TPS53667 [TI]

适用于 ASIC 且具有 NVM 和 PMBus 接口的六相 D-CAP+ 无驱动器降压控制器;
TPS53667
型号: TPS53667
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 ASIC 且具有 NVM 和 PMBus 接口的六相 D-CAP+ 无驱动器降压控制器

驱动 控制器 驱动器
文件: 总126页 (文件大小:3558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
TPS53667 6 D-CAP+ 降压控制器,具有 NVM  
PMBus™ 接口,适用于 ASIC 电源和高电流负载点  
1 特性  
3 说明  
1
通过引脚设置或 NVM 实现的 8 位可选启动电  
TPS53667 是一款高电流多相位降压控制器。该器件  
压:0.5V 2.5V(步长低至 5mV)  
提供内置非易失性存储器 (NVM) PMBus 接口。此  
款产品与 NexFET 功率级 (CSD9549x) 兼容。  
TPS53667 提供 8 位启动电压选择,输出电压范围为  
0.5V 2.5V,步长低至 5mV,非常适合具备精确输  
出电压设置的高电流应用。具有 D-CAP+ 架构 等高级  
特性,支持下冲衰减 (USR) 和过冲衰减 (OSR),可实  
现快速瞬态响应、最小的输出电容和高效率。  
1 相、2 相、3 相、4 相、5 相或 6 相 操作  
PMBus™用于电压、电流、功率、温度和故障条件  
遥测的系统接口  
兼容 1.8V 3.3V PMBus 偏置电压  
故障报告:输出电压、输出电流和温度  
可通过非易失性存储器 (NVM) 或电阻引脚设置来配  
TPS53667 还提供新型相位交错策略和动态相位减少  
功能,可有效提升轻负载条件下的效率。此  
可通过引脚设置或 NVM 编程设定 16个等 级 各相  
OCL  
外,TPS53667 支持 PMBus 通信接口,适用于电压、  
电流、功率、温度和故障条件遥测系统。部分配置可通  
过引脚设置或 PMBus 编程设定并存储在非易失性存储  
器中,这样可尽量减少外部组件的数量。  
快速瞬态响应, DCAP+™控制  
优化了轻负载与重负载条件下的效率  
支持预偏置启动  
相电流不均衡检测和报告  
TPS53667 采用节省空间、耐热增强型 40 引脚 QFN  
封装,额定运行温度介于 -40°C 125°C 之间。  
8 级独立的过冲衰减 (OSR) 和下冲衰减 (USR)  
无驱动器配置,有助于实现高效的高频开关  
CSD9549x NexFET™功率级完全兼容  
精确的可调电压配置  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
300kHz 1MHz 频率选择,采用闭环频率控制  
已获专利 AutoBalance™相位均衡  
使用 TI Fusion Digital Power Designer GUI  
可编程电流阈值的动态相位减少功能  
转换电压范围:4.5V 17V  
TPS53667  
QFN (40)  
6.00mm x 6.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
简化电路原理图  
TPS53667  
小型 6mm x 6mm40 引脚 QFN PowerPAD™封  
PWM1  
Power  
Stage  
CSP1  
2 应用范围  
通信设备专用集成电路 (ASIC) 电源  
高密度电源解决方案  
服务器电源  
PWM2  
PMBus  
Power  
Stage  
CSP2  
智能电源系统  
PWM6  
Power  
Stage  
CSP6  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC40  
 
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
4 修订历史记录  
Changes from Revision A (September 2016) to Revision B  
Page  
Updated V3R3 LDO section ................................................................................................................................................. 20  
已添加 temperature default value VR_HOT and VR_FAULT Indication section................................................................. 33  
Corrected factory default value of VOUT_OV_FAULT_RESPONSE command in 7 ...................................................... 40  
Corrected factory default value of VIN_OV_FAULT_LIMIT command in 7 ..................................................................... 40  
Corrected factory default value of MFR_ID command in 7.............................................................................................. 41  
Corrected factory default value of MFR_SPECIFIC_44 command in 7........................................................................... 42  
Changes from Original (July 2016) to Revision A  
Page  
已更改 将数据表的状态从产品预览改为生产数据 ................................................................................................................... 1  
已添加 接收文档更新通知 ........................................................................................................................................... 117  
已添加 社区资源 部分 ......................................................................................................................................................... 117  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
5 Pin Configuration and Functions  
RTA Package  
40-Pin QFN  
Top View  
40 39 38 37 36 35 34 33 32 31  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OCL-R  
IMON  
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
VSP  
O-USR  
SLEW-MODE  
ADDR-TRISE  
VR_FAULT  
PMB_DIO  
PMB_ALERT  
PMB_CLK  
ENABLE  
3
4
5
TPS53667  
6
7
Thermal Pad  
8
9
GND  
10  
VSN  
RESET  
11 12 13 14 15 16 17 18 19 20  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Voltage divider to VREF pin. A resistor (RADDR-TRISE) connected between this pin and GND sets the  
3-bits. Bit 2 and bit 1 set the rise slew rate. Bit 0 Selects the LSB of BOOT voltage. The voltage  
(VADDR-TRISE) sets 4 bits PMBus address. The device latches these settings when V3R3 powers up.  
ADDR-TRISE  
28  
I
Output of the gM error amplifier. Resistors and capacitors connected between this pin and the VREF  
pin set the compensation.  
COMP  
11  
O
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
ENABLE  
3
4
Positive current sense inputs. Connect to the IOUT pin of TI smart power stages (ex: CSD9549x). Tie  
CSP6, CSP5, CSP4, CSP3, or CSP2 to the V3R3 pin according to 3 to disable the corresponding  
phase.  
5
I
6
7
8
23  
I
I
VR enable. 1-V I/O level; 100-ns debounce.  
Voltage divider to VREF pin. A resistor (RF-IMAX) connected between this pin and GND sets the  
operating frequency of the controller. The voltage level (VF-IMAX) sets the maximum operating current  
of the converter. The IMAX value is an 8-bit A/D where VF-IMAX = VVREF × IMAX / 255. Both are latched  
at V3R3 power-up.  
F-IMAX  
32  
GND  
GND  
17  
20  
22  
G
G
Ground pin.  
Connect these pins to GND. Note this is not IC ground pin.  
(1) I = Input, O = Output, P = Power, I/O = Bi-directional, GND = ground  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
I ´ 5mW ´R  
O
IMON  
IMON  
2
O
O
V
=
IMON  
Analog current monitor output.  
35kW  
A resistor (RISUM) connected between this pin and VREF pin determines the droop.  
IO ´ 5mW ´ gM isum ´RISUM  
(
)
ISUM  
12  
V
=
+ VREF  
ISUM  
n
(where n is the number of phases)  
A resistor (ROCL-R) connected between this pin and GND and the voltage level (VOCL-R) select 1 of 16  
OCL levels (per phase current-limit). VOCL-R also sets one of four RAMP levels. The device latches  
these settings when V3R3 powers up.  
OCL-R  
O-USR  
1
I
I
Voltage divider to VREF pin. A resistor (RO-USR) connected between this pin and GND selects one of  
seven OSR thresholds or OFF. The voltage level (VO-USR) sets one of seven USR levels or OFF. The  
device latches these settings when V3R3 powers up.  
30  
PMB_ALERT  
PMB_CLK  
PMB_DIO  
PWM1  
25  
24  
26  
38  
37  
36  
35  
34  
33  
O
I
I2C PMBus interrupt line. Open drain. 3.3-V and 1.8-V logic level.  
I2C PMBus clock. 3.3-V and 1.8-V logic level.  
I2C PMBus digital I/O line. 3.3-V and 1.8-V logic level.  
I/O  
PWM2  
PWM3  
O
PWM signals for each phase  
PWM4  
PWM5  
PWM6  
Reset pin. If this pin is low for more than 1000 ns, the controller pulls the output voltage to the VBOOT  
level.  
RESET  
21  
I
A resistor (R SKIP-NVM) connected between this pin and GND sets either pinstrap or NVM configuration  
mode. This pin can also connect to the FCCM pin of TI smart power stages (ex: CSD9549x) for SKIP  
or FCCM operation.  
SKIP-NVM  
39  
O
Voltage divider to VREF pin. A resistor (RSLEW-MODE) connected between this pin and GND sets 8  
slew rates. The voltage level (VSLEW-MODE) sets 4-bit operation modes. Bit 7 for DAC mode (1 for  
VR12.0; 0 for VR12.5). Bit 6 for the 4-phase interleaving mode (1 for 1/3 and 2/4 two phase  
interleaving; 0 for 4 phase interleaving individually). Bit 4 for enabling dynamic phase add or drop (1  
for enable; 0 for disable). Bit 3 sets zero load-line (1 for zero load-line; 0 for non-zero load-line) The  
device latches these settings when V3R3 powers up.  
SLEW-MODE  
29  
I
Connect to the TAO/FAULT pin of TI smart power stages (ex: CSD9549x) to sense the highest  
temperature of the power stages and to sense the fault signal from the power stages.  
TSEN  
V3R3  
V5  
40  
14  
15  
I
O
P
3.3-V LDO output. Bypass this pin to GND with a ceramic capacitor with a value of 1-µF or larger.  
5-V power input. Bypass this pin to GND with a ceramic capacitor with a value of 1-µF or larger. This  
pin is used to power all internal analog circuits.  
Voltage divider to VREF pin. A resistor (RVBOOT) connected between this pin and GND sets 3 bits  
(B[3:1]). The voltage level (VVBOOT) sets 4 bits (B[7:4]). The total 7 bits set 7 of 8 bits of VID of boot  
voltage (B[7:1]). The device latches these settings when V3R3 powers up.  
VBOOT  
31  
I
Input voltage supply. This pin is also used for input voltage sensing for on-time control and input  
undervoltage lockout (UVLO).  
VIN  
16  
18  
P
Power good open-drain output for the controller. This pin is typically pulled up to V3R3 pin through a  
resistor with a value of 3-kΩ or larger.  
VR_RDY  
O
VR fault indicator (open-drain). The failures include shorts of the high-side FETs, over temperature,  
output overvoltage, and overcurrent conditions of the input. The fault signal should be used on the  
platform to remove the power source either by firing a shunting SCR to blow a fuse or by turning off  
the AC power supply. When the failure occurs, the VR_FAULT pin is LOW. This pin is typically pulled  
up to V3R3 pin through a resistor with a value of 3-kΩ or larger. Leave this pin floating if not used.  
VR_FAULT  
VR_HOT  
27  
19  
O
O
Thermal flag open drain output. Active low. This pin is typically pulled up to V3R3 pin through a  
resistor with a value of 3-kΩ or larger. Leave this pin floating if not used.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
1.7-V, 500-µA, LDO reference voltage. Bypass this pin to GND with a ceramic capacitor with a value  
of 0.33 µF. Connect the VREF pin to the REFIN pin of TI smart power stages (ex: CSD9549x) as the  
current-sense reference voltage.  
VREF  
13  
O
VSN  
10  
9
I
I
Negative input of the remote voltage sense amplifier. Connect this pin directly to the GND of the load.  
Positive input of the remote voltage sense amplifier. Connect this pin directly to the load.  
VSP  
Thermal Pad  
GND Thermal pad. Connect the thermal pad to the ground plane with multiple vias.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
–0.3  
–0.3  
MAX  
19  
UNIT  
VIN  
V5  
6
ADDR-TRISE, CSP1, CSP2, CSP3, CSP4, CSP5, CSP6, ENABLE, F-IMAX, OCL-  
R, O-USR, PMB_CLK, PMB_DIO, RESET, SLEW-MODE, VBOOT, VSP  
Input Voltage  
–0.3  
3.6  
V
TSEN  
–0.3  
–0.3  
–0.3  
6
0.3  
1.8  
GND, VSN  
VREF  
IMON, ISUM,PMB_ALERT, PWM1, PWM2, PWM3, PWM4, PWM5, PWM6, SKIP-  
NVM, V3R3, VR_RDY, VR_FAULT, VR_HOT  
Output Voltage  
–0.3  
3.6  
V
COMP  
–0.3  
–40  
6
Operating Junction Temperature, TJ  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal GND unless otherwise noted.  
6.2 Handling Ratings  
MIN  
–55  
-2.5  
MAX  
150  
2.5  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
kV  
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
-1.5  
1.5  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
UNIT  
VIN  
12  
17  
5.5  
TSEN  
-0.1  
4.5  
V5  
5
5.5  
ADDR-TRISE, F-IMAX, OCL-R, O-USR, SLEW-MODE,  
VBOOT  
0.1  
VVREF  
VI  
Input voltage  
V
CSP1, CSP2, CSP3, CSP4, CSP5, CSP6, VSP  
–0.1  
–0.1  
–0.1  
–0.1  
-0.1  
2.5  
3.5  
ENABLE, PMB_CLK, PMB_DIO  
GND, VSN  
VREF  
0.1  
1.72  
3.5  
V3R3  
3.3  
VO  
Output voltage  
V
IMON, ISUM, PMB_ALERT, PWM1, PWM2, PWM3, PWM4,  
PWM5, PWM6, SKIP-NVM, VR_RDY, VR_FAULT, VR_HOT  
–0.1  
3.5  
COMP  
–0.1  
–40  
5.5  
TA  
Operating free air temperature  
125  
°C  
6.4 Thermal Information  
TPS53667  
THERMAL METRIC(1)  
RTA (QFN)  
40 PINS  
30.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJC(top)  
RθJB  
14.2  
Junction-to-board thermal resistance  
6.9  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.8  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
6.5 Electrical Characteristics  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY: CURRENTS, UVLO, AND POWER-ON RESET  
IVIN  
VIN supply current, 6-phase active  
V5 supply current  
VVDAC < VVSP < VVDAC + 100 mV, ENABLE = HI  
PMBus Idle, ENABLE = HI  
ENABLE = LO  
115  
7
µA  
mA  
mA  
V
IV5  
6.1  
2
IV5SBY  
V5 standby current  
2.6  
3.4  
100  
4.5  
4.25  
0.3  
4.7  
7.45  
8.2  
10.7  
VV3R3  
V3R3 output voltage  
IV3R3 = 0 A  
3.2  
3.3  
VV3R3(dropout)  
VV5UVLOH  
VV5UVLOL  
VHYS(V5)  
V3R3 load regulation  
V5 UVLO OK threshold  
V5 UVLO fault threshold  
V5 UVLO hysteresis  
IV3R3 = 5 mA  
mV  
V
Ramp up  
4.1  
3.95  
0.15  
4.2  
4.25  
4.05  
0.23  
4.5  
Ramp down  
V
Hysteresis  
V
MFR_SPEC_16[1:0] = 00  
MFR_SPEC_16[1:0] = 01  
MFR_SPEC_16[1:0] = 10  
MFR_SPEC_16[1:0] = 11  
Hysteresis voltage  
6.9  
7.25  
7.9  
VVINUVLO  
VIN UVLO voltage  
V
V
7.6  
9.8  
10.3  
1.05  
VHYS(VIN)  
VIN UVLO hysteresis voltage  
REFERENCES: DAC AND VREF  
VR12.5: Change VID0 HI to LO to HI  
10  
5
mV  
mV  
mV  
%
VVIDSTP  
VID Step size  
VR12.0: Change VID0 HI to LO to HI  
VDAC1  
VDAC2  
VDAC3  
Closed Loop VSP tolerance  
Closed Loop VSP tolerance  
Closed Loop VSP tolerance  
VR12.0: 0.61 V VVSP 0.995 V, IOUT = 0 A , 0 °C TA85 °C  
VR12.0: 1 V VVSP 1.52 V, ICOUT = 0 A, 0 °C TA85 °C  
VR12.5: 1.50V VVSP 2.50 V, IOUT = 0 A, 0 °C TA85 °C  
–6  
–0.6  
–1  
6.5  
0.6  
1
%
VR12.0: 0.61 V VVSP 0.995 V, IOUT = 0 A, –40°C TA125  
°C  
VDAC4  
Closed Loop VSP tolerance  
–8  
8
mV  
VDAC5  
Closed Loop VSP tolerance  
Closed Loop VSP tolerance  
VREF output  
VR12.0: 1.0 V VVSP 1.52 V, IOUT = 0 A, –40 °C TA125 °C  
VR12.5: 1.50 V VVSP 2.50V, IOUT = 0 A, –40°C TA125 °C  
4.5 VV5 5.5 V, IVREF = 0 A  
-0.8  
-1.1  
0.8  
1.0  
%
%
VDAC6  
VVREF  
1.685  
–4  
1.70  
-1  
1.717  
V
VVREFSRC  
VVREFSNK  
VREF output source  
VREF output sink  
IVREF = 0 to 500 µA  
mV  
mV  
IVREF = –500 to 0 µA  
1
4
CURRENT SENSE: AMPLIFIER AND PHASE BALANCING  
GCSINT Internal current sense gain  
COMPENSATOR: VOLTAGE POSITIONING AND AMPLIFIER  
Gain from (CSPx – VREF ) to PWM comparator  
1.0  
V/V  
gM(isum)  
ISUM amplifier transconductance  
COMP amplifier transconductance  
COMP amplifier negative clamp voltage  
COMP amplifier positive clamp voltage  
VVSP = 1.7 V  
VVSP = 1.7 V  
500  
1000  
µS  
µS  
mV  
V
gM(comp)  
VCCLAMPN  
VCCLAMPP  
(VVREF – VCOMP  
)
)
VRAMP + 20  
2.2  
(VCOMP – VVREF  
2.1  
-30  
2.3  
VOLTAGE SENSE: VSP AND VSN  
Not in fault, disable or UVLO,  
VVSP = VVDAC = 2.3 V, VVSN = 0 V  
IVSP  
VSP input bias current  
300  
µA  
Not in fault, disable or UVLO,  
VVSP = VVDAC = 2.3 V, VVSN = 0 V  
IVSN  
VSN input bias current  
Transistor resistance  
-23  
10  
µA  
RSFTSTP  
Connect to VSP  
kΩ  
LOGIC ( RESET, VR_RDY, VR_FAULT, VR_HOT, AND ENABLE) INTERFACE PINS: I/O VOLTAGE AND CURRENT  
RRPGDL  
IVRTTLK  
VRSTL  
VRSTH  
TRSTTDLY  
VENL  
Open drain pull-down resistance  
Open drain leakage current  
RESET logic low  
VR_RDY, pulldown resistance at 0.31 V  
36  
50  
2
Ω
µA  
V
VR_HOT, VR_RDY, hi-Z leakage, apply 3.3 V in off state  
–2  
0.2  
RESET Pin  
RESET Pin  
0.8  
RESET logic high  
1.2  
V
RESET Delay Time  
ENABLE logic low  
1
µs  
V
0.3  
25  
VENH  
ENABLE logic high  
0.8  
V
IENH  
I/O 1.1- V leakage  
Leakage current , VENABLE = 1.1 V  
µA  
PMBUS INTERFACE PINS: I/O VOLTAGE AND CURRENT  
VPMBL  
VPMBH  
IPMBL  
PMBus pins logic low  
PMBus pins logic high  
Logic low input current  
Logic high input current  
0.8  
V
V
1.2  
-10  
-10  
VPMBus=0 V  
10  
10  
µA  
µA  
IPMBH  
VPMBus=1.8 V  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADDR-TRISE PIN: PMBUS ADDRESS, SOFT START RISE TIME SETTING  
R
ADDR-TRISE 20 kΩ or RADDR-TRISE = 24 kΩ or  
1
1/2  
1/4  
1/8  
0
MFR_SPEC_12<1:0> = 00b  
RADDR-TRISE = 30 kΩ or RADDR-TRISE = 39 kΩ or  
MFR_SPEC_12<1:0> = 01b  
Soft start rise slew rate in terms of VOUT  
slew rate  
SLRISE  
RADDR-TRISE = 56 kΩ or RADDR-TRISE = 75 kΩ or  
MFR_SPEC_12<1:0> = 10b  
RADDR-TRISE = 100 kΩ or RADDR-TRISE = 150 kΩ or  
MFR_SPEC_12<1:0> = 11b  
RADDR-TRISE 20 kΩ or RADDR-TRISE = 30 kΩ or RADDR-TRISE = 56  
kΩ or RADDR-TRISE = 100 kΩ, or MFR_SPEC_11 [0] = 0b  
BOOT  
BOOT voltage set (B0)  
RADDR-TRISE = 24 kΩ or RADDR-TRISE = 39 kΩ or RADDR-TRISE = 75  
kΩ or RADDR-TRISE = 150 kΩ, or MFR_SPEC_11 [0] = 1b  
1
V
ADDR-TRISE 0.053 V with ±20 mV tolerance  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
VADDR-TRISE = 0.159 V with ±20 mV tolerance  
VADDR-TRISE = 0.266 V with ±20 mV tolerance  
VADDR-TRISE = 0.372 V with ±20 mV tolerance  
VADDR-TRISE = 0.478 V with ±20 mV tolerance  
VADDR-TRISE = 0.584 V with ±20 mV tolerance  
VADDR-TRISE = 0.691 V with ±20 mV tolerance  
VADDR-TRISE = 0.797 V with ±20 mV tolerance  
VADDR-TRISE = 0.903 V with ±20 mV tolerance  
VADDR-TRISE = 1.009 V with ±20 mV tolerance  
VADDR-TRISE = 1.116 V with ±20 mV tolerance  
VADDR-TRISE = 1.222 V with ±20 mV tolerance  
VADDR-TRISE = 1.328 V with ±20 mV tolerance  
VADDR-TRISE = 1.434 V with ±20 mV tolerance  
VADDR-TRISE = 1.541 V with ±20 mV tolerance  
VADDR-TRISE = 1.615 V with ±10 mV tolerance  
PADDR  
PMBus address bits set (11P40P2P1P0)  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OCL-R PIN: OVERCURRENT THRESHOLDS AND RAMP SETTINGS  
ROCL-R = 20 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0000b  
21  
25  
28  
31  
34  
37  
40  
43  
46  
49  
52  
55  
58  
61  
64  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
63  
66  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
63  
66  
69  
ROCL-R = 24 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0001b  
ROCL-R = 30 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0010b  
ROCL-R = 39 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0011b  
ROCL-R = 56 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0100b  
ROCL-R = 75 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0101b  
ROCL-R = 100 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0110b  
ROCL-R 150 kΩ and VOCL-R 0.85 V or  
MFR_SPEC_00[3:0] = 0111b  
Phase OCL level (CSPx-VREF)  
(valley current-limit)  
IOCLx  
A
ROCL-R = 20 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1000b  
ROCL-R = 24 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1001b  
ROCL-R = 30 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1010b  
ROCL-R = 39 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1011b  
ROCL-R = 56 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1100b  
ROCL-R = 75 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1101b  
ROCL-R = 100 kΩ and VOCL-R 0.95 V or  
MFR_SPEC_00[3:0] = 1110b  
R
OCL-R 150 kΩ and VOCL-R 0.95 V or  
67  
30  
69  
40  
72  
50  
MFR_SPEC_00[3:0] = 1111b  
VRAMP  
Ramp setting  
VOCL-R = 0.2 V ±50mV or VOCL-R = 1.0 V ±50mV or  
MFR_SPEC_14[2:0] = 001b  
mVP_P  
VOCL-R = 0.4 V ±50mV or VOCL-R = 1.2 V ±50mV or  
MFR_SPEC_14[2:0] = 011b  
70  
135  
180  
80  
145  
190  
90  
155  
205  
VOCL-R = 0.6 V ±50mV or VOCL-R = 1.4 V ±50mV or  
MFR_SPEC_14[2:0] = 110b  
VOCL-R = 0.8 V ±50mV or VOCL-R = 1.6 V ±50mV or  
MFR_SPEC_14[2:0] = 111b  
F-IMAX PIN: FREQUENCY AND IMAX SETTINGS  
Switching frequency (See Switching  
Characteristics)  
fSW  
VF-IMAX(min) = 0.136V  
IMAX=(VF-IMAX /VVREF × 256)-0.5  
18  
78  
20  
80  
22  
82  
VF-IMAX(min) = 0.535 V  
IMAX=(VF-IMAX /VVREF × 256)-0.5  
IMAX  
IMAX values  
A
VF-IMAX(min) = 0.800 V  
IMAX=(VF-IMAX /VVREF × 256)-0.5  
118  
178  
120  
180  
122  
182  
VF-IMAX(min) = 1.198 V  
IMAX=(VF-IMAX /VVREF × 256)-0.5  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SLEW-MODE PIN: SLEW RATES and MODE SELECTIONS  
R
SLEW-MODE 20 kΩ  
0.28  
0.60  
0.91  
1.22  
1.53  
1.85  
2.16  
0.34  
0.68  
1.02  
1.36  
1.7  
or MFR_SPEC_13[2:0] = 000b and MFR_SPEC_07[2] = 0b  
RSLEW-MODE = 24 kΩ  
or MFR_SPEC_13[2:0] = 001b and MFR_SPEC_07[2] = 0b  
RSLEW-MODE = 30 kΩ  
or MFR_SPEC_13[2:0] = 010b and MFR_SPEC_07[2] = 0b  
RSLEW-MODE = 39 kΩ  
or MFR_SPEC_13[2:0] = 011b and MFR_SPEC_07[2] = 0b  
RSLEW-MODE = 56 kΩ  
or MFR_SPEC_13[2:0] = 100b and MFR_SPEC_07[2] = 0b  
RSLEW-MODE = 75 kΩ  
or MFR_SPEC_13[2:0] = 101b and MFR_SPEC_07[2] = 0b  
2.04  
2.38  
RSLEW-MODE = 100 kΩ  
or MFR_SPEC_13[2:0] = 110b and MFR_SPEC_07[2] = 0b  
R
SLEW-MODE 150 kΩ  
2.48  
1.53  
2.74  
1.7  
or MFR_SPEC_13[2:0] = 111b and MFR_SPEC_07[2] = 0b  
SLSET  
Slew rate setting  
mV/µs  
RSLEW-MODE 20 kΩ  
or MFR_SPEC_13[2:0] = 000b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE = 24 kΩ  
or MFR_SPEC_13[2:0] = 001b and MFR_SPEC_07[2] = 1b  
1.85  
2.16  
2.48  
2.79  
3.10  
3.41  
3.73  
2.04  
2.38  
2.74  
3.08  
3.43  
3.76  
4.13  
RSLEW-MODE = 30 kΩ  
or MFR_SPEC_13[2:0] = 010b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE = 39 kΩ  
or MFR_SPEC_13[2:0] = 011b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE = 56 kΩ  
or MFR_SPEC_13[2:0] = 100b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE = 75 kΩ  
or MFR_SPEC_13[2:0] = 101b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE = 100 kΩ  
or MFR_SPEC_13[2:0] = 110b and MFR_SPEC_07[2] = 1b  
RSLEW-MODE 150 kΩ  
or MFR_SPEC_13[2:0] = 111b and MFR_SPEC_07[2] = 1b  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
SLEW-MODE 0.053 V with ±20 mV tolerance,  
0000  
or MFR_SPEC_13[7:3] = 00x00  
VSLEW-MODE = 0.159 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 00x01b  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
VSLEW-MODE = 0.266 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 00x10b  
VSLEW-MODE = 0.372V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 00x11b  
VSLEW-MODE = 0.478 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 01x00b  
VSLEW-MODE = 0.584V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 01x01b  
VSLEW-MODE = 0.691 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 01x10b  
VSLEW-MODE = 0.797 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 01x11b  
MODE bits set(1)  
(M3M2M1M0)  
MODE  
VSLEW-MODE = 0.903 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 10x00b  
VSLEW-MODE = 1.009 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 10x01b  
VSLEW-MODE = 1.116 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 10x10b  
VSLEW-MODE = 1.222 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 10x11b  
VSLEW-MODE = 1.328 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 11x00b  
VSLEW-MODE = 1.434 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 11x01b  
VSLEW-MODE = 1.541 V with ±20 mV tolerance,  
MFR_SPEC_13[7:3] = 11x10b  
VSLEW-MODE = 1.615 V with ±10 mV tolerance,  
MFR_SPEC_13[7:3] = 11x11b  
O-USR PIN: OVERSHOOT AND UNDERSHOOT REDUCTION THRESHOLD SETTING  
R
O-USR 20 kΩ or MFR_SPEC_09 [2:0] = 000b  
20  
30  
30  
40  
40  
50  
RO-USR = 24 kΩ or MFR_SPEC_09 [2:0] = 001b  
RO-USR = 30 kΩ or MFR_SPEC_09 [2:0] = 010b  
RO-USR = 39 kΩ or MFR_SPEC_09 [2:0] = 011b  
RO-USR = 56 kΩ or MFR_SPEC_09 [2:0] = 100b  
RO-USR = 75 kΩ or MFR_SPEC_09 [2:0] = 101b  
RO-USR = 100 kΩ or MFR_SPEC_09 [2:0] = 110b  
50  
60  
70  
70  
80  
90  
VOSR  
OSR voltage setting  
mV  
90  
100  
120  
140  
OFF  
110  
130  
150  
110  
130  
RO-USR 150 kΩ or MFR_SPEC_09 [2:0] = 111b  
VO-USR = 0.2 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 000b  
10  
20  
20  
30  
30  
40  
VO-USR = 0.4 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 001b  
VO-USR = 0.6 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 010b  
50  
60  
70  
VO-USR = 0.8 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 011b  
70  
80  
90  
VUSR  
USR voltage setting  
mV  
VO-USR = 1.0 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 100b  
90  
100  
120  
140  
OFF  
110  
130  
150  
VO-USR = 1.2 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 101b  
110  
130  
VO-USR = 1.4 V with ±50 mV tolerance  
or MFR_SPEC_09 [6:4] = 110b  
1.55 V VO-USR 1.6 V  
or MFR_SPEC_09 [6:4] = 111b  
VOSRHYS  
VUSRHYS  
OSR voltage hysteresis(1)  
USR voltage hysteresis(1)  
All settings  
All settings  
10  
10  
mV  
mV  
(1) Specified by design. Not production tested.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBOOT PIN: BOOT VOLTAGE SETTING  
RVBOOT 20 kΩ, or MFR_SPEC_11 [3:1] = 000b  
RVBOOT = 24 kΩ, or MFR_SPEC_11 [3:1] = 001b  
RVBOOT = 30 kΩ, or MFR_SPEC_11 [3:1] = 010b  
RVBOOT = 39 kΩ, or MFR_SPEC_11 [3:1] = 011b  
RVBOOT = 56 kΩ, or MFR_SPEC_11 [3:1] = 100b  
RVBOOT = 75 kΩ, or MFR_SPEC_11 [3:1] = 101b  
RVBOOT = 100 kΩ, or MFR_SPEC_11 [3:1] = 110b  
RVBOOT 150 kΩ, or MFR_SPEC_11 [3:1] = 111b  
000  
001  
010  
011  
100  
101  
110  
111  
0000  
BOOT voltage setting (B3B2B1)  
VVBOOT 0.053 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0000b  
VVBOOT = 0.159 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0001b  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
VVBOOT= 0.266 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0010b  
VVBOOT = 0.372 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0011b  
VVBOOT = 0.478 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0100b  
VVBOOT = 0.584 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0101b  
(1)  
VBOOT  
VVBOOT = 0.691 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0110b  
VVBOOT = 0.797 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 0111b  
BOOT voltage setting (B7B6B5B4)  
VVBOOT = 0.903 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1000b  
VVBOOT = 1.009 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1001b  
VVBOOT = 1.116 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1010b  
VVBOOT = 1.222 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1011b  
VVBOOT = 1.328 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1100b  
VVBOOT = 1.434 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1101b  
VVBOOT = 1.541 V with ±20 mV tolerance, or MFR_SPEC_11  
[7:4] = 1110b  
VVBOOT = 1.615 V with ±10 mV tolerance, or MFR_SPEC_11  
[7:4] = 1111b  
PROTECTION: OVP, UVP, VR_RDY  
VOVPFP  
Pre-bias OVP voltage threshold(1)  
VOVPF5 Fixed OVP voltage threshold (VR12.5)  
ENABLE is low and VVSP > VOVPFP, PWM LO  
2.75  
2.2  
V
V
ENABLE is high and (VVSP–VVSN) > VOVPH5 for 1 μs, PWM →  
LO,  
VOUT(max) 1.8 V  
1.8 V < VOUT(max) 2.0 V  
2.0 V < VOUT(max) 2.2 V  
VOUT(max) > 2.2 V  
2.4  
2.6  
2.8  
VOVPF0  
VRDYH5  
Fixed OVP voltage threshold (VR12.0)  
ENABLE is high and (VVSP–VVSN) > VOVPH5 for 1 μs, PWM →  
LO,  
1.7  
300  
400  
500  
600  
1.75  
1.8  
400  
500  
600  
700  
VR_RDY High Threshold (VR 12.5)  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=00b  
350  
450  
550  
650  
mV  
(Tracking OVP Threshold)  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=01b (Default)  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=10b  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=11b  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VRDYH0  
VR_RDY High Threshold (VR 12.0)  
(Tracking OVP Threshold)  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=00b  
150  
175  
200  
mV  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=01b (Default)  
200  
250  
300  
175  
225  
235  
325  
250  
300  
350  
235  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=10b  
Measured at the VSP pin wrt/VID code. IC latches  
OFF.MFR_SPEC_21<4:3>=11b  
VRDYL  
VR_RDY low (UVP) threshold  
VR_RDY deglitch time  
Measured at the VSP pin w/r/t VID code, device latches OFF  
Time from VSP out of overvoltage threshold to VR_RDY low  
207  
1
mV  
µs  
tRDYDGLTO  
Time from VSP out of undervoltage threshold to VR_RDY low,  
SW = 500 kHz)  
tRDYDGLTU  
tHICCUP  
VR_RDY deglitch time  
32  
22  
µs  
Hiccup delay after UVP and OCP  
ms  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TSEN PIN AND THERMAL SHUTDOWN: THERMAL VOLTAGE LEVELS  
TJ = 90°C  
TJ = 95°C  
TJ = 100°C  
TJ = 105°C  
1.32  
1.36  
1.4  
V
1.44  
1.48  
1.52  
1.56  
1.6  
VTSEN  
Thermal voltage definition  
TJ = 110°C  
TJ = 115°C  
TJ = 120°C  
TJ = 125°C  
Leakage current  
ITSEN  
TSEN current  
–3  
3
µA  
°C  
Based on the temperature measured on TSEN pin, default  
value  
125  
15  
OTPTHLD  
OTPHYS  
Over temperature protection threshold  
Over temperature protection hysteresis  
°C  
PWM and SKIP-NVM OUTPUT: I/O VOLTAGE AND CURRENT°C  
VPWML  
PWMx output low level  
ILOAD = -1 mA  
0.15  
0.15  
0.3  
0.3  
V
V
VPWMH  
PWMx output high Level  
ILOAD = +1 mA  
2.5  
V SKIP-NVM_L  
V SKIP-NVM_H  
RP-S_UV  
SKIP-NVM output low Level  
SKIP-NVM output high Level  
PWMx//SKIP-NVM resistance(1)  
ILOAD = –1 mA  
V
ILOAD = +1 mA  
2.5  
10  
V
ENABLE = LOW, or UVLO  
MΩ  
DYNAMIC PHASE SHEDDING: THRESHOLDS  
MFR_SPEC_15 [3] = 0b  
MFR_SPEC_15 [3] = 1b  
N.A  
Dynamic phase add/drop low threshold  
current  
IDPSTHL  
A
A
10% × 4 ×  
IOCLx  
15% × 4 ×  
IOCLx  
MFR_SPEC_15 [2:0] = 000b  
MFR_SPEC_15 [2:0] = 001b  
MFR_SPEC_15 [2:0] = 010b  
MFR_SPEC_15 [2:0] = 011b  
MFR_SPEC_15 [2:0] = 1xxb  
20% × 4 ×  
IOCLx  
Dynamic phase add/drop high threshold  
voltage  
25% × 4 ×  
IOCLx  
IDPSTHH  
30% × 4 ×  
IOCLx  
35% × 4 ×  
IOCLx  
Dynamic phase add/drop 4-6 threshold  
voltage  
60% × 4 ×  
IOCLx  
IDPSTH46  
IDPSHYS  
A
A
Dynamic phase add/drop high hysteresis  
voltage  
Hysteresis  
Hysteresis  
5% × 4 × IOCLx  
Dynamic phase add/drop 6-4 hysteresis  
voltage  
10% × 4 ×  
IOCLx  
IDPSHYS46  
PROGRAMMABLE DROOP SETTING  
MFR_SPEC_08 [7:0] = 00h  
MFR_SPEC_08 [7:0] = 01h  
MFR_SPEC_08 [7:0] = 02h  
MFR_SPEC_08 [7:0] = 03h  
MFR_SPEC_08 [7:0] = 04h (Default Setting)  
MFR_SPEC_08 [7:0] = 10h  
MFR_SPEC_08 [7:0] = 20h  
MFR_SPEC_08 [7:0] = 30h  
MFR_SPEC_08 [7:0] = 40h  
MFR_SPEC_08 [7:0] = 50h  
MFR_SPEC_08 [7:0] = 60h  
MFR_SPEC_08 [7:0] = 70h  
MFR_SPEC_08 [7:0] = 80h  
MFR_SPEC_08 [7:0] = 90h  
MFR_SPEC_08 [7:0] = A0h  
0
25  
50  
75  
100  
80  
85  
DROOP  
Droop percentage settings  
90  
%
95  
105  
110  
115  
120  
125  
150  
CURRENT SHARING FAULT: THRESHOLDS  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MFR_SPEC_19<2:0>000b;  
3
MFR_SPEC_19<2:0>001b;  
MFR_SPEC_19<2:0>010b;  
MFR_SPEC_19<2:0>011b;  
MFR_SPEC_19<2:0>100b;  
MFR_SPEC_19<2:0>101b;  
MFR_SPEC_19<2:0>110b;  
MFR_SPEC_19<2:0>111b;  
5
7
9
IPHFLT  
Current Sharing Faa=ult Threshold  
A
11  
15  
20  
OFF  
SKIP-NVM PIN: PROGRAM MODE SETTING (NVM OR PINSTRAP)  
R
SKIP-NVM 20 kΩ  
SKIP-NVM 100 kΩ  
Pinstrap  
NVM  
Program  
Mode  
PGRM  
Program mode for the configurations  
R
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VVIN = 12 V, VV5 = 5 V, VVSN = GND, VVSP = VOUT (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IMON PIN: CURRENT MONITOR  
IIMON4LK  
IIMON4LO  
IIMON4MID  
IIMON4HI  
0% IMAX level current output  
20% IMAX level current output  
100% IMAX level current output  
125% IMAX level current output  
6 phase, IMAX=120A, Σ iL = 0 A, RIMON=49.9kΩ  
6 phase, IMAX=120A, Σ iL = 24 A, RIMON=49.9kΩ  
6 phase, IMAX=120A, Σ iL = 120 A, RIMON=49.9kΩ  
6 phase, IMAX=120A, Σ iL = 150 A, RIMON=49.9kΩ  
0
20  
4
28  
A
A
A
A
24  
120.8  
151  
115.8  
145  
125.8  
157  
VOUT MEASUREMENT: READ_VOUT  
MVOUT(rng)  
VOUT measurement range  
0.5  
-2  
2.1  
+2  
V
0.5 V VOUT < 0.7 V, VR12.0 mode  
0.7V VOUT 1.0 V, VR12.0 mode  
-1  
+1  
READ_VOUT  
accuracy  
VID  
1.0V < VOUT 1.52 V, VR12.0 mode  
-2  
+2  
0.5 V VOUT 2.1V, VR12.5 mode, (Ta=0°C to 85°C)  
0.5 V VOUT < 0.7 V, VR12.0 mode  
-1  
+1  
-12.5  
-7.5  
-10  
-12.5  
12.5  
7.5  
10  
0.7V VOUT 1.0 V, VR12.0 mode  
MFR_READ_VOU  
T accuracy  
mV  
1.0V < VOUT 1.52 V, VR12.0 mode  
0.5 V VOUT 2.1V, VR12.5 mode, (Ta=0°C to 85°C)  
12.5  
6.6 I/O Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
VBOOT> 0 V, no faults, time from  
V3R3 high to VOUT ramp, CVREF  
1 µF  
tSTARTUP1  
Startup time  
Startup time  
=
1.2  
ms  
VBOOT> 0 V, no faults, time from  
V3R3 high until the controller  
responds to PMBus commands,  
CVREF = 1 µF  
tSTARTUP2  
1.5  
ms  
tRDY_POD  
tOFF_MIN  
tEN_RDY  
tRDY_VSP  
VR_RDY power-on-delay time(1)  
Controller minimum OFF time(1)  
ENABLE low to VR_RDY low  
VR_RDY low to VSP change(1)  
DAC settled to VR_RDY going high  
Fixed value  
1
ms  
ns  
ns  
ns  
20  
50  
80  
100  
100  
(1) Specified by design. Not production tested.  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
6.7 Switching Characteristics  
TA = 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
F-IMAX PIN: FREQUENCY  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 20 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0000b  
270  
360  
450  
540  
630  
720  
810  
300  
400  
500  
600  
700  
800  
900  
330  
440  
550  
660  
770  
880  
990  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 24 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0001b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 30 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0010b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 39 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0011b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 56 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0100b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 75 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0101b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 100 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0110b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 150 kΩ and MFR_SPEC_12[7] =  
0b ; or MFR_SPEC_12[7:4] = 0111b  
900  
315  
1000  
350  
1100  
385  
fSW  
Switching frequency  
kHz  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 20 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1000b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 24 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1001b  
405  
495  
585  
675  
765  
855  
900  
450  
550  
650  
750  
850  
950  
1000  
495  
605  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 30 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1010b  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 39 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1011b  
715  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 56 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1100b  
825  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 75 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1101b  
935  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 100 kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1110b  
1045  
1100  
VVIN = 12 V, VVSP = 1.7 V  
RF-IMAX = 150kΩ and MFR_SPEC_12[7] =  
1b ; or MFR_SPEC_12[7:4] = 1111b  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
100  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
90  
80  
70  
60  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D001  
1. VIN Supply Current vs Junction Temperature  
2. V5 Supply Current vs Junction Temperature  
7.5  
7
4.35  
4.25  
4.15  
4.05  
3.95  
3.85  
RAMP UP  
RAMP DOWN  
6.5  
6
RAMP UP  
RAMP DOWN  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D001  
VUVLO = 7.25V  
4. V5 UVLO Voltage vs Junction Temperature  
3. VIN UVLO Voltage vs Junction Temperature  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.71  
1.705  
1.7  
1.695  
1.69  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D001  
ILOAD = 5 mA  
5. Reference Voltage vs Junction Temperature  
6. V3R3 Load Regulation vs Junction Temperature  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7 Detailed Description  
7.1 Overview  
The TPS53667 device is a DCAP+ mode adaptive on-time controller.  
The output voltage is set using a DAC that outputs a reference in accordance with the 8-bit VID code defined in  
1. In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to  
maintain a nearly constant frequency during steady-state conditions. In conventional voltage-mode constant on-  
time converters, each cycle begins when the output voltage crosses to a fixed reference level. However, in the  
TPS53667 device, the cycle begins when the current feedback reaches an error voltage level which corresponds  
to the amplified voltage difference between the DAC voltage and the feedback output voltage with droop. In the  
case of multi-phase operations, the current feedback from all the phases is summed, and is amplified using the  
ISUM pin to adjust the load-line. Also zero-load line operation can be easily configured with external resistor or  
internal NVM selection.  
7.2 Functional Block Diagram  
COMP  
O-USR  
ISUM  
VDAC  
VCOMP  
VFBDRP  
OSR  
and  
USR  
OSR  
USR  
LL  
Differential  
Amplifier  
VSP  
Detection  
VDIFF  
+
+
Loadline  
Control  
FREQ  
CK1  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
VSN  
VDAC  
VRAMPP  
Ramp  
Gen  
+
VFBDRP  
On-Time  
1
VRAMPN  
VCM  
ISUM  
PWM1  
PWM2  
Error  
Amplifier  
VISUM(tc)  
Droop  
Amplifier  
ISUM  
+
VCOMP  
VISUMA  
Current  
CLK_ON  
+
+
CK2  
CK3  
CK4  
CK5  
CK6  
On-Time  
2
Sum Amplifier  
IS1  
CSP1  
CSP2  
CSP3  
AISUM  
IS2  
IS3  
Mode  
Control  
and  
Phase  
Manager  
On-Time  
3
PWM3  
PWM4  
VCOMP  
CLK_FF  
IAVG  
On-Time  
4
IS4  
IS5  
CSP4  
CSP5  
VDAC  
Current-Mode  
Control  
and  
Current Sharing  
Circuitry  
On-Time  
5
PWM5  
IS6  
CSP6  
On-Time  
6
PWM6  
IS1  
IS2  
IS3  
IS4  
IS5  
IS6  
VDIFF  
IMON  
VIN  
SKIP-NVM  
PHASE  
ISHARE  
ADC  
TEMP  
ILIM  
O-USR  
FREQ  
LL  
OCP  
VDIFF  
ISUM  
V3R3  
VIN  
V5  
RESET  
PMB_CLK  
SVID/I2C Interface  
CPU Logic,  
Protection,  
and  
IS1  
IS2  
IS3  
IS4  
IS5  
IS6  
PMB_ALERT  
PMB_DIO  
DAC0  
VDAC  
Status Circuitry  
AFE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 V3R3 LDO  
V3R3 is an LDO output generated from V5. It is used as internal digital circuit supply and 1-uF to 4.7-uF ceramic  
decoupling capacitor to GND pin is recommended.  
When V5 exceeds VV5UVLOH (4.25 V typically), V3R3 begins to ramp up. The startup time for V3R3 is  
approximately 600 µs as shown in 7.  
4.25 V  
V
V5  
600 µs  
V
V3R3  
Time  
7. V3R3 Startup Waveform  
After V3R3 has reached its operational level, the TPS53667 begins to initialize the internal circuit and reads the  
pinstrap configurations. This pinstrap reading completes in approximately 1.2 ms, and can communicate to the  
PMBus 1.5 ms after V3R3 powers up.  
This device does not require a high ENABLE signal in order for the V3R3 LDO to start up.  
Use V3R3 as pull-up voltage for CSPx (to disable phases), ENABLE, VR_RDY, VR_HOT, and VR_FAULT.  
Because the V3R3 maximum current capability is approximately 5 mA, choose pull-up resistances carefully.  
Directly tie CSP6,CSP5, CSP4, CSP3 or CSP2 to the V3R3 pin according to to disable the corresponding phase.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Feature Description (接下页)  
7.3.2 PWM Operation  
As shown in the Functional Block Diagram, in 6-phase continuous conduction mode, the device operates as  
described in 8.  
VOUT  
ISUM  
VCOMP + VRAMP  
SW_CLK  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
Phase 5  
Phase 6  
Time  
8. D-CAP+ Mode Basic Waveforms  
Starting with the condition that the high-side FETs are off and the low-side FETs are on, the summed current  
feedback (VISUM) is higher than the summed error amplifier output (VCOMP) and the internal ramp signal (VRAMP).  
ISUM falls until it hits VCOMP+VRAMP, which contains a component of the output ripple voltage. The PWM  
comparator senses where the two waveforms cross and triggers the on-time generator. This generates the  
internal SW_CLK. Each SW_CLK corresponds to one switching ON pulse for one phase.  
In case of single-phase operation, every SW_CLK generates a switching pulse on the same phase. Also, VISUM  
corresponds to just a single-phase inductor current.  
In case of multi-phase operation, the SW_CLK gets distributed to each of the phases in a cycle. This approach of  
using the summed inductor current and cyclically distributing the ON pulses to each phase automatically gives  
the required interleaving of 360 / n, where n is the number of phases.  
7.3.3 Current Sense and IMON Calculation  
The TPS53667 device provides independent channels of current feedback for every phase to increase the  
system accuracy and reduce the dependence of circuit performance on layout compared to an externally  
summed architecture. The current sensing signals are from TI smart power stages (at 5mV/A) (ex: CSD9549x)  
and are already temperature-compensated. The pins CSP1, CSP2, CSP3, CSP4, CSP5, and CSP6 are used for  
the individual phases of the phase current sensing.  
The sensed currents are then summed together and generate a current output to IMON pin. A resistor is  
connected to IMON pin to generate the VIMON voltage.  
Ã1∏=Æ  
6#30∏  
2)-/.  
6
)-/.  
= F  
F 62%& G × Æ ×  
Æ
ꢀ5 ´À  
where  
VCSPx is the voltage of CSPx pin  
n is the number of active phases  
RIMON is the value of resistor between the IMON pin and GND in kΩ  
(1)  
21  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
Then the VIMON voltage translates to a digital IMON reading as shown in 公式 2.  
)
× 6  
)-/.  
-!8  
)
=
)-/.  
0ꢀꢁ5  
where  
0.85 is the voltage correlated to IMAX  
(2)  
When VIMON is 0.85 V, the IMON reading should be equal to IMAX  
.
The digital IMON then can be reported to the system by using PMBus command READ_IOUT.  
7.3.4 Setting the Load-Line (DROOP)  
V
DAC  
Slope of Loadline R  
LL  
V
V
= R x I  
DROOP LL OUT  
DROOP  
I
OUT  
9. Load Line  
A resistor between the ISUM pin and the VREF pin sets the load line in non-zero load line mode.  
1
6$2//0 = 2,, × )/54 = ß- ©≥µ≠ ; × 2  
× 2#3 × × )/54  
:
)35-  
where  
gM(isum) is the gain of the internal ISUM amplifier, (500 µS typical)  
RISUM is the value of resistor between the ISUM pin and the VREF pin to adjust the load line  
RCS is the effective current sense resistance of TI smart power stages, (5 mΩ for CSD9549x)  
IOUT is the load current  
(3)  
A desired zero load-line can be implemented by putting a 0 Ω between ISUM and VREF pins or by shorting the  
ISUM and VREF pins directly.  
7.3.5 Load Transitions  
When there is a sudden load increase, the output voltage immediately drops. The TPS53667 device reacts to  
this drop in a rising voltage on the COMP pin. This rise forces the PWM pulses to come in sooner and more  
frequently which causes the inductor current to rapidly increase. As the inductor current reaches the new load  
current, the device reaches a steady-state operating condition and the PWM switching resumes the steady-state  
frequency.  
When there is a sudden load release, the output voltage flies high. The TPS53667 device reacts to this rise in a  
falling voltage on the COMP pin. This drop forces the PWM pulses to be delayed until the inductor current  
reaches the new load current. At that point, the switching resumes and steady-state switching continues.  
Please note in 10 and 11, the ripples on VOUT, VRAMP, and VCOMP voltages are not shown for simplicity.  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Feature Description (接下页)  
LOAD  
LOAD  
VOUT  
VOUT  
VISUM  
VCOMP + VRAMP  
VISUM  
VCOMP + VRAMP  
SW_CLK  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
Phase 5  
Phase 6  
SW_CLK  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
Phase 5  
Phase 6  
10. Load Insertion  
7.3.6 Overshoot Reduction (OSR)  
11. Load Release  
The problem of overshoot in low duty-cycle synchronous buck converters is well known, and results from the  
output inductor having a small voltage (VOUT) with which to respond to a transient load release.  
For simplicity, 12 shows a single phase converter. In an ideal converter, with typical input voltage of 12 V and  
a 1.0-V output, the inductor has 11.0 V (12 V – 1.0 V) to respond to a transient load increase, but only 1.0 V to  
respond once the load releases.  
12 V  
+ 11.0V œ  
1.0 V  
L
œ 1.0 V +  
C
12. Representative Schematic of Synchronous Buck Converter Circuit  
With the Overshoot Reduction (OSR) feature enabled, when the summed voltage of VOUT and VDROOP exceeds  
the DAC voltage VDAC by the OSR value specified in the Electrical Characteristics table, the PWM pulses  
immediately become tri-state to turn off both the high-side and low-side FETs. When the low-side FETs are  
turned OFF, the energy in the inductor is partially dissipated by the body diodes. Please note the ON pulse width  
can be also truncated immediately regardless of the load transient timing, and this feature can further reduce the  
overshoot when compared to the conventional constant on-time controllers as shown in 13 .  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
Threshold  
Hysteresis  
V
OUT  
V
V
DAC  
DAC  
OSRThreshold  
OSR  
V
V
OUT  
FBDRP  
+
I
LOAD  
+
+
OSR  
Comparator  
+
OSR  
V
OSR  
V
DROOP  
OSR Threshold  
OSR  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
Phase 5  
Phase 6  
Time  
13. Performance for a Load Transient Release with OSR Enabled  
7.3.7 Undershoot Reduction (USR)  
When the transient load increase becomes quite large, it becomes difficult to meet the energy demanded by the  
load especially at lower input voltages. Then it is necessary to quickly increase the energy in the inductors during  
the transient load increase. This is achieved in TPS53667 by enabling pulse overlapping. In order to maintain the  
interleaving of the multi-phase configuration and yet be able to have pulse-overlapping during load-insertion, the  
Undershoot Reduction (USR) mode is entered only when necessary. This mode is entered when the difference  
between DAC voltage and the summed voltage of VOUT and VDROOP exceeds the USR voltage level specified in  
the Electrical Characteristics table.  
The waveforms in 14 indicate the performance with USR. It can be seen that it is possible to eliminate  
undershoot by enabling USR. This allows reduced output capacitance to be used and still meets the  
specification.  
When the transient condition is over, the interleaving of the phases is resumed.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Feature Description (接下页)  
Threshold  
V
DAC  
Hysteresis  
V
V
OUT  
DAC  
USR  
+
USR Threshold  
V
OUT  
V
FBDRP  
+
+
ILOAD  
USR  
Comparator  
+
+
V
DROOP  
V
USR  
USR  
USR Threshold  
USR  
Phase 1  
Phase 2  
Phase 3  
Phase 4  
Phase 5  
Phase 6  
Time  
14. Performance for a Load Transient Step-up With USR Enabled  
7.3.8 AutoBalance™ Current Sharing  
The basic mechanism for current sharing is to sense the average phase current, then adjust the pulse width of  
each phase to equalize the current in each phase as shown in 15. The PWM comparator (not shown) starts a  
pulse when the feedback voltage meets the reference. The VIN voltage charges Ct(on) through Rt(on). The pulse  
terminates when the voltage at Ct(on) matches the on-time reference, which normally equals the DAC voltage  
(VDAC).  
The circuit operates in the following fashion. First assume that the 5-µs averaged value from each phase current  
are equal. In this case, the PWM modulator terminates at VDAC, and the normal pulse width is delivered to the  
system. If instead, I1 > IAVG, then an offset is subtracted from VDAC, and the pulse width for Phase 1 is shortened  
to reduce the phase current in Phase 1 for balancing. If I1 < IAVG, then a longer pulse is generated to increase  
the phase current in Phase 1 to achieve current balancing.  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
VDAC  
+
I1  
+
+
+
+
K X (I1 œ IAVG  
)
)
)
)
5 µs  
CSP1  
Filter  
œ
œ
+
RT(on)  
RT(on)  
RT(on)  
RT(on)  
PWM1  
PWM2  
PWM3  
PWM4  
œ
œ
œ
œ
VIN  
IAVG  
VDAC  
CT(on)  
+
I2  
K X (I2 œ IAVG  
5 µs  
CSP2  
Filter  
+
VIN  
IAVG  
VDAC  
+
CT(on)  
I3  
K X (I3 œ IAVG  
5 µs  
CSP3  
Filter  
œ
œ
+
IAVG  
VIN  
VDAC  
+
CT(on)  
I4  
K X (I4 œ IAVG  
5 µs  
CSP4  
Filter  
+
IAVG  
VIN  
VDAC  
CT(on)  
+
I5  
+
+
K X (I5 œ IAVG  
)
5 µs  
CSP5  
Filter  
œ
œ
+
RT(on)  
œ
PWM5  
PWM6  
IAVG  
VIN  
VDAC  
CT(on)  
+
I6  
K X (I6 œ IAVG)  
5 µs  
CSP6  
Filter  
+
RT(on)  
œ
IAVG  
VIN  
Averaging Circuit  
CT(on)  
15. AutoBalance Current Sharing Circuit Detail  
7.3.9 Phase Overlap  
In TPS53667, phase overlap is allowed during both steady state and transient operation. The duty cycle is  
not limited to 1/n (where n is the phase number) unlike TPS53647  
7.3.10 VID  
The DAC voltage VDAC can be changed according to 1.  
The slew rate for a change is set by the resistor at SLEW-MODE pin, as defined in the Electrical Characteristics  
table.  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
1. VID Table  
1. VID Table (接下页)  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
(V)  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
(V)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
0
0
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
0.48  
0.485  
0.49  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
0.25  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.255  
0.26  
0.495  
0.50  
0.265  
0.27  
0.505  
0.51  
0.275  
0.28  
0.515  
0.52  
0.285  
0.29  
0.525  
0.53  
0.295  
0.30  
0.535  
0.54  
0.305  
0.31  
0.545  
0.55  
0.315  
0.32  
0.555  
0.56  
0.325  
0.33  
0.565  
0.57  
0.335  
0.34  
0.575  
0.58  
0.345  
0.35  
0.585  
0.59  
0.355  
0.36  
0.595  
0.60  
0.365  
0.37  
0.605  
0.61  
0.375  
0.38  
0.615  
0.62  
0.385  
0.39  
0.625  
0.63  
0.395  
0.40  
0.635  
0.64  
0.405  
0.41  
0.645  
0.65  
0.415  
0.42  
0.655  
0.66  
0.425  
0.43  
0.665  
0.67  
0.435  
0.44  
0.675  
0.68  
0.445  
0.45  
0.685  
0.69  
0.455  
0.46  
0.695  
0.70  
0.465  
0.47  
0.705  
0.71  
0.475  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
1. VID Table (接下页)  
1. VID Table (接下页)  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
(V)  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
(V)  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
0.715  
0.72  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
1.68  
1.69  
1.70  
1.71  
1.72  
1.73  
1.74  
1.75  
1.76  
1.77  
1.78  
1.79  
1.80  
1.81  
1.82  
1.83  
1.84  
1.85  
1.86  
1.87  
1.88  
1.89  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
0.95  
0.955  
0.96  
1.90  
1.91  
1.92  
1.93  
1.94  
1.95  
1.96  
1.97  
1.98  
1.99  
2.00  
2.01  
2.02  
2.03  
2.04  
2.05  
2.06  
2.07  
2.08  
2.09  
2.10  
2.11  
2.12  
2.13  
2.14  
2.15  
2.16  
2.17  
2.18  
2.19  
2.20  
2.21  
2.22  
2.23  
2.24  
2.25  
2.26  
2.27  
2.28  
2.29  
2.30  
2.31  
2.32  
2.33  
2.34  
2.35  
2.36  
0.725  
0.73  
0.965  
0.97  
0.735  
0.74  
0.975  
0.98  
0.745  
0.75  
0.985  
0.99  
0.755  
0.76  
0.995  
1.00  
0.765  
0.77  
1.005  
1.01  
0.775  
0.78  
1.015  
1.02  
0.785  
0.79  
1.025  
1.03  
0.795  
0.80  
1.035  
1.04  
0.805  
0.81  
1.045  
1.05  
0.815  
0.82  
1.055  
1.06  
0.825  
0.83  
1.065  
1.07  
0.835  
0.84  
1.075  
1.08  
0.845  
0.85  
1.085  
1.09  
0.855  
0.86  
1.095  
1.10  
0.865  
0.87  
1.105  
1.11  
0.875  
0.88  
1.115  
1.12  
0.885  
0.89  
1.125  
1.13  
0.895  
0.90  
1.135  
1.14  
0.905  
0.91  
1.145  
1.15  
0.915  
0.92  
1.155  
1.16  
0.925  
0.93  
1.165  
1.17  
0.935  
0.94  
1.175  
1.18  
0.945  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
1. VID Table (接下页)  
1. VID Table (接下页)  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
VID Hex  
VALUE  
VR12.0 VOLTAGE  
(V)  
VR12.5 VOLTAGE  
(V)  
(V)  
2.37  
2.38  
2.39  
2.40  
2.41  
2.42  
2.43  
2.44  
2.45  
2.46  
2.47  
2.48  
2.49  
2.50  
n/a  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
1.185  
1.19  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1.355  
1.36  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1.195  
1.20  
1.365  
1.37  
1.205  
1.21  
1.375  
1.38  
1.215  
1.22  
1.385  
1.39  
1.225  
1.23  
1.395  
1.40  
1.235  
1.24  
1.405  
1.41  
1.245  
1.25  
1.415  
1.42  
1.255  
1.26  
1.425  
1.43  
n/a  
1.265  
1.27  
n/a  
1.435  
1.44  
n/a  
1.275  
1.28  
n/a  
1.445  
1.45  
n/a  
1.285  
1.29  
n/a  
1.455  
1.46  
n/a  
1.295  
1.30  
n/a  
1.465  
1.47  
n/a  
1.305  
1.31  
n/a  
1.475  
1.48  
n/a  
1.315  
1.32  
n/a  
1.485  
1.49  
n/a  
1.325  
1.33  
n/a  
1.495  
1.50  
n/a  
1.335  
1.34  
n/a  
1.505  
1.51  
n/a  
1.345  
1.35  
n/a  
1.515  
1.52  
n/a  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.3.11 PWM and SKIP Signals  
The PWM and SKIP-NVM signals are output from the controller to drive the TI smart power stages. Both signals  
are 3.3-V logic based. The PWM signal is logic high to turn on the high-side MOSFET and logic low to turn on  
the low-side MOSFET. When both high-side and low-side MOSFETs are expected to be OFF, the PWM signal is  
driven to tri-state condition (1.7 V). The SKIP-NVM pin is asserted low during the soft-start period.  
7.3.12 TSEN (Thermal Sense) Pin  
TI smart power stage (ex: CSD9549x) senses the die temperature and sends out the temperature information as  
a voltage through the TAO pin. In a multi-phase application, the TAO pin of the TI smart power stages are  
connected and then tied to the TSEN pin of the TPS53667 device. In this case, the device reports the  
temperature of the hottest power stage. The reported temperature can be calculated as shown in 公式 4.  
(643%. F ꢀꢁꢂ)  
4%-0 =  
ꢀꢁꢀꢀ8  
where  
TEMP is the sensed temperature in °C  
VTSEN is the voltage at TSEN pin  
(4)  
The maximum temperature that can be sensed is 127.9 °C. If the TSEN voltage (VTSEN ) is  
higher than the voltage associated to 127.9 °C, the device continues to report 127.9 °C.  
TSEN signal is also used as an indicator for power stage fault. When an internal fault occurs in the TI smart  
power stage (CSD9549x), the power stage pulls the TAO pin high. In the default configuration, if the TSEN  
voltage is higher than 2.5 V, the TPS53667 device senses the fault and turns off both the high-side and the low-  
side MOSFETS. There is also an option to disable power stage fault as described in MFR_SPECIFIC_07[3].  
Power stage  
TAO  
Temperature  
Sense  
Power stage  
TPS53667  
TAO  
TSEN  
Temperature  
Sense  
ADC  
Temp  
Power stage  
TAO  
Temperature  
Sense  
Copyright © 2016, Texas Instruments Incorporated  
16. Temperature Sense  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.3.13 RESET Function  
During adaptive voltage scaling (AVS) operation, the voltage may become falsely adjusted to be out of ASIC  
operating range. The RESET function returns the voltage to the VBOOT voltage. When the voltage is out of  
ASIC operating range, the ASIC issues a RESET signal to the TPS53667 device, as shown in 17. The device  
senses this signal and after a delay of greater than 1 µs, it sets an internal RESET_FAULT signal and sets  
VOUT_COMMAND to VBOOT. The device pulls the output voltage to the VBOOT level with the slew rate set by  
SLEW-MODE pin, as shown in 18.  
When the RESET pin signal goes high, the internal RESET_FAULT signal goes low.  
TPS53667  
ASIC Power Stage  
ASIC V  
RESET  
RESET  
TPS53667 V  
RESET  
RESET  
PMB_CLK  
PMB_DIO  
PMB_CLK  
PMB_DIO  
Internal  
RESET_FAULT  
PMB_ALERT  
PMB_ALERT  
Response Delay  
Default VBOOT  
Pre-AVS V  
.
OUT .  
(A)  
V
OUT  
(C)  
(B)  
Time  
17. RESET Pin Connection  
7.3.14 Input UVLO  
18. Reset Function  
The TPS53667 device continuously monitors the input voltage through the VIN pin. If the input voltage is lower  
than the UVLO low threshold, the device turns off. If VIN rises higher than the UVLO high threshold, the controller  
turns on again (if both V5 and ENABLE are high). The hysteresis is approximately 1.05 V.  
2. Input Undervoltage Lockout (UVLO)  
VIN UVLO SETTING  
MFR_SPEC_16[1:0] = 00  
MFR_SPEC_16[1:0] = 01 (Default)  
MFR_SPEC_16[1:0] = 10  
MFR_SPEC_16[1:0] = 11  
TURN-ON VOLTAGE (V)  
TURN-OFF VOLTAGE (V)  
4.5  
7.25  
7.9  
3.5  
6.25  
6.9  
10.3  
9.3  
7.3.15 V5 Pin Undervoltage Lockout (UVLO)  
The TPS53667 device also monitors V5 pin voltage. If the voltage is lower than VV5UVLOL (4.05 V typical), the  
controller turns off. If V5 voltage comes back to be higher than VV5UVLOH (4.25 V typical), the controller turns back  
on (if both VIN and ENABLE are high).  
7.3.16 Output Undervoltage Protection (UVP)  
The output undervoltage protection in the TPS53667 device is called tracking UVP. When the output voltage  
drops below (VDAC–VDROOP–VRDYL), the controller drives the PWM into a tri-state condition so that both high-  
side and low-side MOSFETs turn off. After a hiccup delay (22-ms typical), the device attempts to restart to  
VBOOT voltage. If the UVP condition continues, the UVP occurs again and the process repeats.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.3.17 Overvoltage Protection (OVP)  
The OVP condition is detected when the output voltage VOUT > VDAC + tracking OVP offset (VOVPT5 for VR12.5 or  
VOVPT0 for VR12.0) , which is called tracking OVP. In this case the controller drives the VR_RDY pin to inactive  
(low state) and drives all PWM signals to logic low which turns on the low-side MOSFET to discharge the output.  
However the OVP threshold is blanked during a VDAC change. In order to continually protect the load, there is  
second OVP level (fixed OVP). The second OVP level is fixed at VOVPH5 (VR12.5) or VOVPH0 (VR12.0) is active  
during VDAC change. If the fixed OVP condition is detected, the device drives the VR_RDY pin to inactive (logic  
low) and drives the PWM signals to logic low in order to turn on the low-side MOSFET. The controller remains in  
this state until the ENABLE or V5 is re-cycled.  
For both tracking OVP and fixed OVP, the controller will try to restart after a hiccup delay (~22ms). If the OV  
condition still exists, the controller will pull PWM signal to logic low and enter into anther hiccup cycle. If after 3  
hiccup cycles, the OV condition still exists, the controller will latch PWM signal to logic low until ENABLE or V5 is  
re-cycled.  
When ENABLE is low, and output voltage is higher than VOVPFP (2.75 V typical), the OVP condition is detected,  
which is called Pre-bias OVP. The device then drives the PWM signals to logic low. The device latches the pre-  
bias OVP. The latch can be cleared only by recycling V5.  
7.3.18 Overcurrent Limit (OCL) and Overcurrent Protection (OCP)  
The TPS53667 device includes a valley-current-based limit function by using a per-phase OCL comparator. A  
resistor connected between the OCL-R pin and the VREF pin generates the OCL comparison threshold.  
Using the valley current limit, the OCL current level can be selected using 公式 5. To set the per-phase OCL  
threshold, subtract half of the ripple current from the maximum average current and select the OCL threshold  
specified in the table equal or slight lower than IOCL  
.
I
I
RIPPLE  
æ
ö
æ
ö
MAX  
IOCL = K ´  
-
ç
÷
ç
÷
n
2
è
ø
è
ø
where  
K is the maximum operating margin percentage  
n is the number of active phases  
IRIPPLE is the ripple current  
(5)  
This instantaneous current sense voltage VCSPx is compared to the OCL threshold. If the current sense voltage at  
OCL comparator goes above the OCL threshold, the device delays the next ON pulse until the current sense  
voltage drops below the OCL threshold. In this case, the output voltage continues to drop until the UVP threshold  
is reached.  
Another overcurrent protection (OCP) is based on the current sensed through IMON pin of the device. When the  
digitized IMON is higher than OC_FAULT_LIMIT (1.25× IMAX by default), the controller turns off both high-side  
and low-side MOSFETS and enters into hiccup mode until the overcurrent condition is removed.  
7.3.19 Current Sharing Warning and Phase Fault Detect  
TPS53667 can detect faulty phases with the current sharing warning feature. If the current of a certain phase is  
lower than the average current by certain threshold (set by MFR_SPECiFIC_19, default is 8A), the controller can  
turn off the faulty phase while keeping the other phases in operation (This is also configurable by  
MFR_SPECIFIC_19[7]). The faulty phase can be read from STATUS_MFR_SPECIFIC[5:3].  
The phase interleaving is not adjusted when the faulty phase is turned off. The controller phase interleaving  
operates as if the faulty phase still is still operating. This behavior has the affect of slightly increasing the output  
voltage ripple.  
When there are only two phases in operation, this feature is disabled. For example, even if one of the phases  
has current lower than average, it does not turn off.  
7.3.20 Turn off Individual Phase by PMBus  
Individual phases can also be turned off by using the PMBus command MFR_SPECIFIC_24(0xE8). Please see  
MFR_SPECIFIC_24 (E8h)section for more details.  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
The MFR_SPECIFIC_24 setting can be effective before the controller is enabled. For example, when a certain  
phase is turned off by MFR_SPECIFIC_24 before Enable goes high, this phase does not turn on after Enable.  
7.3.21 Phase Shedding  
Phase Shedding is enabled with MFR_SPECIFIC_13[4]. Phase shedding allows the user to optimize efficiency  
over a wider range of loads. Using only one or two phases is often more efficient when the load is drawing a  
smaller amount of current, than using all six phases.  
The points at which phases are shed can be set by MFR_SPECIFIC_15 (Dynamic Phase Shedding Thresholds)  
(DFh).  
7.3.22 Over Temperature Protection (OTP)  
When the sensed temperature through TSEN pin is higher than the over temperature fault threshold  
OTPTHLD(125°C by default), the controller turns off high-side and low-side MOSFETS. The power stages cool  
down and TSEN voltage drops. When the sensed temperature is 15°C (OTPHYS) lower than the over temperature  
fault threshold, the controller restarts to the VBOOT voltage.  
7.3.23 VR_HOT and VR_FAULT Indication  
When the sensed temperature is higher than the maximim temperature specification TMAX, (110°C by default), the  
device pulls the VR_HOT pin low. This adjustment provides a warning signal to the load.  
Only the PMBus interface can establish the maximum temperature (TMAX) setting. NVM  
does not store this setting.  
VR_FAULT is used as an indication of severe fault. VR_FAULT wil be pulled low when the below fault occurs:  
Input Overcurrent Fault  
Over Temperature Fault  
Overvoltage Fault  
Power Stage Fault (VTSEN> 2.5V)  
7.4 Device Functional Modes  
3. Maximum Operating Phase Numbers  
MAXIMUM ACTIVE  
PHASES  
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
IOUT1  
IOUT1  
IOUT1  
IOUT1  
IOUT1  
IOUT1  
V3R3  
IOUT2  
IOUT2  
IOUT2  
IOUT2  
IOUT2  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1
2
3
4
5
6
V3R3  
IOUT3  
IOUT3  
IOUT3  
IOUT3  
n/a  
V3R3  
IOUT4  
IOUT4  
IOUT4  
n/a  
n/a  
V3R3  
IOUT5  
IOUT5  
n/a  
V3R3  
IOUT6  
7.5 Programming  
7.5.1 User Selections  
When SKIP-NVM pin is connected to GND with 20-kΩ resistor, the resistors connected to O-USR, F-IMAX,  
SLEW-MODE, OCL-R, VBOOT and ADDR-TRISE determine the associated configurations. If SKIP-NVM pin is  
connected to GND with 100-kΩ resistor, these configurations are determined by NVM settings. Please note the  
address setting is determined only by the resistors on the ADDR-TRISE pin and cannot be set by NVM. When  
the V3R3 pin powers up, the following information is latched for normal operations, and can be changed via the  
PMBus interface. The Electrical Characteristics table defines the values of the selections.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Programming (接下页)  
In general, the NVM provides more selection than pinstrap configurations. For example, pinstrap for switching  
frequency offers 3-bit, 8 selections, which correlates to MFR_SPEC_12<6:4>. Alternatively, NVM provides 4-bit,  
16 selections.  
7.5.1.1 Switching Frequency  
The resistor from F-IMAX pin to GND sets the switching frequency from 300 kHz to 1 MHz. See the Electrical  
Characteristics table for the resistor settings corresponding to each frequency selection. Please note that the  
operating frequency is a quasi-fixed frequency in the sense that the ON time is fixed based on the input voltage  
(at the VIN pin) and output voltage (set by VID). The OFF time varies based on various factors such as load and  
power-stage components.  
7.5.1.2 IMAX Information  
The max current information of the load(IMAX) can be set by the voltage on the F-IMAX pin. See the Electrical  
Characteristics table for the details. The default OCP fault trigger level is 125% of IMAX.  
7.5.1.3 Boot Voltage  
The boot voltage is the controller voltage at start-up to before any output voltage change by the  
VOUT_COMMAND. If there is no further output voltage adjustment, the output voltage remains at the boot  
voltage level.  
The resistor from the VBOOT pin to GND and the voltage level on this pin set 7 high bits of the boot voltage. The  
lowest bit is set by the ADDR-TRISE pin. See the Electrical Characteristics table for the resistor settings  
corresponding to boot voltage selections.  
7.5.1.4 Per-Phase Overcurrent Limit (OCL) Level  
The resistor from the OCL-R pin to GND and the voltage level on this pin set the per-phase OCL level. See the  
Electrical Characteristics table for the details.  
7.5.1.5 Overshoot Reduction (OSR) and Undershoot Reduction (USR) Levels  
The resistor from the O-USR pin to GND and the voltage on O-USR pin set the OSR and USR levels. See the  
Electrical Characteristics table for details.  
7.5.1.6 Slew Rate Selection  
The VOUT change slew rate is set by the resistor from the SLEW-MODE pin to GND. See the Electrical  
Characteristics table for details.  
7.5.1.7 Mode Selections  
The TPS53667 device supports different operating modes, including VR12.0/VR12.5, phase interleaving mode,  
dynamic phase shedding, and zero load-line. The voltage on SLEW-MODE pin sets the desired operating  
modes.  
7.5.1.8 Soft Start Slew Rate and PMBus Addresses  
The resistor from the ADDR-TRISE pin to GND and the voltage on ADDR-TRISE pin set the slew rate of soft  
start and the address of PMBus interface. See the Electrical Characteristics table for details.  
7.5.1.9 Ramp Selection  
The internal ramp can be set by the voltage on the OCL-R pin. See the Electrical Characteristics table for details.  
7.5.1.10 Maximum Active Phase Numbers  
The maximum active phase numbers can be selected by connecting CSP2, CSP3, CSP4, CSP5 or CSP6 to the  
V3R3. See 3 for details. The device latches this configuration when V3R3 powers up.  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Programming (接下页)  
7.5.1.11 Pinstrap Mode Settings  
4 summarizes the functions controlled with pin-strap resistors. For details of each setting please refer to the  
Electrical Characteristics table. For more information on VID encoding see the VID section.  
4. Pinstrap Mode Summary  
PIN  
FUNCTION  
DESCRIPTION  
NAME  
NO.  
Voltage divider to VREF pin.  
Slew Rate  
SLEW-MODE  
29  
A pin-strap resistor (RSLEW-MODE) connected between this pin and GND sets  
one of eight possible slew rates.  
The voltage level (VSLEW-MODE) sets 4-bit operation modes.  
-Bit 7 for DAC mode (1 for VR12.0; 0 for VR12.5).  
-Bit 6 for the 4-phase interleaving mode (1 for 1/3 and 2/4 two phase  
interleaving; 0 for 4 phase interleaving individually).  
Mode  
SLEW-MODE  
29  
-Bit 4 for enabling dynamic phase add or drop (1 for enable; 0 for disable).  
-Bit 3 sets zero load-line (1 for zero load-line; 0 for non-zero load-line)  
The device latches these settings when V3R3 powers up.  
Voltage divider to VREF pin.  
Overshoot reduction  
Undershoot reduction  
O-USR  
O-USR  
30  
30  
A pin-strap resistor (RO-USR) connected between this pin and GND selects 1  
of 7 OSR thresholds or OFF.  
The voltage level (VO-USR) sets 1 of 7 USR levels or OFF.  
The device latches these settings when V3R3 powers up.  
Voltage divider to VREF pin.  
A pin-strap resistor (RVBOOT) connected between this pin and GND sets 3  
bits (B[3:1]).  
The voltage level (VBOOT) sets 4 bits (B[7:4]). The total 7 bit sets 7 of 8 bits of  
VID of VBOOT(B[7:1]).  
VBOOT  
31  
28  
The device latches these settings when V3R3 powers up.  
Voltage divider to VREF pin.  
Voltage boot  
A pin-strap resistor (RADDR-TRISE) connected between this pin and GND sets  
3-bits.  
-Bit 2 and Bit 1 set the rise slew rate (TRISE).  
ADDR-TRISE  
-Bit 0 Selects the LSB of BOOT voltage.  
The voltage (VADDR-TRISE) sets 4 bits PMBus address.  
The device latches these settings when V3R3 powers up.  
Voltage divider to VREF pin.  
A pin-strap resistor (RADDR-TRISE) connected between this pin and GND sets  
3-bits.  
-Bit 2 and Bit 1 set the rise slew rate (TRISE).  
Rise slew rate  
ADDR-TRISE  
28  
-Bit 0 Selects the LSB of BOOT voltage.  
-The voltage (VADDR-TRISE) sets 4 bits PMBus address.  
The device latches these settings when V3R3 powers up  
Voltage divider to VREF pin.  
Frequency  
F-IMAX  
F-IMAX  
32  
32  
A pin-strap resistor (RF-IMAX) connected between this pin and GND sets the  
operating frequency of the controller.  
The voltage level (VF-IMAX) sets the maximum operating current of the  
converter.  
Current limit  
The IMAX value is an 8-bit A/D where VF-IMAX = VVREF × IMAX / 255.  
Both are latched at V3R3 power-up.  
Voltage divider to VREF pin.  
Overcurrent limit  
Ramp  
OCL-R  
OCL-R  
1
1
A pin-strap resistor (ROCL-R) connected between this pin and GND and the  
voltage level (VOCL-R) selects one of 16 OCL levels (per phase current-limit).  
VOCL-R sets one of four RAMP levels.  
The device latches these settings when the V3R3 pin powers up.  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.5.1.12 NVM Default Settings  
5 lists the default settings in NVM where the shaded rows denote register functions that are configured by  
associated pins in pinstrap mode.  
5. NVM Default Settings  
DEFAULT VALUES  
REGISTER  
FUNCTION  
Slew Rate  
bit 7  
bit 6  
bit 5  
0
bit 4  
bit 3  
bit 2  
bit 1  
0
bit 0  
MFR_SPECIFIC_13 [2:0]  
MFR_SPECIFIC_13 [7:3]  
MFR_SPECIFIC_09 [2:0]  
MFR_SPECIFIC_09 [6:4]  
MFR_SPECIFIC_11 [7:0]  
MFR_SPECIFIC_12 [1:0]  
MFR_SPECIFIC_12[7:4]  
MFR_SPECIFIC_10 [7:0]  
MFR_SPECIFIC_00 [3:0]  
MFR_SPECIFIC_14[2:0]  
MFR_SPECIFIC_07 [0]  
MFR_SPECIFIC_07 [1]  
MFR_SPECIFIC_07 [2]  
0
1
Mode  
1
0
0
1
1
OSR  
1
1
1
1
USR  
1
1
0
1
1
VBOOT  
0
0
1
0
1
0
TRISE  
Frequency  
IMAX  
0
1
0
0
1
1
0
1
0
1
1
0
1
0
0
1
0
0
OCL  
RAMP  
0
Soft-start slew rate  
OSR_TRISTATE  
SLEW_FAST  
0
1
0
Power Stage Fault  
Disable  
MFR_SPECIFIC_07 [3]  
0
MFR_SPECIFIC_07 [4]  
MFR_SPECIFIC_16 [1:0]  
MFR_SPECIFIC_15 [3]  
MFR_SPECIFIC_15 [2:0]  
OV Hiccup Disable  
VIN UVLO  
0
0
0
1
1
DPS_TH_LOW  
DPS_TH_HIGH  
1
0
0
0
Current Sharing  
Warning  
Response  
MFR_SPECIFIC_19 [3]  
Current Sharing  
Warning Threshold  
MFR_SPECIFIC_19 [2:0]  
MFR_SPECIFIC_21 [4:3]  
1
1
Tracking OV  
OFFSET  
0
1
MFR_SPECIFIC_21 [2:0]  
MFR_SPECIFIC_22 [2:0]  
MFR_SPECIFIC_05 [7:0]  
MFR_ID  
Fixed OV OFFSET  
UV OFFSET  
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
VOUT OFFSET  
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
MFR_MODEL  
0
MFR_REVISION [3:0]  
MFR_DATE  
0
0
0
0
36  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.5.1.13 6-Phase Application  
19 shows the diagram for a 6-Phase application with smart power stage (CSD95490Q5MC) and pinstrap  
configurations.  
12 V  
BOOT  
VIN  
BOOT_R  
TAO  
VCORE_OUT  
Load  
TPS53667  
VSP  
PWM  
FCCM  
VDD  
VSW  
PWM 1  
Power Stage  
VSN  
SKIP-NVM  
5 V  
OCL-R  
PGND  
REFIN  
Enable  
AGND  
IOUT  
COMP  
VREF  
F-IMAX  
CSP1  
TSEN  
B-TMAX  
O-USR  
12 V  
BOOT  
VIN  
BOOT_R  
TAO  
PWM2  
PWM  
FCCM  
VDD  
VSW  
Power Stage  
5 V  
PGND  
REFIN  
ADDR  
Enable  
AGND  
IOUT  
SLEW-MODE  
CSP2  
ISUM  
IMON  
IMON  
SCLK  
ALERT  
To and  
From CPU  
SDIO  
VR_RDY  
VR_HOT  
PMB_CLK  
PMB_ALERT  
PMB_DIO  
ENABLE  
I2C or PMBus  
(Optional)  
ENABLE  
12 V  
VR_FAULT  
BOOT  
VIN  
BOOT_R  
VR_FAULT  
TAO  
12 V  
VIN  
V5  
PWM6  
PWM  
FCCM  
VDD  
VSW  
Power Stage  
5 V  
PGND  
REFIN  
5 V  
Enable  
AGND  
IOUT  
3.3 V  
V3P3  
CSP6  
GND  
Copyright © 2016, Texas Instruments Incorporated  
19. 6-Phase Application with Smart Power Stage (CSD95490Q5MC) and Pinstrap Configuration  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.5.1.14 6-Phase NVM Application  
20 shows the diagram for a 6-Phase application with smart power stage (CSD95490Q5MC) and NVM  
configurations.  
12 V  
BOOT  
VIN  
BOOT_R  
TAO  
VSW  
VOUT  
Load  
TPS53667  
VSP  
PWM  
FCCM  
VDD  
PWM 1  
Power Stage  
VSN  
SKIP-NVM  
5 V  
OCL-R  
Enable  
PGND IMON REFIN  
COMP  
VREF  
F-IMAX  
CSP1  
TSEN  
VBOOT  
O-USR  
12 V  
BOOT  
BOOT_R  
TAO  
VSW  
VIN  
PWM2  
PWM  
FCCM  
VDD  
Power Stage  
5 V  
ADDR-TRISE  
SLEW-MODE  
Enable  
PGND IMON REFIN  
CSP2  
ISUM  
IMON  
IMON  
ENABLE  
VR_RDY  
VR_HOT  
VR_FAULT  
PMB_CLK  
PMBus  
PMB_ALERT  
PMB_DIO  
RESET  
12 V  
BOOT  
BOOT_R  
TAO  
VSW  
VIN  
12 V  
5 V  
VIN  
V5  
PWM6  
PWM  
FCCM  
VDD  
Power Stage  
5 V  
Enable  
PGND IMON REFIN  
V3R3  
CSP6  
GND  
20. 6-Phase Application with Smart Power Stage (CSD95490Q5MC) and NVM Configuration  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.5.2 Supported Protections and Fault Reports  
The TPS53667 device supports different types of fault protections, and the warning or fault reports can be found  
in the corresponding PMBus registers. The TPS53667 also supports VR_FAULT to indicate catastrophic faults to  
the system. If the fault causes the controller to latch-off, then V5 or EN re-cycling is required to clear the latched  
faults. Only V5 recycling can clear PRE_OVF .  
6. Supported Protections and Fault Reports  
FAULT NAME  
VOLTAGE  
DESCRIPTIONS  
LATCH-OFF  
ALERT  
REPORT  
VR_FAULT  
PMB_ALERT  
PRE_OVF  
OVF  
VOUT > VOVPFP  
Y
Y
PMBus  
PMBus  
VR_FAULT  
PMB_ALERT  
VOUT > VID + VOVPT5/0 or VOUT> VOVPF5  
UVF  
VOUT < VID – VRDYL – VDROOP  
N
N
N
PMB_ALERT  
PMB_ALERT  
PMB_ALERT  
PMBus  
PMBus  
PMBus  
VIN_OVF  
VIN_UVF  
CURRENT  
OCF  
VVIN > VIN_OV_FAULT_LIMIT when the controller is enabled  
VVIN < VINUVLO when the controller is enabled  
I
OUT IOUT_OC_FAULT_LIMIT  
O IOUT_OC_WARN_LIMIT  
N
N
PMB_ALERT  
PMB_ALERT  
PMBus  
PMBus  
OCW  
I
VR_FAULT  
PMB_ALERT  
IOCF  
I
IN IIN_OC_FAULT_LIMIT  
IN IIN_OC_WARN_LIMIT  
Y
N
PMBus  
PMBus  
IOCW  
I
PMB_ALERT  
TEMPERATURE  
VR_FAULT  
PMB_ALERT  
OTF  
T
sen OT_FAULT_LIMIT  
N
PMBus  
PMBus  
OTW  
T
sen OT_WARNING_LIMIT  
senTMAX  
N
N
Y
Y
PMB_ALERT  
VR_HOT  
TMAX_F  
TS_VREFF  
TS_GND  
T
TSEN pin short to VREF  
TSEN pin short to GND  
PMB_ALERT  
PMB_ALERT  
PMBus  
PMBus  
VR_FAULT  
PMB_ALERT  
TS_PS  
VTSEN > 2.5 V  
Y
PMBus  
7.5.3 Supported PMBus Address and Commands Summary  
7.5.3.1 Address Selection  
The TPS53667 device has a dedicated pin (ADDR-TRISE) for determining the address for the PMBus  
communication. The device supports a total of 16 possible addresses. See the Electrical Characteristics table for  
details.  
7.5.3.2 Commands Summary  
The TPS53667 device supports only PMBus command sets listed in 7. In pinstrap mode, the default state of  
all the configuration registers (shaded rows in 5) should be detected from pinstrap settings, but users can  
overwrite the settings via PMBus after the power-up sequence is complete. In NVM mode, the default values can  
be found in the register descriptions.  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7. Supported PMBus Commands  
CODE  
COMMAND NAME  
OPERATION  
TYPE  
DESCRIPTION: PMBus Command  
FACTORY DEFAULT VALUE  
Turn the unit on and off in conjunction with the input from the ENABLE pin. Set the  
output voltage to the upper or lower MARGIN voltages.  
01h  
R/W Byte  
00h  
Configures the combination of CONTROL pin input and serial bus commands needed  
02h  
ON_OFF_CONFIG  
R/W Byte to turn the unit on and off. This includes how the unit responds when power is  
applied.  
17h  
Clears any faults bits that have been set if the fault is no longer present. At the same  
Send Byte time, simultaneously clears all bits in all status registers and negates the  
PMB_ALERT signal output if it is asserted.  
03h  
10h  
CLEAR_FAULTS  
NONE  
00h  
Used to control writing to the PMBus device. Can be used to prevent unwanted writes  
WRITE_PROTECT  
R/W Byte  
to the device.  
11h  
12h  
19h  
20h  
21h  
STORE_DEFAULT_ALL  
RESTORE_DEFAULT_ALL  
CAPABILITY  
Send Byte Store the settings to the NVM.  
NONE  
NONE  
B0h  
Send Byte Restore the settings from the NVM.  
Read Byte Provides a way for the host to determine the capabilities of the PMBus device.  
Read Byte Read-Only VOUT Mode Indicator.  
VOUT_MODE  
21h  
VOUT_COMMAND  
R/W Word Causes the device to set its output voltage to the commanded value.  
VBOOT  
Sets the upper limit on the output voltage the unit can command regardless of any  
R/W Word other commands or combinations. Provides a safeguard against a user accidentally  
setting the output voltage to a possibly destructive level.  
24h  
VOUT_MAX  
00FFh  
Loads the unit with the voltage to which the output is to be changed when the  
OPERATION command is set to "Margin High."  
25h  
26h  
VOUT_MARGIN_HIGH  
R/W Word  
0000h  
0000h  
Loads the unit with the voltage to which the output is to be changed when the  
OPERATION command is set to "Margin Low."  
VOUT_MARGIN_LOW  
IOUT_CAL_OFFSET  
R/W Word  
39h  
41h  
R/W Word compensate for offset errors in READ_VOUT command.  
0000h  
9Ah  
VOUT_OV_FAULT_RESPONSE Read Byte Instructs the device on what action to take in response to an output overvoltage fault.  
Instructs the device on what action to take in response to an output undervoltage  
45h  
VOUT_UV_FAULT_RESPONSE Read Byte  
fault.  
BAh  
Sets the value of the output current, in amperes, that causes the overcurrent detector  
to indicate an overcurrent fault condition.  
46h  
47h  
4Ah  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
R/W Word  
125% IMAX  
FAh  
Read Byte Instructs the device on what action to take in response to an output overcurrent fault.  
Sets the value of the output current that causes an output overcurrent warning  
R/W Word  
condition.  
IMAX  
Sets the temperature, in degree Celsius, that causes an over-temperature fault  
4Fh  
50h  
51h  
OT_FAULT_LIMIT  
R/W Word  
condition.  
007Dh  
F8h  
Instructs the device on what action to take in response to an output over-temperature  
OT_FAULT_RESPONSE  
OT_WARN_LIMIT  
Read Byte  
fault.  
Sets the temperature, in degrees Celsius, that causes an over-temperature warning  
R/W Word  
condition.  
005Fh  
55h  
5Bh  
VIN_OV_FAULT_LIMIT  
IIN_OC_FAULT_LIMIT  
R/W Word Sets the input voltage, in volts, that causes an overvoltage fault condition.  
R/W Word Sets the input current, in amperes, that causes an overcurrent fault condition.  
0011h  
00FFh  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
CODE  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7. Supported PMBus Commands (接下页)  
COMMAND NAME  
TYPE  
DESCRIPTION: PMBus Command  
FACTORY DEFAULT VALUE  
C0h  
5Ch  
5Dh  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
80h  
88h  
89h  
8Bh  
8Ch  
8Dh  
96h  
97h  
98h  
99h  
IIN_OC_FAULT_RESPONSE  
IIN_OC_WARN_LIMIT  
STATUS_BYTE  
STATUS_WORD  
STATUS_VOUT  
STATUS_IOUT  
Read Byte Instructs the device on what action to take in response to an input overcurrent fault.  
R/W Word Sets the input current, in amperes, that causes an overcurrent warning condition.  
Read Byte Single byte status indicator  
0019h  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Dependent on the Startup Condition  
Read Word Full 2-byte status indicator  
Read Byte Output voltage fault status detail  
Read Byte Output current fault status detail  
STATUS_INPUT  
STATUS_TEMPERATURE  
STATUS_CML  
Read Byte Input voltage and current fault status detail  
Read Byte Temperature fault status detail  
Read Byte Communication, memory, and logic fault status detail  
Read Byte Manufacturer specific fault status detail  
Read Word Read input voltage, in volts.  
STATUS_MFR_SPECIFIC  
READ_VIN  
READ_IIN  
Read Word Read input current, in amperes.  
READ_VOUT  
Read Word Read output voltage, in volts.  
READ_IOUT  
Read Word Read output current, in amperes.  
READ_TEMPERATURE_1  
READ_POUT  
Read Word Read temperature, in degrees Celsius.  
Read Word Read output power, in watts.  
READ_PIN  
Read Word Read input power, in watts.  
PMBUS_REVISION  
MFR_ID  
Read Byte PMBus Revision Information  
11h  
54h  
Read Block Loads the unit with the text character that contains the manufacturer's ID.  
Loads the unit with the text character that contains the model number of the  
manufacturer.  
9Ah  
MFR_MODEL  
Read Block  
Loads the unit with the text character that contains the revision number of the  
manufacturer.  
9Bh  
9Dh  
A4h  
MFR_REVISION  
MFR_DATE  
Read Block  
Read Block Loads the unit with the text character that contains the device's date of manufacture.  
Sets a low limit on the output voltage that the device can command regardless of any  
other commands or combinations. (VID data format)  
MFR_VOUT_MIN  
R/W Word  
0000h  
Pin strap: OCL-R pin  
NVM: 08h  
D0h  
MFR_SPECIFIC_00  
R/W Byte Selects the threshold for the per-phase current limit. (Fixed at PMBus control)  
D1h  
D4h  
D5h  
D7h  
D8h  
MFR_SPECIFIC_01  
MFR_SPECIFIC_04  
MFR_SPECIFIC_05  
MFR_SPECIFIC_07  
MFR_SPECIFIC_08  
R/W Byte Selects the averaging time for telemetry reporting.  
Read Word Returns the actual, measured output voltage in volts.  
R/W Byte Used to trim the output voltage.  
50h  
NVM: 00h  
NVM: 02h  
04h  
R/W Byte Additional functional bits setting.  
R/W Byte Sets the droop as a percentage of the loadline.  
Pin strap: O-USR pin  
NVM: 77h  
D9h  
MFR_SPECIFIC_09  
R/W Byte Sets the threshold for OSR and USR control.  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7. Supported PMBus Commands (接下页)  
CODE  
COMMAND NAME  
MFR_SPECIFIC_10  
TYPE  
DESCRIPTION: PMBus Command  
FACTORY DEFAULT VALUE  
Pin strap: F-IMAX pin  
NVM: B4h  
DAh  
R/W Byte Sets the maximum operating current, IMAX.  
R/W Byte Sets the boot voltage, VBOOT.  
Pin strap: VBOOT pin  
NVM: 97h  
DBh  
DCh  
DDh  
DEh  
MFR_SPECIFIC_11  
MFR_SPECIFIC_12  
MFR_SPECIFIC_13  
MFR_SPECIFIC_14  
Pin strap: F-IMAX and ADDR-TRISE pins  
NVM: 20h  
R/W Byte Sets the switching frequency and the rise time (tRISE) settings.  
R/W Byte Sets the slew rate and other operation modes.  
R/W Byte Sets the ramp amplitude in mV.  
Pin strap: SLEW-MODE pin  
NVM: 89h  
Pin strap: OCL-R pin  
NVM: 06h  
DFh  
E0h  
MFR_SPECIFIC_15  
MFR_SPECIFIC_16  
R/W Byte Sets the threshold for dynamic phase shedding as a percentage of the OCL.  
R/W Byte Sets the threshold for the input voltage UVLO.  
NVM: 09h  
NVM: 01h  
Sets the value of phase current imbalance warning limit. Limit is set within the range  
R/O Word of 2A-16A. The two data bytes are formatted in Linear Data format. Upon detection,  
the device asserts SMBALERT#.  
E3h  
MFR_SPECIFIC_19  
NVM: 0003h  
E4h  
E5h  
E6h  
E7h  
E8h  
FCh  
MFR_SPECIFIC_20  
MFR_SPECIFIC_21  
MFR_SPECIFIC_22  
MFR_SPECIFIC_23  
MFR_SPECIFIC_24  
MFR_SPECIFIC_44  
R/W Byte Sets the maximum number of operational phase numbers on the fly.  
R/W Byte Sets the over-voltage offsets.  
Hardware Specific  
NVM: 0Fh  
R/W Byte Sets the under-voltage offsets.  
NVM: 03h  
R/O Word Sets VBOOT value with VID data format.  
R/W Byte Enable/Disable the Phases  
Read Word Returns DEVICE_CODE information  
01F8h  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6 Register Maps  
7.6.1 PMBus Description  
7.6.1.1 PMBus General  
Timing and electrical characteristics of the PMBus can be found in the PMB Power Management Protocol  
Specification, Part 1, revision 1.1 available at http://PMBus.org. The TPS53667 device supports both the 100-kHz  
and 400-kHz bus timing requirements. The TPS53667 device does not stretch pulses on the PMBus when  
communicating with the master device.  
Communication over the TPS53667 device PMBus interface can support the packet error checking (PEC)  
scheme if desired. If the master supplies CLK pulses for the PEC byte, PEC is used. If the CLK pulses are not  
present before a STOP, the PEC is not used.  
The TPS53667 device supports a subset of the commands in the PMBus 1.1 specification. Most of the controller  
parameters can be programmed using the PMBus and stored as defaults for later use. All commands that require  
data input or output use the literal format. The exponent of the data words is fixed at a reasonable value for the  
command and altering the exponent is not supported. Direct format data input or output is not supported by the  
TPS53667 device. See the Supported PMBus Commands section for specific details.  
The TPS53667 device also supports the SMBALERT response protocol. The SMBALERT response protocol is a  
mechanism by which a slave (the TPS53667 device) can alert the bus master that it wants to talk. The master  
processes this event and simultaneously accesses all slaves on the bus (that support the protocol) through the  
alert response address. Only the slave that caused the alert acknowledges this request. The host performs a  
modified receive byte operation to get the slave’s address. At this point, the master can use the PMBus status  
commands to query the slave that caused the alert. For more information on the SMBus alert response protocol,  
see the System Management Bus (SMBus) specification.  
The TPS53667 device contains non-volatile memory that is used to store configuration settings and scale factors.  
The settings programmed into the device are not automatically saved into this non-volatile memory though. The  
STORE_DEFAULT_ALL command must be used to commit the current settings to non-volatile memory as  
device defaults. The settings that are capable of being stored in non-volatile memory are noted in their detailed  
descriptions.  
7.6.1.2 PMBus Connections  
The TPS53667 device can operate in either standard mode (100kbit/s) or fast mode (400kbit/s). Connection for  
the PMBus interface should follow the High Power DC specifications given in Section 3.1.3 of the System  
Management Bus (SMBus) Specification V2.0 for the 400-kHz bus speed or the Low Power DC specifications in  
Section 3.1.2. The complete SMBus specification is available from the SMBus website, smbus.org.  
7.6.1.3 Supported Data Formats  
The TPS53667 device supports both linear and VID data formats. The linear data format is used for all telemetry  
reporting data, and VID formatting for certain other commands. (see the Supported PMBus Commands section  
for more details on which command supports each data type). Examples of commands that support VID  
formatting include VOUT_MODE (Read-only Byte) and VOUT_COMMAND (Read/Write Word). An example of  
each can be seen below in Figure 21 and Figure 22.  
VOUT_MODE Data Byte .  
7
6
5
4
3
2
1
0
Mode = 001b  
VID Code Type .  
Figure 21. VOUT_MODE Data Byte for VID Mode  
Copyright © 2016–2017, Texas Instruments Incorporated  
43  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Register Maps (continued)  
Data Byte High .  
Data Byte Low .  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
VID (Right Justified) .  
Figure 22. VOUT_COMMAND Data Bytes for VID Mode  
The Linear Data Format is a two byte value with:  
An 11-bit, two's complement mantissa, and  
A 5-bit, two's complement exponent (scaling factor).  
The format of the two bytes is shown in Figure 23.  
Data Byte High .  
Data Byte Low .  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
MSB  
MSB  
N.  
Y.  
Figure 23. Linear Data Format Data Bytes  
The relation between Y, N, and the real world value is as shown in Equation 6.  
X = Y × 2N  
where  
X is the real world value  
Y is an 11-bit, two's complement integer  
N is a 5-bit, two's complement integer  
(6)  
Note that devices that use the Linear format must accept and be able to process any value of N.  
7.6.1.4 PMBus Command Format  
The TPS53667 device is a PMBus-compliant device. Figure 24 through Figure 35 show the major communication  
protocols used. For full details on the PMBus communication protocols, please visit http://pmbus.org.  
1
7
1
1
8
1
8
1
1
S
Slave Address  
W
A
Command Code  
A
Data Byte  
A
P
Figure 24. Write Byte Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
Slave Address  
W
A
Command Code  
A
Data Byte  
A
PEC  
A
P
Figure 25. Write Byte Protocol with PEC  
44  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Register Maps (continued)  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
S
Slave Address  
R
A
Data Byte Low  
A
8
1
1
Data Byte High  
A
P
Figure 26. Write Word Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
Slave Address  
W
A
Command Code  
A
Data Byte Low  
A
Data Byte High  
A
P
8
1
1
PEC  
A
P
Figure 27. Write Word Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
1
S
Slave Address  
W
A
Command Code  
A
S
Slave Address  
R
A
Data Byte  
A
P
Figure 28. Read Byte Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
S
Slave Address  
R
A
Data Byte  
A
8
1
1
PEC  
A
P
Figure 29. Read Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
S
Slave Address  
R
A
Data Byte Low  
A
8
1
1
Data Byte High  
A
P
Figure 30. Read Word Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
S
Slave Address  
R
A
Data Byte Low  
A
8
1
8
1
1
Data Byte High  
A
PEC  
A
P
Figure 31. Read Word Protocol with PEC  
Copyright © 2016–2017, Texas Instruments Incorporated  
45  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Register Maps (continued)  
1
7
1
1
8
1
8
1
8
1
S
Slave Address  
W
A
Command Code  
A
Byte Count = n  
A
Data Byte 1  
A
8
1
8
1
1
Data Byte 2  
A
Data Byte n  
A
P
Figure 32. Block Write Protocol  
1
7
1
1
8
1
8
1
8
1
S
Slave Address  
W
A
Command Code  
A
Byte Count = n  
A
Data Byte 1  
A
8
1
8
1
8
1
1
Data Byte 2  
A
Data Byte n  
A
PEC  
A
P
Figure 33. Block Write Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
Sr Slave Address  
R
A
Byte Count = n  
A
8
1
8
1
8
1
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte n  
A
P
Figure 34. Block Read Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
S
Slave Address  
W
A
Command Code  
A
Sr Slave Address  
R
A
Byte Count = n  
A
8
1
8
1
8
1
8
1
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte n  
A
PEC  
A
P
Figure 35. Block Read Protocol with PEC  
46  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Register Maps (continued)  
7.6.2 PMBus Functionality  
7.6.2.1 PMBus Address  
The TPS53667 device has a dedicated pin (ADDR-TRISE) for determining the address for the PMBus  
communication. The device supports a total of 16 possible addresses as listed in the Electrical Characteristics  
table.  
7.6.2.2 Pin Strap Settings  
The TPS53667 device supports only PMBus command sets listed in the Electrical Characteristics table. In  
pinstrap mode, the default state of all the configuration registers should be detected from pin strap settings, but  
users can overwrite the settings via PMBus after the power-up sequence is complete. The pin strap settings can  
be found in the Electrical Characteristics table.  
7.6.2.3 Supported PMBus Commands  
The TPS53667 device supports the following commands from the PMBus 1.1 specification.  
7.6.2.3.1 OPERATION (01h)  
Format  
N/A  
Description  
The OPERATION command is used to turn the device output on or off in  
conjunction with the input from the ENABLE pin. It is also used to set the output  
voltage to the upper or lower MARGIN levels.  
Default  
00h  
Figure 36. OPERATION Register  
7
6
5
4
3
2
1
0
ON_OFF  
R/W  
SOFT_OFF  
R-0  
OPMARGIN  
R/W  
IIN_OC_VRHOT  
R/W  
Table 8. OPERATION Register Field Descriptions  
Bit  
Rese  
Field  
Type  
t
NVM  
Description  
7
ON_OFF  
R/W  
0
The On/Off bit is used to enable the IC via PMBus. The  
necessary condition for this bit to be effective is that the CMD bit  
in the ON_OFF CONFIG register is set high. However, the CMD  
bit being high is not a sufficient condition to enable the IC via the  
On bit, as specified below:  
0: (Default) The device output is not enabled via PMBus.  
1: The device output is enabled if:  
MMMa. The supply voltage VIN is greater than the VIN_UVLO  
threshold, the cmd bit is high, and  
MMMb. The bit CP in the ON_OFF CONFIG register is low, or  
MMMc. The bit CP is high and the ENABLE pin is asserted.  
6
SOFT_OFF  
R
0
0
This bit is not supported and always set to 0 on this device.  
0: No Soft off  
1: Not Supported.  
5-2  
OPMARGIN  
R/W  
If Margin Low is enabled, load the value from the  
VOUT_MARGIN_LOW register. If Margin High is enabled, load  
the value from the VOUT_MARGIN_HIGH register.  
00xx: Turn off VOUT margin function  
0101: Turn on VOUT margin low and ignore fault  
0110: Turn on VOUT margin low and act on fault  
1001: Turn on VOUT margin high and ignore fault  
1010: Turn on VOUT margin high and act on fault  
Copyright © 2016–2017, Texas Instruments Incorporated  
47  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 8. OPERATION Register Field Descriptions (continued)  
Bit  
Rese  
t
Field  
Type  
NVM  
Description  
1-0  
IIN_OC_VRHOT  
R/W  
00  
This bit sets the option of asserting VRHOT when  
IIN_OC_WARN_LIMIT is detected.  
01: VRHOT assertion ON with IIN_OC_WARN_LIMIT detection  
others: VRHOT assertion OFF with IIN_OC_WARN_LIMIT  
detection  
7.6.2.3.2 ON_OFF_CONFIG (02h)  
Format  
N/A  
Description  
The ON_OFF_CONFIG command configures the combination of CONTROL pin  
input and serial bus commands needed to turn the unit on and off. This includes  
how the unit responds when power is applied.  
Default  
17h  
Figure 37. ON_OFF_CONFIG Register  
7
6
5
4
3
2
1
0
Reserved  
R-000  
PU  
R-1  
CMD  
R/W  
CP  
R/W  
PL  
R-1  
SP  
R-1  
Table 9. ON_OFF_CONFIG Register Field Descriptions  
Bit  
Rese  
Field  
Type  
R
t
NVM  
Description  
7-5  
4
Reserved  
000  
1
Always set to 0.  
PU  
R
This bit is not supported and always set to 1 on this  
device.  
0: Not supported.  
1: Device will act on ENABLE pin assertion and/or  
ON_OFF bit (OPERATION<7>).  
3
2
CMD  
R/W  
R/W  
0
1
The CMD bit controls how the device responds to the  
OPERATION<7> bit.  
0: (Default) Device ignores the ON_OFF  
OPERATION<7> bit.  
1: Device responds to the ON_OFF OPERATION<7>  
bit.  
CP  
The CP bit controls how the device responds to the  
ENABLE pin  
0: Device ignores the ENABLE pin, and ON/OFF is  
controlled only by the OPERATION command  
1: Device responds to the ENABLE pin.  
1
0
PL  
SP  
R
R
1
1
This bit is not supported and always set to 1 on this  
device.  
0: Not supported.  
1: ENABLE pin has active high polarity.  
This bit is not supported and always set to 1 on this  
device.  
0: Not supported.  
1: Turn off output as fast as possible.  
48  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.3 CLEAR_FAULTS (03h)  
Format  
N/A  
Description  
Clears any faults bits that have been set. At the same time, simultaneously clears  
all bits in all status registers and negates the PMB_ALERT signal output if it is  
asserted.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a  
condition to restart. If the fault remains present when the bit is cleared, the fault bit  
is reset and the host notified by the usual means.  
Default  
NONE  
Figure 38. CLEAR_FAULTS Register  
7
6
5
4
3
2
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Table 10. CLEAR_FAULTS Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7-0  
N/A  
No data bytes are sent, only the command code is  
sent.  
7.6.2.3.4 WRITE_PROTECT (10h)  
Format  
N/A  
Description  
The WRITE_PROTECT command is used to control writing to the PMBus device.  
The intent of this command is to provide protection against accidental changes.  
This command has one data byte as described below.  
NOTE: Invalid data written to WRITE_PROTECT[7:5] causes the ’CML’ bit in the  
STATUS_BYTE and the ‘US_DATA’ bit in the STATUS_CML registers to be set.  
Invalid data also results in no write protection.  
Default  
00h  
Figure 39. WRITE_PROTECT Register  
7
6
5
4
3
2
1
0
bit7  
R/W  
bit6  
R/W  
bit5  
R/W  
Reserved  
R-0 0000  
Table 11. WRITE_PROTECT Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
bit7  
R/W  
R/W  
R/W  
0
0
0
0: (Default) See Table 12.  
1: Disable all writes except for the  
WRITE_PROTECT command (bit5 and bit6 must be  
0 to be valid).  
6
5
bit6  
bit5  
0: (Default) See Table 12.  
1: Disable all writes except for the  
WRITE_PROTECT and OPERATION commands  
(bit5 and bit7 must be 0 to be valid).  
0: (Default) See Table 12.  
1: Disable all writes except for the  
WRITE_PROTECT, OPERATION, and  
ON_OFF_CONFIG commands (bit6 and bit7 must  
be 0 to be valid).  
4:0  
Reserved  
R
0 0000  
Always set to 0.  
Copyright © 2016–2017, Texas Instruments Incorporated  
49  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 12. WRITE_PROTECT Data Byte Values  
Data Byte Value  
1000 0000  
Action  
Disables all writes except to the WRITE_PROTECT command.  
0100 0000  
Disables all writes except to the WRITE_PROTECT and OPERATION commands.  
Disables all writes to the WRITE_PROTECT, OPERATION, ON_OFF_CONFIG and  
VOUT_COMMAND commands.  
0010 0000  
0000 0000  
Others  
Enable writes to all commands  
Invalid data.  
7.6.2.3.5 STORE_DEFAULT_ALL (11h)  
Format  
N/A  
Description  
The STORE_DEFAULT_ALL command instructs the PMBus device to copy the  
entire contents of the Operating Memory to the matching locations in the non-  
volatile Default Store memory. Any items in the Operating Memory that do not  
have matching locations in the Default Store are ignored.  
Following a STORE_DEFAULT_ALL command, the following registers return to  
the default values regardless of the values in the Operating Memory:  
OC_FAULT_LIMIT returns to 125%×IMAX,  
OC_WARN_LIMIT returns to IMAX,  
VOUT_COMMAND returns to VBOOT,  
VOUT_MAX returns to 00FFh (1.52V in VR12.0 mode and 3.04 V in VR12.5  
mode)  
Default  
NONE  
Figure 40. STORE_DEFAULT_ALL Register  
7
6
5
4
3
2
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Table 13. STORE_DEFAULT_ALL Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
N/A  
No data bytes are sent, only the command code is  
sent.  
7.6.2.3.6 RESTORE_DEFAULT_ALL (12h)  
Format  
N/A  
Description  
The RESTORE_DEFAULT_ALL command instructs the PMBus device to copy the  
entire contents of the non-volatile Default Store memory to the matching locations  
in the Operating Memory. The values in the Operating Memory are overwritten by  
the value retrieved from the Default Store. Any items in Default Store that do not  
have matching locations in the Operating Memory are ignored.  
Default  
NONE  
Figure 41. RESTORE_DEFAULT_ALL Register  
7
6
5
4
3
2
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
50  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 14. RESTORE_DEFAULT_ALL Register Field Descriptions  
Bit  
Field  
N/A  
Type  
Reset  
Description  
No data bytes are sent, only the command code is sent.  
7:0  
7.6.2.3.7 CAPABILITY (19h)  
Format  
N/A  
Description  
This command provides a way for a host system to determine some key  
capabilities of this PMBus device.  
Default  
B0h  
Figure 42. CAPABILITY Register  
7
6
5
4
3
2
1
0
PEC  
R-1  
SPD  
R-01  
PMBALERT  
R-1  
Reserved  
R-0000  
Table 15. CAPABILITY Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
PEC  
R
R
R
1
Packet Error Checking is supported.  
1: Default  
6:5  
4
SPD  
01  
1
Maximum supported bus speed is 400 kHz.  
01: Default  
PMBALERT  
This device does have a PMBALERT pin and does  
support the SMBus Alert Response Protocol.  
1: Default  
3:0  
Reserved  
R
0000  
Always set to 0.  
7.6.2.3.8 VOUT_MODE (20h)  
Format  
VID  
Description  
The PMBus specification dictates that the data word for the VOUT_MODE  
command is one byte that consists of a 3-bit Mode and 5-bit parameter, as shown  
below.  
This command is read-only. If the host sends a VOUT_MODE command for  
writing, the device will reject the command and declare a communication fault for  
invalid data and respond as described in PMBus specification II section 10.2.2.  
Default  
21h  
Figure 43. VOUT_MODE Register  
7
6
5
4
3
2
1
0
DATA_MODE  
R-001  
DATA_PARAMETER  
R
Table 16. VOUT_MODE Register Field Descriptions  
Bit  
7:5  
4:0  
Field  
Type Reset  
NVM  
Description  
DATA_MODE  
R
R
001  
001: VID mode.  
DATA_PARAMETER  
0 0001  
00010: For VR12.5 Mode  
00001: For VR12.0 Mode  
Copyright © 2016–2017, Texas Instruments Incorporated  
51  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.9 VOUT_COMMAND (21h)  
Format  
VID  
Description  
VOUT_COMMAND causes the device to set its output voltage to the commanded  
value with two data bytes. These data bytes consist of a right-justified VID code  
with VID0 in bit 0 of the lower data byte, VID1 in bit 1 of the lower byte and so  
forth. The VID table mapping is determined by the selected VID protocols (VR12.0  
or VR12.5) from SLEW_MODE pin or MFR_SPECIFIC_13.  
Default  
VBOOT  
Figure 44. VOUT_COMMAND Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
R-0000 0000  
4
3
2
VOUT  
R/W  
Table 17. VOUT_COMMAND Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
Always set to 0.  
7:0  
VOUT  
R/W  
Used to set the commanded VOUT. Cannot be set  
to a level above the value set by VOUT_MAX.  
7.6.2.3.10 VOUT_MAX (24h)  
Format  
VID  
Description  
The VOUT_MAX command sets an upper limit on the output voltage that the unit  
can command regardless of any other commands or combinations. The intent of  
this command is to provide a safeguard against a user accidentally setting the  
output voltage to a possibly destructive level.  
The device detects that an attempt has been made to program the output to a  
voltage greater than the value set by the VOUT_MAX command. This will then be  
treated as a warning condition and not a fault condition. If an attempt is made to  
program the output voltage higher than the limit set by this command, the device  
responds as follows:  
The commanded output voltage is set to VOUT_MAX,  
The OTHER bit is set in the STATUS_BYTE,  
The VOUT bit is set in the STATUS_WORD,  
The VOUT_MAX warning bit is set in the STATUS_VOUT register, and  
The device notifies the host (asserts PMBUS_ALERT).  
The data bytes are two bytes, which are in right-justified VID format. The VID  
table mapping determined by the selected VID protocols (VR12.0 or VR12.5) from  
the SLEW_MODE pin or MFR_SPECIFIC_13.  
Default  
00FFh .  
Figure 45. VOUT_MAX Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Reserved  
R-0000 0000  
4
3
VOUT_MAX  
52  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
R/W  
Table 18. VOUT_MAX Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
Always set to 0.  
7:0  
VOUT_MAX  
R/W  
1111  
1111  
Used to set the maximum VOUT of the device.  
7.6.2.3.11 VOUT_MARGIN_HIGH (25h)  
Format  
VID  
Description  
The VOUT_MARGIN_HIGH command loads the unit with the voltage to which the  
output is to be changed when the OPERATION command is set to Margin High.  
The data bytes are two bytes, which are in right-justified VID format. The VID  
table mapping determined by the selected VID protocols from the SLEW_MODE  
pin or MFR_SPECIFIC_13.  
Default  
0000h  
Figure 46. VOUT_MARGIN_HIGH Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
R-0000 0000  
4
3
2
VOUT_MARGIN_HIGH  
R/W  
Table 19. VOUT_MARGIN_HIGH Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
Always set to 0.  
7:0  
VOUT_MARGIN_HIGH  
R/W  
0000  
0000  
Used to set the value for the VOUT Margin High.  
7.6.2.3.12 VOUT_MARGIN_LOW (26h)  
Format  
VID  
Description  
The VOUT_MARGIN_LOW command loads the unit with the voltage to which the  
output is to be changed when the OPERATION command is set to Margin Low.  
The data bytes are two bytes, which are in right-justified VID format. The VID  
table mapping determined by the selected VID protocols from the SLEW_MODE  
pin or MFR_SPECIFIC_13.  
Default  
0000h  
Figure 47. VOUT_MARGIN_LOW Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
1
8
0
Reserved  
R-0000 0000  
4
3
2
VOUT_MARGIN_LOW  
R/W  
Copyright © 2016–2017, Texas Instruments Incorporated  
53  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 20. VOUT_MARGIN_LOW Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
Always set to 0.  
7:0  
VOUT_MARGIN_LOW  
R/W  
0000  
0000  
Used to set the value for the VOUT Margin Low.  
7.6.2.3.13 IOUT_CAL_OFFSET (39h)  
Format  
Linear  
Description  
The IOUT_CAL_OFFSET command sets the value of compensation for offset  
errors in the READ_IOUT command, in amperes.  
Default  
0000h  
Figure 48. IOUT_CAL_OFFSET Register  
15  
7
14  
6
13  
IOCAL_OFS_EXPONENT  
R/W  
12  
11  
10  
9
IOCAL_OFS_MANTISSA  
R/W  
8
0
5
4
3
2
1
IOCAL_OFS_MANTISSA  
R/W  
Table 21. IOUT_CAL_OFFSET Register Field Descriptions  
Bit  
15:11 IOCAL_OFS_EXPONENT  
10:0 IOCAL_OFS_MANTISSA  
Field  
Type Reset  
R/W  
NVM  
Description  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
R/W  
7.6.2.3.14 VOUT_OV_FAULT_RESPONSE (41h)  
Format  
N/A  
Description  
The VOUT_OV_FAULT_RESPONSE command instructs the device on what  
action to take in response to an output overvoltage fault. Upon triggering the  
overvoltage fault, the controller is latched off, and the following actions are taken:  
Set the VOUT_OV_FAULT bit in the STATUS_BYTE,  
Set the VOUT bit in the STATUS_WORD,  
Set the VOUT_OV_FAULT bit in the STATUS_VOUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
!~ filter="filter4, filter5"80hfilter="filter6"9Ah!~9Ah  
Figure 49. VOUT_OV_FAULT_RESPONSE Register  
7
6
5
4
3
2
1
0
VOUT_OV_FAULT_RESPONSE  
R-1000 0000  
Table 22. VOUT_OV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
VOUT_OV_FAULT_RESPO  
NSE  
R
1000  
0000  
Upon triggering the overvoltage fault, the controller  
will shut the device down immediately and will not  
attempt to restart. The output remains disabled until  
the fault is cleared.  
54  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.15 VOUT_UV_FAULT_RESPONSE (45h)  
Format  
N/A  
Description  
The VOUT_UV_FAULT_RESPONSE instructs the device on what action to take in  
response to an output undervoltage fault. Upon triggering the undervotlage fault,  
the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE,  
Set the VOUT bit in the STATUS_WORD,  
Set the VOUT_UV_FAULT bit in the STATUS_VOUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
BAh  
Figure 50. VOUT_UV_FAULT_RESPONSE Register  
7
6
5
4
3
2
1
0
VOUT_UV_FAULT_RESPONSE  
R-1011 1010  
Table 23. VOUT_UV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
VOUT_UV_FAULT_RESPON  
SE  
R
1011  
1010  
Upon triggering the undervoltage fault, the controller  
will shut the device down immediately and will  
attempt to restart after a 22 ms delay.  
7.6.2.3.16 IOUT_OC_FAULT_LIMIT (46h)  
Format  
Linear  
Description  
The IOUT_OC_FAULT_LIMIT command sets the value of the output current, in  
amperes, that causes an overcurrent fault condition. Upon triggering the  
overcurrent fault, the following actions are taken:  
Set the IOUT_OC_FAULT bit in the STATUS_BYTE,  
Set the IOUT bit in the STATUS_WORD,  
Set the IOUT_OC_FAULT bit in the STATUS_IOUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
125% IMAX  
Figure 51. IOUT_OC_FAULT_LIMIT Register  
15  
7
14  
6
13  
OCF_LIMIT_EXPONENT  
R/W  
12  
11  
10  
9
OCF_LIMIT_MANTISSA  
R/W  
8
0
5
4
3
2
1
OCF_LIMIT_MANTISSA  
R/W  
Table 24. IOUT_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
15:11 OCF_LIMIT_EXPONENT  
10:0 OCF_LIMIT_MANTISSA  
Field  
Type Reset  
R/W  
NVM  
Description  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
R/W  
Copyright © 2016–2017, Texas Instruments Incorporated  
55  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.17 IOUT_OC_FAULT_RESPONSE (47h)  
Format  
N/A  
Description  
The IOUT_OC_FAULT_RESPONSE instructs the device on what action to take in  
response to an output overcurrent fault. Upon triggering the overcurrent fault, the  
controller is latched off, and the following actions are taken:  
Set the IOUT_OC_FAULT bit in the STATUS_BYTE,  
Set the IOUT bit in the STATUS_WORD,  
Set the IOUT_OC_FAULT bit in the STATUS_IOUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
FAh  
Figure 52. IOUT_OC_FAULT_RESPONSE Register  
7
6
5
4
3
2
1
0
IOUT_OC_FAULT_RESPONSE  
R-1111 1010  
Table 25. IOUT_OC_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
Upon triggering the overcurrent fault, the controller  
immediately shuts down the device and attempts to  
restart after a 22 ms delay.  
IOUT_OC_FAULT_RESPON  
SE  
1111  
1010  
R
56  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.18 IOUT_OC_WARN_LIMIT (4Ah)  
Format  
Linear  
Description  
The IOUT_OC_WARN_LIMIT command sets the value of the output current, in  
amperes, that causes an output overcurrent warning condition. Upon triggering the  
overcurrent warning, the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE,  
Set the IOUT bit in the STATUS_WORD,  
Set the IOUT OC Warning bit in the STATUS_IOUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
IMAX  
Figure 53. IOUT_OC_WARN_LIMIT Register  
15  
7
14  
6
13  
12  
11  
10  
9
OCW_LIMIT_MANTISSA  
R/W  
8
0
OCW_LIMIT_EXPONENT  
R/W  
5
4
3
2
1
OCW_LIMIT_MANTISSA  
R/W  
Table 26. IOUT_OC_WARN_LIMIT Register Field Descriptions  
Bit  
15:11 OCW_LIMIT_EXPONENT  
10:0 OCW_LIMIT_MANTISSA  
Field  
Type Reset  
R/W  
NVM  
Description  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
R/W  
Copyright © 2016–2017, Texas Instruments Incorporated  
57  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.19 OT_FAULT_LIMIT (4Fh)  
Format  
Linear  
Description  
The OT_FAULT_LIMIT command sets the value of the temperature limit, in  
degrees Celsius, that causes an over-temperature fault condition. The default  
value is 125C°. Upon triggering the over-temperature fault, the following actions  
are taken:  
Set the TEMPERATURE bit in the STATUS_BYTE,  
Set the OT_FAULT bit in the STATUS_TEMPERATURE register, and  
The device notifies the host (asserts PMB_ALERT and VR_FAULT).  
Default  
007Dh  
Figure 54. OT_FAULT_LIMIT Register  
15  
7
14  
6
13  
OT_LIMIT_EXPONENT  
R/W  
12  
11  
10  
2
9
OT_LIMIT_MANTISSA  
R/W  
8
0
5
4
3
1
OT_LIMIT_MANTISSA  
R/W  
Table 27. OT_FAULT_LIMIT Register Field Descriptions  
Bit  
15:11 OT_LIMIT_EXPONENT  
10:0 OT_LIMIT_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R/W  
R/W  
0000 0  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
000 0111  
1101  
58  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.20 OT_FAULT_RESPONSE (50h)  
Format  
N/A  
Description  
The OT_FAULT_RESPONSE instructs the device on what action to take in  
response to an over-temperature fault. Upon triggering the over-temperature fault,  
the controller shuts off and attempts to restart when the temperature reduces by  
15C°, and the following actions are taken:  
Set the TEMPERATURE bit in the STATUS_BYTE,  
Set the OT_FAULT bit in the STATUS_TEMPERATURE register, and  
The device notifies the host (asserts PMB_ALERT and VR_FAULT).  
Default  
F8h  
Figure 55. OT_FAULT_RESPONSE Register  
7
6
5
4
3
2
1
0
OT_FAULT_RESPONSE  
R-1111 1000  
Table 28. OT_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
OT_FAULT_RESPONSE  
Type Reset  
NVM  
Description  
7:0  
R
1111  
1000  
Upon triggering the over-temperature fault, the  
device will shut down immediately (disables the  
output), and will restart when the temperature goes  
15 degree Celsius below OT _FAULT_LIMIT.  
7.6.2.3.21 OT_WARN_LIMIT (51h)  
Format  
Linear  
Description  
The OT_WARN_LIMIT command sets the temperature, in degrees Celsius, at  
which it should indicate an over-temperature warning condition. The default value  
is 95C. Upon triggering the over-temperature warning, the following actions are  
taken:  
Sets the TEMPERATURE bit in the STATUS_BYTE,  
Sets the OT Warning bit in the STATUS_TEMPERATURE register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
005Fh  
Figure 56. OT_WARN_LIMIT Register  
15  
7
14  
6
13  
OTW_WARN_EXPONENT  
R/W  
12  
11  
10  
2
9
OTW_WARN_MANTISSA  
R/W  
8
0
5
4
3
1
OTW_WARN_MANTISSA  
R/W  
Table 29. OT_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
NVM  
Description  
15:11  
10:0  
OTW_WARN_EXPONENT  
OTW_WARN_MANTISSA  
0000 0  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
000 0101 1111  
Copyright © 2016–2017, Texas Instruments Incorporated  
59  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.22 VIN_OV_FAULT_LIMIT (55h)  
Format  
Linear  
Description  
The VIN_OV_FAULT_LIMIT command sets the value of the input voltage that  
causes an input overvoltage fault condition. The default value is 17 V in NVM  
mode and 14 V in pinstrap mode. Upon triggering an input voltage fault, the  
following actions are taken:  
Sets the OTHER bit in the STATUS_BYTE,  
Sets the INPUT bit in the upper byte of the STATUS_WORD,  
Sets the VIN_OV_FAULT bit in the STATUS_INPUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
!~ 0011h !~0011h  
Figure 57. VIN_OV_FAULT_LIMIT Register  
15  
7
14  
6
13  
VIN_OVF_EXPONENT  
R/W  
12  
11  
10  
9
VIN_OVF_MANTISSA  
R/W  
8
0
5
4
3
2
1
VIN_OVF_MANTISSA  
R/W  
Table 30. VIN_OV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
NVM  
Description  
15:11  
10:0  
VIN_OVF_EXPONENT  
VIN_OVF_MANTISSA  
0000 0  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
000 0001 0001  
After a STORE_DEFAULT_ALL command, the controller reads the last two LSB of VIN_OV_FAULT_LIMIT and  
convert to decimal, and then adds 14 and converts to save into the VIN_OV_FAULT_LIMIT register. For  
example, when the two LSB are 01b, after STORE_DEFAULT_ALL command, the VIN_OV_FAULT_LIMIT reads  
000Fh (15 V).  
60  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.23 IIN_OC_FAULT_LIMIT (5Bh)  
Format  
Linear  
Description  
The IIN_OC_FAULT_LIMIT command sets the value of the input current, in  
amperes, that the causes an input overcurrent fault condition. Upon triggering the  
overcurrent fault, the following actions are taken:  
Sets the OTHER bit in the STATUS_BYTE,  
Sets the INPUT bit in the STATUS_WORD,  
Sets the IIN_OC_FAULT bit in the STATUS_INPUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
00FFh  
Figure 58. IIN_OC_FAULT_LIMIT Register  
15  
7
14  
6
13  
INOCF_LIMIT_EXPONENT  
R/W  
12  
11  
10  
9
INOCF_LIMIT_MANTISSA  
R/W  
8
0
5
4
3
2
1
INOCF_LIMIT_MANTISSA  
R/W  
Table 31. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
NVM  
Description  
15:11  
10:0  
INOCF_LIMIT_EXPONENT  
INOCF_LIMIT_MANTISSA  
0000 0  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
000 1111 1111  
Copyright © 2016–2017, Texas Instruments Incorporated  
61  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.24 IIN_OC_FAULT_RESPONSE (5Ch)  
Format  
N/A  
Description  
The IIN_OC_FAULT_RESPONSE instructs the device on what action to take in  
response to an input overcurrent fault. Upon triggering the input overcurrent fault,  
the controller is latched off, and the following actions are taken:  
Sets the OTHER bit in the STATUS_BYTE,  
Sets the INPUT bit in the STATUS_WORD,  
Sets the IIN_OC_FAULT bit in the STATUS_INPUT register, and  
The device notifies the host (asserts PMB_ALERT and VR_FAULT).  
Default  
C0h  
Figure 59. IIN_OC_FAULT_RESPONSE Register  
7
6
5
4
3
2
1
0
IIN_OC_FAULT_RESPONSE  
R-1100 0000  
Table 32. IIN_OC_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
NVM  
Description  
7:0  
IIN_OC_FAULT_RESPONSE  
R
1100 0000  
Upon triggering the input overcurrent fault, the device  
will shut down immediately (disables the output), and  
will not attempt to restart. The output then remains  
disabled until the fault is cleared.  
62  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.25 IIN_OC_WARN_LIMIT (5Dh)  
Format  
Linear  
Description  
The IIN_OC_WARN_LIMIT command sets the value of the input current, in  
amperes, that causes the input overcurrent warning condition. The default setting  
is 25A. Upon triggering the overcurrent warning, the following actions are taken:  
Sets the OTHER bit in the STATUS_BYTE,  
Sets the INPUT bit in the STATUS_WORD,  
Sets the IIN OC Warning bit in the STATUS_INPUT register, and  
The device notifies the host (asserts PMB_ALERT).  
Default  
0019h  
Figure 60. IIN_OC_WARN_LIMIT Register  
15  
7
14  
6
13  
INOCW_LIMIT_EXPONENT  
R/W  
12  
11  
10  
9
INOCW_LIMIT_MANTISSA  
R/W  
8
0
5
4
3
2
1
INOCW_LIMIT_MANTISSA  
R/W  
Table 33. IIN_OC_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
NVM  
Description  
15:11  
10:0  
INOCW_LIMIT_EXPONENT  
INOCW_LIMIT_MANTISSA  
0000 0  
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
000 0001 1001  
Copyright © 2016–2017, Texas Instruments Incorporated  
63  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.26 STATUS_BYTE (78h)  
Format  
N/A  
Description  
The STATUS_BYTE command returns a single byte of information with the a  
summary of critical faults. The STATUS_BYTE command is the same register as  
the low byte of the STATUS_WORD command. It should be noted that all faults  
and warnings trigger the assertion of PMB_ALERT.  
Default  
00h  
Figure 61. STATUS_BYTE Register  
7
6
OFF  
R
5
VOUT_OV  
R
4
IOUT_OC  
R
3
VIN_UV  
R
2
TEMP  
R
1
CML  
R
0
OTHER  
R
BUSY  
R-0  
Table 34. STATUS_BYTE Register Field Descriptions  
Bit  
7
Field  
BUSY  
OFF  
Type Reset  
NVM  
Description  
Not supported and always set to 0  
R
R
0
6
This bit is asserted if the unit is not providing power  
to the output, regardless of the reason, including  
simply not being enabled.  
0: Raw status indicating the IC is providing power to  
VOUT.  
1: Raw status indicating the IC is not providing  
power to VOUT.  
5
4
VOUT_OV  
IOUT_OC  
R
R
Output Over-Voltage Fault Condition  
0: Latched flag indicating no VOUT OV fault has  
occurred.  
1: Latched flag indicating a VOUT OV fault occurred  
Output Over-Current Fault Condition  
0: Latched flag indicating no IOUT OC fault has  
occurred.  
1: Latched flag indicating an IOUT OC fault has  
occurred.  
3
2
1
0
VIN_UV  
TEMP  
CML  
R
R
R
R
Input Under-Voltage Fault Condition  
0: Latched flag indicating VIN is above the UVLO  
threshold.  
1: Latched flag indicating VIN is below the UVLO  
threshold.  
Over-Temperature Fault/Warning  
0: Latched flag indicating no OT fault or warning has  
occurred.  
1: Latched flag indicating an OT fault or warning has  
occurred.  
Communications, Memory or Logic Fault  
0: Latched flag indicating no communication,  
memory, or logic fault has occurred.  
1: Latched flag indicating a communication,  
memory, or logic fault has occurred.  
OTHER  
Other Fault  
This bit is used to flag faults not covered with the  
other bit faults. In this case, UVF or OCW faults are  
examples of other faults not covered by the bits [6:1]  
in this register.  
0: No fault has occurred  
1: A fault or warning not listed in bits [6:1] has  
occurred.  
64  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.27 STATUS_WORD (79h)  
Format  
N/A  
Description  
The STATUS_WORD command returns two bytes of information with a summary  
of critical faults, such as over-voltage, overcurrent, over-temperature, etc. It should  
be noted that all faults and warnings except VIN_UV trigger the assertion of  
PMB_ALERT.  
NOTE: The STATUS_WORD low byte is the STATUS_BYTE.  
Default  
0000h  
Figure 62. STATUS_WORD Register  
15  
VOUT  
R
14  
IOUT  
R
13  
INPUT  
R
12  
MFR  
R
11  
PGOOD  
R
10  
FANS  
R-0  
9
8
OTHER  
R-0  
UNKNOWN  
R-0  
7
6
OFF  
R
5
VOUT_OV  
R
4
IOUT_OC  
R
3
VIN_UV  
R
2
TEMP  
R
1
CML  
R
0
OTHER  
R
BUSY  
R-0  
Table 35. STATUS_WORD Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15  
VOUT  
R
Output Voltage Fault/Warning  
0: Latched flag indicating no VOUT fault or warning  
has occurred.  
1: Latched flag indicating a VOUT fault or warning  
has occurred.  
14  
13  
IOUT  
R
R
Output Current Fault/Warning  
0: Latched flag indicating no IOUT fault or warning  
has occurred.  
1: Latched flag indicating an IOUT fault or warning  
has occurred.  
INPUT  
Input Voltage/Current Fault/Warning  
0: Latched flag indicating no VIN or IIN fault or  
warning has occurred.  
1: Latched flag indicating a VIN or IIN fault or  
warning has occurred.  
12  
11  
MFR  
R
R
MFR_SPECIFIC Fault  
0: Latched flag indicating no MFR_SPECIFIC fault  
has occurred.  
1: Latched flag indicating a MFR_SPECIFIC fault  
has occurred.  
PGOOD  
Power Good Status  
0: Raw status indicating VRRDY pin is at logic high.  
1: Raw status indicating VRRDY pin is at logic low.  
10  
9
8
7
6
5
4
3
2
1
0
FANS  
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
OTHER  
UNKNOWN  
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
See information in Table 34  
CML  
OTHER  
Copyright © 2016–2017, Texas Instruments Incorporated  
65  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.28 STATUS_VOUT (7Ah)  
Format  
N/A  
Description  
The STATUS_VOUT command returns one byte of information relating to the  
status of the converter's output voltage related faults.  
Default  
00h  
Figure 63. STATUS_VOUT Register  
7
VOUT_OVF  
R
6
5
4
VOUT_UVF  
R
3
2
1
0
VOUT_TRACK  
R-0  
VOUT_OVW  
R-0  
VOUT_UVW  
R-0  
VOUT_MAXW  
R
TON_MAX  
R-0  
TOFF_MAX  
R-0  
Table 36. STATUS_VOUT Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
VOUT_OVF  
R
Output Over-Voltage Fault  
0: Latched flag indicating no VOUT OV fault has  
occurred.  
1: Latched flag indicating a VOUT OV fault has  
occurred.  
6
5
4
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
R
R
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Output Under-Voltage Fault  
0: Latched flag indicating no VOUT UV fault has  
occurred.  
1: Latched flag indicating a VOUT UV fault has  
occurred.  
3
VOUT_MAXW  
R
VOUT Max Warning  
0: Latched flag indicating that no VOUT Max  
warning has occurred  
1: Latched flag indicating that an attempt has been  
made to set the output voltage to a value higher  
than allowed by the VOUT_MAX command.  
2
1
0
TON_MAX  
R
R
R
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
TOFF_MAX  
VOUT_TRACK  
7.6.2.3.29 STATUS_IOUT (7Bh)  
Format  
N/A  
Description  
The STATUS_IOUT command returns one byte of information relating to the  
status of the converter's output current related faults.  
Default  
00h  
Figure 64. STATUS_IOUT Register  
7
IOUT_OCF  
R
6
5
IOUT_OCW  
R
4
3
CUR_SHAREF  
R-0  
2
1
0
IOUT_OCUVF  
R-0  
IOUT_UCF  
R-0  
POW_LIMIT  
R-0  
POUT_OPF  
R-0  
POUT_OPW  
R-0  
Table 37. STATUS_IOUT Register Field Descriptions  
Bit  
Field  
IOUT_OCF  
Type Reset  
NVM  
Description  
7
R
Output Over-Current Fault  
0: Latched flag indicating no IOUT OC fault has  
occurred.  
1: Latched flag indicating a IOUT OC fault has  
occurred .  
66  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 37. STATUS_IOUT Register Field Descriptions (continued)  
Bit  
6
Field  
Type Reset  
NVM  
Description  
IOUT_OCUVF  
IOUT_OCW  
R
R
0
Not supported and always set to 0.  
5
Output Over-Current Warning  
0: Latched flag indicating no IOUT OC warning has  
occurred  
1: Latched flag indicating a IOUT OC warning has  
occurred  
4
3
2
1
0
IOUT_UCF  
R
R
R
R
R
0
0
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
CUR_SHAREF  
POW_LIMIT  
POUT_OPF  
POUT_OPW  
7.6.2.3.30 STATUS_INPUT (7Ch)  
Format  
N/A  
Description  
The STATUS_INPUT command returns one byte of information relating to the  
status of the converter's input voltage and current related faults.  
Default  
00h  
Figure 65. STATUS_INPUT Register  
7
VIN_OVF  
R
6
5
4
VIN_UVF  
R
3
2
IIN_OCF  
R
1
IIN_OCW  
R
0
VIN_OVW  
R-0  
VIN_UVW  
R-0  
VIN_OFF  
R-0  
PIN_OPW  
R-0  
Table 38. STATUS_INPUT Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
VIN_OVF  
R
Input Over-Voltage Fault  
0: Latched flag indicating no VIN OV fault has  
occurred.  
1: Latched flag indicating a VIN OV fault has  
occurred.  
6
5
4
VIN_OVW  
VIN_UVW  
VIN_UVF  
R
R
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Input Under-Voltage Fault  
0: Latched flag indicating no VIN UV fault has  
occurred.  
1: Latched flag indicating a VIN UV fault has  
occurred.  
3
2
VIN_OFF  
IIN_OCF  
R
R
0
Not supported and always set to 0.  
Input Over-Current Fault  
0: Latched flag indicating no IIN OC fault has  
occurred.  
1: Latched flag indicating a IIN OC fault has  
occurred.  
1
0
IIN_OCW  
PIN_OPW  
R
R
Input Over-Current Warning  
0: Latched flag indicating no IIN OC warning has  
occurred.  
1: Latched flag indicating a IIN OC warning has  
occurred.  
0
Not supported and always set to 0.  
Copyright © 2016–2017, Texas Instruments Incorporated  
67  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.31 STATUS_TEMPERATURE (7Dh)  
Format  
N/A  
Description  
The STATUS_ TEMPERATURE command returns one byte of information relating  
to the status of the converter's temperature related faults.  
Default  
00h  
Figure 66. STATUS_TEMPERATURE Register  
7
OTF  
R
6
OTW  
R
5
4
3
2
1
0
UTW  
R-0  
UTF  
R-0  
Reserved  
R-0000  
Table 39. STATUS_TEMPERATURE Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
OTF  
R
Over-Temperature Fault  
0: Latched flag indicating no temperature fault has  
occurred.  
1: Latched flag indicating a temperature fault has  
occurred.  
6
OTW  
R
Over-Temperature Warning  
0: Latched flag indicating no temperature warning  
has occurred.  
1: Latched flag indicating a temperature warning has  
occurred.  
5
4
UTW  
R
R
R
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Always set to 0.  
UTF  
0
3-0  
Reserved  
0000  
68  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.32 STATUS_CML (7Eh)  
Format  
N/A  
Description  
The STATUS_ CML command returns one byte with contents regarding  
communication, logic, or memory conditions.  
Default  
00h  
Figure 67. STATUS_CML Register  
7
US_CMD  
R
6
US_DATA  
R
5
PEC_FAIL  
R
4
MEM_FAULT  
R
3
2
1
COM_FAIL  
R
0
PRO_FAULT  
R-0  
Reserved  
R-0  
CML_OTHER  
R-0  
Table 40. STATUS_CML Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
US_CMD  
US_DATA  
PEC_FAIL  
R
Invalid or Unsupported Command Received  
0: Latched flag indicating no invalid or unsupported  
command has received.  
1: Latched flag indicating an invalid or unsupported  
command has received.  
6
5
4
R
R
R
Invalid or Unsupported Data Received  
0: Latched flag indicating no invalid or unsupported  
data has received.  
1: Latched flag indicating an invalid or unsupported  
data has received.  
Packet Error Check Failed  
0: Latched flag indicating no packet error check has  
failed  
1: Latched flag indicating a packet error check has  
failed  
MEM_FAULT  
Memory Error  
0: Latched flag indicating that there is no memory  
error.  
1: Latched flag indicating that a memory error, i.e.  
PMBus controller is trying to write into registers  
when NVM memory is being programmed.  
3
2
1
PRO_FAULT  
Reserved  
R
R
R
0
0
Not supported and always set to 0.  
Always set to 0.  
COM_FAIL  
Other Communication Faults  
0: Latched flag indicating no communication fault  
other than the ones listed in this table has occurred.  
1: Latched flag indicating a communication fault  
other than the ones listed in this table has occurred.  
0
CML_OTHER  
R
0
Not supported and always set to 0.  
Copyright © 2016–2017, Texas Instruments Incorporated  
69  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.33 STATUS_MFR_SPECIFIC (80h)  
Format  
N/A  
Description  
The STATUS_ MFR_SPECIFIC command returns one byte containing  
manufacturer-specific faults or warnings.  
Default  
00h  
Figure 68. STATUS_MFR_SPECIFIC Register  
7
6
5
4
3
2
1
0
MFR_FAULT_P  
S
MFR_PBF  
CUR_SH_WARN  
RST_VOUT  
VOUT_MIN  
PHFLT  
R
R
R
R
R
R
Table 41. STATUS_MFR_SPECIFIC Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
MFR_FAULT_PS  
R
Power State Fault  
0: Latched flag indicating no fault from TI power  
stage has occurred.  
1: Latched flag indicating a fault from TI power  
stage has occurred.  
6
MFR_PBF  
R
Pre-Bias Fault  
0: Latched flag indicating no pre-bias fault (VOUT  
2.75V at startup) has occurred.  
>
1: Latched flag indicating a pre-bias fault (VOUT  
2.75V at startup) has occurred.  
>
5:3  
2
CUR_SH_WARN  
RST_VOUT  
R
R
000  
not supported and alwats set to 0  
RST_VOUT Fault  
0: Latched flag indicating no RST_VOUT fault has  
occurred.  
1: Latched flag indicating a RST_VOUT fault has  
occurred.  
1
0
VOUT_MIN  
PHFLT  
R
R
VOUT_MIN Fault  
0: Latched flag indicating no VOUT_MIN fault has  
occurred.  
1: Latched flag indicating a VOUT_MIN fault has  
occurred.  
Phase Fault  
0: Latched flag indicating no phase fault (no phase  
pulse detected) has occurred.  
1: Latched flag indicating a phase fault (no phase  
pulse detected) has occurred.  
70  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.34 READ_VIN (88h)  
Format  
Linear  
Description  
The READ_VIN command returns the input voltage in volts. Refer to Equation 6 to  
get the real world value.  
Default  
Figure 69. READ_VIN Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
READ_VIN_EXPONENT  
R
READ_VIN_MANTISSA  
R
5
4
3
1
READ_VIN_MANTISSA  
R
Table 42. READ_VIN Register Field Descriptions  
Bit  
15:11 READ_VIN_EXPONENT  
10:0 READ_VIN_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R
R
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
Copyright © 2016–2017, Texas Instruments Incorporated  
71  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.35 READ_IIN (89h)  
Format  
Linear  
Description  
The READ_IIN command returns the input current in amperes. Refer to  
Equation 6 to get the real world value.  
Default  
Figure 70. READ_IIN Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
READ_IIN_EXPONENT  
R
READ_IIN_MANTISSA  
R
5
4
3
1
READ_IIN_MANTISSA  
R
Table 43. READ_IIN Register Field Descriptions  
Bit  
15:11 READ_IIN_EXPONENT  
10:0 READ_IIN_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R
R
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
72  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.36 READ_VOUT (8Bh)  
Format  
VID  
The READ_VOUT command returns the actual, measured output voltage.  
Description  
Default  
Another command, MFR_READ_VOUT (D4h), returns the measured output voltage in linear format.  
Figure 71. READ_VOUT Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
READ_VOUT_VID  
R
4
3
READ_VOUT_VID  
R
Table 44. READ_VOUT Register Field Descriptions  
Bit  
Field  
READ_VOUT_VID  
Type Reset  
NVM  
Description  
15:0  
R
16-bit, VID format  
7.6.2.3.37 READ_IOUT (8Ch)  
Format  
Linear  
Description  
The READ_IOUT command returns the output current in amperes. Refer to  
Equation 6 to get the real world value.  
Default  
Figure 72. READ_IOUT Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
READ_IOUT_EXPONENT  
R
READ_IOUT_MANTISSA  
R
5
4
3
1
READ_IOUT_MANTISSA  
R
Table 45. READ_IOUT Register Field Descriptions  
Bit  
15:11 READ_IOUT_EXPONENT  
10:0 READ_IOUT_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R
R
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
Copyright © 2016–2017, Texas Instruments Incorporated  
73  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.38 READ_TEMPERATURE_1 (8Dh)  
Format  
Linear  
Description  
The READ_TEMPERATURE_1 command returns the temperature in degrees  
Celsius. Refer to Equation 6 to get the real world value.  
Default  
Figure 73. READ_TEMPERATURE_1 Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
READ_TEMP_1_EXPONENT  
R
READ_TEMP_1_MANTISSA  
R
5
4
3
2
1
READ_TEMP_1_MANTISSA  
R
Table 46. READ_TEMPERATURE_1 Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:11 READ_TEMP_1_EXPONEN  
T
R
5-bit, two's complement exponent (scaling factor).  
10:0  
READ_TEMP_1_MANTISSA  
R
11-bit, two's complement mantissa.  
74  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.39 READ_POUT (96h)  
Format  
Linear  
Description  
The READ_POUT command returns the output power in watts. Refer to  
Equation 6 to get the real world value.  
Default  
Figure 74. READ_POUT Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
READ_POUT_EXPONENT  
R
READ_POUT_MANTISSA  
R
5
4
3
1
READ_POUT_MANTISSA  
R
Table 47. READ_POUT Register Field Descriptions  
Bit  
15:11 READ_POUT_EXPONENT  
10:0 READ_POUT_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R
R
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
Copyright © 2016–2017, Texas Instruments Incorporated  
75  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.40 READ_PIN (97h)  
Format  
Linear  
Description  
The READ_PIN command returns the input power in watts. Refer to READ_PIN  
(97h) to get the real world value.  
Default  
Figure 75. READ_PIN Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
READ_PIN_EXPONENT  
R
READ_PIN_MANTISSA  
R
5
4
3
1
READ_PIN_MANTISSA  
R
Table 48. READ_PIN Register Register Field Descriptions  
Bit  
15:11 READ_PIN_EXPONENT  
10:0 READ_PIN_MANTISSA  
Field  
Type Reset  
NVM  
Description  
R
R
5-bit, two's complement exponent (scaling factor).  
11-bit, two's complement mantissa.  
7.6.2.3.41 PMBus_REVISION (98h)  
Format  
N/A  
Description  
The PMBus_REVISION command returns the revision of the PMBus to which the  
device is compliant.  
Default  
11h  
Figure 76. PMBus_REVISION Register  
7
6
5
4
3
2
1
0
PMBUS_REV  
R-0001 0001  
Table 49. PMBus_REVISION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
NVM  
Description  
Compliant to revision 1.1 of the PMBus specification.  
7:0  
PMBUS_REV  
R
0001 0001  
7.6.2.3.42 MFR_ID (99h)  
Format  
N/A  
Description  
The MFR_ID command loads the unit with the text character that contains the  
manufacturer's ID.  
Default  
!~ NVM: 5401h!~54h  
Figure 77. MFR_ID Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
MFR_ID_BW  
R/W  
3
MFR_ID_HC  
R-0000 0001  
76  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 50. MFR_ID Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R/W  
R
Reset  
NVM  
Yes  
Description  
MFR_ID_BW  
MFR_ID_HC  
PMBus Block Write  
Hard Coded to 01h  
0000 0001  
7.6.2.3.43 MFR_MODEL (9Ah)  
Format  
N/A  
Description  
The MFR_MODEL command loads the unit with the text character that contains  
the model number of the manufacturer.  
Default  
NVM:  
Figure 78. MFR_MODEL Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
MFR_MODEL_BW  
R/W  
4
3
MFR_MODEL_HC  
R-0000 0001  
Table 51. MFR_MODEL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
NVM  
Yes  
Description  
15:8  
7:0  
MFR_MODEL_BW  
MFR_MODEL_HC  
PMBus Block Write  
Hard Coded to 01h  
0000 0001  
7.6.2.3.44 MFR_REVISION (9Bh)  
Format  
N/A  
Description  
The MFR_REVISION command loads the unit with the text character that contains  
the revision number of the manufacturer. This is typically done once at the time of  
manufacture.  
Default  
Figure 79. MFR_REVISION Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
MFR_REVISION_HC1  
R-0000  
MFR_REVISION_BW  
R/W  
6
5
4
3
2
1
MFR_REVISION_HC2  
R-0000 0001  
Table 52. MFR_REVISION Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:12 MFR_REVISION _HC1  
R
0001  
Hard Coded to 0h  
PMBus Block Write  
Hard Coded to 01h  
11:8  
7:0  
MFR_REVISION  
R/W  
R
Yes  
MFR_REVISION_HC2  
0000  
0001  
Copyright © 2016–2017, Texas Instruments Incorporated  
77  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.45 MFR_DATE (9Dh)  
Format  
N/A  
Description  
The MFR_DATE command loads the unit with the text character that identifies the  
device's date of manufacture. This is typically done once at the time of  
manufacture.  
Default  
Figure 80. MFR_DATE Register  
15  
7
14  
6
13  
5
12  
MFR_DATE_BW  
R/W  
11  
10  
2
9
1
8
0
4
3
MFR_DATE_HC  
R-0000 0001  
Table 53. MFR_DATE Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R/W  
R
Reset  
NVM  
Yes  
Description  
MFR_DATE_BW  
MFR_DATE_HC  
PMBus Block Write  
Hard Coded to 01h.  
0000 0001  
7.6.2.3.46 MFR_VOUT_MIN (A4h)  
Format  
VID  
Description  
The MFR_VOUT_MIN command sets an lower limit on the output voltage that the  
unit can command regardless of any other commands or combinations. The intent  
of this command is to provide a safeguard against a user accidentally setting the  
output voltage to a possibly non-operational level.  
The device detects that an attempt has been made to program the output to a  
voltage lower than the value set by the MFR_VOUT_MIN command. The device  
treats this detection as a warning condition and not a fault condition. If an attempt  
is made to program the output voltage lower than the limit set by this command,  
the device responds as follows:  
The commanded output voltage is set to MFR_VOUT_MIN,  
The OTHER bit is set in the STATUS_BYTE,  
The VOUT bit is set in the STATUS_WORD,  
The MFR_VOUT_MIN warning bit is set in the STATUS_VOUT register, and  
The device notifies the host (asserts PMBUS_ALERT).  
The data bytes are two bytes, which are in right-justified VID format. The VID  
table mapping determined by the selected VID protocols (VR12.0 or VR12.5) from  
the SLEW_MODE pin or MFR_SPECIFIC_13.  
Default  
0000h  
Figure 81. MFR_VOUT_MIN Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0000 0000  
4
3
MFR_VOUT_MIN  
R/W  
78  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 54. MFR_VOUT_MIN Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
NVM  
Description  
RESERVED  
0000 0000  
0000 0000  
Hard coded to 00h  
MFR_VOUT_MIN  
R/W  
Minimum value for VID  
7.6.2.3.47 MFR_SPECIFIC_00 (Per-Phase Overcurrent Limit) (D0h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_00 command sets the valley-current threshold for the per-  
phase overcurrent limit. The settings can override the default setting form the  
OCL-R pin.  
Default  
Pin strap: OCL-R pin  
NVM: 08h  
Figure 82. MFR_SPECIFIC_00 (Per-Phase Overcurrent Limit) Register  
7
6
5
4
3
2
1
0
Reserved  
R-0000  
OCL  
R/W  
Table 55. MFR_SPECIFIC_00 (Per-Phase Overcurrent Limit) Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type Reset  
NVM  
Description  
Reserved  
OCL  
R
R-0000  
Always set to 0.  
R/W  
Yes  
0000: 24A  
0001: 27A  
0010: 30A  
0011: 33A  
0100: 36A  
0101: 39A  
0110: 42A  
0111: 45A  
1000: 48A  
1001: 51A  
1010: 54A  
1011: 57A  
1100: 60A  
1101: 63A  
1110: 66A  
1111:69A  
Copyright © 2016–2017, Texas Instruments Incorporated  
79  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.48 MFR_SPECIFIC_01 (Telemetry Averaging Time) (D1h)  
Format  
Description  
Default  
The MFR_SPECIFIC_01 command sets the averaging time for telemetry  
reporting.  
50h  
Figure 83. MFR_SPECIFIC_01 (Telemetry Averaging Time) Register  
7
6
5
4
3
2
1
0
Reserved  
R-0  
FILTER_PIN  
R/W  
Reserved  
R-00  
FILTER_IV  
R/W  
Table 56. MFR_SPECIFIC_01 (Telemetry Averaging Time) Register Field Descriptions  
Bit  
7
Field  
Type Reset  
NVM  
Description  
Reserved  
FILTER_PIN  
R
0
Always set to 0.  
6:4  
R/W  
101  
Averaging Time for Input Power Reporting  
000: Bypass.  
001: 2 ms  
010: 5.5 m  
011: 11.5 m  
100: 19 ms  
101: 50 ms  
110: 100 ms  
111: 225 ms  
3:2  
1:0  
Reserved  
R
00  
00  
Always set to 0.  
FILTER_IV  
R/W  
Averaging Time for Current and Voltage Reporting  
00: Bypass.  
01: .5 ms  
10: 1 ms  
11: 2.5 ms  
7.6.2.3.49 MFR_SPECIFIC_04 (Read VOUT) (D4h)  
Format  
Linear  
Description  
The MFR_SPECIFIC_04 command returns the actual, measured output voltage in  
volts. Refer to Equation 6 to get the real world value, where n= -9.  
Default  
Figure 84. MFR_SPECIFIC_04 (Read VOUT) Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
MFR_SPEC_04_MANTISSA  
R
5
4
3
2
MFR_SPEC_04_MANTISSA  
R
Table 57. MFR_SPECIFIC_04 (Read VOUT) Register Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:0  
MFR_SPEC_04_MANTISSA  
R
Unsigned 16-bit mantissa with an exponent value of  
n=-9.  
80  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.50 MFR_SPECIFIC_05 (VOUT Trim) (D5h)  
Format  
Signed Two's Complement  
Description  
The MFR_SPECIFIC_05 command is used to trim the VR output voltage in volts.  
LSB resolution is 5 mV/10 mV based on the selected VR12.0/VR12.5.  
Default  
NVM: 00h  
Figure 85. MFR_SPECIFIC_05 (VOUT Trim) Register  
7
6
5
4
3
2
1
0
VOUT_VID_OFFSET  
R/W  
Table 58. MFR_SPECIFIC_05 (VOUT Trim) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
VOUT_VID_OFFSET  
R/W  
Yes  
Sets the VR output trim voltage.  
01111111: 0.635 V in VR12.0 and 1.27V in VR12.5  
01111110: 0.630 V in VR12.0 and 1.26 V in VR12.5  
...........................  
00000001: 0.005 V in VR12.0 and 0.01 V in VR12.5  
00000000: 0 V  
11111111: –0.005 V in VR12.0 and –0.01 V in  
VR12.5  
...........................  
10000001: –0.635 V in VR12.0 and –1.27 V in  
VR12.5  
10000000: –0.640 V in VR12.0 and –1.28 V in  
VR12.5  
Copyright © 2016–2017, Texas Instruments Incorporated  
81  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.51 MFR_SPECIFIC_07 (Additional Function Bits) (D7h)  
Format  
N/A  
Description  
Default  
The MFR_SPECIFIC_07 command sets the additional function bits.  
NVM: 02h  
Figure 86. MFR_SPECIFIC_07 (Additional Function Bits) Register  
7
6
5
4
3
2
1
0
Reserved  
OVFLT_MODE_SE  
L
PS_FLT_DIS  
SLEW_FAST  
OSR_TRISTATE  
SST_TIME  
R-0000 0  
R/W  
Table 59. MFR_SPECIFIC_07 (Additional Function Bits) Register Field Descriptions  
Bit  
7:5  
4
Field  
Type Reset  
NVM  
Description  
Reserved  
R
000  
Always set to 0.  
OVFLT_MODE_SEL  
R/W  
No  
0: Tracking OVP and Fixed OVP is 3 cycle hiccup  
then latch off 1: Tracking OVP and Fixed OVP is  
latch off from first occurrence.  
3
2
PS_FLT_DIS  
SLEW_FAST  
R/W  
R/W  
No  
0: Power stage fault is active 1: Power stage fault is  
disabled  
Yes  
Fast Slew Mode Enable/Disable  
0: Default slew rate selected by  
MFR_SPECIFIC_13[2:0]  
1: Add 1.36 mV/µs to the selected slew rate  
1
0
OSR_TRISTATE  
SST_TIME  
R/W  
R/W  
Yes  
Yes  
Body Braking Enable/Disable  
0: Enable OSR pulse truncation without body  
braking  
1: Enable OSR pulse truncation with body braking  
Soft Slew Rate Selection  
0: soft start slew rate dependent on TRISE  
1: 1/16 of the selected slew rate for soft-start  
82  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.52 MFR_SPECIFIC_08 (Droop) (D8h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_08 command sets the load line as percentage of the default  
one. For example, if slope is set as 1mohm = 100%, then 0.5mohm = 50%  
Default  
04h  
Figure 87. MFR_SPECIFIC_08 (Droop) Register  
7
6
5
4
3
2
1
0
DROOP  
R/W  
Table 60. MFR_SPECIFIC_08 (Droop) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
DROOP  
R/W  
0000  
0100  
0000 0000: 0%  
0000 0001: 25%  
0000 0010: 50%  
0000 0011: 75%  
0000 0100: 100%  
0001 0000: 80%  
0010 0000: 85%  
0011 0000: 90%  
0100 0000: 95%  
0101 0000: 105%  
0110 0000: 110%  
0111 0000: 115%  
1000 0000: 120%  
1001 0000: 125%  
1010 0000: 150%  
1011 0000: 175%  
Others: 100%  
Copyright © 2016–2017, Texas Instruments Incorporated  
83  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.53 MFR_SPECIFIC_09 (OSR/USR) (D9h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_09 command sets the threshold for OSR and USR control.  
The setting can override the default setting from the O-USR pin.  
Default  
Pin strap: O-USR pin  
NVM: 77h  
Figure 88. MFR_SPECIFIC_09 (OSR/USR) Register  
7
6
5
4
3
2
1
0
Reserved  
R-0  
USR  
R/W  
Reserved  
R-0  
OSR  
R/W  
Table 61. MFR_SPECIFIC_09 (OSR/USR) Register Field Descriptions  
Bit  
7
Field  
Type Reset  
NVM  
Description  
Reserved  
USR  
R
0
Always set to 0.  
6:4  
R/W  
Yes  
Undershoot Reduction  
000: 20 mV  
001: 30 mV  
010: 60 mV  
011: 80 mV  
100: 100 mV  
101: 120 mV  
110: 140 mV  
111: USR off  
3
Reserved  
OSR  
R
0
Always set to 0.  
2:0  
R/W  
Yes  
Overshoot Reduction  
000: 30 mV  
001: 40 mV  
010: 60 mV  
011: 80 mV  
100: 100 mV  
101: 120 mV  
110: 140 mV  
111: OSR off  
84  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.54 MFR_SPECIFIC_10 (Maximum Operating Current) (DAh)  
Format  
N/A  
Description  
The MFR_SPECIFIC_10 command sets the maximum operating current (IMAX,  
unit: A) of the converter. The setting can override the default setting from the F-  
IMAX pin  
Default  
Pin strap: F-IMAX pin  
NVM:  
Figure 89. MFR_SPECIFIC_10 (Maximum Operating Current) Register  
7
6
5
4
3
2
1
0
IMAX  
R/W  
Table 62. MFR_SPECIFIC_10 (Maximum Operating Current) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
IMAX  
R/W  
Yes  
Set maximum operating current.  
7.6.2.3.55 MFR_SPECIFIC_11 (VBOOT) (DBh)  
Format  
VID  
Description  
The MFR_SPECIFIC_11 command sets the boot voltage in 8-bit VID format. The  
setting can override the default setting from the VBOOT pin.  
Default  
Pin strap: VBOOT pin  
NVM: 97h  
Figure 90. MFR_SPECIFIC_11 (VBOOT) Register  
7
6
5
4
3
2
1
0
VBOOT  
R/W  
Table 63. MFR_SPECIFIC_11 (VBOOT) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:0  
VBOOT  
R/W  
Yes  
Set the boot voltage according to the selected VID  
table.  
Copyright © 2016–2017, Texas Instruments Incorporated  
85  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.56 MFR_SPECIFIC_12 (Switching Frequency and TRISE) (DCh)  
Format  
N/A  
Description  
The MFR_SPECIFIC_12 command sets the switching frequency and the soft start  
rise slew rate. The settings can override the default setting from the F-IMAX.  
Default  
Pin strap: F-IMAX pin  
NVM: 20h  
Figure 91. MFR_SPECIFIC_12 (Switching Frequency and TRISE) Register  
7
6
5
4
3
2
1
0
FSW  
R/W  
Reserved  
R-0  
TRISE  
R/W  
Table 64. MFR_SPECIFIC_12 (Switching Frequency and TRISE) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7:4  
FSW  
R/W  
Yes  
Switching Frequency  
0000: 300 kHz  
0001: 400 kHz  
0010: 500 kHz  
0011: 600 kHz  
0100: 700 kHz  
0101: 800 kHz  
0110: 900 kHz  
0111: 1000 kHz  
1000: 350 kHz  
1001: 450 kHz  
1010: 550 kHz  
1011: 650 kHz  
1100: 750 kHz  
1101: 850 kHz  
1110: 950 kHz  
1111: 1000 kHz  
3:2  
1:0  
Reserved  
TRISE  
R
0
Always set to 0.  
R/W  
Yes  
Soft start rise slew rate in terms of VOUT slew rate  
00: 1  
01: 1/2  
10: 1/4  
11: 1/8  
7.6.2.3.57 MFR_SPECIFIC_13 (Slew Rate and Other Operation Modes) (DDh)  
Format  
N/A  
Description  
The MFR_SPECIFIC_13 command sets the slew rates and the operation modes.  
The settings can override the default setting from the SLEW-MODE pin.  
Default  
Pin strap: SLEW-MODE pin  
NVM: 89h  
Figure 92. MFR_SPECIFIC_13 (Slew Rate and Other Operation Modes) Register  
7
6
5
4
3
2
1
0
VR12_MODE  
R/W  
PI_SET  
R/W  
Reserved  
R/W  
DPS_EN  
R/W  
ZLL_SET  
R/W  
SLEW  
R/W  
86  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 65. MFR_SPECIFIC_13 (Slew Rate and Other Operation Modes) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
7
VR12_MODE  
R/W  
Yes  
VR12 Mode  
0: VR12.5.  
1: VR12.0.  
6
PI_SET  
R/W  
Yes  
Phase Interleaving  
0:  
1: 1/3, 2/4 and 5/6 phase interleaving  
5
4
Reserved  
DPS_EN  
R/W  
R/W  
Yes  
Yes  
Not used, write or read has no effect  
Dynamic Phase Shedding Enable  
0: Disable dynamic phase shedding.  
1: Enable dynamic phase shedding.  
3
ZLL_SET  
SLEW  
R/W  
R/W  
Yes  
Yes  
Load Line  
0: Non-zero load line  
1: Zero load line  
2:0  
Slew Rate  
000: 0.34 mV/µs  
001: 0.68 mV/µs  
010: 1.02 mV/µs  
011: 1.36 mV/µs  
100: 1.7 mV/µs  
101: 2.04 mV/µs  
110: 2.38 mV/µs  
111: 2.74 mV/µs  
Copyright © 2016–2017, Texas Instruments Incorporated  
87  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.6.2.3.58 MFR_SPECIFIC_14 (Ramp Height) (DEh)  
Format  
N/A  
Description  
The MFR_SPECIFIC_14 command sets the ramp amplitude for compensations.  
The settings can override the default setting from the OCL-R pin.  
Default  
Pin strap: OCL-R pin  
NVM: 06h  
Figure 93. MFR_SPECIFIC_14 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0000 0  
RAMP  
R/W  
Table 66. MFR_SPECIFIC_14 Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Type Reset  
NVM  
Description  
Reserved  
RAMP  
R
0
Always set to 0.  
R/W  
Yes  
Ramp Amplitude  
000: 20 mVPP  
001: 40 mVPP  
010: 60 mVPP  
011: 80 mVPP  
100: 100 mVPP  
101: 120 mVPP  
110: 150 mVPP  
111: 200 mVPP  
88  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.59 MFR_SPECIFIC_15 (Dynamic Phase Shedding Thresholds) (DFh)  
Format  
N/A  
Description  
The MFR_SPECIFIC_15 command sets the threshold for the dynamic phase  
shedding. Use 4 × overcurrent limit (OCL) as 100% load condition  
Default  
NVM: 01h  
Figure 94. MFR_SPECIFIC_15 (Dynamic Phase Shedding Thresholds) Register  
7
6
5
4
3
2
1
0
Reserved  
R-0000  
DPS_TH_LOW  
R/W  
DPS_TH_HIGH  
R/W  
Table 67. MFR_SPECIFIC_15 (Dynamic Phase Shedding Thresholds) Register Field Descriptions  
Bit  
7:4  
3
Field  
Type Reset  
NVM  
Description  
Reserved  
DPS_TH_LOW  
R
0000  
Always set to 0.  
R/W  
Yes  
Switch from 2 Phase to 1 Phase Operation  
0: Disable decreasing to 1 phase operation.  
1: 10% load.  
2:0  
DPS_TH_HIGH  
R/W  
Yes  
Switch from 6 Phase to 2 Phase Operation  
000: 15% load.  
001: 20% load.  
010: 25% load.  
011: 30% load.  
Others: 35% load.  
7.6.2.3.60 MFR_SPECIFIC_16 (VIN UVLO) (E0h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_16 command sets the threshold for the VIN Undervoltage  
Lockout (UVLO).  
Default  
NVM: 01h  
Figure 95. MFR_SPECIFIC_16 (VIN UVLO) Register  
7
6
5
4
3
2
1
0
Reserved  
R-00 0000  
VIN_UVLO  
R/W  
Table 68. MFR_SPECIFIC_16 (VIN UVLO) Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Type Reset  
NVM  
Description  
Reserved  
VIN_UVLO  
R
00 0000  
01  
Always set to 0.  
R/W  
Yes  
Input Voltage UVLO  
00:4.25V  
01: 6.0V  
10: 8.1V  
11: 10.2V  
7.6.2.3.61 MFR_SPECIFIC_19 (E3h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_19 command sets the thresholds for determining the current  
sharing warning. Once the difference between any phase current and the average  
current is larger than the pre-defined threshold, the STATUS_IOUT [3] will be set  
while asserting PMB_ALERT#.  
Copyright © 2016–2017, Texas Instruments Incorporated  
89  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Default  
0003h  
Figure 96. MFR_SPECIFIC_19 Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
Reserved  
R- 0000 0000  
7
5
4
3
2
1
PHFLT_DIS_S  
EL  
Reserved  
R- 0000  
CUR_SHARE_TH  
R/W  
R/W  
Table 69. MFR_SPECIFIC_19 Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
__  
Always set to 0.  
7
PHFLT_DIS_SEL  
R/W  
0
Yes  
0: Phase with Current Share Warning will be turned  
off.  
1: Phase with Current Share Warning will NOT be  
turned off.  
6:3  
2:0  
Reserved  
R
0000  
011  
Always set to 0.  
000: 2 Amps  
CUR_SHARE_TH  
R/W  
Yes  
001: 4 Amps  
010: 6 Amps  
011: 8 Amps  
000: 10 Amps  
001: 15 Amps  
010: 20 Amps  
011: OFF  
7.6.2.3.62 MFR_SPECIFIC_20 (Maximum Operational Phase Number) (E4h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_20 command sets the maximum operational phase numbers  
on-the-fly. If the maximum operational phase number is set higher than the  
available phase numbers specified by hardware, then the operational phase  
number remains unchanged, and the STAUTS_MFR_SPECIFIC<3> is set while  
asserting PMB_ALERT.  
Default  
Hardware Specific  
Figure 97. MFR_SPECIFIC_20 (Maximum Operational Phase Number) Register  
7
6
5
4
3
2
1
0
Reserved  
R-0 0000  
PHASE_NUM  
R/W  
Table 70. MFR_SPECIFIC_20 (Maximum Operational Phase Number) Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Type Reset  
NVM  
Description  
Reserved  
PHASE_NUM  
R
0 0000  
Always set to 0.  
R/W  
Phase Number  
000: 1-phase operation.  
001: 2-phase operation.  
010: 3-phase operation.  
011: 4-phase operation.  
100: 5-phase operation.  
101: 6-phase operation.  
Others: Not allowed  
90  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
7.6.2.3.63 MFR_SPECIFIC_21 (VIN UVLO) (E5h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_21 command programs the over-voltage thresholds.  
Tracking OV threshold: VOUT_COMMAND + OV_TRACK_OFFSET  
Fixed OV threshold: VOUT_MAX + FIX_OV_OFFSET  
Default  
0Fh  
Figure 98. MFR_SPECIFIC_21 Register  
7
6
5
4
3
2
1
0
Reserved  
R-000  
OV_TRACK_OFFSET  
R/W  
FI_OV_OFFSET  
R/W  
Table 71. MFR_SPECIFIC_21 Register Field Descriptions  
Bit  
7:5  
4:3  
Field  
Type Reset  
R 000  
NVM  
Description  
Always set to 0.  
00:175mV  
Reserved  
OV_TRACK_OFFSET  
Yes  
01:225mV  
10:275mV  
11:325 mV  
000: 50mV  
2:0  
FIX_OV_OFFSET  
Yes  
001: 100mV  
010: 150mV  
011: 200mV  
100: 250mV  
101: 300mV  
110: 350mV  
111: 400mV  
7.6.2.3.64 MFR_SPECIFIC_22 ( VOUT_UV_FAULT_threshold) (E6h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_22 command sets the value of VOUT undervoltage  
threshold.  
UVP threshold = VOUT_COMMAND - Load Line * Iout - VOUT_UVF_OFFSET  
NVM: 03h  
Default  
Figure 99. MFR_SPECIFIC_22 (VOUT_UV_FAULT_threshold) Register  
7
6
5
4
3
2
1
VOUT_UVF_THRESHOLD  
R/W  
0
Reserved  
R-0 0000  
Copyright © 2016–2017, Texas Instruments Incorporated  
91  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 72. MFR_SPECIFIC_22 (VOUT_UV_FAULT_threshold) Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Type Reset  
NVM  
Description  
Reserved  
R
0 0000  
Always set to 0.  
VOUT_UVF_OFFSET  
R/W  
Yes  
VOUT UVF threshold  
000: 50 mV  
001: 100 mV  
010: 150 mV  
011: 200 mV  
100: 250 mV  
101: 300 mV  
110: 325 mV  
111: 400 mV  
7.6.2.3.65 MFR_SPECIFIC_23 (E7h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_23 command sets the boot voltage in 8-bit VID format.  
(Same as MFR_SPECIFIC_11) The two data bytes contain of a right-justified VID  
code with VID0 in bit 0 of the lower data byte, VID1 in bit 1 of the lower byte and  
so forth.  
Default  
Figure 100. MFR_SPECIFIC_23 Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
Reserved  
R- 0000 0000  
5
4
3
2
BOOT_CODE  
R/W  
Table 73. MFR_SPECIFIC_23 Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:8  
Reserved  
R
0000  
0000  
__  
Always set to 0.  
7:0  
BOOT_CODE  
R/W  
Yes  
Set the boot voltage according to the selected VID  
table.  
7.6.2.3.66 MFR_SPECIFIC_24 (E8h)  
Format  
N/A  
Description  
The MFR_SPECIFIC_24 command set is used to enable/disable the Phases in  
Analog along with some other settings/logic.  
Default  
Figure 101. MFR_SPECIFIC_24 (VIN UVLO) Register  
7
6
5
4
3
2
1
0
Reserved  
R-00  
PH5_DIS  
PH4_DIS  
PH3_DIS  
PH2_DIS  
PH1_DIS  
PH0_DIS  
R/W  
92  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Table 74. MFR_SPECIFIC_24 (VIN UVLO) Register Field Descriptions  
Bit  
7:6  
5
Field  
Type Reset  
NVM  
Description  
Reserved  
PH5_DIS  
R
00  
0
Always set to 0.  
R/W  
No  
1: Phase5 is disabled.  
0: Phase5 is not disabled.  
1: Phase4 is disabled.  
0: Phase4 is not disabled.  
1: Phase3 is disabled.  
0: Phase3 is not disabled.  
1: Phase2 is disabled.  
0: Phase2 is not disabled.  
1: Phase1 is disabled.  
0: Phase1 is not disabled.  
1: Phase0 is disabled.  
0: Phase0 is not disabled.  
4
3
2
1
0
PH4_DIS  
PH3_DIS  
PH2_DIS  
PH1_DIS  
PH0_DIS  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
No  
No  
No  
No  
No  
7.6.2.3.67 MFR_SPECIFIC_44 (DEVICE_CODE) (FCh)  
Format  
Description  
Default  
The MFR_SPECIFIC_44 command reads back the DEVICE_CODE information.  
!~ 01F0h!~01F8h  
Figure 102. MFR_SPECIFIC_44 (DEVICE_CODE) Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICE_CODE  
R-0000 0001  
4
3
DEVICE_CODE  
R-1111 0000  
Table 75. MFR_SPECIFIC_44 (DEVICE_CODE) Register Field Descriptions  
Bit  
Field  
Type Reset  
NVM  
Description  
15:0  
DEVICE_CODE  
R
0000  
0001  
1111  
0000  
Device Code  
Copyright © 2016–2017, Texas Instruments Incorporated  
93  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8 Application and Implementation  
8.1 Application Information  
The TPS53667 device has a very simple design procedure. Please contact your local Texas Instruments  
representative to get a copy of our excel-based design tool spreadsheet. This design describes a typical output  
application with pinstrap mode.  
8.2 Typical Application  
R16  
R17  
26.7 kΩ  
39.2 kΩ  
SKIP-NVM  
VREF  
TSEN  
R1  
20 kΩ  
R14  
12.4 kΩ  
R15  
30.1 kΩ  
C1  
1 nF  
R2  
121 kΩ  
VREF  
R3  
4.32 kΩ  
VREF  
40 39 38 37 36 35 34 33  
32 31  
R4  
R18  
9.31 kΩ  
R20  
R22  
20 kΩ  
16.5 kΩ 16.5 kΩ  
1
2
3
4
5
6
7
8
9
OCL-R  
O-USR 30  
IMON  
CSP1  
CSP2  
CSP3  
CSP4  
CSP5  
CSP6  
VSP  
C2  
2.2 nF  
SLEW-MODE 29  
ADDR-TRISE 28  
CSP1  
R5  
33.2 kΩ  
CSP2  
R19  
150 kΩ  
R21  
R23  
CSP3  
CSP4  
VR_FAULT 27  
PMB_DIO 26  
PMB_ALERT 25  
PMB_CLK 24  
ENABLE 23  
GND 22  
VR_FAULT  
PMB_DIO  
24.3 kΩ 24.3 kΩ  
TPS53667  
U1  
VOUT  
PMB_ALERT  
PMB_CLK  
CSP5  
CSP6  
R7  
0 Ω  
R6 0 Ω  
VOUT-SENSE+  
ENABLE  
C3  
1 nF  
R8 0 Ω  
GND-SENSEœ  
10 VSN  
RESET 21  
RESET  
R9  
0 Ω  
R30  
0 Ω  
11 12  
13 14  
15  
16 17 18 19 20  
R11  
2.55 Ω  
C4  
12 pF  
VR_HOT  
VR_RDY  
R10  
8.06kΩ  
R13 1 Ω  
R12 1 Ω  
12-V VIN  
5-V VIN  
C5  
1nF  
C6  
330 nF  
VREF  
C7  
1 mF  
C8  
4.7 mF  
C9  
1 mF  
V3R3  
3.3V  
V3R3  
R24  
10 kΩ  
R25  
10 kΩ 10 kΩ  
R26  
C10  
0.1 mF  
R27  
10 kΩ  
C11  
0.1 mF  
R28  
10 kΩ  
R29  
10 kΩ  
Figure 103. Controller Schematic for a 6-Phase, 1 V, 180 A Application  
94  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
R43  
R38  
130 kΩ  
130 kΩ  
3
3
LSET  
LSET  
VOS  
VIN  
5
7
VOUT  
VOS  
VIN  
5
7
VOUT  
12-V VIN  
12-V VIN  
PWM2  
TSEN  
10 PWM  
12 TAO  
PWM1  
TSEN  
10 PWM  
12 TAO  
R46  
0 Ω  
R41  
0 Ω  
C24  
3.3 nF  
C25  
22 mF  
C26  
22 mF  
C27  
22 mF  
C15  
3.3 nF  
C16  
22 mF  
C17  
22 mF  
C18  
22 mF  
C21  
1 nF  
C12  
1 nF  
CSP2  
2
1
IOUT  
CSP1  
2
1
IOUT  
C28  
0.1 mF  
L2  
C19  
0.1 mF  
L1  
150 nH  
0.29 mΩ  
BOOT  
9
BOOT  
9
U3  
/{59ꢀ490vꢀa/  
U2  
/{59ꢀ490vꢀa/  
VREF_P  
REFIN  
VREF_P  
REFIN  
C22  
0.1 µF  
C13  
0.1 µF  
150 nH  
0.29 mΩ  
R44  
10 kΩ  
R39  
10 kΩ  
BOOT-R  
SW  
8
6
BOOT-R  
SW  
8
6
VOUT  
VOUT  
V3R3  
V3R3  
PC3  
470 mF 470 mF  
PC4  
PC1  
PC2  
470 mF 470 mF  
R45  
1 Ω  
R40  
1 Ω  
11 EN/FCCM  
11 EN/FCCM  
R47  
1 Ω  
R42  
1 Ω  
5-V VIN  
5-V VIN  
4
PGND  
4
PGND  
VDD  
VDD  
C23  
2.2 mF  
C14  
2.2 mF  
C29  
1 nF  
C20  
1 nF  
R48  
130 kΩ  
R53  
130 kΩ  
3
LSET  
3
LSET  
VOS  
VIN  
5
VOUT  
VOS  
VIN  
5
VOUT  
12-V VIN  
12-V VIN  
PWM3  
TSEN  
10 PWM  
12 TAO  
PWM4  
TSEN  
10 PWM  
12 TAO  
7
7
R51  
0 Ω  
C33  
3.3 nF  
C34  
22 mF  
C35  
22 mF  
C36  
22 mF  
R56  
C42  
3.3 nF  
C43  
22 mF  
C44  
22 mF  
C45  
22 mF  
C30  
1 nF  
C39  
1 nF  
0 Ω  
CSP3  
2
1
IOUT  
C37  
0.1 mF  
L3  
150 nH  
0.29 mΩ  
BOOT  
9
CSP4  
2
1
IOUT  
C46  
BOOT  
9
U4  
/{59ꢀ490vꢀa/  
0.1 mF  
L4  
U5  
/{59ꢀ490vꢀa/  
VREF_P  
REFIN  
VREF_P  
REFIN  
C31  
0.1 µF  
C40  
0.1 µF  
150 nH  
0.29 mΩ  
R49  
10 kΩ  
BOOT-R  
SW  
8
6
R54  
10 kΩ  
BOOT-R  
SW  
8
6
V3R3  
VOUT  
VOUT  
V3R3  
PC5  
PC6  
470 mF 470 mF  
R50  
1 Ω  
11 EN/FCCM  
PC7  
470 mF 470 mF  
PC8  
R52  
1 Ω  
R55  
1 Ω  
11 EN/FCCM  
R57  
1 Ω  
5-V VIN  
4
PGND  
VDD  
5-V VIN  
4
PGND  
VDD  
C32  
2.2 mF  
C41  
2.2 mF  
C38  
1 nF  
C47  
1 nF  
R58  
R63  
130 kΩ  
130 kΩ  
3
3
LSET  
LSET  
VOS  
VIN  
5
7
VOUT  
VOS  
VIN  
5
VOUT  
12-V VIN  
12-V VIN  
PWM5  
TSEN  
10 PWM  
12 TAO  
PWM6  
TSEN  
10 PWM  
12 TAO  
7
R61  
0 Ω  
R66  
0 Ω  
C51  
3.3 nF  
C52  
22 mF  
C53  
22 mF  
C54  
22 mF  
C60  
3.3 nF  
C61  
22 mF  
C62  
22 mF  
C63  
22 mF  
C48  
1 nF  
C57  
1 nF  
CSP5  
2
1
IOUT  
CSP6  
2
1
IOUT  
C55  
0.1 mF  
L5  
150 nH  
0.29 mΩ  
C64  
BOOT  
9
BOOT  
9
0.1 mF  
L6  
U6  
/{59ꢀ490vꢀa/  
U7  
/{59ꢀ490vꢀa/  
VREF_P  
REFIN  
VREF_P  
REFIN  
C49  
0.1 µF  
C58  
0.1 µF  
150 nH  
0.29 mΩ  
R59  
10 kΩ  
R64  
10 kΩ  
BOOT-R  
SW  
8
6
BOOT-R  
SW  
8
6
VOUT  
VOUT  
V3R3  
V3R3  
PC9  
PC10  
470 mF 470 mF  
PC11 PC12  
470 mF 470 mF  
R60  
1 Ω  
R65  
1 Ω  
11 EN/FCCM  
11 EN/FCCM  
R62  
1 Ω  
R67  
1 Ω  
5-V VIN  
5-V VIN  
4
PGND  
4
PGND  
VDD  
VDD  
C50  
2.2 mF  
C59  
2.2 mF  
C56  
1 nF  
C65  
1 nF  
Figure 104. Power Stage Schematic for a 6-Phase, 1 V, 180 A Application  
Copyright © 2016–2017, Texas Instruments Incorporated  
95  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
L7  
65 nH  
P12-V VIN  
12-V VIN  
PC13  
270 mF  
16 V  
PC14  
270 mF  
16 V  
C68  
22 mF  
C69  
22 mF  
C66  
22 mF  
C67  
22 mF  
Reserve 30 x 100 µF, 1206 ceramic capacitors, populate 20x100uF  
VOUT  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
C87  
C88  
C70  
100 µF  
C89  
100 µF  
100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF 100 µF  
100 µF 100 µF 100 µF 100 µF 100 µF 100 µF  
PGND  
VOUT  
C90  
C91  
C92  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
DNP DNP DNP DNP DNP DNP DNP DNP DNP DNP  
PGND  
Figure 105. Input and Output Filter for a 6-Phase, 1 V, 180 A Application  
8.2.1 Design Requirements  
6-phase, 1 V, 180 A output  
Number of phases: 6  
Input Voltage 10.8 V – 13.2 V  
Imax: 180 A  
Load-line: Zero Load Line  
Boot voltage, VBOOT: 1.0 V  
PMBus Address: 1110001 (bin)  
96  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
8.2.2 Detailed Design Procedure  
For this design, complete the following steps:  
1. Select Switching Frequency  
2. Set the Maximum Output Current  
3. Select the Soft-Start Slew Rate  
4. Select the Operation Mode  
5. Choose Inductor  
6. Select the Per-Phase Valley Current Limit and Ramp Level  
7. Set the Load Line  
8. Set the BOOT Voltage  
9. Set OSR/USR Thresholds for Improving Load Transient Performance  
10. Determine Digital Current Monitor (IMON) Gain and Filter Setting  
11. Adjust Compensation Design  
12. Set the PMBus Addresses  
13. Program the Device with the PMBus  
8.2.2.1 Select the Switching Frequency  
The value of a resistor (RF) between the F-IMAX pin and GND selects the switching frequency. The frequency is  
an approximate frequency and is expected to vary based on load and input voltage.  
Table 76. Frequency Selection Table  
SELECTION  
RESISTOR (RF) VALUE (kΩ)  
OPERATING FREQUENCY  
(fSW) (kHz)  
20  
24  
300  
400  
500  
600  
700  
800  
900  
1000  
30  
39  
56  
75  
100  
150  
For this design, choose 500 kHz for the switching frequency. So, RF = 30 kΩ.  
Copyright © 2016–2017, Texas Instruments Incorporated  
97  
 
 
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8.2.2.2 Set the Maximum Output Current (IMAX  
)
The voltage on the F-IMAX pin sets the maximum output current from the value of the resistors connected from  
the VREF pin to the F-IMAX pin (RIMAX). Equation 7 shows the maximum output current calculation.  
NOTE  
The default total overcurrent threshold is 125% of IMAX  
&  
)
= 255 ×  
-!8  
(ꢀ& + ꢀ)-!8  
(7)  
(8)  
Use Equation 8 to calculate RIMAX  
.
2& × (ꢀ55 F )-!8  
2)-!8  
=
)
-!8  
From Table 76, RF = 30 kΩ. Selecting the closest standard resistor value, RIMAX = 12.4 kΩ  
NOTE  
The tolerance of the RF and RIMAX resistors affect IIMAX value. If the design requires an  
accurate IIMAX is needed, select an RF and an RIMAX value with tight tolerance (0.5% or  
0.1%).  
8.2.2.3 Select the Soft-Start Slew Rate  
To select the soft-start slew rate, the first step is to select the output voltage change slew rate. The resistor  
(RSLEW) (connected between the SLEW-MODE pin and GND) sets the output voltage change slew rate when  
using VOUT_COMMAND. Table 77 show a summary of these settings. For a minimum 0.68-mV/μs slew rate, the  
resistor RSLEW = 24.3 k.  
Table 77. Vout Change Slew Rate Selection  
SELECTION RESISTOR  
MINIMUM SLEW RATE  
( mV/µs)  
RSLEW (kΩ)  
20  
24  
0.34  
0.68  
1.02  
1.36  
1.7  
30  
39  
56  
75  
2.04  
2.38  
2.74  
100  
150  
After determining the VOUT change slew rate, select the ratio of soft-start rate versus VOUT change slew rate.  
Select a value for resistor RADDR (the resistor between ADDR_TRISE pin and GND) to configure this ratio.  
Table 78. Soft-Start Slew Rate Selection  
SELECTION RESISTOR  
MINIMUM SLEW RATE  
( mV/µs)  
RADDR (kΩ)  
20 or 24  
30 or 39  
1
1/2  
1/4  
1/8  
56 or 75  
100 or 150  
98  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
In this design, the soft-start slew rate is the same as Vout change slew rate. So RADDR=20k or 24k is selected.  
The LSB of BOOT voltage VID determines the value of RADDR as described in Set the BOOT Voltage. If slower  
soft start is desired, higher RADDR can be used to set soft-start slew rate to be 1/2, 1/4 or 1/8 of output voltage  
change slew rate.  
8.2.2.4 Select the Operation Mode  
The resistor (RMODE) is connected between the VREF pin and the SLEW-MODE pin. After selecting the value of  
RSLEW, set the operation mode by choosing the voltage on the SLEW-MODE pin as summarized in Table 79 and  
the Electrical Characteristics table. In this design, VR 12.0 mode is selected with individual phase interleaving,  
disabled dynamic phase shedding, and zero load-line. As described in the Select the Soft-Start Slew Rate  
section, use the value RSLEW = 24 k, so RMODE = 16.5 kto select the desired operating modes.  
Table 79. Operation Mode with Resistor Selection  
OPERATION MODES BIT  
BIT DESCRIPTION  
0: VR12.5 (Use VR12.5 VID table)  
1: VR12.0 (Use VR12.0 VID table)  
0: individual phase interleaving  
1: 1/3, 2/4, and 5/6 phase interleaving  
0: Disable dynamic phase shedding  
1: Enable dynamic phase shedding  
0: Non-zero load-line  
Mode bit M3  
MFR_SPEC_13<7>  
MFR_SPEC_13<6>  
MFR_SPEC_13<4>  
MFR_SPEC_13<3>  
VR12MODE  
Mode bit M2  
Mode bit M1  
Mode bit M0  
PISET  
DPSEN  
ZLLSET  
1: Zero load-line  
8.2.2.5 Choose Inductor  
Smaller inductance values yield better transient performance, but also have a higher ripple and lower efficiency.  
Higher inductance values have the opposite characteristics. It is common practice to limit the ripple current to  
between 20% and 50% of the maximum per-phase current. In this design example, 40% of the maximum per-  
phase current is used.  
)
1ꢁꢂ  
)
0_0  
= l -!8 p × %62)00,ꢀ = l  
p × ꢂ.4 = 1ꢄ !  
Æ
(9)  
6/54  
k37 × 6).(≠°∏ ꢀo  
k6).(≠°∏ ꢀ F 6/54 o ×  
6 × §4  
, =  
=
= 1ꢁꢂ Æꢃ  
)
)
0_0  
0_0  
(10)  
The inductor with a value of 150 nH and saturation current of ISAT = 61 A at 100°C is selected for this application.  
This saturation current level can be used to determine the OCL level. So the IOCL is selected to be 48 A to use in  
the OCL resistor calculation in Equation 11.  
)
/#,  
= )3!4 F )0  
= 61 F 12.ꢀ2 = ꢁ8.68 !  
;
:
0 °£¥µ°¨  
(11)  
8.2.2.6 Select the Per-Phase Valley Current Limit And Ramp Level  
The per-phase, valley current limit is selected by the resistor (ROCL) from OCL-R pin to GND as shown in  
Table 80. The RAMP is set by the voltage on OCL_R pin with resistor (RRAMP) from OCL_R pin to VREF. The  
current limit is selected so that the output current OCL is higher than the maximum per-phase current to allow  
sufficient room for current increase during load transient while the peak inductor current is still lower saturation  
current level.  
Copyright © 2016–2017, Texas Instruments Incorporated  
99  
 
 
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 80. Per-Phase Valley Current Limit vs Resistor  
Selection  
PER-PHASE  
VALLEY  
CURRENT LIMIT  
(A)  
VOCL(V)  
ROCL-R (kΩ)  
20  
24  
24  
27  
30  
33  
36  
39  
42  
45  
30  
39  
0.85  
56  
75  
100  
150  
20  
24  
48  
51  
54  
57  
60  
63  
66  
69  
30  
39  
0.95  
56  
75  
100  
150  
Table 81. Ramp Level vs OCL_R Pin Voltage Selection  
VOCL-R (V)  
RAMP LEVEL ( mVp-p)  
0.2 ±50 mV or 1.0 ±50 mV  
0.4 ±50 mV or 1.2 ±50 mV  
0.6 ±50 mV or 1.4 ±50 mV  
0.8 ±50mV or 1.6 ±50mV  
40  
80  
150  
200  
In this design example, a 48-A valley current limit is selected, so ROCL is chosen as 20 k.  
In this example, a ramp voltage of 150 mV is chosen. The user may chose a lower ramp value to improve  
transient performance if jitter performance is less of a concern. This value depends on the board layout and  
individual layout requirements.  
Table 80 notes that VOCL must be 1.0 V. Table 81 shows that for a 150- mV ramp, VOCL must be 1.4 V,  
therefore the value of the resistor placed between the OCL-R pin and the VREF pin (ROCL-R) should be 4.32 k.  
8.2.2.7 Set the Load-Line  
The load-line is set by the resistor, RISUM, from ISUM pin to VREF. Please note a 0 resistor will be used since  
load line setting is not required for this design example.  
The below procedure is provided for applications when a 1.05 mload line is needed.  
1
1
RISUM = RLL  
´
= 1.05mW´  
= 2.52kW  
1
6
gM isum ´RCS ´ ACS  
(
)
0.5mS´5mW ´  
where  
RLL is the desired load-line  
gM(isum) is the ISUM amplifier transconductance  
RCS is the current-sensing gain from the CSD95490  
ACS is the internal gain  
(12)  
100  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Because the sensed current from the CSD95490 device is temperature-compensated, a NTC network is not  
required to achieve a simple application circuit.  
8.2.2.8 Set the BOOT Voltage  
The resistor, RBOOT, placed between the VBOOT pin and GND as shown in Table 82 sets bit 3, 2, and 1 of the  
VID of the BOOT voltage. The voltage on VBOOT pin sets bit 7, 6, 5, 4 of the VID of the BOOT voltage. The  
resistor between the ADDR_TRISE pin and GND sets bit 0 of VID of the BOOT voltage. The BOOT voltage  
selection also depends on the operation mode selected in the Select the Operation Mode section. In this design  
example, 1.0 V is selected as the BOOT voltage in VR12.0 mode, and the VID is 1001 0111, so the RBOOT = 39  
k, VVBOOT = 1.009 V, RADDR= 24 kΩ.  
Table 82. Boot Voltage VID Selection (Step 1)  
BOOT VOLTAGE VID  
RBOOT (k)  
B3B2B1  
20  
24  
000  
001  
010  
011  
100  
101  
110  
111  
30  
39  
56  
75  
100  
150  
Table 83. Boot Voltage VID Selection (Step 2)  
BOOT VOLTAGE VID  
VVBOOT (V)  
B7B6B5B4  
VVBOOT 0.053V ± 20 mV  
VVBOOT = 0.159V ± 20 mV  
VVBOOT = 0.226V ± 20 mV  
VVBOOT = 0.372V ± 20 mV  
VVBOOT = 0.478V ± 20 mV  
VVBOOT = 0.584V ± 20 mV  
VVBOOT = 0.691V ± 20 mV  
VVBOOT = 0.797V ± 20 mV  
VVBOOT = 0.903V ± 20 mV  
VVBOOT = 1.009V ± 20 mV  
VVBOOT = 1.116V ± 20 mV  
VVBOOT = 1.222V ± 20 mV  
VVBOOT = 1.328V ± 20 mV  
VVBOOT = 1.434V ± 20 mV  
VVBOOT = 1.541V ± 20 mV  
VVBOOT = 1.615V ± 10 mV  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Table 84. Boot Voltage VID Selection (Step 3)  
BOOT VOLTAGE VID  
RADDR (k)  
B0  
20 or 30 or 56 or 100  
0
24 or 39 or 75 or 150  
1
Copyright © 2016–2017, Texas Instruments Incorporated  
101  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8.2.2.9 Set OSR/USR Thresholds to Improve Load Transient Performance  
The resistor, ROSR connected between the O-USR pin and GND as shown in Table 85 sets the overshoot  
reduction (OSR) threshold.  
Table 85. OSR Threshold vs Resistor Selection  
RO-USR  
(k)  
OSR THRESHOLD ( mV)  
20  
24  
30  
40  
30  
60  
39  
80  
56  
100  
120  
140  
OFF  
75  
100  
150  
The required OSR setting is based on the load-transient performance and the amount of the actual output  
capacitance. The suggested method is to start with OSR OFF and perform the load transient per the application  
requirement. If the overshoot can meet the specification with the chosen output capacitance, then the OSR can  
be kept OFF. So the resistor ROSR can be selected as 150 k. Otherwise the OSR threshold can be lowered by  
choosing a lower setting from the Table 85 to reduce the overshoot to meet the specifications.  
Once ROSR is selected, the Undershoot Reduction (USR) threshold is set by the voltage on the O-USR pin with  
the resistor, RUSR, from the O-USR pin to VREF as shown in Table 86.  
Table 86. USR Threshold vs Voltage Selection  
VO-USR  
(V)  
USR THRESHOLD  
( mV)  
V
O-USR 0.3  
20  
30  
0.35 VO-USR 0.45  
0.55 VO-USR 0.65  
0.75 VO-USR 0.85  
0.95 VO-USR 1.05  
1.15 VO-USR 1.25  
1.35 VO-USR 1.45  
1.55 VO-USR 1.6  
60  
80  
100  
120  
140  
OFF  
The design procedure for the USR threshold is similar to the OSR setting. The initial setting of the USR threshold  
is to start with USR OFF, and then perform the load transient test. If the undershoot can meet the requirement,  
the USR setting can remain OFF. In this design the USR setting is OFF.  
102  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
8.2.2.10 Digital Current Monitor (IMON) Gain and Filter Setting  
To correctly monitor digital current values, the gain of the analog current monitor should be determined by setting  
the IMON voltage to 0.85 V for maximum output current IMAX. When PMBus host sends the READ_IOUT  
command, the current information is reported.  
RIMON can be determined by using Equation 13  
0ꢀ85 6  
0ꢀ85 6  
2)-/.  
=
=
= ꢂꢂꢀ0ꢃ ´3  
1
)
× 2#3 × 3&  
-!ꢁ  
180 ! × 5 ≠3 × @  
A
ꢂ5 ´3  
where  
RIMON is the desired impedance on the IMON pin  
IMAX is the total maximum output current  
RCS is the current sense gain from CSD95490  
SF is is the internal current gain scaling factor  
(13)  
In this design example, IMAX = 180 A, so the resistance, RIMON, is calculated as 33.05 kΩ. Use the standard value  
of 33.2kΩ. A capacitor, CIMON usually connected in parallel with RIMON to provide filtering on the IMON signal. In  
this design, a CIMON value of 2.2 nF is selected.  
8.2.2.11 Compensation Design  
A type-II compensator is used with the DCAP+ architecture of TPS53667 as shown in Figure 106. gM(comp) is the  
COMP amplifier transconductance, which is typically 0.5 mS. RCOMP determines the gain and the compensation  
pole and zero locations. CCOMPS determines the compensation zero to increase the phase margin, and CCOMPP  
determines the compensation pole to filter out the high-frequency noise. The actual compensator design needs  
to be adjusted, based on the experimental test results and the bode plot measurements. In this example, RCOMP  
= 8.06 k, CCOMPS = 1 nF, and CCOMPP = 12 pF to put the compensation zero at 19.7 kHz and the compensator  
pole at 1.65 MHz.  
gM_COMP  
COMP  
VDAC  
+
VFB_DRP  
œ
RCOMP  
CCOMPP  
VCOMP  
VISUM  
VRAMP  
CCOMPS  
Adaptive  
On-Time  
Modulator  
VREF  
Figure 106. Compensation Circuitry  
8.2.2.12 Set PMBus Addresses  
To communicate with system controllers or host with PMBus interfaces, the slave address of the TPS53667  
device needs to be set. The voltage on ADDR_TRISE pin sets the PMBus address. Since the resistance of  
RADDR is already determined (24 kΩ), The resistance between ADDR_TRISE pin and VREF can be calculated. In  
this design, PMBUs address of 111 0001 is used. The resistor between ADDR_TRISE and VREF is 16.5 kΩ.  
8.2.2.13 Programming the Device with the PMBus  
It is optional to use the PMBus interface to program the TPS53667 device since all the settings can be  
configured externally by using resistors; however, the system controller can override the configurations or can  
program the device to change the operation modes using the PMBus. The supported PMBus command sets  
have been introduced in the previous section for the firmware development.  
Copyright © 2016–2017, Texas Instruments Incorporated  
103  
 
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8.2.3 Application Curves  
6-Phase, 180-A, full load application  
1.0032  
1.0026  
1.002  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
1.0014  
1.0008  
1.0002  
0.9996  
0.999  
0.9984  
0.9978  
0
20  
40  
60  
80  
100 120 140 160 180  
0
20  
40  
60  
80  
100 120 140 160 180  
Load Current (A)  
Load Current (A)  
D001  
D001  
VIN = 12.0 V  
VOUT = 1.0 V  
VV5 = 5.0 V  
VIN = 12.0 V  
VOUT = 1.0 V  
VV5 = 5.0 V  
Loadline = 0 mΩ  
fSW = 500 kHz  
Figure 107. Load Regulation  
Figure 108. Load Current vs. Efficiency  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 6 A  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 6 A  
Figure 109. Enable Start-Up  
Figure 110. Enable Shutdown  
104  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
6-Phase, 180-A, full load application  
VIN = 12 V  
VOUT = 1.0 V  
IOUT= 60 A  
VIN = 12 V  
VOUT = 1.0 V  
IOUT= 60 A  
Figure 111. PWM Interleaving (Phases 1-4)  
Figure 112. PWM Interleaving (Phases 4-6)  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 160 A  
VVIN = 12 V  
VOUT = 1.0 V  
40-A Load Step  
Figure 113. Output Ripple  
Figure 114. Transient Response  
Copyright © 2016–2017, Texas Instruments Incorporated  
105  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
6-Phase, 180-A, full load application  
VIN = 12 V  
IOUT = 6 A  
VIN = 12 V  
VBOOT=1.0 V  
IOUT = 6 A  
VBOOT=1.0 V  
VOUT COMMAND change to  
0.8 V  
VOUT COMMAND change to  
1.2 V  
Figure 116. VID Change to 0.8 V  
Figure 115. VID Change to 1.2 V  
VIN = 12 V  
IOUT = 6 A  
VIN = 12 V  
IOUT = 6 A  
VBOOT=1.0 V  
VOUT = 1.2 V  
VBOOT=1.0 V  
VOUT = 0.8 V  
Figure 118. Reset Function (VOUT=1.2 V)  
Figure 117. RESET Function (VOUT=0.8 V)  
106  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
6-Phase, 180-A, full load application  
SW1  
SW2  
SW3  
IOUT  
PHASE ADDING  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 160 A  
Figure 120. Phase Adding  
OC_FAULT_LIMIT=150 A  
Figure 119. Hiccup mode (OCP)  
100  
80  
200  
Gain  
Phase  
160  
60  
120  
80  
40  
20  
40  
SW1  
SW2  
0
0
-20  
-40  
-60  
-80  
-100  
-40  
-80  
-120  
-160  
-200  
SW3  
PHASE SHEDDING  
IOUT  
1000 2000 5000 10000  
100000  
Frequency (Hz)  
1000000  
D001  
6-Phase  
VIN = 12 V  
Operation  
Figure 121. Phase Shedding  
VOUT = 1.0 V  
IOUT = 180 A  
Figure 122. Bode Plot  
版权 © 2016–2017, Texas Instruments Incorporated  
107  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS53667 device operates from a 5-V supply at the V5 pin, and a 12-V supply on the VIN pin. For best  
results, consider the UVLO range for VIN, V5 pin voltages, use well regulated supplies and use the  
recommended filter network.  
The controller requires 1.2 ms to complete the reading of the pinstrap settings. If the converter is enabled before  
pinstrap completion, the controller first completes the pinstrap function and then initiated the start-up sequence.  
After the ENABLE pin voltage goes high, the controller waits for approximately 260 µs before VOUT begins to  
ramp up.  
12 V  
0 V  
VIN  
V5  
5 V  
0 V  
3.3 V  
1 V  
0 V  
0 V  
V3R3  
ENABLE  
Time  
123. Power Supply Waveforms  
108  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Schematic Review Checklist  
Confirm the pin-out of the controller on schematic to the pin-out of datasheet  
Get a closest TI reference design to check for connection and component values  
Have a component value design tool ready to check component values.  
Carefully confirm the choice of inductor and DCR (see the Detailed Design Procedure section).  
Carefully confirm the choice of output capacitors (see the Detailed Design Procedure section).  
Confirm the polarity of the differential pair of voltage sensing (VSP/VSN).  
Confirm the current sensing feedback and reference voltage of TI smart power stages (ex: CSD95490Q5MC).  
A separated IC ground (analog ground) is recommended but not a must.  
10.1.2 PCB Design Guidelines  
Most Critical Layout Requirement  
Separate noisy driver interface lines from sensitive analog lines.  
The TPS53667 device makes this separation easy. The power stage (CSD95490) is  
outside of the TPS53667 device. So all gate-drive and switch-node traces must be local to  
the inductor and the MOSFETs.  
10.1.2.1 Layer Stack-up, 8-Layer PCB as example  
Top Layer: VIN, VOUT, power ground and analog ground  
Layer 2: Power ground  
Layer 3: VIN, VREF, VOUT, PWM signals, and current sense signals  
Layer 4: Power ground, analog ground, and VOUT plane  
Layer5: Power ground, V3R3, and VOUT plane  
Layer 6: V5, VIN and VOUT plane  
Layer 7: Power ground  
Bottom Layer: VIN, VOUT, power ground, analog ground, and feedbacks  
版权 © 2016–2017, Texas Instruments Incorporated  
109  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.2.2 Current Sensing Lines  
Given the physical layout of most systems, the current feedback (CSPx) may have to pass near the power chain.  
Clean current feedback is required for good load-line, current sharing, and current limiting performance of the  
TPS53667, so please take the following precautions:  
Run the current feedback signals in the VREF plane as shown in 124.  
Recommended trace width is 8-10 mil  
The distance of each trace should be larger than 20 mil  
LhÜÇ  
([ayer 3)  
ëw9C t[!b9  
([ayer 3)  
124. Layout Example of Current Sensing Traces  
10.1.2.3 Feedback Voltage Sensing Lines  
The voltage feedback coming from the load must be routed as differential pair (distance 10 mil) all the way to  
the TPS53667 VSP and VSN pins. Recommended trace width is 8-10 mil. Care should be taken to avoid routing  
over switch-node traces.  
110  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Layout Guidelines (接下页)  
ë{ꢀ  
(.ottom)  
ë{b  
(.ottom)  
125. Layout Example for Feedback Voltage Sensing Traces  
10.1.2.4 PWM Lines  
The PWM lines should be routed from the (TPS53667) device to the power stage (CSD95490) without crossing  
any switch-node signals.  
tía6  
tía5  
tía4  
tía3  
tía2  
tía1  
126. Layout Example for PWM Traces  
10.1.2.5 Power Chain Symmetry  
The TPS53667 device does not require special care in the layout of the power chain components. This is  
because independent isolated current feedback is provided. If it is possible to lay out the phases in a symmetrical  
manner, then please do so. The rule is: the current feedback from each phase needs to be clean of noise and  
have the same effective current sense resistance.  
版权 © 2016–2017, Texas Instruments Incorporated  
111  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.2.6 Placing Analog Signal Components  
Place components close to the TPS53667 device in the following order, as shown in 127:  
1. COMP pin and ISUM pin compensation components must be put on the same side of the controller as  
shown in. Recommended trace width is 8-10 mil.  
2. Decoupling capacitors for VREF, V3R3, and V5 must be put on the same side of the controller as shown in.  
Recommended trace width is 8-10 mil.  
Decouple VREF to GND with at most 0.47-uF ceramic capacitor.  
Decouple V3R3 to GND with at least 1-uF ceramic capacitor.  
Decouple V5 to GND with at least 4.7-uF ceramic capacitor. A 1-Ω resistor between 5V supply voltage  
and V5 pin is also recommended as a filter.  
Decouple VIN to GND with at least 1-uF ceramic capacitor. A 1-Ω resistor between 12V supply voltage  
and VIN pin is also recommended as a filter.  
3. OCL-R resistors, F-IMAX resistors, SLEW-MODE resistors, VBOOT resistors, IMON resistor, and O-USR  
resistors. Recommended trace width is 8-10 mil.  
/hat9b{!ÇLhb  
/hathb9bÇ{  
59/hÜt[LbD /!t{  
127. Layout Example of Decoupling Caps and Compensation Components  
112  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Layout Guidelines (接下页)  
10.1.2.7 Grounding Recommendations  
The TPS53667 device has a GND pin, and a thermal pad. The normal procedure for connecting these follows:  
The thermal pad does not have an electrical connection to the TPS53667 device. However, it is suggested to  
be connected to GND pin of the TPS53667 device (analog ground) to give good ground shielding as shown in  
128  
All the analog components should connect to this analog ground island  
Use a single point connection from analog ground to the power ground.  
The return path of the decoupling capacitors (V3R3, V5, VREF, Vin) should be as short as possible.  
When a separated analog ground is used, it's recommended to have an analog ground shape in layer 3  
(assuming controller is on the top layer) to interconnect all the analog ground signals.  
!b![hD DwhÜb5  
t[!b9  
Db5  
tLb  
128. Layout Example for TPS53667 Grounding  
版权 © 2016–2017, Texas Instruments Incorporated  
113  
 
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.2.8 TI Smart Power Stage CSD95490Q5MC  
The following layout recommendations refer to the CSD95490Q5MC.  
10.1.2.8.1 Electrical Performance  
The CSD95490Q5MC has the ability to switch at voltage rates greater than 10 kV/µs. Special care must be taken  
with the PCB layout design and placement of the input capacitors, inductor and output capacitors.  
The placement of the input capacitors relative to VIN and PGND pins of CSD95490Q5MC device should have  
the highest priority during the component placement routine. It is critical to minimize these node lengths. As  
such, place ceramic input capacitors as close as possible to the VIN and PGND pins. The example in uses 1  
× 3300 pF, 0402, 50-V, X7R ceramic capacitor and 3 × 22 µF, 1206, 25-V ceramic capacitors (TDK part  
number C3216X5R1E226M160AB or equivalent). Notice there are ceramic capacitors on both sides of the  
board with an appropriate amount of vias interconnecting both layers.  
Closely connect the bootstrap capacitor (0.1-µF, 0603, 25-V ceramic capacitor) between the BOOT and  
BOOT_R pins.  
The switching node of the output inductor should be placed relatively close to the Power Stage  
CSD95490Q5MC VSW pins. Minimizing the VSW node length between these two components reduces the  
PCB conduction losses and actually reduce the switching noise level.  
10.1.2.8.2 Thermal Performance  
The CSD95490Q5MC has the ability to use the GND planes as the primary thermal path. As such, the use of  
thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder  
voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount  
of solder attach that will wick down the via barrel:  
Intentionally space out the vias from each other to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed in your design. The example in uses vias with a 12 mil drill hole and a 26  
mil capture pad.  
Tent the opposite side of the vias with solder-mask.  
In the end, the number and drill size of the thermal vias should align with the end user’s PCB design rules and  
manufacturing capabilities.  
10.1.2.8.3 Sensing Performance  
The thermal sensing output TAO pin must be properly decoupled for accurate reporting. As discussed above, a  
1nF 25V X7R ceramic capacitor should be placed between TAO and PGND as close to the TAO pin as practical.  
The integrated current sensing technology built into the driver of the CSD95490Q5MC produces an analog signal  
that is proportional to the inductor current with a proportionality constant of 5 mV/A. This signal is referenced to  
the voltage applied to REFIN. For optimal performance of this technology a 0.1µF or larger ceramic capacitor  
should be placed across the REFIN and PGND pins as close as possible to the device.  
In addition the IOUT pin should be routed back to the TPS53667 device in a quiet inner layer. If multiple  
CSD95490Q5M’s are used on the same board, the IOUT traces should have at least 20 mils spacing between  
them. Capacitive loading of the IOUT pin should be avoided to maintain the integrity of the sensed signal.  
114  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
Layout Guidelines (接下页)  
10.1.2.9 Power Delivery and Power Density  
Power stage layout guidelines:  
Maximize the widths of power, ground and drive signal connections.  
For conductors in the power path, be sure there is adequate trace width for the amount of current flowing  
through the traces.  
Make sure there are sufficient vias for connections between layers. A good rule of thumb is to use 1 minimum  
via per ampere of current.  
Phase 5  
Phase 4  
Phase 3  
Phase 2  
Phase 1  
Phase 6  
VIN  
Power  
ground  
1"  
VOUT  
3"  
129. Layout Example of Power Density  
版权 © 2016–2017, Texas Instruments Incorporated  
115  
TPS53667  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
10.2 Layout Example  
130. TPS53667 Layout Example  
116  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS53667  
www.ti.com.cn  
ZHCSFI2B JULY 2016REVISED FEBRUARY 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
如需 Power Stage Designer 工具,请访问 www.ti.com/tool/powerstage-designer。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
CSD95490  
11.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
DCAP+, NexFET, AutoBalance, PowerPAD, E2E are trademarks of Texas Instruments.  
PMBus is a trademark of SMIF, Inc.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
117  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53667RTAR  
TPS53667RTAT  
ACTIVE  
WQFN  
WQFN  
RTA  
40  
40  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS  
53667  
ACTIVE  
RTA  
NIPDAU  
TPS  
53667  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS53667RTAR  
TPS53667RTAT  
WQFN  
WQFN  
RTA  
RTA  
40  
40  
2000  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS53667RTAR  
TPS53667RTAT  
WQFN  
WQFN  
RTA  
RTA  
40  
40  
2000  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RTA0040B  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
4.15±0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
SYMM  
41  
2X  
4.5  
1
30  
0.28  
40X  
PIN1 IDENTIFICATION  
(OPTIONAL)  
0.16  
31  
40  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
40X  
0.05  
4219112/A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
(
4.15)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
36X (0.5)  
SYMM  
41  
2X 2X  
(4.5) (5.8)  
2X  
(0.685)  
2X  
(1.14)  
(R0.05) TYP  
10  
21  
12X (Ø0.2) VIA  
TYP  
11  
20  
2X (1.14)  
2X (0.685)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219112/A 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
9X ( 1.17)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
41  
36X (0.5)  
SYMM  
2X 2X  
(4.5) (5.8)  
2X  
(1.37)  
(R0.05) TYP  
10  
21  
EXPOSED  
METAL  
11  
20  
2X (1.37)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219112/A 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS53667RTAR

适用于 ASIC 且具有 NVM 和 PMBus 接口的六相 D-CAP+ 无驱动器降压控制器 | RTA | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53667RTAT

适用于 ASIC 且具有 NVM 和 PMBus 接口的六相 D-CAP+ 无驱动器降压控制器 | RTA | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53676

具有 AVSBus 的双通道 D-CAP+ 双通道(N+M<= 7 相)降压多相控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53676RSLR

具有 AVSBus 的双通道 D-CAP+ 双通道(N+M<= 7 相)降压多相控制器 | RSL | 48 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53676RSLT

具有 AVSBus 的双通道 D-CAP+ 双通道(N+M<= 7 相)降压多相控制器 | RSL | 48 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53679

具有 NVM 和 PMBus 的双通道 6+1/5+2 VR13 D-CAP+™ 降压多相控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53679RSBR

具有 NVM 和 PMBus 的双通道 6+1/5+2 VR13 D-CAP+™ 降压多相控制器 | RSB | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53679RSBT

具有 NVM 和 PMBus 的双通道 6+1/5+2 VR13 D-CAP+™ 降压多相控制器 | RSB | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53681

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53681RSBR

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器 | RSB | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53681RSBT

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器 | RSB | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS53685

适用于 AMD 平台且具有 SVI3 和 PMBus 的八相数字降压多相控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI