TPS51221RTVTG4 [TI]

DUAL SWITCHING CONTROLLER, 333kHz SWITCHING FREQ-MAX, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32;
TPS51221RTVTG4
型号: TPS51221RTVTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL SWITCHING CONTROLLER, 333kHz SWITCHING FREQ-MAX, PQCC32, 5 X 5 MM, GREEN, PLASTIC, QFN-32

开关
文件: 总40页 (文件大小:946K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
Fixed Frequency, 99% Duty Cycle Peak Current Mode  
Notebook System Power Controller  
1
FEATURES  
APPLICATIONS  
Notebook Computer System and I/O Bus  
2
Input Voltage Range: 4.5 V to 28 V  
Point of load in LCD TV, MFP  
Output Voltage Range: 1 V to 12 V  
Selectable Light Load Operation (Continuous /  
Auto Skip / Out-Of-Audio™ Skip)  
DESCRIPTION  
The TPS51221 is a dual synchronous buck regulator  
controller with 2 LDOs. It is optimized for 5-V/3.3-V  
system controller, enabling designers to cost  
effectively complete 2-cell to 4-cell notebook system  
power supply. The TPS51221 supports high  
efficiency, fast transient response and 99% duty cycle  
operation. It supports supply input voltage ranging  
from 4.5 V to 28 V, and output voltages from 1 V to  
12 V. Peak current mode supports stability operation  
with lower ESR capacitor and output accuracy. The  
high duty (99%) operation and wide input/ output  
voltage range supports flexible design for small  
mobile PCs and a wide variety of other applications.  
The fixed frequency can be adjusted from 200 kHz to  
1MHz by a resistor, and each channel runs 180° out  
of phase. The TPS51221 can also synchronize to the  
external clock, and the interleaving ratio can be  
adjusted by its duty. The TPS51221 is available in the  
32-pin 5×5 QFN package and is specified from –40°C  
to 85°C.  
Programmable Droop Compensation  
Voltage Servo Adjustable Soft Start  
200 kHz to 1 MHz Fixed Frequency PWM  
Current Mode Architecture  
180° Phase Shift Between Channels  
Resistor or Inductor DCR Current Sensing  
Powergood Output for each channel  
OCL/OVP/UVP/UVLO protections  
Current Monitor Output for CH1  
Thermal Shutdown (Non-latch)  
Output Discharge Function (Disable option)  
Integrated Boot Strap MOSFET Switch  
QFN32 (RTV)  
TYPICAL APPLICATION CIRCUIT  
VREG5  
5V/100mA  
VBAT  
VBAT  
Q11  
C12  
Q21  
C22  
C01  
L2  
C14  
C24  
L1  
PGND  
PGND  
VO2  
3.3V  
Q12  
VO1  
5.0V  
GND  
PGND  
PGND  
C21  
Q22  
C11  
32 31 30 29 28 27 26 25  
PGND  
PGND  
PGND  
PGND  
1
2
3
4
5
6
7
8
24  
DRVH1  
DRVH2  
VO1  
V5SW  
RF  
VIN 23  
VREG3 22  
EN2 21  
VBAT  
R01  
VREG3  
3.3V/10mA  
C03  
GND  
EN1  
EN1  
EN2  
TPS51221RTV  
(QFN32)  
PGOOD1  
PGOOD1  
SKIPSEL1  
PGOOD2 20  
SKIPSEL2 19  
CSP2 18  
PGOOD2  
GND  
SKIPSEL1  
R14  
SKIPSEL2  
R24  
PowerPAD  
CSP1  
CSN1  
C23  
C13  
CSN2  
17  
9
10 11  
12 13 14 15 16  
R23  
GND  
R12  
EN  
VO1  
VREG5  
VO2  
R02  
IMON1  
R21  
C04  
GND  
R11  
R22  
C02  
R13  
GND  
GND  
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
Out-Of-Audio, PowerPAD are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2009, Texas Instruments Incorporated  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN  
V5SW  
1.25V  
+
+
+
+
4.7V/ 4.5V  
4.7V/ 4.5V  
VREG3  
VREG5  
GND  
V5OK  
THOK  
+
4.2V/ 3.8V  
Ready  
GND  
+
VREF2  
150/ 140  
Deg-C  
1.25V  
GND  
GND  
CLK2  
CLK1  
OSC  
RF  
GND  
1V +5%/ 10%  
1V - 5%/ 10%  
+
+
PGOOD1  
Delay  
1V -30%  
+
+
GND  
UVP  
OVP  
CLK1  
Ready  
Fault2  
SDN2  
1V +15%  
Fault1  
SDN1  
COMP1  
VFB1  
Ramp  
Comp  
+
+
PWM  
VREG5  
1V  
+
+
VFB-AMP  
EN1  
Enable/  
Soft-start  
VREF2  
VBST1  
DRVH1  
SW1  
Ramp  
Comp  
Control  
Logic  
IMON1  
+
Skip  
Filter  
Amp.  
(CH1 only)  
CSN1  
CS-AMP  
+
OCP  
XCON  
+
CSP1  
TRIP  
VREG5  
100mV  
DRVL1  
Discharge  
Control  
GND  
GND  
N-OCP  
+
100mV  
VREF2  
GND  
OOA  
Ctrl  
GND  
SKIPSEL1  
Channel-1 Switcher shown  
2
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
ORDERING INFORMATION(1)  
ORDERABLE  
PART NUMBER  
MINIMUM  
ORDER  
QUANTITY  
OUTPUT  
SUPPLY  
TA  
PACKAGE  
PINS  
ECO PLAN  
TPS51221RTVT  
TPS51221RTVR  
Tape and reel  
Tape and reel  
250  
Green (RoHS  
and no Sb/Br)  
PLASTIC QUAD  
FLAT PACK (QFN)  
–40°C to 85°C  
32  
3000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
–0.3 to 30  
–0.3 to 35  
–0.3 to 7  
–5 to 30  
–1 to 13.5  
–0.3 to 7  
–1 to 7  
UNIT  
V
VIN  
VBST1, VBST2  
VBST1, VBST2(3)  
V
V
SW1, SW2  
V
(2)  
Input voltage range  
CSP1, CSP2, CSN1, CSN2  
V
EN, EN1, EN2, VFB1, VFB2, TRIP, SKIPSEL1, SKIPSEL2  
V
V5SW  
V
V5SW (to VREG5)(4)  
DRVH1, DRVH2  
DRVH1, DRVH2(3)  
–7 to 7  
V
–5 to 35  
–0.3 to 7  
V
V
(2)  
Output voltage range  
DRVL1, DRVL2, COMP1, COMP2, VREG5, RF, VREF2, IMON1 PGOOD1,  
PGOOD2  
–0.3 to 7  
V
VREG3  
–0.3 to 3.6  
–40 to 125  
–55 to 150  
V
Operating junction temperature range, TJ  
Storage temperature, Tst  
°C  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) Voltage values are with respect to the corresponding SW terminal.  
(4) When EN is high and V5SW is grounded, or voltage is applied to V5SW when EN is low.  
DISSIPATION RATINGS (2 oz Trace and Copper Pad with Solder)  
PACKAGE  
TA < 25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
32 pin RTV  
1.7 W  
17 mW/°C  
0.7 W  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
TYP  
MAX  
28  
6
UNIT  
VIN  
Supply voltage  
I/O voltage  
V
V5SW  
–0.8  
–0.1  
–4.0  
–0.1  
–4.0  
–0.8  
VBST1, VBST2  
DRVH1, DRVH2  
DRVH1, DRVH2 (wrt SW1, 2)  
SW1, SW2  
33  
33  
6
28  
13  
V
CSP1, CSP2, CSN1, CSN2  
EN, EN1, EN2, VFB1, VFB2, TRIP, DRVL1, DRVL2, COMP1, COMP2,  
VREG5, RF, VREF2, PGOOD1, PGOOD2, SKIPSEL1, SKIPSEL2, IMON1  
–0.1  
6
VREG3  
–0.1  
–40  
3.5  
85  
Operating free-air temperature, TA  
°C  
4
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range, EN=3.3V, VIN=12V, V5SW=5V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN shutdown current, TA = 25°C,  
No Load, EN = 0V, V5SW = 0 V  
IVINSDN  
VIN shutdown current  
VIN standby current 1  
Vbat standby current  
7
80  
15  
µA  
µA  
µA  
VIN standby current, TA = 25°C, No Load,  
EN1=EN2=V5SW = 0 V  
IVINSTBY1  
IVBATSTBY  
120  
Vbat standby current, TA = 25°C, No Load  
500  
SKIPSEL2=2V, EN2=open, EN1=V5SW=0V(1)  
TRIP = 5 V  
TRIP = 0 V  
1.2  
1.4  
mA  
mA  
V5SW current, TA = 25°C, No Load,  
ENx=5V, VFBx=1.05 V  
IV5SW  
V5SW supply current  
VREF2 OUTPUT  
IVREF2 < ±10 µA, TA = 25°C  
1.98  
1.97  
2.00  
2.00  
2.02  
2.03  
VVREF2  
VREF2 output voltage  
V
IVREF2 < ±100 µA, 4.5V < VIN < 25 V  
VREG3 OUTPUT  
V5SW = 0 V, IVREG3 = 0 mA, TA = 25°C  
3.279 3.313  
3.135 3.300  
3.347  
3.400  
20  
VVREG3  
VREG3 output voltage  
VREG3 output current  
V
V5SW = 0 V, 0 mA < IVREG3 <10 mA,  
5.5 V <VIN<25 V  
IVREG3  
VREG5 OUTPUT  
VREG3 = 3 V  
10  
15  
mA  
V5SW = 0 V, IVREG5 = 0 mA, TA = 25°C  
4.99  
4.90  
5.04  
5.03  
5.09  
5.15  
V
V5SW = 0 V, 0 mA < IVREG5 <100 mA,  
6 V <VIN<25 V  
VVREG5  
VREG5 output voltage  
V5SW = 0 V, 0 mA < IVREG5 <100 mA,  
5.5 V <VIN<25 V  
4.50  
5.03  
5.15  
V
V5SW = 0 V, VREG5 = 4.5 V  
V5SW = 5 V, VREG5 = 4.5 V  
Turning on  
100  
200  
150  
300  
4.7  
200  
400  
4.8  
IVREG5  
VREG5 output current  
Switchover threshold  
mA  
4.55  
0.15  
VTHV5SW  
V
Hysteresis  
0.20  
7.7  
0.25  
tdV5SW  
Switchover delay  
Turning on  
ms  
RV5SW  
5V SW On-resistance  
IVREG5 = 100 mA  
0.5  
OUTPUT  
TA = 25°C, No Load  
0.9925 1.000 1.0075  
VFB regulation voltage  
tolerance  
VVFB  
V
TA = –40°C to 85°C , No Load  
0.990 1.000  
–50  
1.010  
50  
IVFB  
VFB input current  
IVFB VFBx = 1.05 V, COMPx = 1.8 V, TA = 25°C  
nA  
CSNx discharge  
resistance  
RDischg  
ENx = 0 V, CSNx = 0.5 V, TA = 25°C  
20  
40  
30  
VOLTAGE TRANSCONDUCTANCE AMPLIFIER  
GmV  
Gain  
TA = 25°C  
500  
–30  
µS  
Differential input voltage  
range  
Vind  
mV  
COMP maximum sink  
current  
ICOMPSNK  
ICOMPSRC  
COMPx = 1.8 V  
COMPx = 1.8 V  
33  
µA  
µA  
COMP maximum source  
current  
–33  
(1) Specified by design. Detailed external condition follows the application circuit of Figure 51  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, EN=3.3V, VIN=12V, V5SW=5V (unless otherwise noted)  
PARAMETER  
CURRENT AMPLIFIER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TRIP = 0V/2V, CSN = 5V, TA = 25°C(2)  
TRIP=3.3V/5V, CSN=5V, TA = 25°C(2)  
3.333  
1.667  
GC  
VIC  
Gain  
Common mode input  
voltage range  
0
13  
75  
V
Differential input voltage  
range  
VID  
TA = 25°C  
–75  
mV  
POWERGOOD  
PG in from lower  
PG in from higher  
PG hysteresis  
92.5%  
95%  
97.5%  
VTHPG  
PG threshold  
102.5% 105% 107.5%  
5%  
5
IPG  
PG sink current  
PGOOD Delay  
PGOOD = 0.5 V  
Delay for PG in  
mA  
ms  
tPGDLY  
SOFTSTART  
tSSDYL  
tSS  
0.8  
1
1.2  
Soft start delay  
Soft start time  
Delay for Soft Start, ENx=Hi to SS-ramp starts  
Internal soft start  
200  
960  
µs  
µs  
FREQUENCY AND DUTY CONTROL  
fSW  
Switching frequency  
Rf = 330 k  
Lo to Hi  
273  
0.7  
303  
1.3  
0.2  
333  
2.0  
kHz  
V
VTHRF  
RF threshold  
Hysteresis  
V
Sync input frequency  
range  
fSYNC  
Specified by design  
200  
1000  
kHz  
tONMIN  
Minimum on-time  
Minimum off-time  
VDRVH = 90% to 10%, No Load  
VDRVH = 10% to 90%, No Load  
DRVH-off to DRVL-on  
120  
290  
30  
150  
440  
50  
ns  
ns  
ns  
ns  
V
tOFFMIN  
10  
30  
tD  
Dead time  
DRVL-off to DRVH-on  
40  
70  
(2)  
VDTH  
VDTL  
DRVH-off threshold  
DRVL-off threshold  
DRVH to GND  
1.0  
1.0  
DRVL to GND(2)  
V
OUTPUT DRIVERS  
Source, VVBST-DRVH = 0.1 V  
Sink, VDRVH-SW = 0.1 V  
1.7  
1.0  
1.3  
0.7  
5.0  
3.0  
4.0  
2.0  
RDRVH DRVH resistance  
Source, VV5IN-DRVL = 0.1 V  
Sink, VDRVL-PGND = 0.1 V  
RDRVL  
DRVL resistance  
CURRENT SENSE  
TRIP = 0V/2V, TA = 25°C  
TRIP = 0V/2V  
27  
25  
56  
54  
31  
31  
60  
60  
35  
37  
64  
66  
Current limit threshold  
(Ultra low voltage)  
VOCL-ULV  
mV  
TRIP = 3.3V/5V, TA = 25°C  
TRIP = 3.3V/5V  
Current limit threshold  
( low voltage)  
VOCL-LV  
VZC  
mV  
mV  
mV  
Zero cross detection  
comparator offset  
0.95V < CSNx < 12.6V  
–4  
0
4
TRIP = 0V/2V, TA = 25°C  
TRIP = 0V/2V  
–24  
–22  
–51  
–49  
–31  
–31  
–60  
–60  
–38  
–40  
–69  
–71  
Negative current limit  
threshold (ULV)  
VOCLN-ULV  
TRIP = 3.3V/5V, TA = 25°C  
TRIP = 3.3V/5V  
Negative current limit  
threshold (LV)  
VOCLN-LV  
mV  
(2) Specified by design.  
6
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, EN=3.3V, VIN=12V, V5SW=5V (unless otherwise noted)  
PARAMETER  
UVP, OVP AND UVLO  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOVP  
OVP trip threshold  
OVP prop delay  
UVP trip threshold  
UVP delay  
OVP detect  
UVP detect  
110% 115%  
1.5  
120%  
µs  
tOVPDLY  
VUVP  
65%  
0.8  
70%  
1
73%  
tUVPDLY  
1.2  
1.9  
ms  
V
Wake up  
Hysteresis  
Wake up  
Hysteresis  
Wake up  
Hysteresis  
1.7  
1.8  
VUVREF2  
VUVREG3  
VUVREG5  
VREF2 UVLO threshold  
VREG3 UVLO threshold  
VREG5 UVLO threshold  
75  
100  
3.1  
125  
3.2  
mV  
3.0  
V
0.10  
4.1  
0.15  
4.2  
0.20  
4.3  
V
V
0.35  
0.40  
0.44  
INTERFACE AND LOGIC THRESHOLD  
Wake up  
Hysteresis  
Wake up  
Hysteresis  
0.8  
0.1  
1.0  
0.2  
1.2  
0.3  
VEN  
EN threshold  
V
0.45  
0.1  
0.50  
0.2  
0.55  
0.3  
VEN12  
EN1/EN2 threshold  
V
V
EN1/EN2 SS start  
threshold  
VEN12SS  
SS-ramp start threshold at external soft start  
SS-End threshold at external soft start  
1.0  
EN1/EN2 SS end  
threshold  
VEN12SSEND  
IEN12  
2.0  
2.0  
V
EN1/EN2 source current  
VEN1/EN2 = 0V  
1.5  
2.6  
1.5  
2.1  
3.4  
µA  
Continuous  
Auto Skip  
1.9  
3.2  
3.8  
SKIPSEL1/SKIPSEL2  
logic setting voltage  
VSKIPSEL  
V
V
OOA Skip (min 1/8 Fsw)  
OOA Skip (min 1/16 Fsw)  
VOCL-ULV, Discharge ON  
VOCL-ULV, Discharge OFF  
VOCL-LV, Discharge OFF  
VOCL-LV, Discharge ON  
TRIP = 0V  
1.5  
2.1  
3.4  
1.9  
3.2  
VTRIP  
TRIP logic setting voltage  
3.8  
–1  
1
1
ITRIP  
TRIP input current  
µA  
µA  
TRIP =5V  
–1  
SKIPSELx = 0 V  
SKIPSELx = 5 V  
–0.5  
–0.5  
0.5  
0.5  
ISKIPSEL  
SKIPSEL input current  
BOOT STRAP SW  
VFBST Forward voltage  
IBSTLK VBST leakage current  
THERMAL SHUTDOWN  
VVREG5-VBST, IF = 10 mA, TA = 25°C  
VBST = 30 V, SW = 25 V  
0.10  
0.01  
0.20  
1.5  
V
µA  
Shutdown temperature(3)  
Hysteresis(3)  
150  
10  
TSDN  
Thermal SDN threshold  
°C  
(3) Specified by design.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, EN=3.3V, VIN=12V, V5SW=5V (unless otherwise noted)  
PARAMETER  
CURRENT MONITOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TRIP = 0V/2V  
100  
50  
GIMON  
Current monitor gain  
TRIP = 3.3V/5V  
TRIP = 0V/2V, VCSPx-CSNx = 30 mV, 0.95V<CNSx<12.6V,  
TA = 25°C  
2.65  
2.75  
2.95  
3.0  
3.25  
V
VIMON  
Current monitor output  
TRIP = 3.3V/5V, VCSPx-CSNx = 60 mV,  
0.95V<CNSx<12.6V, TA = 25°C  
3.25  
TRIP = 0V/2V, VCSPx-CSNx = 0 V, 0.95V<CNSx<12.6V, TA  
= 25°C  
–300  
–200  
300  
mV  
200  
Current monitor output  
offset  
VIMON-OFF  
TRIP = 3.3V/5V, VCSPx-CSNx = 0 V, 0.95V<CNSx<12.6V,  
TA = 25°C  
DEVICE INFORMATION  
PINOUT  
RTV PACKAGE  
(TOP VIEW)  
DRVH1  
V5SW  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
DRVH2  
VIN  
RF  
VREG3  
EN2  
EN1  
PGOOD1  
SKIPSEL1  
CSP1  
PGOOD2  
SKIPSEL2  
CSP2  
18  
17  
CSN2  
CSN1  
8
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
DRVH1  
DRVH2  
SW2  
NO.  
1
High-side MOSFET gate driver outputs. Source 1.7 , sink 1.0 , SW-node referenced floating driver. Drive  
O
voltage corresponds to VBST to SW voltage.  
24  
25  
32  
I/O  
O
I
High-side MOSFET gate driver returns.  
SW1  
Always alive 3.3-V, 10-mA low dropout linear regulator output. Bypass to (signal) GND by more than 1-µF  
ceramic capacitor. Runs from VIN supply or from VREG5 when it is switched over to V5SW input.  
VREG3  
22  
EN1  
4
21  
5
Channel 1 and Channel 2 SMPS enable pins. When turning on, apply greater than 0.55 V and less than 6 V,  
or leave floating. Connect to GND to disable. Adjustable soft-start capacitance to be attached here.  
EN2  
PGOOD1  
PGOOD2  
SKIPSEL1  
Power good window comparator outputs for channel 1 and 2. The applied voltage should be less than 6V  
and recommended pull-up resistance value is from 100 kto 1 M.  
O
I
20  
6
Skip Mode Selection pin.  
GND: Continuous Conduction Mode  
VREF2: Auto Skip  
SKIPSEL2  
19  
VREG3: OOA Auto Skip, maximum 7 skips (use with < 400 kHz)  
VREG5: OOA Auto Skip, maximum 15 skips (use with more than 400 kHz)  
CSP1  
CSP2  
7
Current sense comparator inputs (+). An RC network with high quality X5R or X7R ceramic capacitor should  
be used to extract voltage drop across DCR. 0.1 µF is a good value to start design. Refer to current sensing  
scheme section for more details.  
I/O  
18  
CSN1  
CSN2  
VFB1  
8
Current sense comparator inputs (–). (See the current sensing scheme section.) Used as power supply for  
the current sense circuit for 5 V or higher output voltage setting. Also, used for output discharge.  
I
I
17  
9
SMPS feedback inputs. Connect the feedback resistor divider and should refer to (signal) GND.  
VFB2  
16  
10  
15  
COMP1  
COMP2  
Loop compensation pin (error amplifier output). Connect R (and C if required) from this pin to VREF2 for  
proper loop compensation with current mode operation.  
I
Frequency setting pin. Connect a frequency setting resistor to (signal) GND. Connect to an external clock for  
synchronization.  
RF  
3
I/O  
IMON1  
VREF2  
11  
13  
O
O
Current monitor outputs for CH1. Adding RC filter is recommended.  
2-V reference output. Bypass to (signal) GND by 0.22-µF ceramic capacitor.  
Over current trip level and discharge mode selection pin.  
GND: VOCL-ULV, Discharge on  
VREF2: VOCL-ULV, Discharge off  
VREG3: VOCL-LV, Discharge off  
VREG5: VOCL-LV, Discharge on  
TRIP  
14  
I
VREF2 and VREG5 Linear Regulators Enable Pin. When turning on, apply greater than 1.2 V and less than  
6 V. Connect to GND to Disable.  
EN  
12  
I
I
VBST1  
VBST2  
31  
26  
Supply inputs for high-side N-channel FET driver (boot strap terminal). Connect a capacitor (0.1 µF or  
greater is recommended) from this pin to respective SW terminal. Additional SB diode from VREG5 to this  
pin is an optional.  
DRVL1  
DRVL2  
30  
27  
O
I
Low-side MOSFET gate driver outputs. Source 1.3 , sink 0.7 , GND referenced driver.  
VREG5 switchover power supply input pin. When EN1 is high, PGOOD1 indicates GOOD and V5SW voltage  
is higher than 4.8 V, the switchover function is enabled. (Note: when switchover is enabled, VREG5 output  
voltage is approximately the same as the V5SW input voltage.)  
V5SW  
2
5-V, 100-mA low dropout linear regulator output. Bypass to (power) GND using a 10 µF ceramic capacitor.  
Runs from VIN supply. Internally connected to VBST and DRVL. Shuts off with EN. Switches over to V5SW  
when 4.8V or above is provided. (Note: when switch-over (see V5SW description above) is enabled, VREG5  
output voltage is approximately the same as V5SW input voltage.)  
VREG5  
29  
O
VIN  
23  
28  
I
Supply Input for 5-V and 3.3-V linear regulator. Typically connected to VBAT.  
Ground  
GND  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
VIN SHUTDOWN CURRENT  
VIN SHUTDOWN CURRENT  
vs  
JUNCTION TEMPERATURE  
vs  
INPUT VOLTAGE  
15  
12  
9
15  
12  
9
V
= 12 V  
IN  
RT  
6
6
3
0
3
0
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
TJ - Junction Temperature - °C  
VIN - VIN Input Voltage - V  
Figure 1.  
Figure 2.  
VIN STANDBY CURRENT  
vs  
JUNCTION TEMPERATURE  
VIN STANDBY CURRENT  
vs  
INPUT VOLTAGE  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
-50  
0
50  
100  
150  
5
10  
15  
20  
25  
30  
TJ - Junction Temperature -° C  
VIN - VIN Input Voltage - V  
Figure 3.  
Figure 4.  
10  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TYPICAL CHARACTERISTICS (continued)  
NO LOAD BATTERY CURRENT  
NO LOAD BATTERY CURRENT  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
EN = on, EN1 = on, EN2 = on  
EN = on, EN1 = off, EN2 = on  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
VIN - Input Voltage - V  
VIN - Input Voltage - V  
Figure 5.  
Figure 6.  
BATTERY CURRENT  
vs  
INPUT VOLTAGE  
VREF2 OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
1
2.02  
2.01  
2.00  
EN = on, EN1 = on, EN2 = off  
VIN=12V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.99  
1.98  
0.1  
0
5
10  
15  
- Input Voltage - V  
20  
25  
-100  
-50  
0
50  
100  
V
IN  
IREF2 - VREF2 Output Current - μA  
Figure 7.  
Figure 8.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VREF3 OUTPUT VOLTAGE  
vs  
VREF5 OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5.10  
5.05  
5.00  
3.40  
3.35  
3.30  
3.25  
3.20  
VIN=12V  
VIN=12V  
4.95  
4.90  
0
20  
40  
60  
80  
100  
0
2
4
6
8
10  
IREG5 - VREG5 Output Current - mA  
IREG3 - VREG3 Output Current - mA  
Figure 9.  
Figure 10.  
SWITCHING FREQUENCY  
vs  
JUNCTION TEMPERATURE  
OVP/UVP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
330  
320  
310  
300  
290  
280  
270  
150  
130  
110  
90  
RF = 330 kΩ  
OVP  
70  
UVP  
50  
-50  
-50  
0
50  
100  
150  
0
50  
100  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature -°C  
Figure 11.  
Figure 12.  
12  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TYPICAL CHARACTERISTICS (continued)  
FORWARD VOLTAGE OF BOOST SW  
VBST LEAKAGE CURRENT  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
Figure 13.  
Figure 14.  
CURRENT LIMIT THRESHOLD  
vs  
JUNCTION TEMPERATURE  
CURRENT LIMIT THRESHOLD  
vs  
JUNCTION TEMPERATURE  
37  
35  
66  
64  
CSN = 1 V  
CSN = 1 V  
CSN = 5 V  
62  
60  
33  
31  
29  
CSN = 5 V  
CSN = 12 V  
CSN = 12 V  
58  
56  
54  
27  
25  
-50  
0
50  
100  
- Junction Temperature - ºC  
150  
-50  
0
50  
100  
150  
T
T
- Junction Temperature - ºC  
J
J
Figure 15.  
Figure 16.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
5-V OUTPUT VOLTAGE  
vs  
3.3-V OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
3.40  
3.35  
3.30  
5.10  
5.05  
5.00  
CCM  
CCM  
IO = 0A  
IO = 3A  
IO = 6A  
IO = 0A  
IO = 3A  
IO = 6A  
4.95  
4.90  
3.25  
3.20  
5
10  
15  
20  
25  
5
10  
15  
20  
25  
VIN - Input Voltage - V  
Figure 17.  
VIN - Input Voltage - V  
Figure 18.  
5-V EFFICIENCY  
vs  
OUTPUT CURRENT  
5-V EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
100  
90  
Auto-skip  
VIN = 7 V  
80  
60  
40  
OOA  
VIN = 12 V  
80  
VIN = 21 V  
70  
60  
50  
20  
0
CCM  
Auto-skip  
VIN = 12 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
IOUT1 - 5-V Output Current - A  
IOUT1 - 5-V Output Current - A  
Figure 19.  
Figure 20.  
14  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TYPICAL CHARACTERISTICS (continued)  
3.3-V EFFICIENCY  
vs  
OUTPUT CURRENT  
3.3-V EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
90  
100  
80  
VIN = 7 V  
Auto-skip  
VIN = 12 V  
80  
70  
60  
50  
40  
60  
VIN = 21 V  
OOA  
Auto-skip  
40  
CCM  
5-V Switcher ON  
(Auto-skip)  
20  
0
5-V Switcher ON  
(Auto-skip)  
VIN = 12 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
IOUT2 - 3.3-V Output Current - A  
IOUT2 - 3.3-V Output Current - A  
Figure 21.  
Figure 22.  
5-V SWITCHING FREQUENCY  
3.3-V SWITCHING FREQUENCY  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
400  
400  
350  
300  
250  
200  
150  
100  
VIN = 12 V  
VIN = 12 V  
350  
300  
250  
200  
150  
100  
50  
CCM  
CCM  
OOA  
OOA  
50  
0
Auto-skip  
Auto-skip  
0
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
IOUT2 - 3.3-V Output Current - A  
IOUT1 - 5-V Output Current - A  
Figure 23.  
Figure 24.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
5-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.3-V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
3.40  
3.35  
3.30  
5.10  
5.05  
5.00  
VIN = 12 V  
OOA  
VIN = 12 V  
OOA  
CCM  
Auto-skip  
Auto-skip  
CCM  
3.25  
3.20  
4.95  
4.90  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
IOUT2 - 3.3-V Output Current - A  
IOUT1 - 5-V Output Current - A  
Figure 25.  
Figure 26.  
5.0-V START-UP WAVEFORMS  
3.3-V START-UP WAVEFORMS  
EN1 (5 V/div)  
EN2 (5 V/div)  
VO1 (2 V/div)  
VO2 (2 V/div)  
PGOOD1 (5 V/div)  
PGOOD2 (5 V/div)  
VIN = 12 V  
Iout = 6 A  
VIN = 12 V  
Iout = 6 A  
t - Time - 1 ms/div  
t - Time - 1 ms/div  
Figure 27.  
Figure 28.  
16  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TYPICAL CHARACTERISTICS (continued)  
5.0-V SOFT-STOP WAVEFORMS  
3.3-V SOFT-STOP WAVEFORMS  
EN1 (5 V/div)  
EN2 (5 V/div)  
VO1 (5 V/div)  
VO2 (5 V/div)  
PGOOD1 (5 V/div)  
DRVL1 (5 V/div)  
PGOOD2 (5 V/div)  
DRVL2 (5 V/div)  
t - Time - 1 ms/div  
t - Time - 1 ms/div  
Figure 29.  
Figure 30.  
5.0-V LOAD TRANSIENT RESPONSSE  
3.3-V LOAD TRANSIENT RESPONSSE  
VO2 (100 mV/div)  
VO1 (100 mV/div)  
I
(5 A/div)  
IND  
I
(5 A/div)  
IND  
IO1 (5 A/div)  
VIN = 12 V, Auto-skip  
IO2 (5 A/div)  
VIN = 12 V, Auto-skip  
t - Time - 100 ms/div  
t - Time - 100 ms/div  
Figure 32.  
Figure 31.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
5.0-V BODE-PLOT GAIN AND PHASE  
3.3-V BODE-PLOT GAIN AND PHASE  
vs  
vs  
FREQUENCY  
FREQUENCY  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
180  
135  
180  
135  
Phase  
Phase  
Gain  
90  
45  
0
90  
45  
0
Gain  
-20  
-40  
-45  
-90  
-20  
-40  
-45  
-90  
VIN = 12 V  
-60  
-80  
-135  
-180  
VIN = 12 V  
-60  
-80  
-135  
-180  
Current mode  
Current mode  
100  
1K  
10K  
100K  
1M  
100  
1K  
10K  
100K  
1M  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 33.  
Figure 34.  
IMON1 VOLTAGE  
vs  
OUTPUT CURRENT  
IMON1 VOLTAGE  
vs  
OUTPUT CURRENT  
3
3
2.5  
2
V
= ULV  
V
= LV  
OCL  
OCL  
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
1
2
3
IOUT1 - 5V Output Current - A  
4
5
0
2
4
6
8
10  
IOUT1 - 5 V Output Current - A  
Figure 35.  
Figure 36.  
18  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
TYPICAL CHARACTERISTICS (continued)  
5.0-V SWITCH-OVER WAVEFORMS  
VIN = 12 V  
VREG5 (100mV/div)  
VO1 (100mV/div)  
t - Time - 2 ms/div  
Figure 37.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
DETAILED DESCRIPTION  
ENABLE AND SOFT START  
When EN is Low, the TPS51221 is in the shutdown state; only the 3.3-V LDO stays alive, and consumes 7µA  
(typically). When EN becomes High, the TPS51221 is in the standby state. The 2-V reference and the 5-V LDO  
become enabled, consume about 80 µA with no load condition, and are ready to turn on SMPS channels. Each  
SMPS channel is turned on when ENx becomes High. After ENx is set to high, the TPS51221 begins softstart,  
and ramps up the output voltage from zero to the target voltage with 0.96 ms. However, if a slower soft-start is  
required, an external capacitor can be tied from the ENx pin to GND. In this case, the TPS51221 charges the  
external capacitor with the integrated 2-µA current source. An approximate external soft-start time would be  
tEX-SS=CEX / IEN12, it means the time from ENx=1V to ENx=2V. Recommend capacitance is more than 2.2nF.  
1) Internal  
Soft-start  
EN1  
Vout1  
200 ms  
960 ms  
EN1<2V  
EN1>1V  
2) External  
Soft-start  
EN1  
External  
Soft-start  
time  
Vout1  
Figure 38. Enable and Soft-Start Timing  
Table 1. Enable Logic States  
EN  
GND  
Hi  
EN1  
EN2  
VREG3  
ON  
VREF2  
Off  
VREG5  
Off  
CH1  
Off  
CH2  
Off  
Don’t Care  
Don’t Care  
Lo  
Hi  
Lo  
Hi  
Lo  
Lo  
Hi  
Hi  
ON  
ON  
ON  
Off  
Off  
Hi  
ON  
ON  
ON  
ON  
Off  
Off  
Hi  
ON  
ON  
ON  
ON  
ON  
Hi  
ON  
ON  
ON  
ON  
PRE-BIASED START-UP  
The TPS51221 supports a pre-biased start up by preventing negative inductor current during soft-start when the  
output capacitor holds some charge. The initial DRHV signal waits until the voltage feedback signal becomes  
greater than the internal reference ramping up by the soft-start function. After that, the start-up occurs the same  
way the the soft-start condition fully discharges, regardless of the SKIPSELx selection.  
20  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
3.3 V, 10 mA LDO (VREG3)  
A 3.3-V, 10mA, linear regulator is integrated in the TPS51221. This LDO services some of the analog supply rail  
for the IC and provides a handy standby supply for 3.3-V Always On voltage in the notebook system. Apply a  
2.2-µF (at least 1-µF), high quality X5R or X7R ceramic capacitor from VREG3 to (signal) GND, adjacent to the  
IC.  
2.0-V, 100 µA Sink/ Source Reference (VREF2)  
This voltage is used for the reference of the loop compensation network. Apply a 0.22-µF (at least 0.1-µF), high  
quality X5R or X7R ceramic capacitor from VREF2 to (signal) GND, adjacent to the IC.  
5.0-V, 100 mA LDO (VREG5)  
A 5.0-V, 100-mA linear regulator is integrated in the TPS51221. This LDO services the main analog supply rail  
for the IC and provides current for gate drivers until switch-over function becomes enabled. Apply 10-µF (at least  
4.7-µF), high quality X5R or X7R ceramic capacitor from VREG5 to (power) GND, adjacent to the IC.  
VREG5 SWITCHOVER  
When EN1 is high, PGOOD1 indicates GOOD and more than 4.7-V voltage is applied to V5SW, the internal  
5V-LDO is shut off and the VREG5 is shorted to V5SW by an internal MOSFET after A 7.7ms delay. When the  
V5SW voltage becomes lower than 4.5 V, EN1 becomes low, or PGOOD1 indicates BAD, the internal switch is  
turned off and the internal 5V-LDO resumes immediately.  
BASIC PWM OPERATIONS  
The main control loop of the SMPS is designed as a fixed-frequency, peak current mode pulse width modulation  
(PWM) controller. It can achieve stable operation in any type of capacitors, including low ESR capacitor(s) such  
as ceramic or specialty polymer capacitors.  
The TPS51221 SMPS uses the output voltage information and the inductor current information to regulate the  
output voltage. The output voltage information is sensed by VFBx pin. The signal is compared with the internal  
1-V reference and the voltage difference is amplified by a transconductance amplifier (VFB-AMP). The inductor  
current information is sensed by CSPx and CSNx pins. The voltage difference is amplified by another  
transconductance amplifier (CS-AMP). The output of the VFB-AMP indicates the target peak inductor current. If  
the output voltage goes down, the TPS51221 increases the target inductor current to raise the output voltage. On  
the other hand, if the output voltage goes up the TPS51221 decreases the target inductor current to reduce the  
output voltage.  
At the beginning of each clock cycle, the high-side MOSFET is turned on, or becomes ON state. The high-side  
MOSFET is turned off, or becomes OFF state, after the inductor current reaches the target value—which is  
determined by the combination value of the output of the VFB-AMP and a ramp compensation signal. The ramp  
compensation signal is used to prevent sub-harmonic oscillation of the inductor current control loop. The  
high-side MOSFET is turned on again at the next clock cycle. By repeating the operation in this manner, the  
controller regulates the output voltage. The synchronous low-side or the rectifying MOSFET is turned on each  
OFF state to keep the conduction loss minimum.  
PWM FREQUENCY CONTROL  
TPS51221 has a fixed frequency control scheme with 180° phase shift. The switching can be determined by an  
external resistor which is connected between RF pin and GND, and can be calculated using Equation 1:  
1   105  
RF[kW]  
ƒ
[kHz] +  
sw  
(1)  
The TPS51221 can also synchronize to the external clock, of more than 2.5-V amplitude, by applying the signal  
to RF pin. The set timing of the channel-1 initiates at the raising edge (1.3V typ) of the clock, and channel-2  
initiates at the falling edge (1.1V typ). Therefore, the 50% duty signal makes both channels 180° phase shift.  
When the external clock synchronization is selected, the following conditions are required.  
Remove RF resistor  
Add clock signal before EN1 or EN2 turning on  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS51221  
 
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
The TPS51221 does NOT support switching frequency change on-the-fly. (neither from the switching frequency  
set by the RF resistor to the external clock, nor vice versa)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
200  
300  
400  
500  
RF - Resistance - kW  
Figure 39. Switching Frequency vs RF  
LIGHT LOAD OPERATION  
The TPS51221 automatically reduces switching frequency at light load condition to maintain high efficiency if  
Auto Skip or OOA mode is selected by SKIPSELx. This reduction of frequency is achieved by skipping pulses.  
As the output current decreases from heavy load condition, the inductor current is also reduced and eventually  
comes to the point that its peak touches a predetermined current, ILL(PEAK), which indicates the boundary between  
heavy-load and light-load conditions. Once the top MOSFET is turned on, the TPS51221 does not allow turning it  
off until it touches ILL(PEAK). This eventually causes an over-voltage condition to the output, and pulse skipping.  
From the next pulse after zero-crossing is detected, ILL(PEAK) is limited by the ramp-down signal which starts from  
25% of the over-current limit setting (IOCL(PEAK): see the CURRENT PROTECTION section) toward 5% of  
IOCL(PEAK), over one switching cycle to prevent causing a large ripple. The transition load point to the light load  
operation ILL(DC) can be calculated as follows;  
I
LL(DC) + ILL(PEAK) * 0.5   IIND(RIPPLE)  
(2)  
ǒ
V
Ǔ
* V  
  V  
IN  
OUT OUT  
1
I
+
 
IND(RIPPLE)  
L   ƒ  
V
IN  
SW  
(3)  
where fSW is the PWM switching frequency as determined by RF resistor setting or external clock. Switching  
frequency versus output current in the light load condition is a function of L, f, Vin and Vout; but it decreases  
almost proportional to the output current from the ILL(DC) given above however, as the switching is synchronized  
with clock. Due to the synchronization, the switching waveform in boundary load condition (close to ILL(DC)),  
appears as a sub-harmonic oscillation; however, it is the intended operation.  
If SKIPSELx is tied to GND, TPS51221 works at the constant frequency of fSW, regardless of its load current.  
22  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
Inductor  
Current  
I
LL(PEAK)  
I
I
IND(RIPPLE)  
LL(DC)  
0
Time  
Figure 40. Boundary Between Pulse Skipping and CCM  
V
Ramp + ǒ0.25 * 0.2   OUTǓ  
ILL(PEAK)  
  IOCL(PEAK)  
VIN  
(4)  
Inductor  
Current  
25% of I  
OCL(PEAK)  
I
Ramp Signal  
LL(PEAK)  
I
LL(PEAK)  
5% of I  
OCL(PEAK)  
0
Time  
Ton  
1/f  
SW  
Figure 41. Inductor Current Limit at Pulse Skipping  
Table 2. Skip Mode Selection  
SKIPSELx  
GND  
VREF2  
VREG3  
VREG5  
OOA Skip (max 7 skips,  
for <400 kHz)  
OOA Skip (max 15 skips, for equal  
to or greater than 400kHz)  
Operating Mode  
Continuous Conduction  
Auto Skip  
OUT OF AUDIO SKIP OPERATION  
Out-Of-Audio™ (OOA) light load mode is a unique control feature that keeps the switching frequency above  
acoustic audible frequencies toward virtually no-load condition while maintaining best-of-the-art high conversion  
efficiency. When OOA is selected, the switching frequency is kept higher than audible frequency range in any  
load condition. The TPS51221 automatically reduces the switching frequency at light-load conditions. OOA  
control circuit monitors the states of both MOSFETs and forces an ON state if a predetermined number of pulses  
are skipped. This means that the high-side MOSFET is turned on before the output voltage declines down to the  
target value, so that eventually an over-voltage condition is caused. The OOA control circuit detects this  
over-voltage condition and begins modulating the skip-mode on-time to keep the output voltage.  
The TPS51221 supports a wide switching frequency range; therefore, OOA skip mode has two selections; see  
Table 2. When 300 kHz switching frequency is selected, max 7 skip (SKIPSEL=3.3V) makes lowest frequency at  
37.5kHz. If max 15 skip is chosen, it becomes 18.8kHz; hence, max 7 skip is suitable for less than 400 kHz, and  
max 15 skip is for equal to or greater than 400 kHz.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TPS51221  
 
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
99% DUTY CYCLE OPERATION  
In a low-dropout condition such as 5-V input to 5-V output, the basic control loop attempts to maintain 100% of  
the high-side MOSFET ON. However, with the N-channel MOSFET used for the top switch, it is not possible to  
use the 100% on-cycle to charge the boot strap capacitor. When high duty is required, the TPS51221 extends  
the ON period (by skipping a maximum of three clock cycles and reducing the switching frequency to 25% of the  
steady state value) and asserts the OFF state after extended ON.  
HIGH-SIDE DRIVER  
The high-side driver is designed to drive high current, low rDS(on) N-channel MOSFET(s). The drive capability is  
represented by its internal resistance, which is 1.7 for VBSTx to DRVHx, and 1.0 for DRVHx to SWx. When  
configured as a floating driver, 5V bias voltage is delivered from VREG5 supply. The instantaneous drive current  
is supplied by the flying capacitor between VBSTx and SWx pins. The average drive current is equal to the gate  
charge at Vgs=5V times the switching frequency. This gate drive current, as well as the low-side gate drive  
current times 5V, produces the driving power which needs to be dissipated from the TPS51221 package. A dead  
time to prevent shoot-through is internally generated between high-side MOSFET off to low-side MOSFET on,  
and low-side MOSFET off to high-side MOSFET on.  
LOW-SIDE DRIVER  
The low-side driver is designed to drive high current low RDS(on) N-channel MOSFET(s). The drive capability is  
represented by its internal resistance, which is 1.3for VREG5 to DRVLx, and 0.7 for DRVLx to GND. The  
5-V bias voltage is delivered from VREG5 supply. The instantaneous drive current is supplied by an input  
capacitor connected between VREG5 and GND. The average drive current is also calculated by the gate charge  
at Vgs=5V times switching frequency.  
CURRENT SENSING SCHEME  
In order to provide both good accuracy and cost effective solution, the TPS51221 supports external resistor  
sensing and inductor DCR sensing. An RC network with high quality X5R or X7R ceramic capacitor should be  
used to extract voltage drop across DCR. A value of 0.1µF is a good design start. CSPx and CSNx should be  
connected to positive and negative terminal of the sensing device, respectively. The TPS51221 has an internal  
current amplifier. The gain of the current amplifier, Gc, is selected by TRIP terminal. In any setting, the output  
signal of the current amplifier becomes 100mV at the OCL setting point. This means that the current sensing  
amplifier normalizes the current information signal based on the OCL setting. Attaching an RC network is  
recommended even with a resistor sensing scheme to get accurate current sensing; see section EXTERNAL  
PARTS SELECTION for detailed configurations.  
CURRENT PROTECTION  
The TPS51221 has cycle-by-cycle over-current limiting control. If the inductor current becomes larger than the  
over-current trip level, TPS51221 turns off the high-side MOSFET, turns on the low-side MOSFET and waits for  
the next clock cycle.  
IOCL(PEAK) sets peak level of the inductor current. Thus, the DC load current at over-current threshold, IOCL(DC)  
,
can be calculated as follows;  
I
OCL(DC) + IOCL(PEAK) * 0.5   IIND(RIPPLE)  
(5)  
V
OCL  
I
+
OCL(PEAK)  
R
SENSE  
(6)  
where  
where RSENSE is resistance of the current-sensing device  
VOCL is the over-current trip threshold voltage, as determined by TRIP pin voltages (shown in Table 3)  
Table 3. OCL Trip and Discharge Selection  
TRIP  
GND  
VOCL-ULV (Ultra Low Voltage)  
Enable Disable  
VREF2  
VREG3  
VREG5  
VOCL (OCL Trip voltage)  
Discharge  
VOCL-LV (Low Voltage)  
Disable  
Enable  
24  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
 
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
In an over-current condition, the current to the load exceeds the current to the output capacitor; thus, the output  
voltage tends to fall down and ultimately crosses the under-voltage protection threshold, resulting in shutdown.  
POWER GOOD  
The TPS51221 has a power-good output for both switcher channels. The power-good function is activated after  
softstart has finished. If the output voltage comes within ±5% of the target value, internal comparators detect  
power-good state and the power-good signal becomes high after 1ms internal delay. If the output voltage goes  
outside of ±10% of the target value, the power-good signal becomes low after 1.5µs internal delay. Voltage  
applied should be less than 6V and the recommended pull-up resistance value is from 100kto 1M.  
OUTPUT DISCHARGE CONTROL  
The TPS51221 discharges output when ENx is low. The TPS51221 discharges outputs using an internal  
MOSFET connected to CSNx and GND. The current capability of these MOSFETs is limited to discharge the  
output capacitor slowly. If ENx becomes high during discharge, the MOSFETs are turning off, and some output  
voltage remains. SMPS changes over to soft-start. PWM will begin after the target voltage overtakes the  
remaining output voltage. This function can be disabled as shown in Table 3.  
CURRENT MONITOR  
The TPS51221 monitors the output current as the voltage difference between CSPx and CSNx terminal. The  
transconductance amplifier (CS-AMP) amplifies this differential voltage 100 times when VOCL is set VOCL_ULV, 50  
times when VOCL is set VOCL_LV, and sends out from IMON1 thermal. This function is only for the channel 1  
output and adding an RC filter is recommended.  
OVER/UNDER VOLTAGE PROTECTION  
The TPS51221 monitors the output voltage to detect over- and under-voltage. When the output voltage becomes  
15% higher than the target value, the OVP comparator output goes high, and the circuit latches the high-side  
MOSFET driver OFF and the low-side MOSFET driver ON, and shuts off another channel.  
When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes  
high and an internal UVP delay counter begins counting. After 1ms, the TPS51221 latches OFF both high-side  
and low-side MOSFETs, and shuts off another channel. This UVP function is enabled after soft start has  
completed. The procedures for restarting from these protection states are:  
(1) toggle EN,  
(2) toggle EN1 and EN2 or  
(3) once be hit UVLO  
UVLO PROTECTION  
TPS51221 has under-voltage lock out protection (UVLO) for VREG5, VREG3 and VREF2. When the voltage is  
lower than UVLO threshold voltage, the TPS51221 shuts off each output as shown in Table 4. This is non-latch  
protection.  
Table 4. UVLO Protection  
CH1/ CH2  
VREG5  
VREG3  
On  
VREF2  
On  
VREG5 UVLO  
VREG3 UVLO  
VREF2 UVLO  
Off  
Off  
Off  
Off  
Off  
Off  
On  
THERMAL SHUTDOWN  
TPS51221 monitors the temperature of itself. If the temperature exceeds the threshold value TPS51221 shuts off  
both SMPS, 5V-LDO and decreases VREG3 current limitation to 5 mA (typically). This is non-latch protection.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TPS51221  
 
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
EXTERNAL PARTS SELECTION  
A buck converter using TPS51221 consists of linear circuits and a switching modulator. Figure 42 shows basic  
scheme.  
Voltage divider  
VIN  
Switching Modulator  
Ramp  
comp.  
R1  
DRVH  
Lx  
VFB  
+
Gmv  
Rs  
PWM  
+
Control  
logic  
&
+
R2  
+
DRVL  
Driver  
1.0V  
ESR  
Co  
RL  
COMP  
VREF  
Gmc  
CSP  
Rgv  
Cc  
Rgc  
+
+
CSN  
2.0V  
Error Amplifier  
Figure 42. Simplified Current Mode Functional Blocks  
The external components can be selected by following manner.  
1. Determine output voltage dividing resistors (R1 and R2: shown in Figure 42) using the next equation  
R1 + ǒV  
Ǔ
* 1.0   R2  
OUT  
(7)  
2. Determine switching frequency. Higher frequency allows smaller output capacitances; however, efficiency  
is degraded due to increase of switching loss. Frequency setting resistor for RF-pin can be calculated by;  
1   105  
ƒsw [kHz]  
RF[kW] +  
(8)  
3. Choose the inductor. The inductance value should be determined to give the ripple current of  
approximately 25% to 50% of maximum output current. Recommended ripple current rate is about 30% to  
40% at the typical input voltage condition. The next equation uses 33%.  
ǒ
Ǔ
V
IN(TYP) * VOUT   VOUT  
1
L +  
 
0.33   IOUT(MAX)   ƒ  
VIN(TYP)  
SW  
(9)  
The inductor also needs to have low DCR to achieve good efficiency, as well as enough room above peak  
inductor current before saturation.  
4. Determine the OCL trip voltage threshold, VOCL, and select the sensing resistor. The OCL trip voltage  
threshold is determined by TRIP pin setting. Using a larger value improves the S/N ratio. Determine the  
sensing resistor using next equation. IOCL(PEAK) should be approximately 1.5 × IOUT(MAX) to 1.7 × IOUT(MAX)  
.
VOCL  
IOCL(PEAK)  
RSENSE  
+
(10)  
26  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
 
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
5. Determine Rgv. Rgv should be determined from preferable droop compensation value and is given by the  
next equation, based on the typical number of Gmv=500µS.  
I
OUT(MAX)  
1
Rgv + 0.1   
  V  
 
OUT  
I
Gmv   Vdroop  
OCL(PEAK)  
(11)  
IOUT(MAX)  
VOUT[V]  
Rgv[kW] + 200   
 
IOCL(PEAK) Vdroop[mV]  
(12)  
6. Determine output capacitance Co to achieve stable operation using the next equation. The 0 dB frequency;  
ƒo should be kept under 1/3 of the switching frequency.  
Gmv   Rgv ƒsw  
5
1
ƒ0 +   IOCL(PEAK)  
 
 
t
p
3
VOUT  
Co  
(13)  
Gmv   Rgv  
ƒsw  
15  
p
1
Co u  
  IOCL(PEAK)  
 
 
VOUT  
(14)  
7. Calculate Cc. Purpose of this capacitance is to cancel zero caused by ESR of the output capacitor. When  
using ceramic capacitor(s), there is no need for Cc. If a combination of different capacitors are used,  
attaching an RC network circuit might be needed instead of single capacitance to cancel zeros and poles  
caused by the output capacitors. In the case of a single capacitance, Cc is given in Equation 15.  
ESR  
Rgv  
Cc + Co   
(15)  
8. Choose MOSFETs. Generally, the on resistance strongly affects efficiency at high load conditions as a  
conduction loss. In case of low output voltage application, the duty ratio is not so high so that the on  
resistance of high-side MOSFET does not greatly affect efficiency. However, switching speed (Tr and Tf)  
affects efficiency as a switching loss. As for low-side MOSFET, usually switching loss is not a main portion of  
the total loss.  
RESISTOR CURRENT SENSING  
For more accurate current sensing with an external resistor, the following technique is recommended. Adding RC  
filtering to cancel the parasitic inductance of the resistor; this filter value can be calculated using Equation 16.  
Lx  
Rs  
Cx   Rx +  
(16)  
This equation means the time-constant of Cx and Rx should match the one of Lx (ESL) and Rs.  
VIN  
Ex-resistor  
Lx(ESL)  
Rs  
DRVH  
L
Control  
logic  
&
DRVL  
Driver  
Co  
CSP  
CSN  
+
Cx  
Rx  
Figure 43. External Resistor Current Sensing  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TPS51221  
 
 
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
INDUCTOR DCR CURRENT SENSING  
To use an inductor DCR as current sensing resistor (Rs), the configuration needs to change, as shown in  
Figure 44. However, the equation must be satisfied the same as the one using resistor sensing.  
Inductor  
Lx  
Rs(DCR)  
RNTC  
Rx  
Rc1  
Rc2  
Co  
CSP  
+
Cx  
CSN  
Figure 44. Inductor DCR Current Sensing  
VIN  
Inductor  
DRVH  
Lx  
Rs(DCR)  
Control  
logic  
&
DRVL  
Driver  
Co  
Rx  
CSP  
+
Cx  
Rc  
CSN  
Figure 45. Inductor DCR Current Sensing With Voltage Divider  
The TPS51221 has a fixed VOCL point (60 mV or 30 mV). In order to adjust for DCR, a voltage divider can be  
configured as shown in Figure 45.  
For Rx, Rc and Cx can be determined as below, and over-current limitation value can be calculated as follows.  
Lx  
Rs  
ǒ
Ǔ
Cx   Rx ńń Rc +  
(17)  
Rx ) Rc  
1
 
I
OCL(PEAK) + VOCL  
 
Rs  
Rc  
(18)  
Figure 50 shows the compensation technique for the temperature drifts of the inductor DCR value. This scheme  
assumes the temperature rise at the thermistor (RNTC) is directly proportional to the temperature rise at the  
inductor.  
28  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
 
 
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
Inductor  
Lx  
Rs(DCR)  
RNTC  
Rx  
Rc1  
Rc2  
Co  
CSP  
+
Cx  
CSN  
Figure 46. Inductor DCR Current Sensing With Temperature Compensation  
LAYOUT CONSIDERATIONS  
Certain points must be considered before starting a PCB layout work using the TPS51221.  
Placement  
Place RC filters for CSP1 and CSP2 close to the IC pins.  
Place bypass capacitors for VREG5, VREG3 and VREF2 close to the IC pins.  
Place frequency-setting resistor close to the IC pin.  
Place the compensation circuits for COMP1 and COMP2 close to the IC pins.  
Place the voltage setting resistors close to the IC pins.  
Routing (sensitive analog portion)  
Use separate traces for: (see Figure 47)  
Output voltage sensing from current sensing (negative-side)  
Output voltage sensing from V5SW input (when Vout=5V)  
Current sensing (positive-side) from switch-node  
V5SW  
R1  
VFB  
R2  
H-FET  
Inductor  
Vout  
SW  
Cout  
L-FET  
R
CSP  
C
CSN  
Figure 47. Sensing Trace Routings  
Use Kelvin sensing traces from the solder pads of the current sensing device (inductor or resistor) to current  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TPS51221  
 
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
sensing comparator inputs (CSPx and CSNx). (see Figure 48)  
Current sensing  
Device  
RC network  
next to IC  
Figure 48. Current Sensing Traces  
Use small copper space for VFBx, in other words short and narrow traces to avoid noise coupling  
Connect VFB resistor trace to the positive node of the output capacitor.  
Use signal GND for VREF2 and VREG3 capacitors, RF and VFB resistors and the other sensitive analog  
components. Placing signal GND island (underneath the IC and fully covered peripheral components) on the  
internal layer for shielding purpose is recommended. (See Figure 49)  
Use thermal land for PowerPAD™. Five or more vias with 0.33-mm (13-mils) diameter connected from the  
thermal land to the internal GND plane should be used to help dissipation. Do NOT connect GND-pin to this  
thermal land on the surface layer, underneath the package.  
Routing (power portion)  
Use wider/ shorter traces of DRVL for low-side gate drivers to reduce stray inductance.  
Use the parallel traces of SW and DRVH for high-side MOSFET gate drive and keep them away from DRVL.  
Connect SW trace to source terminal of the high-side MOSFET.  
Use power GND for VREG5, VIN and Vout capacitors and low-side MOSFETs. Power GND and signal GND  
should be connected near the IC GND terminal. (See Figure 49)  
TPS51221  
0W resistor  
GND  
#28  
GND-pin  
To inner  
Power-GND  
layer  
To inner  
Signal-GND  
island  
Inner Signal-GND island  
Figure 49. GND Layout Example  
30  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
 
 
TPS51221  
www.ti.com ............................................................................................................................................... SLVS786ANOVEMBER 2007REVISED MARCH 2009  
APPLICATION CIRCUITS  
VREG5  
VBAT  
VBAT  
5V/100 mA  
Q11  
C22  
2x10 mF  
C12  
2x10 mF  
Q21  
C01  
10 mF  
C14  
C24  
0.1 mF  
L1  
L2  
0.1 mF  
4.0 mH  
4.0 mH  
PGND  
PGND  
VO2  
3.3V/6A  
VO1  
5.0V/6A  
Q12  
PGND  
GND  
PGND  
Q22  
C21  
2x220 mF  
C11  
2x120 mF  
32  
31  
30  
29  
28  
27  
26  
25  
PGND  
PGND  
PGND  
PGND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DRVH1  
V5SW  
DRVH2  
VIN  
VBAT  
VO1  
R01  
330 kW  
VREG3  
3.3V/10 mA  
RF  
VREG3  
EN2  
C03  
1 mF  
GND  
EN1  
EN2  
EN1  
TPS51221RTV  
(QFN32)  
PGOOD1  
PGOOD2  
PGOOD1  
SKIPSEL1  
PGOOD2  
GND  
SKIPSEL1  
SKIPSEL2  
SKIPSEL2  
R14  
6.8 kW  
R24  
6.8 kW  
PowerPAD  
CSP1  
CSN1  
CSP2  
CSN2  
R15  
56 kW  
R25  
56 kW  
C23  
C13  
0.1 mF  
0.1 mF  
EN  
9
10  
11  
12  
13  
14  
15  
16  
GND  
R02  
10 kW  
VREG5  
VREF2  
R21  
IMON1  
62 kW  
C02  
VO1  
VO2  
C04  
0.1 mF  
0.22 mF  
R13  
10 kW  
R11  
120 kW  
C25  
220 pF  
R23  
10 kW  
R22  
27 kW  
R12  
30 kW  
C15  
100 pF  
VREF2  
VREF2  
GND  
GND  
GND  
GND  
Figure 50. Current Mode, DCR Sensing, 5.0V/5A, 3.3V/5A, 300-kHz  
Table 5. Current Mode, DCR Sensing, 5.0V/5A, 3.3V/5A, 300-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Panasonic  
Murata  
PART NUMBER  
2 × 120 µF/ 6.3 V/15-mΩ  
2 × 10 µF/ 25 V  
EEFCX0J121R  
C12  
GRM32DR71E106K  
EEFCX0G221R  
GRM32DR71E106K  
CEP125-4R0MC-H  
CEP125-4R0MC-H  
IRF7821  
C21  
2 × 220 µF/ 4.0 V/15-mΩ  
2 × 10 µF/ 25 V  
Panasonic  
Murata  
C22  
L1  
4.0 µH, 10.3 A, 6.6-mΩ  
4.0 µH, 10.3A, 6.6-mΩ  
30-V, 13.6-A, 9.5-mΩ  
30-V, 13.8-A, 5.8-mΩ  
Sumida  
Sumida  
IR  
L2  
Q11, Q21  
Q12, Q22  
IR  
IRF8113  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TPS51221  
TPS51221  
SLVS786ANOVEMBER 2007REVISED MARCH 2009............................................................................................................................................... www.ti.com  
VREG5  
VBAT  
VBAT  
5V/100 mA  
Q11  
C22  
2x10 mF  
C12  
2x10 mF  
Q21  
C01  
10 mF  
C14  
C24  
0.1 mF  
L1  
L2  
3.3 mH  
0.1 mF  
3.3 mH  
R15  
6 mW  
R25  
PGND  
PGND  
6 mW  
VO2  
3.3V/6A  
VO1  
5V/6A  
Q12  
PGND  
GND  
PGND  
Q22  
C21  
2x220 mF  
C11  
2x220 mF  
32  
31  
30  
29  
28  
27  
26  
25  
PGND  
PGND  
PGND  
PGND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DRVH1  
V5SW  
DRVH2  
VIN  
VBAT  
VO1  
R01  
270 kW  
VREG3  
3.3V/10mA  
RF  
VREG3  
EN2  
C03  
1 mF  
GND  
EN1  
EN2  
EN1  
TPS51221RTV  
(QFN32)  
PGOOD1  
PGOOD2  
PGOOD1  
SKIPSEL1  
PGOOD2  
GND  
SKIPSEL1  
SKIPSEL2  
SKIPSEL2  
PowerPAD  
CSP1  
CSN1  
CSP2  
CSN2  
R14  
R24  
1.2 W  
C13  
0.1 mF  
C23  
1.2 W  
0.1 mF  
EN  
9
10  
11  
12  
13  
14  
15  
16  
GND  
R02  
10 kW  
VREF2  
R21  
IMON1  
62 kW  
C02  
GND  
VO2  
VO1  
C04  
0.1 mF  
0.22 mF  
R13  
10 kW  
R11  
C25  
220 pF  
R23  
10 kW  
R22  
27 kW  
R12  
30 kW  
C15  
220 pF  
120 kW  
VREF2  
VREF2  
GND  
GND  
GND  
GND  
Figure 51. Current Mode, Ex-Resistor Sensing, 5.0V/5A, 3.3V/5A, 370-kHz  
Table 6. Current Mode, DCR sensing, 5.0V/5A, 3.3V/5A, 370-kHz  
SYMBOL  
C11  
SPECIFICATION  
MANUFACTURER  
Panasonic  
Murata  
PART NUMBER  
2 x 220 µF/ 6.3 V/12-mΩ  
2 x 10 µF/ 25 V  
EEFUE0J221R  
C12  
GRM32DR71E106K  
EEFUE0G221R  
GRM32DR71E106K  
FDA1055-3R3M  
FDA1055-3R3M  
IRF7821  
C21  
2 x 220 µF/ 4.0 V/12-mΩ  
2 x 10 µF/ 25 V  
Panasonic  
Murata  
C22  
L1  
3.3 µH, 10.3 A, 5.9-mΩ  
3.3 µH, 10.3 A, 5.9-mΩ  
30-V, 13.6-A, 9.5-mΩ  
30-V, 13.8-A, 5.8-mΩ  
TOKO  
L2  
TOKO  
Q11, Q21  
Q12, Q22  
IR  
IR  
IRF8113  
32  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS51221  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
TPS51221RTVR  
TPS51221RTVT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
WQFN  
WQFN  
RTV  
32  
32  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
TPS  
51221  
ACTIVE  
RTV  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
TPS  
51221  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS51221RTVR  
TPS51221RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS51221RTVR  
TPS51221RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

TPS51222

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51222RTVR

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51222RTVT

Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller
TI

TPS51225

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225B

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225BRUKR

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225BRUKT

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225C

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225CRUKR

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225CRUKT

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225RUKR

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI

TPS51225RUKT

Dual Synchronous, Step-Down Controller with 5-V and 3.3-V LDOs
TI