TPS53624 [TI]

具有 8 位 VID 的两相 D-CAP 双路降压稳压器;
TPS53624
型号: TPS53624
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 8 位 VID 的两相 D-CAP 双路降压稳压器

稳压器
文件: 总47页 (文件大小:2002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
双相位, D-CAP+™Eco-mode™ 降压控制器,此控制器具有 8 位数模  
转换器 (DAC)  
查询样品: TPS53624  
1
特性  
说明  
2
可选双相位或单相位  
TPS53624 是一款具有集成栅极驱动器的双相位降压  
控制器。 PCNT 引脚在双相位或单相位模式中启用运  
行来根据负载要求优化效率。 先进的控制特性包括诸  
D-CAP+™ 架构和 OSR 等使用低输出电容提供快  
速瞬态响应的特性。 DAC 支持快速电压识别 (VID  
OTF) 来优化传送给处于运行状态的系统的输出电压以  
减少静态功耗。 TPS53624 的自动跳跃特性优化了单  
相位运行中的轻负载效率。 系统管理特性包括可调热  
监控输入和输出 (THRMTHAL),输出电流监控  
(IMON),以及互补电源正常信号(PGPGD)。 提  
供了输出电压转换率和电压配置的可调节控制。 此  
外,TPS53624 包括 2 个高电流场效应晶体管 (FET)  
栅极驱动器来以极高的速度和低开关损耗驱动高侧和低  
N 通道 FET。 所有逻辑输入和输出引脚具有灵活的  
LV 输入和输出阀值,此阀值能够在 1V 3.6V 的逻  
辑电压范围内启用接口。  
最小外部部件数量  
8 DAC 支持广泛应用  
轻负载与重负载下已优化的效率  
已获专利的输出过冲减少 (OSR)  
减少了输出电容  
精确的、可调电压配置  
可选 200300400 500kHz 频率  
正在申请专利的 自动平衡相位均衡  
可选 8 级电流限制  
3V 28V 转换电压范围  
具有集成型升压二极管的快速金属氧化物半导体场  
效应晶体管 (MOSFET) 驱动器  
集成过压保护 (OVP)  
小型 6 x 640 引脚,四方扁平无引线封装 (QFN)  
PowerPAD™ 封装  
TPS53624 采用节省空间、耐热增强型、符合 RoHS  
环保标准的 40 引脚 QFN 封装,额定运行稳定介于 -  
10°C 105°C 之间。  
应用范围  
高电流、低压特定用途集成电路 (ASIC) 或微处理  
器内核稳压器  
XXX  
订购信息(1)  
TA  
器件  
编号  
输出  
电源  
最少  
订购数量  
封装  
引脚  
TPS53624RHAT  
TPS53624RHAR  
250  
-10°C 105°C  
塑料四方扁平封装 (QFN)  
40  
卷带包装  
2500  
(1) 要获得最新的封装和订购信息,请参见本文档末尾的封装信息,或者浏览德州仪器 (TI) 的网站www.ti.com。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
D-CAP+, Eco-mode, PowerPAD are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLUSB66  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS  
(1)  
Over operating free-air temperature range (unless otherwise noted, all voltages are with respect to GND.)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
MAX  
36  
VBST1, VBST2  
VBST1to LL1. VBST2 to LL2  
6
Input voltage range(2)  
V
CSP1, CSN1, CSP2, CSN2, MODE, OSRSEL, PCNT, SLEW,  
THRM, TRIPSEL, TONSEL, V5FILT, V5IN, VID0, VID1, VID2,  
VID3, VID4, VID5, VID6, VID7, VFB, EN, THAL  
–0.3  
6
LL1, LL2  
–5  
30  
36  
6
DRVH1, DRVH2  
–5  
Output voltage range(2)  
DRVH1, DRVH2 to LL1 or LL2  
VREF, DROOP, DRVL1, DRVL2, IMON, PG, PGD  
PGND, GFB  
–0.3  
–0.3  
–0.3  
–40  
–55  
V
6
0.3  
125  
150  
Operating junction temperature, TJ  
Storage junction temperature, Tstg  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
THERMAL INFORMATION  
THERMAL METRIC(1)  
RHA (40 PIN)  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
32  
10  
θJB  
Junction-to-board thermal resistance  
°C/W  
θJCbot  
Junction-to-case (bottom) thermal resistance  
3.4  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range, all voltages wrt GND (unless otherwise noted)  
MIN  
3
TYP  
MAX  
28  
UNIT  
Conversion voltage (no pin assigned)  
V5IN, V5FILT  
Supply voltages  
V
4.5  
5.5  
34  
VBST1, VBST2  
–0.1  
–0.8  
–0.8  
Voltage range, conversion  
pins  
DRVH1, DRVH2  
34  
V
V
LL1, LL2  
28  
CSN1, CSN2, CSP1, CSP2, DROOP, DRVL1, DRVL2, IMON,  
MODE, OSRSEL PG, PGD, SLEW, THRM, TONSEL, TRIPSEL,  
VREF, VFB  
Voltage range, 5-V pins  
Voltage range, 3.3-V pins  
–0.1  
5.5  
EN  
–0.1  
–0.1  
3.6  
1.3  
0.1  
V
V
Voltage range, VCCP I/O  
pins  
PCNT, VID0, VID1, VID2, VID3, VID4, VID5, VID6, VID7, THAL  
Ground pins  
PGND, GFB  
–0.1  
2
Human body model (HBM)  
Charged device model (CDM)  
Electrostatic Discharge  
Protection (ESD)  
kV  
°C  
1.5  
–10  
Operating free air temperature, TA  
105  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
ELECTRICAL CHARACTERISTICS  
over recommended free-air temperature range, VV5FILT = VV5IN = 5.0 V, GFB = PGND = GND, VVFB = VOUT (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY: CURRENTS, UVLO AND POWER-ON RESET  
IV5  
V5IN + V5FILT supply current  
V5IN + V5FILT standby current  
VDAC < VVFB < VDAC + 100 mV, EN = HI  
EN = LO  
2.3  
4
1
mA  
IV5STBY  
μA  
VV5FILT = VV5IN, VVFB < 200 mV, Ramp up;  
VEN = HI; Switching begins  
VUVLOH  
VUVLOL  
VPOR  
V5FILT UVLO OK threshold  
V5FILT UVLO fault threshold  
V5FILT fault latch reset threshold  
4.25  
4
4.4  
4.2  
1.9  
4.5  
4.3  
2.3  
V
V
V
VV5FILT = VV5IN. Ramp down; VEN = HI, VVFB = 100 mV,  
Restart if 5 V falls below VPOR then rises > VUVLOH is  
toggled with 5 V > VUVLOH  
VV5FILT = VV5IN, Ramp Down, EN = HI, Can restart if 5-V  
goes up to VUVLOH and no other faults present  
1.4  
REFERENCES: DAC, VREF, VBOOT AND DRVL DISCHARGE  
VVIDSTP  
VDAC1  
VID step size  
Change VID0 HI to LO to HI  
0.750 V VVFB 1.250 V  
0.500 V VVFB 0.750 V  
0.300V VVFB 0.500 V  
1.250 V VVFB 1.6 V  
4.5 V VV5FILT 5.5 V, IREF = 0  
IREF = 0 μA to 250 μA  
6.25  
mV  
VFB no load active  
-1.35%  
–11  
1.35%  
11  
VDAC2  
VFB no load active/sleep  
VFB deeper sleep  
mV  
mV  
VDAC3  
–14  
14  
VDAC4  
VFB above microcontroller VID  
VREF output  
–1.35%  
1.665  
–9  
1.35%  
1.750  
VVREF  
1.700  
–3  
V
mV  
mV  
V
VVREFSRC  
VVREFSNK  
VVBOOT  
VREF output source  
VREF output sink  
IREF = –250 μA to 0 μA  
Initial DAC boot voltage  
10  
35  
Internal VFB initial boot voltage  
0.99  
1.00  
1.01  
VOLTAGE SENSE: VFB AND GNDSNS  
Not in fault, disable or UVLO;  
VVFB = 2 V, GFB = 0 V  
IVFB  
VFB input bias current  
9
40  
μA  
IVFBDQ  
VFB input bias current, discharge  
GNDSNS input bias current  
GNDSNS differential  
Fault, disable or UVLO, VVFB = 100 mV  
90  
125  
–8  
175  
μA  
μA  
mV  
V/V  
V
IGFB  
Not in fault, disable or UVLO; VVFB = 2 V, GSNS = 0 V  
–40  
VDELGND  
AGAINGND  
VVFBCOM  
±300  
1.000  
GNDSNS/GND gain  
0.995  
–0.3  
1.011  
2
VFB common mode input  
CURRENT MONITOR  
VIMONLK  
VIMONLO  
VIMINMID  
VIMONHI  
KIMON  
Zero-level current output  
ΣΔCS = 0 mV, RIMON = 12.7 kΩ  
ΣΔCS = 10 mV, RIMON = 12.7 kΩ  
ΣΔCS = 20 mV, RIMON = 12.7 kΩ  
ΣΔCS = 40 mV, RIMON = 12.7 kΩ  
0
202  
460  
958  
5
250  
500  
1000  
2
150  
302  
mV  
mV  
Low-level current output  
Mid-level current output  
High-level current output  
Gain factor  
538  
mV  
1058  
mV  
μA/mV  
μA  
IIMONSRC  
VIMONSNK  
Current monitor source  
Current monitor clamp  
ΣΔCS = 60 mV  
108  
130  
ΣΔCS = 40 mV, RIMON = OPEN  
1.02  
1.11  
V
Copyright © 2013, Texas Instruments Incorporated  
3
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VV5FILT = VV5IN = 5.0 V, GFB = PGND = GND, VVFB = VOUT (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SENSE: OVERCURRENT, ZERO CROSSING, VOLTAGE POSITIONING AND PHASE BALANCING  
VTRIPSEL = GND, RSLEW to GND  
VTRIPSEL = REF, RSLEW to GND  
VTRIPSEL = 3.3 V, RSLEW to GND  
8.2  
11.4  
14.5  
19.3  
24.0  
30.2  
38.1  
48.9  
12.5  
15.8  
19.2  
25.5  
32.1  
40.5  
51.9  
64.9  
13.5  
16.8  
20.3  
25.3  
30.5  
37  
VTRIPSEL = VV5FILT, RSLEW to GND  
VTRIPSEL = GND, RSLEW to VREF  
VTRIPSEL = REF, RSLEW to VREF  
VTRIPSEL = 3.3 V, RSLEW to VREF  
VTRIPSEL = VV5FILT, RSLEW to VREF  
VTRIPSEL = GND, RSLEW to GND  
VTRIPSEL = REF, RSLEW to GND  
VTRIPSEL = 3.3 V, RSLEW to GND  
VTRIPSEL = VV5FILT, RSLEW to GND  
VTRIPSEL = GND, RSLEW to VREF  
VTRIPSEL = REF, RSLEW to VREF  
VTRIPSEL = 3.3 V, RSLEW to VREF  
VTRIPSEL = VV5FILT, RSLEW to VREF  
(CSP1–CSN1) – (CSP2–CSN2) at OCP for each channel  
CSPx and CSNx  
OCP voltage set  
(valley current limit)  
VOCPP  
mV  
45.5  
57  
17.7  
21.5  
25  
31.5  
38.3  
46.7  
58.5  
71.8  
Negative OCP voltage  
(minimum magnitude)  
VOCPN  
mV  
VOCPCC  
ICS  
gM-DROOP  
IDROOP  
Channel-to-channel OCP matching  
CS pin input bias current  
±1.0  
0.2  
mV  
μA  
μs  
–1  
482  
50  
1
522  
150  
Droop amplifier transconductance  
Droop amplifier sink/source current  
VVSNS = 1 V  
500  
100  
μA  
Droop amplifier clamp voltage  
(negative)  
VDCLAMPN  
VDCLAMPP  
IBAL_TOL  
ACSINT  
(VVREF – VDROOP  
)
46  
mV  
V
Droop amplifier clamp voltage  
(positive)  
(VDROOP – VVREF  
VDAC = 0.750 V;  
)
1.2  
Internal current share tolerance  
Internal current sense gain  
–3%  
5.93  
3%  
VCSP1 – VCSN1 = VCSP2 – VCSN2 = VOCPP_MIN  
Gain from CSPx – CSNx to PWM comparator  
6.11  
V/V  
DRIVERS: HIGH-SIDE, LOW-SIDE, CROSS CONDUCTION PREVENTION AND BOOST RECTIFIER  
(VVBSTx – VLLx) = 5 V, HI state, (VVBST – VDRVH) = 0.1 V  
1.2  
0.8  
2.2  
2.2  
17  
2.5  
2.5  
RDRVH  
DRVH on-resistance  
A
(VVBSTx – VLLx) = 5 V, LO state, (VDRVH – VLL) = 0.1 V  
VDRVHx = 2.5 V, (VVBSTx – VLLx) = 5 V, source  
VDRVHx = 2.5 V, (VVBSTx – VLLx) = 5 V, sink  
DRVHx 10% to 90% CDRVHx = 3 nF  
DRVHx 90% to 10% CDRVHx = 3 nF  
HI state, (VV5IN – VDRVL) = 0.1 V  
IDRVH  
DRVH sink/source current(1)  
DRVH transition time  
DRVL on-resistance  
30  
30  
2
tDRVH  
ns  
13  
0.9  
0.4  
2.7  
8
RDRVL  
LO state, (VDRVL – VPGND) = 0.1 V  
VDRVLx = 2.5 V, source  
1
IDRVL  
DRVL sink/source current(1)  
DRVL transition time  
A
VDRVLx = 2.5 V, sink  
DRVLx 90% to 10%, CDRVLx = 3 nF  
DRVLx 10% to 90%, CDRVLx = 3 nF  
LLx falls to 1V to DRVLx rises to 1 V  
DRVLx falls to 1V to DRVHx rises to 1 V  
VV5IN – VVBST, IF = 5 mA, TA = 25°C  
VVBST = 34 V, VLL = 28 V  
10  
30  
30  
29  
40  
0.8  
1
tDRVL  
ns  
ns  
14  
14  
21  
19  
tNONOVLP  
Driver non-overlap time  
29  
VFBST  
IBSTLK  
BST rectifier forward voltage  
BST rectifier leakage current  
0.6  
0.7  
0.1  
V
μA  
(1) Specified by design. Not production tested.  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VV5FILT = VV5IN = 5.0 V, GFB = PGND = GND, VVFB = VOUT (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OVERSHOOT REDUCTION (OSR) THRESHOLD SETTING  
VOSRSEL = GND  
78  
111  
151  
106  
140  
186  
OFF  
20  
135  
174  
224  
VOSRSEL = REF  
VOSRSEL = 3.3 V  
VOSRSEL = V5FILT  
All settings  
VOSR  
OSR voltage set  
mV  
mV  
VOSRHYS  
OSR voltage Hysteresis(2)  
TIMERS: SLEW RATE, SLEW, ON-TIME AND I/O TIMING  
ISLEW 1  
ISLEW 2  
RSLEW to GND current  
RSLEW to VREF current  
RSLEW = 125 kfrom SLEW to GND  
RSLEW = 45 kfrom VREF to SLEW  
9.9  
9.5  
10  
10.2  
10.8  
μA  
μA  
10.2  
ISLEW = |10 μA|, No Faults, Time from EN  
to VSNS = VBOOT – 12%  
tSTARTUP  
VFB startup time  
0.60  
0.80  
0.90  
ms  
SLSTRT  
SR  
VFB slew soft-start  
VFB slew rate  
ISLEW = |10 μA|, EN goes HI (soft-start)  
ISLEW = |10 μA|  
1.3  
10  
1.6  
12.5  
0.7  
1.9 mV/μs  
15 mV/μs  
tPGDPO  
PGD power-on delay time  
Time from PG going low to PG going high  
0.4  
1
ms  
Time from VFB out of +300 mV VDAC boundary to PGOOD  
low  
tPGDDGLTO  
tPGDDGLTU  
PGD deglitch time  
PGD deglitch time  
40  
50  
74  
100  
μs  
Time from VFB out of –300 mV VDAC boundary to PGOOD  
low  
105  
150  
μs  
VTON = GND, VLLx = 12 V, VVFB = 1 V  
VTON = VREF, VLLx = 12 V, VVFB = 1 V  
VTON = 3.3 V, VLLx = 12 V, VVFB = 1 V  
VTON = VV5FILT, VLLx = 12 V, VVFB = 1  
Fixed value  
315  
215  
170  
145  
70  
400  
260  
200  
170  
102  
465  
300  
230  
190  
125  
tTON  
On-time control  
ns  
tMIN  
Controller minimum OFF time  
VID debounce time(2)  
PCNT debounce Time(2)  
VID change to VFB Change(2)  
EN low to PGD low  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tVIDDBNC  
tPSIDBNC  
tVCCVID  
tVRONPGD  
tPGDVCC  
tVRTDGLT  
100  
100  
600  
100  
100  
3
20  
74  
1
PGD low to VFB change(2)  
THAL deglitch time  
0.3  
PROTECTION: OVP, PGOOD, VR, VR_TT FAULTS OFF AND INTERNAL THERMAL SHUTDOWN  
VOVPH  
VPGDH  
Fixed OVP voltage  
PGD high threshold  
VFB > VOVPH for 1 μs, DRVL turns ON  
1.6  
1.8  
V
Measured at the VFB pin wrt / VID code, device latches  
OFF, begins soft-stop  
180  
258  
mV  
Measured at the VFB pin wrt / VID code, device latches off,  
begins soft-stop  
VPGDL  
PGD low threshold  
–367  
–273  
mV  
VTHRM  
ITHRM  
Thermal shutdown voltage  
THERM current  
Measured at THERM; THAL goes LO  
Measure ITHERM to GND  
0.69  
57.5  
4.75  
0.75  
61  
0.81  
67.5  
5
V
μA  
V
VNOFLT  
All faults OFF  
THRM > V5FILT + VTH; not latched  
4.9  
Internal controller thermal  
shutdown(2)  
THINT  
Latch off controller  
160  
°C  
(2) Specified by design. Not production tested.  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VV5FILT = VV5IN = 5.0 V, GFB = PGND = GND, VVFB = VOUT (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC PINS: I/O VOLTAGE AND CURRENT  
VVRTTL  
IVRTTLK  
VCLKPGL  
ICLKPGLK  
VVCCPH  
VVCCPL  
THAL pull-down voltage  
THAL leakage current  
PG, PG pull-down voltage  
PG, PGOOD leakage current  
I/O LV logic high  
Pul- down voltage with 20-mA sink current  
Hi-Z leakage current, Apply 5-V in off state  
Pull-down voltage with 3-mA sink current  
Hi-Z leakage current, Apply 5-V in off state  
0.15  
0.2  
0.1  
0.1  
0.40  
2
V
μA  
V
–2  
0.4  
2
–2  
μA  
V
0.83  
PCNT, EN, VID0, VID1, VID2, VID3, VID4, VID5, VID6,  
VID7  
I/O LV logic low  
0.3  
V
Leakage current, VVID = VPCNT = 1 V;  
VEN = 0 V  
IVCCPLK  
I/O LV leakage  
–1.00  
0.01  
10  
1.00  
μA  
Leakage current, VVID = VPCNT = 1 V;  
EN = 3.3 V  
IVIDLK  
IENH  
I/O LV leakage  
5
10  
–3  
15  
25  
1
μA  
μA  
μA  
I/O 3.3-V leakage  
Leakage current, VEN = 3.3 V  
VVID0 = VVID1= VVID2= VVID3= VVID4= VVID5= VVID6= VVID7 = 0  
V, VEN = 3.3 V  
IVIDL  
–1.5  
1.5  
ISELECT  
ICTRL  
IMODEL  
IMODEH  
VTRIPSEL = VOSRSEL = VTONSEL = 5 V  
VPCNT = 0 V; VEN = 3.3 V  
VMODE = 0 V  
–2  
–1  
–5  
10  
5
1
μA  
μA  
μA  
μA  
5
VMODE = 5 V  
40  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
DEVICE INFORMATION  
RHA PACKAGE  
40 PINS  
(TOP VIEW)  
40 39 38 37 36 35 34 33 32 31  
MODE  
GND  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DRVH2  
VBST2  
LL2  
CSP2  
CSN2  
CSN1  
CSP1  
GFB  
3
4
DRVL2  
V5IN  
5
TPS53624  
6
PGND  
DRVL1  
LL1  
7
VFB  
8
THRM  
THAL  
9
VBST1  
DRVH1  
10  
11 12 13 14 15 16 17 18 19 20  
Table 1. PIN FUNCTIONS  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
6
CSP1  
I
I
I
I
Positive current sense inputs. Connect to the most positive node of current sense resistor or inductor DCR  
sense R-C network.  
CSP2  
3
CSN1  
5
Negative current sense inputs. Connect to the most negative node of current sense resistor or inductor DCR  
sense RC network.  
CSN2  
4
Output of gM error amplifier. A resistor to VREF sets the droop gain. A capacitor to VREF helps shape the  
transient response.  
DROOP  
39  
O
DRVH1  
DRVH2  
DRVL1  
DRVL2  
21  
30  
24  
27  
O
O
O
O
High-side N-channel MOSFET gate drive outputs.  
Synchronous N-channel MOSFET gate drive outputs.  
Controller enable. 3.3-V I/O level; 100-ns de-bounce. Logic high 3.3-V enables the controller. Logic low stops  
the controller.  
EN  
35  
2
I
I
GND  
GFB  
Return for analog circuits.  
Voltage sense return tied directly to GND of the microprocessor. Tie to GND with a 100-resistor to close  
feedback when the microprocessor is not in the socket.  
7
Current monitor output. VIMON = ΣVISENSE × K × RIMON. Reference RIMON to GNDSNS. Voltage is clamped at  
1.1-V maximum.  
IMON  
11  
O
LL1  
23  
28  
1
I/O  
I/O  
High-side N-channel MOSFET gate drive return. Also, input for adaptive gate drive timing.  
LL2  
MODE  
OSRSEL  
Tie to GND to select CPU mode.  
32  
O
Overshoot reduction (OSR) setting. The OSR threshold can be selected or OSR can be disabled.  
Negative active power good output; Open drain. Transitions low of approximately 50 ms after VOUT reaches  
the VID level. Leave open if unused.  
PG  
34  
O
Copyright © 2013, Texas Instruments Incorporated  
7
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Table 1. PIN FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
PGND  
25  
O
I
Synchronous N-channel MOSFET gate drive return.  
Power good output; Open-drain. 6ms delay from voltage reaching the power good threshold. Leave open if  
unused  
PG  
33  
13  
37  
10  
9
PCNT  
SLEW  
THAL  
THRM  
Single or dual phase control. 1-V I/O level. A low is single phase mode.  
Precision current set-point for slew rate control. Tie the RSLEW resistor to GND for the low OCP range; tie  
RSLEW to VREF for the high OCP range.  
I
O
I/O  
Thermal flag open drain output - active low. Fall time < 100ns with 56Ω pull-up to 1V. 1ms de-glitch filter.  
Thermal sensor input. An internal, 60-μA current source flows into an NTC thermistor connected to GND.  
The voltage threshold is 0.75 V. Also is a faults off input, (THERM = V5FILT) for debug mode.  
On-time selection pin. The operating frequency can be set between 200 kHz and 500 kHz in 100 kHz steps.  
Frequency can be changed during operation.  
TONSEL  
TRIPSEL  
36  
31  
I
I
Overcurrent protection (OCP) setting. TRIPSEL is set with the RSLEW connection. The valley current limit at  
the CS inputs can be selected in a range from approximately 10 mV to approximately 50 mV.  
VBST1  
VBST2  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
22  
29  
20  
19  
18  
17  
16  
15  
14  
12  
I
I
High-side N-channel MOSFET bootstrap voltage inputs.  
VID bits (MSB to LSB). 1-V I/O level; 100ns de-bounce  
I
5-V power input for control circuitry. Has internal 3-Ω resistor to 5VIN; bypass to GND with a 1-µF ceramic  
capacitor.  
V5FILT  
38  
I
V5IN  
26  
40  
I
5-V power input for drivers; bypass to PGND with 2.2 μF ceramic capacitor.  
1.7-V, 250-μA voltage reference. Bypass to GND with a 0.22-μF ceramic capacitor.  
VREF  
O
Voltage sense line tied directly to VCORE of the microprocessor. Tie to VOUT with a 100-resistor to close  
feedback when the microprocessor is not in the socket.  
VFB  
8
I
Thermal Pad  
Connect directly to system GND plane with multiple vias.  
8
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
FUNCTIONAL BLOCK DIAGRAM  
DROOP  
39  
TONSEL  
36  
V5FILT  
38  
Differential Amplifier  
26 V5IN  
VFB  
8
7
VFB  
+
22 VBST1  
21 DRVH1  
E/A  
CLK  
CO  
CO1  
+
CMP PWM  
On-Time  
Generator  
GNDSNS  
+
De-MUX  
Smart  
Driver  
LL  
VREF 40  
VID0 20  
VID1 19  
VID2 18  
VID3 17  
VID4 16  
VID5 15  
VID6 14  
VID7 12  
SLEW 37  
23 LL1  
ADDR  
LL1  
LL2  
ILIM  
MUX  
24 DRVL1  
ISHARE  
25 PGND  
DAC  
DAC  
29 VBST2  
30 DRVH2  
28 LL2  
CO2  
Smart  
Driver  
27 DRVL2  
CSP1  
CSN1  
CSP2  
CSN2  
6
5
3
4
IS1  
IS2  
+
I AMP  
+
?
+
Current  
Sensing  
Circuitry  
ADDR  
+
I AMP  
IS2  
IS1  
Analog and Protection  
Circuitry  
Control Logic and Status  
Circuitry  
VFB  
TPS53624  
2
9
10 11 31 32  
1
13 35 34 33  
UDG-12126  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
APPLICATION DIAGRAMS  
VREF  
C1  
C2  
R2  
VBAT  
R1  
C8  
R3  
0.1 mF  
CSP2  
C3  
C4  
40 39 38 37 36 35 34 33 32 31  
RT2  
VBAT  
R5  
C5  
R6  
Q4  
1
MODE  
DRVH2 30  
L2  
CSN2  
C6  
VCORE  
2
3
4
5
6
7
8
GND  
VBST2 29  
LL2 28  
VCORE  
+
CSP2  
CSN2  
CSN1  
CSP1  
CSP2  
CSN2  
CSN1  
CSP1  
GNDSNS  
VFB  
C7  
C8  
Q3  
V5  
DRVL2 27  
V5IN 26  
PGND 25  
DRVL1 24  
LL1 23  
U1  
TPS53624RHA  
R7  
VSSSENSE  
VCCSENSE  
Q1  
L1  
C9  
9
THERM  
CSN1  
Thermal Pad  
VBST1 22  
DRVH1 21  
THAL  
R9  
10 THAL  
RT1  
Q2  
R8  
R10  
C18  
VBAT  
R11  
11 12 13 14 15 16 17 18 19 20  
R12  
CSP1  
VBAT  
C11  
C10  
UDG-12129  
Figure 1. Inductor DCR Current Sense Application Diagram  
10  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Application Circuit List of Materials  
Recommended part numbers for key external components for the circuits in Figure 1 is listed in Table 2. These  
components have passed applications tests.  
Table 2. Key External Component Recommendations  
FUNCTION  
High-side MOSFET  
MANUFACTURER  
Infineon  
COMPONENT NUMBER  
BSC080N03MSG  
Low-side MOSFET (x2)  
Infineon  
Panasonic  
Tokin  
BSC030N03MSG  
ETQP4LR36AFC  
Inductors  
MPCG1040LR36  
Toko  
FDUE10140D-R36M  
EEFLX0D331R4  
Panasonic  
Sanyo  
Bulk Output Capacitors  
2TPLF330M5  
Kemet  
T528Z337M2R5ATE005-6666  
ECJ2FB0J106K  
Panasonic  
Murata  
Ceramic Output Capacitors  
NTC Thermistors  
GRM21BR60J106KE19L  
ERTJ1VV154J  
Panasonic  
Murata  
NCP18XF151J03RB  
Copyright © 2013, Texas Instruments Incorporated  
11  
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
DETAILED DESCRIPTION  
FUNCTIONAL OVERVIEW  
The TPS53624 is a D-CAP+™ mode adaptive on-time converter. The output voltage is set using a DAC that  
outputs a reference in accordance with the 8-bit VID code defined in Table 5. VID-on-the-fly transitions are  
supported with the slew rate controlled by a single resistor on the SLEW pin. Two powerful integrated drivers  
support output currents in excess of 50 A. The converter enters single phase mode under PCNT control to  
optimize light-load efficiency. Four switching frequency selections are provided in 100-kHz increments from 200  
kHz to 500 kHz per phase to enable optimization of the power chain for the cost, size and efficiency  
requirements of the design. (See Table 3)  
Table 3. Frequency Selection Table  
TONSEL VOLTAGE  
FREQUENCY (kHz)  
(VTONSEL) (V)  
GND (0)  
200  
300  
400  
500  
VREF (1.7)  
3.3  
5
In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to  
maintain a nearly constant frequency during steady-state conditions. In conventional voltage-mode constant on-  
time converters, each cycle begins when the output voltage crosses to a fixed reference level. However, in the  
TPS53624, the cycle begins when the current feedback reaches an error voltage level which is the amplified  
difference between the DAC voltage and the feedback voltage.  
This approach has two advantages:  
1. The amplifier DC gain sets an accurate linear load-line; this is required for CPU core applications.  
2. The error voltage input to the PWM comparator is filtered to improve the noise performance.  
In a steady-state condition, the two phases of the TPS53624 switch 180° out-of-phase. The phase displacement  
is maintained both by the architecture (which does not allow both hig-side gate drives to be on in any condition)  
and the current ripple (which forces the pulses to be spaced equally). The controller forces current sharing  
adjusting the on-time of each phase. Current balancing requires no user intervention, compensation, or extra  
components.  
Multi-Phase, PWM Operation  
Referring to the Functional Block Diagram and , in dual-phase steady state, continuous conduction mode, the  
converter operates as follows:  
Starting with the condition that both high-side MOSFETs are off and both low-side MOSFETs are on, the  
summed current feedback (VCMP) is higher than the error amplifier output (VDROOP). VCMP falls until it hits VDROOP  
,
which contains a component of the output ripple voltage. The PWM comparator senses where the two  
waveforms cross and triggers the on-time generator.  
12  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Summed Current Feedback  
tON  
t
V
V
CMP  
DROOP  
Time - ms  
Figure 2. D-CAP+ Mode Basic Waveforms  
The summed current feedback is an amplified and filtered version of the CSPx and CSNx inputs. The TPS53624  
provides dual independent channels of current feedback to increase the system accuracy and reduce the  
dependence of circuit performance on layout compared to an externally summed architecture.  
PWM Frequency and Adaptive on Time Control  
The on-time (at the LL node) is determined by Equation 1.  
æ
ç
è
ö
÷
ø
æ
ç
è
ö
÷
ø
VOUT  
1
tON  
=
´
+ 30ns  
V
fSEL  
IN  
where  
f SEL is the frequency selected by the connection of the TONSEL pin  
(1)  
The on-time pulse is sent to the high-side MOSFET. The inductor current and summed current feedback rise to  
their maximum value, and the multiplexer and de-multiplexer switch to the next phase. Each ON pulse is latched  
to prevent double pulsing.  
The current sharing circuitry compares the average values of the individual phase currents, then adds or  
subtracts a small amount from each on-time in order to bring the phase currents into line. No user design is  
required.  
Accurate droop is provided by the finite gain of the droop amplifier. The calculation for output voltage droop,  
VDROOP is shown in Equation 2.  
RCS ´ ACS  
´
åI(L)  
VDROOP  
=
RDROOP ´ GM  
where  
RCS is the effective current sense resistance, regardless if a sense resistor or inductor DCR is used  
ACS is the gain of the current sense amplifier  
ΣI(L) is the DC sum of inductor currents  
RDROOP is the value of resistor from the DROOP pin to VREF  
GM(droop) is the GM of the droop amplifier  
(2)  
13  
Copyright © 2013, Texas Instruments Incorporated  
 
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
The capacitor in parallel with RDROOP matches the slew rate of the DROOP pin with the current feedback signals  
to prevent ring-back during transient load conditions.  
R
LL ´ DIOUT ´ gM ´L  
CDROOP  
=
- 30pF  
R
CS ´ ACS ´DMAX ´ V L  
( )  
where  
RLL is load-line slope defined by proicessor mnufacturer  
ΔIOUT is maximum dynamic load current for the processor  
DMAX = tON / tON+tOFF(min)  
V(L) is the voltage across the inductor (VBAT – VCORE).  
(3)  
The 30-pF term accounts for the slew rate limit of the amplifier without external capacitance.  
AutoBalance Current Sharing  
The basic mechanism for current sharing is to sense the average phase current, then adjust the pulse width of  
each phase to equalize the current in each phase. The block diagram is shown in Figure 3.  
TPS53624  
LL1 28  
MUX  
LL2 23  
VDAC  
R(tON  
)
CSP1  
CSN1  
CSP2  
CSN2  
4
5
+
+
K ´ I1 - I2  
(
+
I AMP  
)
)
5 ms  
Filter  
+
PWM  
MUX  
+
6
K ´ I2 - I1  
+
I AMP  
(
5 ms  
Filter  
C(tON  
)
7
UDG-12128  
Figure 3. Current Sharing Block Diagram  
Figure 3 also shows the TI D-CAP+™ constant on-time modulator. The PWM comparator (not shown) starts a  
pulse when the feedback voltage meets the reference. This pulse turns on the gate of the high-side MOSFET.  
After the MOSFET turns on, the LL voltage for that phase is driven up to the battery input. This charges C(tON  
)
through R(tON). The pulse is terminated when the voltage at C(tON) matches the tON reference, normally the DAC  
voltage (VDAC).  
The circuit operates in the following fashion, using Figure 3 as the block diagram and to show the circuit action at  
the level of an individual pulse (PWM1). First assume that the 5 µs averaged value of I1 = I2. In this case, the  
PWM modulator terminates at VDAC, and the normal pulse width is delivered to the system. If instead, I1 > I2,  
then an offset is subtracted from VDAC, and the pulse width for phase one is shortened, reducing the current in  
phase one to compensate. If I1 < I2, then a longer pulse is produced, again compensating on a pulse-by-pulse  
basis.  
14  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
PWM (Low)  
PWM (Nom)  
PWM (High)  
I1 < 12  
V
DAC  
I1 > 12  
PWM1 Output Pulse  
t - Time - ms  
Figure 4.  
Because the increase in pulse width is proportional to the difference between the actual phase current and the  
ideal current, the system converges smoothly to equilibrium. Because the filtering is so much lighter than  
conventional current sharing schemes, the settling time is very fast. Analysis shows the response to be single  
pole with a bandwidth of approximately 60 kHz.  
The speed advantage of the TPS53624 is beneficial because processors quickly move from full speed to idle and  
back to save power when processing light and moderate loads. A multi-phase converter that takes milliseconds  
to implement current sharing is never in equilibrium and thermal hot-spots can result. The TPS53624 allows rapid  
dynamic current and output voltage changes while maintaining current balance.  
Overshoot Reduction (OSR) Feature  
The problem of overshoot in low duty-cycle synchronous buck converters results from the output inductor having  
a small voltage (VCORE) with which to respond to a transient load release.  
In Figure 5, a single phase converter is shown for simplicity. In an ideal converter, with the common values of 12-  
V input and 1.2-V output, the inductor has 10.8 V (12 V – 1.2 V) to respond to a transient step, and 1.2 V to  
respond once the load releases.  
12 V  
+
10.8V  
+
1.2 V  
L
1.2 V  
C
UDG-07187  
Figure 5. Synchronous Converter  
Copyright © 2013, Texas Instruments Incorporated  
15  
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Figure 6 shows a two-phase converter. The energy in the inductor is transferred to the capacitance on the VCORE  
node above and the output voltage (green trace) overshoots the desired level (lower cursor, also green). In this  
case, the magnitude of the overshoot is approximately 40 mV. The LLx waveforms (yellow and blue traces)  
remain flat during the overshoot, indicating the DRVLx signals are on.  
The performance of the same dual phase circuit, but with OSR enabled is shown in Figure 7. In this case, the  
low side FETs shut off when overshoot is detected and the energy in the inductor is partially dissipated by the  
body diodes. The overshoot is reduced by 25 mV. The dips in the LLx waveforms show the DRVLx signals are  
OFF only long enough to reduce the overshoot.  
Figure 6. Circuit Performance Without Overshoot Figure 7. Transient Release Performance Improved  
Reduction  
with Overshoot Reduction  
Implementation  
OSR is implemented using a comparator between the DROOP and ISUM nodes. To implement OSR, simply  
terminate the OSRSEL pin to the desired voltage to set the threshold voltage for the comparator. The settings  
are:  
GND = Minimum voltage (Maximum reduction)  
VREF = Medium voltage  
+3.3V = Maximum voltage  
5V = OSR off  
Use the highest setting that provides the desired level of overshoot reduction to eliminate the possibility of false  
OSR operation.  
Light Load Power Saving Features  
The TPS53624 has several power saving features to provide excellent efficiency over a very large load range.  
This feature is implemented with PCNT pin.. This pin is a VCCP I/O level. A LO on this pin puts the converter  
into single phase mode, thus eliminating the quiescent power of phase two when high power is not needed.  
In addition, the TPS53624 has an automatic pulse skipping skip mode. Regardless of the state of the logic  
inputs, the converter senses negative inductor current flow and prevents it by shutting off the low-side  
MOSFET(s). This saves power by eliminating recirculating current.  
16  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
MOSFET Drivers  
The TPS53624 incorporates a pair of strong, high-performance gate drives with adaptive cross-conduction  
protection. The driver uses the state of the DRVLx and LLx pins to be sure the high-side or low-side MOSFET is  
off before turning the other on. Fast logic and high drive currents (up to 8 A typical!) quickly charge and  
discharge MOSFET gates to minimize dead-time to increase efficiency. The high-side gate driver also includes  
an internal P-N junction boost diode, decreasing the size and cost of the external circuitry. For maximum  
efficiency, this diode can be bypassed externally by connecting Schottky diodes from V5IN (anode) to VBSTx  
(cathode).  
Voltage Slewing  
The TPS53624 ramps the internal DAC up and down as the VID is changing. These timings are independent of  
switching frequency, as well as output resistive and capacitive loading. The slew rate is set by a resistor from the  
SLEW pin to AGND (RSLEW). RSLEW sets both the slew rate and the soft-start rate.  
K
´ V  
SLEW  
SLEW  
R
=
SLEW  
SR  
where  
KSLEW = 1.25 × 109  
VSLEW is equal to the slew reference VSLEWREFwhen RSLEW is tied to GND  
(4)  
Connecting RSLEW to VREF enables the high range of overcurrent protection and changes VSLEW in Equation 4 to  
0.45 V (VREF – VSLEWREF). The soft-start rate is 1/8 the slew rate.  
At start-up the VID code should be stable at the time EN goes high. For example, the VVID for IMVP6.5 is 1.1 V.  
The soft-start time to VBOOT is shown in Equation 5.  
1.1V ´8  
t
=
s
( )  
SS  
SR  
(5)  
Protection Features  
The TPS53624 features full protection of the converter power chain as well as the system electronics.  
Input Undervoltage Protection (UVLO)  
The TPS53624 continuously monitors the voltage on the V5FILT pin to ensure the value is high enough to bias  
the devices properly and provide sufficient gate drive potential to maintain high efficiency. The converter starts  
with approximately 4.4 V and has a nominal 200 mV of hysteresis. This function is not latched, therefore  
removing and restoring 5-V power to the device resets it. The power input (VIN) does not include a UVLO  
function, so the circuit runs with power inputs down to approximately 3 × VCORE  
.
Copyright © 2013, Texas Instruments Incorporated  
17  
 
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Power Good Signals  
The TPS53624 has two open-drain powergood pins. PGD and PG have the following nominal thresholds:  
High: VDAC + 200 mV  
Low : VDAC – 300 mV  
The differences are:  
PG transitions active low shortly ( approxiimately 50 µs) after VOUT reaches the VID voltage on power-up.  
PGD rises at the same time as PG reaches the power good threshold defined above. PGD is high when  
power is good and low when power is not good.  
Both power good signals go inactive when the EN pin is pulled low or an undervoltage condition on V5IN is  
detected. Both are also masked during DAC transitions to prevent false triggering during voltage slewing.  
Output Overvoltage Protection (OVP)  
In addition to the power good function described above, the TPS53624 has additional OVP and UVP thresholds  
and protection circuits.  
An OVP condition is detected when VOUT is > 200 mV greater than VDAC. In this case, the converter sets PGD  
signals inactive and then latches OFF. The converter remains in this state until the device is reset by cycling  
either V5IN or EN  
However, because of the dynamic nature of VR systems, the +200 mV OVP threshold is blanked much of the  
time. In order to provide protection to the processor 100% of the time, there is a second OVP level fixed at 1.55  
V which is always active. If the fixed OVP condition is detected, the PGD signals are forced inactive and the  
DRVLx signals are driven HI. The converter remains in this state until either V5IN or EN are cycled.  
Output Undervoltage Protection (UVP)  
Output undervoltage protection works in conjunction with the current protection described below. If VOUT drops  
below the low PGD threshold for 80 μs, then the drivers are turned OFF until either V5IN or EN are cycled.  
Current Protection  
Two types of current protection are provided in the TPS53624.  
Overcurrent protection (OCP)  
Negative overcurrent protection  
Overcurrent Protection (OCP)  
The TPS53624 uses a valley current limiting scheme, so the ripple current must be considered. The DC current  
value at OCP is the OCP limit value plus half of the ripple current. Current limiting occurs on a phase-by-phase  
and pulse-by-pulse basis. If the voltage between CSPx and CSNx is above the OCP value (selected by  
combination of TRIPSEL pin connection and RSLEW termination), the converter holds off the next ON pulse until it  
drops below the OCP limit. For inductor current sensing circuits, the voltage between CSPx and CSNx is the  
inductor DCR value multiplied by the resistor divider which is part of the NTC compensation network. As a result,  
a wide range of OCP values can be obtained by changing the resistor divider value. In general, use the highest  
TRIPSEL setting possible with the least attenuation in the resistor divider to provide as much signal to the device  
as possible. This provides the best performance for all parameters related to current feedback.  
In OCP mode, the voltage droops until the UVP limit is reached. Then, the converter sets the PGD pins inactive,  
and the drivers are turned OFF. The converter remains in this state until the device is reset by the EN or the  
V5IN pin.  
18  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Settings use both the TRIPSEL pin and the RSLEW termination. The eight possible OCP settings are shown in  
Table 4. For the levels in mV for a specific setting, see the Electrical Characteristics table.  
Table 4. TRIPSEL Settings  
OCP  
RSLEW Tied to GND  
RSLEW Tied to VREF  
TRIPSEL  
GND  
1
VREF  
2
3.3V  
3
5V  
4
GND  
5
VREF  
6
3.3V  
7
5V  
8
Setting Level  
Negative Overcurrent Protection  
The negative OCP circuit acts when the converter is sinking current. The converter continues to act in a valley  
mode, so to have a similar negative DC limit, the absolute value of the negative OCP set point is typically 50%  
higher than the positive OCP set point.  
Thermal Protection  
Two types of thermal protection are provided in the TPS53624  
Thermal flag open drain ouptut signal (THAL)  
Thermal shutdown  
Thermal Flag Open Drain Ouptut Signal THAL  
The THAL signal is an Intel-defined open-drain signal that is used to protect the power chain. To use THAL,  
place an NTC thermistor at the hottest area of the PC board and connect it to the THRM pin. THRM sources a  
precise 60-μA current, and THAL goes LO when the voltage on THERM reaches 0.7 V. Therefore, the NTC  
thermistor needs to be 11.7 kat the trip level. A series or parallel resistor can be used to trim the resistance to  
the desired value at the trip level.  
THAL signal does not change the operation of TPS53624  
Thermal Shutdown  
The TPS53624 also has an internal temperature sensor. When the temperature reaches a nominal 160°C, the  
device shuts down. The converter remains in this state until either V5IN or EN is cycled.  
Current Monitor  
The TPS53624 includes a power monitor function. The power monitor puts out an analog voltage proportional to  
the output power on the IMON pin.  
V
= ACS ´ GM  
´
VCS = KIMON  
´
VCS  
IMON  
IMON  
å
å
where  
KIMON is given in the Electrical Characteristics table  
Σ VCS is the sum of the voltages at the inputs to the current sense amplifiers  
(6)  
Copyright © 2013, Texas Instruments Incorporated  
19  
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Single-Phase Operation  
The TPS53624 is a two-phase controller. This controller can also be configured for single-phase operation. There  
are two ways the controller operates in single-phase mode.  
PCNT = 0 V. In this case, the controller starts up as dual-phase but goes into single-phase after start-up is  
completed. This mode is used for improving efficiency of a two-phase converter while operating under light  
load conditions.  
PCNT = 5 V. In this case, the controller operates in a complete single-phase mode. The drivers for Phase 2  
are totally disabled in this mode.  
In order to use the controller purely as a single-phase controller, connect PCNT to V5FILT. Also, the current  
sense input pins of the second phase (CSN2, CSP2) must be grounded. All the other pins of the second phase  
must be left open.  
VID Table  
The TPS53624 incorporates the 8-bit VID table shown in Table 5.  
Table 5. VID Table (continued)  
Table 5. VID Table  
VID  
VDAC  
Hex  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
2
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
VID  
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VDAC  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
Hex  
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OFF  
1
OFF  
2
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
3
4
5
6
7
8
9
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
20  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Table 5. VID Table (continued)  
Table 5. VID Table (continued)  
VID  
4
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
VID  
4
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
VDAC  
VDAC  
Hex  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
3
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
2
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Hex  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
2
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
0.49375  
0.48750  
0.48125  
0.47500  
0.46875  
0.46250  
0.45625  
0.45000  
Copyright © 2013, Texas Instruments Incorporated  
21  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Table 5. VID Table (continued)  
Table 5. VID Table (continued)  
VID  
4
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
VID  
VDAC  
VDAC  
Hex  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
2
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Hex  
7
6
5
4
3
2
1
0
0.21250(1)  
0.20625(1)  
0.20000(1)  
0.19375(1)  
0.18750(1)  
0.18125(1)  
0.17500(1)  
0.16875(1)  
0.16250(1)  
0.15625(1)  
0.15000(1)  
0.14375(1)  
0.13750(1)  
0.13125(1)  
0.12500(1)  
0.11875(1)  
0.11250(1)  
0.10625(1)  
0.10000(1)  
0.09375(1)  
0.08750(1)  
0.08125(1)  
0.07500(1)  
0.06875(1)  
0.06250(1)  
0.05625(1)  
0.05000(1)  
0.04375(1)  
0.44375  
0.43750  
0.43125  
0.42500  
0.41875  
0.41250  
0.40625  
0.40000  
0.39375  
0.38750  
0.38125  
0.37500  
0.36875  
0.36250  
0.35625  
0.35000  
0.34375  
0.33750  
0.33125  
0.32500  
0.31875  
0.31250  
0.30625  
0.30000  
E0  
1
1
1
0
0
0
0
0
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.29375(1)  
0.28750(1)  
0.28125(1)  
0.27500(1)  
0.26875(1)  
0.26250(1)  
0.25625(1)  
0.25000(1)  
0.24375(1)  
0.23750(1)  
0.23125(1)  
0.22500(1)  
0.21875(1)  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0.03750(1)  
0.03125(1)  
OFF  
FD  
FE  
FF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
OFF  
(1) Device operating characteristics and tolerances below 0.3 V  
are not specified.  
22  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
APPLICATION INFORMATION  
Design Procedure  
The TPS53624 has the simplest design procedure of any IMVP6.5 CORE controller on the market.  
Choosing Initial Parameters  
Step One  
Determine the processor specifications. For the purposes of this document, the Intel® Auburndale 45-V  
Processor from Table 2 of the RS – Intel® IMVP-6.5 Mobile Processor and Mobile Chipset Voltage Regulation  
Specification, Reference Number 24779, Revision 1.0 is used.  
The processor requirements provide the following key parameters.  
VHFM = 1.075 V  
RIMVP = -1.9 mΩ  
ICC(max) = 50 A  
IDYN(max) = 35 A  
ICC(tdc) = 37 A  
Slew rate = 5 mV/μs (minimum)  
The last requirement shows that the converter must support a 25% overcurrent for 10 μs without going out of  
tolerance. The TPS53624 is designed to support the momentary OCP requirement internally, so only the DC  
OCP limit needs to be considered when calculating OCP levels. This also means that the power-chain does not  
have to be over-designed to meet Intel requirements.  
Step Two  
Determine system parameters.  
The input voltage range and operating frequency are of primary interest.  
For example  
VIN(max) = 20 V  
VIN(min) = 9 V  
fSW = 300 kHz  
Step Three  
Determine current sensing method.  
The TPS53624 supports both resistor sensing and inductor DCR sensing. Inductor DCR sensing is chosen.  
For resistor sensing, substitute the resistor value (1 mΩ recommended for a 50-A application) for RCS in the  
subsequent equations and skip Step Five.  
Copyright © 2013, Texas Instruments Incorporated  
23  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Step Four  
Determine inductor value and choose inductor.  
Smaller inductor values have better transient performance but higher ripple and lower efficiency. Higher values  
have the opposite characteristics. It is common practice to limit the ripple current to between 30% and 50% of the  
maximum current per phase. In this case, use 40%:  
50A  
I
=
´ 0.4 = 10A  
P-P  
2phases  
(7)  
At fSW = 300 kHz, with a 20-V input and a 1.075-V output.  
V ´ dT  
L =  
I
P-P  
where  
V = V  
(
- VHFM  
)
IN(max)  
æ
ö
V
HFM  
ç
ç
è
÷
÷
dT =  
f ´ V  
(
)
IN(max)  
ø
(8)  
L=0.34 µH  
An inductance value of 0.36 μH is chosen. Ensure that the inductor does not saturate during peak loading  
conditions.  
I
æ
ö
IP-P  
CC(max)  
ISAT  
=
+
´1.2´1.25 = 45A  
ç
÷
ç
÷
NPHASE  
2
è
ø
(9)  
The factor of 1.2 is included to allow for current sensing and current limiting tolerances. The factor of 1.25 is due  
to Intel’s 25% momentary OCP requirement described above.  
The chosen inductor should have the following characteristics:  
As flat an inductance vs. current curve as possible. Inductor DCR sensing is based on the idea L/DCR is  
approximately a constant through the current range of interest.  
Either high saturation or soft saturation  
Low DCR for improved efficiency, but at least 0.7 mΩ for proper signal levels.  
DCR tolerance as low as possible for load-line accuracy.  
For this application, a 0.36-μH, 1.0-mΩ inductor is chosen.  
Step Five  
Design the thermal compensation network.  
In most designs, NTC thermistors are used to compensate thermal variations in the resistance of the inductor  
winding. This winding is generally copper, and therefore has a resistance coefficient of 3900 PPM/°C. NTC  
thermistors, however, have very non-linear characteristics and need two or three resistors to linearize them over  
the range of interest. The typical DCR circuit is shown in Figure 8.  
24  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
L
R
DCR  
I
R
R
R
SEQU  
NTC  
SERIES  
R
PAR  
C
SENSE  
CSP  
CSN  
UDG-07188  
Figure 8. Typical DCR Sensing Circuit  
In this circuit, good performance is obtained when:  
L
= C  
´R  
EQ  
SENSE  
R
DCR  
(10)  
In Equation 10, all of the parameters are defined in Figure 8 except REQ, which is the series/parallel combination  
of the other four discrete resistors. CSENSE should be a capacitor type which is stable over temperature. Use X7R  
or better dielectric (C0G preferred).  
Because calculating these values by hand is difficult, TI offers a spreadsheet using the Excel Solver function.  
Contact your local TI representative to get a copy of the spreadsheet.  
In the reference design, the following values are input to the spreadsheet:  
L = 0.36 µH  
RDCR = 1 mΩ  
Load Line (typically -1.9 mΩ for SV processors)  
Minimum overcurrent limit = 56 A  
Thermistor R25 and “B” value = 4700 kΩ  
The spreadsheet then calculates the TRIPSEL setting and the values of:  
RSEQU  
RSERIES  
RPAR  
CSENSE  
In this case, the TRIPSEL setting is TRIPSEL = 5 V with RSLEW to GND and the nearest standard component  
values are:  
RSERIES = 43.2 kΩ  
RPAR = 143 kΩ  
RSEQU = 24.3 kΩ  
CSENSE = 18 nF  
Copyright © 2013, Texas Instruments Incorporated  
25  
 
 
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Note the effective divider ratio for the inductor DCR. The effective current sense resistance (RCS(eff)) is shown in  
Equation 11.  
RP _N  
RCS(eff) = RDCR  
´
R
SEQU + RP _N  
where  
RP_N is the series/parallel combination of RNTCRSERIES and RPAR  
(11)  
(12)  
R
=
´(R  
+ R  
+ R  
+ R  
)
PAR  
NTC  
SERIES  
R
P _N  
R
PAR  
NTC  
SERIES  
RCS(eff) is 0.77 mΩ.  
Step Six  
Determine the output capacitor configuration.  
Intel has several recommended configurations in the specifications. The TPS53624 meets every requirement  
with margin using the minimum configuration given in the Intel specification (Option 3). Depending on the layout,  
it is possible to reduce the output capacitance further, or to use alternate capacitor technologies. A good rule of  
thumb is that a successful design has a combination of bulk and ceramic capacitance totaling at least 1600 μF.  
Step Seven  
Set the load line.  
The load line is set by the droop resistor using RIMVP and RCS(eff)  
´ A  
.
R
CS(eff)  
CS  
R
=
= 4.75kW  
DROOP  
G ´R  
M
IMVP  
(13)  
(14)  
Step Eight  
Calculate the droop capacitor value.  
LL ´ DIOUT ´ gM ´L  
CS ´ ACS ´DMAX ´ V L  
R
CDROOP  
=
- 30pF = 105pF  
R
( )  
Because better overall transient performance is obtained by allowing a small ring-back, a small value capacitor  
(between 33 pF and 68 pF) is used. This capacitor also helps in eliminating any noise that may be present at the  
DROOP pin.  
Step Nine  
Calculate RSLEW  
.
RSLEW sets the slew rate and the soft-start rate. The soft-start rate is 1/8 of the slew rate. Given the Intel  
requirements, the slew rate minimum requirement is 5 mV/µs.  
K
´ V  
SLEW  
SLEW  
R
=
SLEW  
SR  
here  
From the overcurrent limit setting in Step Five, RSLEW is terminated to GND  
KSLEW = 1.25 × 109  
VSLEW = 1.25 V  
(15)  
Taking into account the tolerance on KSLEW, RSLEW = 250 kΩ.  
26  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Step Ten  
Calculate RIMON  
.
RIMON is calculated to set the voltage on the IMON pin to approximately 1.0 V at maximum processor current.  
V
IMON  
R
=
W
( )  
IMON  
K
´I  
´R  
IMON CC(max) CS(eff)  
here  
VIMON = 1.0 V  
KIMON = 2 µA/mV  
ICC(max) = 50 A  
RCS(eff) = 0.77 mΩ  
RIMON = 13.1 kΩ  
CIMON = 3300pF and is added in parallel to RIMON to give a smooth response on IMON pin.  
(16)  
Step Eleven  
Calculate THAL pin components.  
The THERM pin produces a nominal 61 µA current. The trip voltage is 0.75 V. Therefore, the resistance at the  
trip point needs to be 0.75V / 61 µA = 12.3 kΩ. For a trip temperature of 85°C, the recommended 150 kΩ NTC  
thermistor is 10.3 kΩ. To move the trip point to the correct resistance, we add a series resistance of 2.0 kΩ.  
Depending on the thermistors selection and desired trip point, adding a parallel resistance to obtain the correct  
resistance at the trip point is also possible. In order to keep the sensing as accurate as possible in both cases,  
the contribution of the fixed resistance at the trip point should be as small as possible.  
V5IN decoupling 2.2 μF, 10 V  
V5FILT decoupling 1 μF, 10 V  
VREF decoupling 0.22 μF to 1 μF, 4 V  
Bootstrap capacitors 0.22 μF, 10 V Bootstrap diodes (optional) 30 V Schottky diode, BAT-54 or better  
Pull-up resistors on PGOOD, PG, THAL, and PCNT pins per Intel guidelines  
For power chain and other component selection, see Table 2.  
Step Twelve  
Select decoupling and peripheral components.  
For peripheral capacitors use the following minimum values of ceramic capacitance. A capacitor with an X5R or  
better temperature coefficient is recommended. Tighter tolerances and higher voltage ratings are always  
appropriate.  
V5IN decoupling 2.2 µF, 10V  
V5FILT decoupling 1 µF, 10V  
VREF decoupling 0.22 µF to 1 µF, 4 V  
Bootstrap capacitors 0.22 µF, 10 V  
Bootstrap diodes (optional) 30 V Schottky diode, BAT-54 or better  
Pull-up resistors on PGOOD, PG, THAL, and PCNT pins per Intel guidelines  
Copyright © 2013, Texas Instruments Incorporated  
27  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Layout Guidelines  
The TPS53624 has fully differential current and voltage feedback. As a result, no special layout considerations  
are required. However, all high-performance multi-phase power converters, like the TPS53624, require a certain  
level of care in layout.  
Schematic Review  
Because the voltage and current feedback signals are fully differential it is a good idea to double check the  
polarity.  
CSP1 / CSN1  
CSP2 / CSN2  
VCCSENSE to VFB / VSSSENSE to GSNS  
Specific Guidelines  
Separate Noisy Driver Interface Lines from Sensitive Analog Interface Lines  
The TPS53624 makes this as easy as possible, as the two sets of pins are on opposite sides of the device. In  
addition, the CPU interface signals are grouped on one side of the device, and the MCH and platform interface  
signals are grouped on the opposite side. This arrangement is shown in Figure 9.  
Sensitive  
Analog  
Interface  
Control/  
Platform  
Logic  
Interface  
40 39 38 37 36 35 34 33 32 31  
MODE  
GND  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DRVH2  
VBST2  
LL2  
3
CSP2  
CSN2  
CSN1  
CSP1  
GFB  
4
DRVL2  
V5IN  
5
TPS53624  
RHA PACKAGE  
Driver  
Interface  
6
PGND  
DRVL1  
LL1  
7
8
VFB  
9
THRM  
THAL  
VBST1  
DRVH1  
10  
11 12 13 14 15 16 17 18 19 20  
CPU  
Interface  
UDG-12127  
Figure 9. Device Layout by Pin Function  
Given the physical layout of most systems, the current feedback (CSPx, CSNx) may have to pass near the  
power chain. Clean current feedback is required for good load-line, current sharing, and current limiting  
performance of the TPS53624. This requires the designer take the following precautions.  
Make a Kelvin connection to the pads of the resistor or inductor used for current sensing. See Figure 10 for a  
layout example.  
Lay out the current feedback signals as a differential pair to the device.  
Lay out the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane.  
28  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Design the compensation capacitor for DCR sensing (CSENSE) as close to the CS pins as possible.  
Place RPAR near CSENSE  
Place any noise filtering capacitors directly under the TPS53624 and connect to the CS pins with the shortest  
trace length possible.  
.
Noisy  
Quiet  
Inductor  
Outline  
LLx  
VCORE  
CSNx  
CSPx  
R
SEQ  
R
SERIES  
Thermistor  
UDG-07189  
Figure 10. Make Kelvin Connections to the Inductor for DCR Sensing  
Ensure that all vias in the CSPx and CSNx traces are isolated from all other signals  
Lay out the dotted signal traces in internal planes  
If possible, change the name of the CSNx trace to prevent unintended connections to the VCORE plane  
Design CSPx and CSNx as a differential pair in a quiet layer  
Design the capacittor as near to the device pins as possible  
Copyright © 2013, Texas Instruments Incorporated  
29  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
Minimize High Current Loops  
Figure 11 shows the primary current loops in each phase, numbered in order of importance. The most important  
loop to minimize the area of is Loop 1, the path from the input capacitor through the high and low-side  
MOSFETs, and back to the capacitor through ground.  
V
C
BAT  
B
C
1
IN  
Q1  
4b  
DRVH  
4a  
L
V
CORE  
LL  
2
Q1  
C
D
C
3b  
OUT  
DRVH  
3a  
PGND  
UDG-07190  
Figure 11. Major Current Loops Requiring Minimization  
Loop 2 is from the inductor through the output capacitor, ground and Q2. The layout of the low-side gate drive  
(Loops 3a and 3b) is important. The guidelines for gate drive layout are:  
Make the low side gate drive as short as possible (1 inch or less preferred).  
Make the DRVL width to length ratio of 1:10, wider (1:5) if possible  
If changing layers is necessary, use at least two vias  
30  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
Power Chain Symmetry  
The TPS53624 does not require special care in the layout of the power chain components, because independent  
isolated current feedback is provided. Make every effort to lay out the phases in a symmetrical manner. The  
current feedback from each phase must be free of noise and have the same effective current sense resistance. A  
value of 1 mΩ of current feedback resistance is recommended.  
Place Analog Components as Close to the Device as Possible  
Place components close to the device in the following order.  
1. CS pin noise filtering components  
2. DROOP pin compensation component  
3. Decoupling capacitor  
4. SLEW resistor (RSLEW  
)
Grounding Recommendations  
The TPS53624 has separate analog and power grounds, and a thermal pad. The normal procedure for  
connecting these is:  
1. Connect the thermal pad to PGND.  
2. Tie the thermal pad to the system ground plane with at least 4 small vias or one large via.  
3. GND can be connected to any quiet space. A quiet space is defined as a spot where no power supply  
switching currents are likely to flow. This applies to both the VCORE regulator and other regulators. Use a  
single point connection to the point, and pour a GND island around the analog components.  
4. Make sure the low-side MOSFET source connection and the decoupling capacitors have plenty of vias.  
Decoupling Recommendations  
Decouple V5 to PGND with at least a 2.2-μF ceramic capacitor. This fits best on the opposite side of the  
device.  
Use double vias to connect to the device.  
Decouple V5FILT with 1-μF to AGND with leads as short as possible.  
Decouple VREF to AGND with 0.22-μF, with short leads as short as possible.  
Conductor Widths  
Follow Intel guidelines with respect to the voltage feedback and logic interface connection requirements.  
Maximize the widths of power, ground and drive signal connections.  
For conductors in the power path, be sure there is adequate trace width for the amount of current flowing  
through the traces.  
Make sure there are sufficient vias for connections between layers.  
Use a minimum of 1 via per ampere of current  
Copyright © 2013, Texas Instruments Incorporated  
31  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE  
REFERENCE VOLTAGE  
vs  
JUNCTION TEMPERATURE  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.4  
1.2  
1.0  
1.708  
1.706  
1.704  
1.702  
1.700  
1.698  
1.696  
1.694  
1.692  
.
–10  
0
10 20 30 40 50 60 70 80 90 100 110  
–10  
0
10 20 30 40 50 60 70 80 90 100 110  
T
– Junction Temperature – °C  
T
– Junction Temperature – °C  
J
J
Figure 12.  
Figure 13.  
DAC OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
DAC OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
1.2472  
748.85  
748.8  
V
= 1.25 V  
V
= 0.75 V  
VID  
VID  
1.24715  
1.2471  
1.24705  
1.2470  
1.24695  
1.2469  
1.24685  
1.2468  
1.24675  
1.2467  
748.75  
748.7  
748.65  
748.6  
748.55  
748.5  
748.45  
748.4  
–10  
0
10 20 30 40 50 60 70 80 90 100 110  
–10  
0
10 20 30 40 50 60 70 80 90 100 110  
T
– Junction Temperature – °C  
T
– Junction Temperature – °C  
J
J
Figure 14.  
Figure 15.  
32  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
TYPICAL CHARACTERISTICS (continued)  
HIGH FREQUENCY OUTPUT VOLTAGE  
LOW FREQUENCY OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
1150  
920  
900  
880  
860  
840  
820  
V
(V)  
V
IN  
(V)  
IN  
20  
9
20  
9
DCM Operation  
Spec Max  
Nominal  
Nominal  
1100  
1050  
1000  
950  
DCM Operation  
Spec Max  
V
V
T
= 1 V  
V
V
T
= 0 V  
PCNT  
PCNT  
= 1.075 V  
= 0.875 V  
VID  
VID  
Spec Min  
= 25°C  
= 25°C  
A
Spec Min  
10 12  
A
0
5
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
14 16  
18  
Output Current (A)  
Output Current (A)  
Figure 16.  
Figure 17.  
HIGH FREQUENCY MODE (HFM) EFFICIENCY  
LOW FREQUENCY MODE (LFM) EFFICIENCY  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
95  
95  
93  
91  
89  
87  
85  
83  
81  
93  
91  
89  
87  
85  
83  
81  
V
IN  
= 9 V  
V
= 9 V  
IN  
V
IN  
= 20 V  
V
= 20 V  
IN  
79  
77  
75  
79  
77  
75  
V
V
T
= 0.875 V  
= 0 V  
V
V
T
= 1.075 V  
= 1 V  
VID  
VID  
PCNT  
PCNT  
= 25°C  
= 25°C  
A
A
0
2
4
6
8
10  
12  
14  
16  
18  
0
5
10 15 20 25 30 35 40 45 50  
Output Current (A)  
Output Current (A)  
Figure 18.  
Figure 19.  
Copyright © 2013, Texas Instruments Incorporated  
33  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
CURRENT SHARE IMBALANCE  
CURRENT MONITOR VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
20  
1.2  
V
(V)  
V
(V)  
IN  
T
= 25°C  
IN  
A
18  
16  
V
= 20 V/9 V  
20  
10  
20/9  
IN  
1.0  
0.8  
Ideal V  
IMON  
14  
12  
10  
8
0.6  
0.4  
0.2  
0
V
= 9 V  
IN  
6
4
2
0
V
= 20 V  
IN  
Ideal V  
IMON  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
I
– Output Current – A  
I
– Output Current – A  
OUT  
OUT  
Figure 20.  
Figure 21.  
VOLTAGE REFERENCE  
vs  
OUTPUT CURRENT  
OPERATING FREQUENCY  
vs  
OUTPUT CURRENT  
1.704  
1.703  
1.702  
1.701  
350  
300  
LFM, V = 9 V  
IN  
LFM, V = 20 V  
IN  
9-V HFM  
20-V HFM  
250  
200  
150  
HFM, V = 9 V  
IN  
1.700  
1.699  
HFM, V = 20 V  
IN  
9-V LFM  
20-V LFM  
100  
50  
1.698  
1.697  
V
= V  
V
= V  
TONSEL REF  
TONSEL  
REF  
HFM: V  
LFM: V  
= 1.075, V  
= 1 V  
= 0 V  
HFM: V  
= 1.075, V  
PCNT  
= 1 V  
=0 V  
VID  
VID  
PCNT  
PCNT  
VID  
= 0.875, V  
LFM: V  
= 0.875, V  
VID PCNT  
1.696  
0
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
Output Current (A)  
Output Current (A)  
Figure 22.  
Figure 23.  
34  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
EFFICIENCY  
vs  
vs  
OUTPUT VOLTAGE  
INPUT VOLTAGE  
95  
92.5  
92.0  
I
= 20 A  
V
= 9 V  
IN  
OUT  
90  
85  
91.5  
91.0  
90.5  
V
= 20 V  
IN  
90.0  
89.5  
80  
75  
89.0  
88.5  
88.0  
I
= 20 A  
OUT  
V
= 1.25 V  
OUT  
70  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
6
8
10  
12  
14  
16  
18  
20  
22  
V
– Output Voltage – V  
V
– Input Voltage – V  
IN  
OUT  
Figure 24.  
Figure 25.  
Figure 26. Start-Up, VIN = 20 V  
Figure 27. Start-Up, VIN = 9 V  
Copyright © 2013, Texas Instruments Incorporated  
35  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
Figure 28. PG and PGOOD, VIN = 20 V  
Figure 29. PG and PGOOD, VIN = 9 V  
Figure 30. Output Ripple, VIN = 20 V  
Figure 31. Output Ripple, VIN = 9 V  
36  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
TYPICAL CHARACTERISTICS (continued)  
Figure 32. Load Insertion, VIN = 20 V, IDC = 15 A, IAC = 35 A,  
Figure 33. Load Insertion, VIN = 20 V, IDC = 15 A, IAC = 35 A  
Persistence Mode  
Figure 34. Load Insertion, VIN = 9 V, IDC = 15 A, IAC = 35 A,  
Persistence Mode  
Figure 35. Load Insertion, VIN = 9 V, IDC = 15 A, IAC = 35 A  
Copyright © 2013, Texas Instruments Incorporated  
37  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
Figure 36. Load Release, VIN = 20 V, IDC = 15 A, IAC = 35 A,  
Figure 37. Load Release, VIN = 20 V, IDC = 15 A, IAC = 35 A  
Persistence Mode  
Figure 38. Load Release, VIN = 9 V, IDC = 15 A, IAC = 35 A,  
Persistence Mode  
Figure 39. Load Release, VIN = 9 V, IDC = 15 A, IAC = 35 A,  
38  
Copyright © 2013, Texas Instruments Incorporated  
TPS53624  
www.ti.com.cn  
ZHCSAY4 MARCH 2013  
TYPICAL CHARACTERISTICS (continued)  
Figure 40. VID Change from 1.075 V to 0.875 V, IDC = 15 A  
Figure 41. VID Change from 1.075 V to 0.875 V, IDC = 3 A  
Figure 42. PCNT Toggle: VIN = 20 V  
Figure 43. PCNT Toggle: VIN = 9 V  
Copyright © 2013, Texas Instruments Incorporated  
39  
TPS53624  
ZHCSAY4 MARCH 2013  
www.ti.com.cn  
GAIN AND PHASE  
vs  
FREQUENCY  
OUTPUT IMPEDANCE AND PHASE  
vs  
FREQUENCY  
50  
40  
225  
180  
4.5  
4.0  
80  
60  
Phase  
30  
20  
135  
90  
3.5  
3.0  
2.5  
2.0  
1.5  
Z
40  
20  
0
OUT_Target  
Z
OUT_Phase  
10  
0
45  
0
–10  
–45  
–20  
–40  
–20  
–30  
–90  
Gain  
–135  
Z
OUT_Magnitude  
1.0  
0.5  
–60  
–80  
–40  
–180  
–50  
1000  
–225  
10 k  
100 k  
1 M  
1000  
10 k  
100 k  
1 M  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 44.  
Figure 45.  
In Figure 44 and Figure 45  
Output bulk capacitance = 4 × 330 µF, 4.5 mΩ, Low ESL  
Output MLCC capacitance = 7 × 22 µF + 21 × 10 µF  
VIN = 20 V  
VVID = 1.075 V  
40  
Copyright © 2013, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53624RHAR  
TPS53624RHAT  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
TPS  
53624  
ACTIVE  
RHA  
NIPDAU  
TPS  
53624  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2X 4.5  
4.15 0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
4.5  
SYMM  
41  
30  
0.27  
40X  
1
0.17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
40  
31  
SYMM  
0.05  
0.5  
0.3  
40X  
4219052/A 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.15)  
SYMM  
40X (0.6)  
40X (0.22)  
40  
31  
1
30  
(0.25) TYP  
36X (0.5)  
SYMM  
41  
(5.8)  
(0.685)  
TYP  
(1.14)  
TYP  
(
0.2) TYP  
VIA  
10  
21  
(R0.05) TYP  
20  
11  
(0.685)  
TYP  
(1.14)  
TYP  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL SIDES  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219052/A 06/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.17)  
(1.37) TYP  
40X (0.6)  
40X (0.22)  
31  
40  
1
30  
41  
(1.37)  
TYP  
(0.25) TYP  
SYMM  
(5.8)  
36X (0.5)  
(R0.05) TYP  
10  
21  
11  
20  
METAL  
TYP  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
72% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4219052/A 06/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS53624RHAR

具有 8 位 VID 的两相 D-CAP 双路降压稳压器 | RHA | 40 | -40 to 125
TI

TPS53624RHAT

具有 8 位 VID 的两相 D-CAP 双路降压稳压器 | RHA | 40 | -40 to 125
TI

TPS53625

适用于 VR12.0 微服务器的两相 D-CAP+™ 降压控制器
TI

TPS53625RSMR

适用于 VR12.0 微服务器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53625RSMT

适用于 VR12.0 微服务器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53626

适用于 VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器
TI

TPS53626RSMR

适用于 VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53626RSMT

适用于 VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53627

适用于 Intel VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器
TI

TPS53627RSMR

适用于 Intel VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53627RSMT

适用于 Intel VR13 CPU VCORE 和 DDR 存储器的两相 D-CAP+™ 降压控制器 | RSM | 32 | -40 to 105
TI

TPS53631

三相、D-CAP+ 降压 VR12.x 服务器 CPU Vcore
TI