
but should be kept under 1/10 of fo. For D-CAP mode, Rgv is used for adjusting ramp compensation. 10kis  
a good value to start design with. 6kto 20kcan be chosen.  
6. Determine output capacitance Co to achieve a stable operation using the next equation. The 0 dB frequency,  
fo, should be kept under 1/3 of the switching frequency.  
Gmv   Rgv ƒsw  
5
1
ƒ0 +   IOCL(PEAK)  
 
 
t
p
3
VOUT  
Co  
(13)  
(14)  
Gmv   Rgv  
ƒsw  
15  
p
1
Co u  
  IOCL(PEAK)  
 
 
VOUT  
For D-CAP mode, fo is determined by the output capacitor’s characteristics as below.  
ƒsw  
3
1
ƒ +  
t
0
2p   ESR   Co  
(15)  
(16)  
3
Co u  
2p   ESR   ƒsw  
For better jitter performance, a sufficient amount of feedback signal is required at VFBx pin. The  
recommended signal level is approximately 30mV per tsw (switching period) of the ramping up rate, and more  
than 4mV of peak-to-peak voltage.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
 
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
VFB  
signal  
30mV  
VFBRIPPLE =VoRIPPLE x 1/Vout  
tSW = 1/fSW  
Time  
Figure 46. Required voltage feedback ramp signal  
7. Calculate Cc. The purpose of this capacitance is to cancel zero caused by ESR of the output capacitor. If  
ceramic capacitor(s) is used, there is no need for Cc. If a combination of different capacitors is used, attach a  
RC network circuit instead of single capacitance to cancel zeros and poles caused by the output capacitors.  
With single capacitance, Cc is given in Equation 17.  
ESR  
Rgv  
Cc + Co   
(17)  
For D-CAP mode, basically Cc is not needed.  
8. Choose MOSFETs Generally, the on resistance affects efficiency at high load conditions as conduction loss.  
For a low output voltage application, the duty ratio is not high enough so that the on resistance of high-side  
MOSFET does not affect efficiency; however, switching speed (tr and tf) affects efficiency as switching loss.  
As for low-side MOSFET, the switching loss is usually not a main portion of the total loss.  
RESISTOR CURRENT SENSING  
For more accurate current sensing with an external resistor, the following technique is recommended. Adding an  
RC filter to cancel the parasitic inductance of resistor, this filter value is calculated using Equation 18.  
Lx  
Rs  
Cx   Rx +  
(18)  
This equation means time-constant of Cx and Rx should match the one of Lx (ESL) and Rs.  
VIN  
Ex-resistor  
Lx(ESL)  
Rs  
DRVH  
L
Control  
logic  
&
DRVL  
Driver  
Co  
CSP  
CSN  
+
Cx  
Rx  
Figure 47. External Resistor Current Sensing  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s) :TPS51220A  
 
 
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
INDUCTOR DCR CURRENT SENSING  
To use inductor DCR as current sensing resistor (Rs), the configuration needs to change as below. However, the  
equation that must be satisfied is the same as the one for the resistor sensing.  
VIN  
Inductor  
DRVH  
Lx  
Rs(DCR)  
Control  
logic  
&
DRVL  
Driver  
Co  
Rx  
CSP  
CSN  
+
Cx  
Figure 48. Inductor DCR Current Sensing  
VIN  
Inductor  
DRVH  
Lx  
Rs(DCR)  
Control  
logic  
&
DRVL  
Driver  
Co  
Rx  
CSP  
+
Cx  
Rc  
CSN  
Figure 49. Inductor DCR Current Sensing With Voltage Divider  
TPS51220A has fixed V(OCL) point (60 mV or 31 mV). In order to adjust for DCR, a voltage divider can be  
configured a described in Figure 49.  
For Rx, Rc and Cx can be calculated as shown below, and overcurrent limitation value can be calculated as  
follows:  
Lx  
Cx × Rx//Rc =  
(
)
Rs  
(19)  
(20)  
Rx ) Rc  
 
1
Rs  
I
OCL(PEAK) + VOCL  
 
Rc  
Figure 50 shows the compensation technique for the temperature drifts of the inductor DCR value. This scheme  
assumes the temperature rise at the thermistor (RNTC) is directly proportional to the temperature rise at the  
inductor.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
 
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
Inductor  
Lx  
Rs(DCR)  
RNTC  
Rx  
Rc1  
Rc2  
CO  
CSP  
+
Cx  
CSN  
Figure 50. Inductor DCR Current Sensing With Temperature Compensate  
LAYOUT CONSIDERATIONS  
Certain points must be considered before starting a PCB layout work using the TPS51220A.  
Placement  
Place RC network for CSP1 and CSP2 close to the device pins.  
Place bypass capacitors for VREG5, VREG3 and VREF2 close to the device pins.  
Place frequency-setting resistor close to the device pin.  
Place the compensation circuits for COMP1 and COMP2 close to the device pins.  
Place the voltage setting resistors close to the device pins, especially when D-CAP mode is chosen.  
Routing (sensitive analog portion)  
Use separate traces for; see Figure 51  
Output voltage sensing from current sensing (negative-side)  
Output voltage sensing from V5SW input (when VOUT = 5V)  
Current sensing (positive-side) from switch-node  
V5SW  
R1  
VFB  
R2  
H-FET  
Inductor  
Vout  
SW  
Cout  
L-FET  
R
CSP  
CSN  
C
Figure 51. Sensing Trace Routings  
Use Kelvin sensing traces from the solder pads of the current sensing device (inductor or resistor) to current  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s) :TPS51220A  
 
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
sensing comparator inputs (CSPx and CSNx). (See Figure 52)  
Current sensing  
Device  
RC network  
next to IC  
Figure 52. Current Sensing Traces  
Use small copper space for VFBx. These are short and narrow traces to avoid noise coupling  
Connect VFB resistor trace to the positive node of the output capacitor.  
Use signal GND for VREF2 and VREG3 capacitors, RF and VFB resistors, and the other sensitive analog  
components. Placing a signal GND plane (underneath the IC, and fully covered peripheral components) on  
the internal layer for shielding purpose is recommended. (See Figure 53)  
Use a thermal land for PowerPAD™. Five or more vias, with 0.33-mm (13-mils) diameter connected from the  
thermal land to the internal GND plane, should be used to help dissipation. Do NOT connect the GND-pin to  
this thermal land on the surface layer, underneath the package.  
Routing (power portion)  
Use wider/shorter traces of DRVL for low-side gate drivers to reduce stray inductance.  
Use the parallel traces of SW and DRVH for high-side MOSFET gate drive, and keep them away from DRVL.  
Connect SW trace to source terminal of the high-side MOSFET.  
Use power GND for VREG5, VIN and VOUT capacitors and low-side MOSFETs. Power GND and signal GND  
should be connected near the device GND terminal. (See Figure 53)  
0W resistor  
GND  
#28  
GND-pin  
To inner  
Power-GND  
layer  
To inner  
Signal-GND  
plane  
Inner Signal-GND plane  
Figure 53. GND Layout Example  
32  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
 
 
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
APPLICATION CIRCUITS  
2
W S  
2 B F V  
2 T S B V  
2 L V R D  
D N G  
2 P M O C  
P I R T  
2 F E R V  
N E  
5 G E R V  
1 L V R D  
1 T S B V  
C N U F  
1 P M O C  
1 B F V  
1
W S  
Figure 54. Current Mode, DCR Sensing, 5.0-V/8-A, 3.3-V/8-A, 330-kHz  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
Table 6. Current Mode, DCR Sensing, 5.0-V/8-A, 3.3-V/8-A, 330-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Sanyo  
PART NUMBER  
6TPE330MIL  
2 × 330 µF, 6.3 V, 18 mΩ  
2 × 10 µF, 25 V  
C12  
Murata  
GRM32DR71E106K  
4TPE470MFL  
C21  
470 µF, 4.0V, 15 mΩ  
2 × 10 µF, 25 V  
Sanyo  
C22  
Murata  
GRM32DR71E106K  
FDV1040-3R3M  
FDV1040-3R3M  
FDMS8692  
L1  
3.3 µH, 10.7 A, 10.5 mΩ  
3.3 µH, 10.7 A, 10.5 mΩ  
30-V, 12 A, 10.5 mΩ  
30 V, 18 A, 5.4 mΩ  
TOKO  
L2  
TOKO  
Q11, Q21  
Q12, Q22  
Fairchild  
Fairchild  
FDMS8672AS  
34  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
2
W S  
2 B F V  
2 T S B V  
2 L V R D  
D N G  
2 P M O C  
P I R T  
2 F E R V  
N E  
5 G E R V  
1 L V R D  
1 T S B V  
C N U F  
1 P M O C  
1 B F V  
1
W S  
Figure 55. Current Mode (Non-Droop), DCR Sensing, 5.0-V/8-A, 3.3-V/8-A, 330-kHz  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
Table 7. Current Mode (Non-droop), DCR Sensing, 5.0-V/8-A, 3.3-V/8-A, 330-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Sanyo  
PART NUMBER  
6TPE330MIL  
2 x 330 µF, 6.3 V 18 mΩ  
2 x 10 µF, 25 V  
C12  
Murata  
GRM32DR71E106K  
4TPE470MFL  
C21  
470 µF, 4.0V, 15 mΩ  
2 x 10 µF, 25 V  
Sanyo  
C22  
Murata  
GRM32DR71E106K  
FDV1040-3R3M  
FDV1040-3R3M  
FDMS8692  
L1  
3.3 µH, 10.7 A, 10.5 mΩ  
3.3 µH, 10.7 A, 10.5 mΩ  
30-V, 12-A, 10.5 mΩ  
30-V, 18-A, 5.4 mΩ  
TOKO  
L2  
TOKO  
Q11, Q21  
Q12, Q22  
Fairchild  
Fairchild  
FDMS8672AS  
36  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
2
W S  
2 B F V  
2 T S B V  
2 L V R D  
D N G  
2 P M O C  
P I R T  
2 F E R V  
N E  
5 G E R V  
1 L V R D  
1 T S B V  
C N U F  
1 P M O C  
1 B F V  
1
W S  
Figure 56. D-CAP Mode, DCR Sensing, 5.0-V/8-A, 3.3-V/8-A, 330-kHz  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
Table 8. D-CAP Mode, DCR Sensing, 5.0-V/ 8-A, 3.3-V/8-A, 330-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Sanyo  
PART NUMBER  
6TPE330MIL  
2 x 330 µF, 6.3 V, 18 mΩ  
2 x 10 µF, 25 V  
C12  
Murata  
GRM32DR71E106K  
4TPE470MFL  
C21  
470 µF, 4.0V, 15 mΩ  
2 x 10 µF, 25 V  
Sanyo  
C22  
Murata  
GRM32DR71E106K  
FDV1040-3R3M  
FDV1040-3R3M  
FDMS8692  
L1  
3.3 µH, 10.7 A, 10.5 mΩ  
3.3 µH, 10.7 A, 10.5 mΩ  
30 V, 12 A, 10.5 mΩ  
30 V, 18 A, 5.4 mΩ  
TOKO  
L2  
TOKO  
Q11, Q21  
Q12, Q22  
Fairchild  
Fairchild  
FDMS8672AS  
38  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
TPS51220A  
www.ti.com ........................................................................................................................................................................................... SLUS897DECEMBER 2008  
2
W S  
2 B F V  
2 T S B V  
2 L V R D  
D N G  
2 P M O C  
P I R T  
2 F E R V  
N E  
5 G E R V  
1 L V R D  
1 T S B V  
C N U F  
1 P M O C  
1 B F V  
1
W S  
Figure 57. Current Mode, DCR Sensing, 5.0-V/5-A, 3.3-V/5-A, 300-kHz  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s) :TPS51220A  
TPS51220A  
SLUS897DECEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
Table 9. Current Mode, DCR Sensing, 5.0-V/5-A, 3.3-V/5-A, 300-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Panasonic  
Murata  
PART NUMBER  
EEFCX0J121R  
GRM32DR71E106K  
EEFCX0G221R  
GRM32DR71E106K  
CEP125-4R0MC-H  
CEP125-4R0MC-H  
IRF7821  
2 × 120 µF, 6.3V, 15 mΩ  
2 × 10 µF, 25 V  
C12  
C21  
2 × 220 µF, 4.0 V, 15 mΩ  
2 × 10 µF, 25 V  
Panasonic  
Murata  
C22  
L1  
4.0 µH, 10.3 A, 6.6 mΩ  
4.0 µH, 10.3 A, 6.6 mΩ  
30 V, 13.6 A, 9.5 mΩ  
30 V, 13.8 A, 5.8 mΩ  
Sumida  
Sumida  
IR  
L2  
Q11, Q21  
Q12, Q22  
IR  
IRF8113  
40  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :TPS51220A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jan-2009  
PACKAGING INFORMATION  
Orderable Device  
TPS51220ARTVR  
TPS51220ARTVT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RTV  
32  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
RTV  
32  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Dec-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS51220ARTVR  
TPS51220ARTVT  
QFN  
QFN  
RTV  
RTV  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Dec-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS51220ARTVR  
TPS51220ARTVT  
QFN  
QFN  
RTV  
RTV  
32  
32  
3000  
250  
346.0  
190.5  
346.0  
212.7  
29.0  
31.8  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TPS51220ARSNT

Fixed-frequency, 99% duty cycle peak current-mode notebook system power controller 32-QFN -40 to 85
TI

TPS51220ARTVR

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51220ARTVT

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51220ATRTVRQ1

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51220RHBR

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51220RHBT

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51220RHBTG4

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller 32-VQFN -40 to 85
TI

TPS51221

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51221RTVR

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51221RTVT

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51221RTVTG4

DUAL SWITCHING CONTROLLER, 333kHz SWITCHING FREQ-MAX, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32
TI

TPS51222

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI