TPS53681 [TI]

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器;
TPS53681
型号: TPS53681
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器

控制器
文件: 总130页 (文件大小:3634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
具有 NVM PMBus™ TPS53681双通道(6-Phase + 2-Phase) or (5-  
Phase + 3-Phase) D-CAP+™ 降压多相控制器  
1 特性  
3 说明  
1
转换输入电压范围:4.5V 17V  
TPS53681 是一款多相降压控制器,具有两个通道、  
内置非易失性存储器 (NVM) PMBus™接口,且可  
TINexFET ™功率级完全兼容。高级控制 特性 ,例  
如具有下冲减弱 (USR) 功能的 D-CAP+™架构,可提  
供快速瞬态响应、低输出电容和高效率。该器件还提供  
全新的相位交错策略和动态切相功能,可有效提升轻负  
载条件下的效率。该器件通过可调压摆率支持快速动态  
电压转换。此外,该器件还支持 PMBus 通信接口,可  
向系统报告遥测的电压、电流、功率、温度和故障状  
况。所有可编程参数均可通过 PMBus 接口进行配置,  
而且可作为新的默认值存储在 NVM 中,以尽可能减少  
外部组件数量。  
具有可选 5mV 10mV 分辨率的 8 DAC,两个  
通道的输出范围均为 0.25V 1.52V 0.5V 至  
2.8125V。  
相位配置  
最高(6 相位 + 2 相位)或(5 相位 + 3 相位)  
最低(1 相位 + 1 相位)  
无驱动器配置,有助于实现高效的高频开关  
可通过 PMBus 接口配置可编程压摆率,从而实现  
动态输出电压转换  
通过闭环频率控制进行频率选择:300kHz 至  
1MHz  
可编程内部环路补偿  
TPS53681 器件采用热增强型 40 引脚 QFN 封装,额  
定工作温度为 –40°C 125°C。  
可通过非易失性存储器 (NVM) 进行配置,从而减少  
外部组件数量  
单独的相电流校准和报告  
器件信息(1)  
可通过可编程电流阈值实现动态切相,从而优化轻  
负载和重负载下的效率  
器件型号  
TPS53681  
封装  
QFN (40)  
封装尺寸(标称值)  
5mm × 5mm  
快速添相以减弱下冲 (USR)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
TI NexFET™功率级完全兼容,可实现高密度解  
决方案  
1. 简化应用  
精确可调电压定位  
已获专利 AutoBalance™相位均衡  
可选 16 级每相位电流限制  
TPS53681  
PWM1  
Power  
PMBus™用于电压、电流、功率、温度和故障条件  
遥测的系统接口  
Stage  
CSP1  
低静态电流  
5 mm × 5 mm 40 引脚 QFN PowerPad™封装  
PWM2  
CSP2  
PMBus  
Power  
Stage  
2 应用  
网络处理器电源(Broadcom®Cavium®)  
数据中心、园区和分支交换机  
PWM6  
CSP6  
Power  
Stage  
核心和边缘路由器  
高电流 FPGA 电源(Intel®Xilinx®)  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCT1  
 
 
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
目录  
6.20 Boot Voltage and TMAX Settings ......................... 21  
6.21 Protections: OVP and UVP................................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Supply: Currents, UVLO, and Power-On Reset........ 7  
6.6 References: DAC and VREF .................................... 8  
6.22 Protections: ATSEN and BTSEN Pin Voltage Levels  
and Fault .................................................................. 22  
6.23 PWM: I/O Voltage and Current ............................ 23  
6.24 Dynamic Phase Add and Drop.............................. 24  
6.25 Typical Characteristics.......................................... 34  
Detailed Description ............................................ 35  
7.1 Overview ................................................................. 35  
7.2 Functional Block Diagram ....................................... 35  
7.3 Feature Description................................................. 35  
7.4 Device Functional Modes........................................ 43  
7.5 Programming........................................................... 43  
Applications, Implementation, and Layout ..... 105  
8.1 Application Information.......................................... 105  
8.2 Typical Application ................................................ 105  
Power Supply Recommendations.................... 116  
7
6.7 Voltage Sense: AVSP and BVSP, AVSN and  
BVSN ......................................................................... 8  
8
9
6.8 Telemetry .................................................................. 9  
6.9 Input Current Sensing ............................................. 10  
6.10 Programmable Loadline Settings.......................... 11  
6.11 Current Sense and Calibration.............................. 15  
10 Layout................................................................. 117  
10.1 Layout Guidelines ............................................... 117  
10.2 Layout Examples................................................. 118  
11 器件和文档支持 ................................................... 120  
11.1 接收文档更新通知 ............................................... 120  
11.2 社区资源.............................................................. 120  
11.3 ..................................................................... 120  
11.4 静电放电警告....................................................... 120  
11.5 术语表 ................................................................. 120  
12 机械、封装和可订购信息..................................... 121  
6.12 Logic Interface Pins: AVR_EN, AVR_RDY,  
BVR_EN, BVR_RDY, RESET, VR_FAULT,  
VR_HOT................................................................... 15  
6.13 I/O Timing.............................................................. 16  
6.14 PMBus Address Setting ........................................ 17  
6.15 Overcurrent Limit Thresholds................................ 18  
6.16 Switching Frequency............................................. 19  
6.17 Slew Rate Settings................................................ 19  
6.18 Ramp Selections................................................... 20  
6.19 Dynamic Integration and Undershoot Reduction .. 20  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2018) to Revision B  
Page  
Updated the device NVM default values in Supported Commands ..................................................................................... 45  
Changes from Original (June 2017) to Revision A  
Page  
更新了应用 列表...................................................................................................................................................................... 1  
已添加 (21h) VOUT_COMMAND register table in Output Voltage Margin Testing section ................................................. 67  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
5 Pin Configuration and Functions  
RSB Package  
40-Pin QFN  
Top View  
BPWM1  
BPWM2  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
BVSP  
BCSP2  
APWM6/BPWM3  
APWM5  
ACSP6/BCSP3  
ACSP5  
APWM4  
ACSP4  
Thermal  
Pad  
ACSP3  
APWM3  
APWM2  
ACSP2  
ACSP1  
AVSN  
APWM1  
SMB_DIO  
SMB_CLK  
AVSP  
(Not to scale)  
Thermal pad acts as AGND.  
NC = not connected  
Pin Functions  
PIN  
I/O(1)  
NO.  
DESCRIPTION  
NAME  
ACSP1  
ACSP2  
ACSP3  
ACSP4  
ACSP5  
23  
24  
25  
Current sense input for the channel A. Connect to the IOUT pin of TI smart power stages. Tie the  
ACSP5, ACSP4, ACSP3, or ACSP2 pin to the V3P3 pin according to Table 1 to disable the  
corresponding phase.  
I
26  
27  
Current sense inputs for channel A or channel B based on NVM option. Connect to the IOUT pin of  
smart power stages. Tie ACSP6/BCSP3 to the 3.3-V supply to disable corresponding phase.  
ACSP6/BCSP3  
ADDR  
28  
34  
Voltage divider to VREF and GND. The voltage level sets the 7-bit PMBus address with an ADC.  
Address is latched at 3.3-V power up.  
I
APWM1  
APWM2  
APWM3  
APWM4  
APWM5  
8
7
6
5
4
O
O
O
O
O
PWM signal for phase 1 of channel A.  
PWM signal for phase 2 of channel A.  
PWM signal for phase 3 of channel A.  
PWM signal for phase 4 of channel A.  
PWM signal for phase 5 of channel A.  
(1) G = ground, I = input, O = output, P = power input  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
APWM6/BPWM3  
3
O
O
PWM signal for phase 6 of channel A, or phase 3 of channel B, based on the NVM option.  
Connect to TAO pin of TI smart power stages of Channel A to sense the highest temperature of the  
power stages and to sense the built-in fault signal from power stages  
ATSEN  
36  
13  
12  
Active high enable input for channel A. Asserting the AVR_EN pin activates channel A. Re-cycling  
BVR_EN pin clears the faults of channel A.  
AVR_EN  
AVR_RDY  
I
Power good open-drain output signal of channel A. This open drain output requires an external pull-  
up resistor. The AVR_RDY pin is pulled low when a shutdown fault occurs.  
O
AVSN  
AVSP  
22  
21  
I
I
Negative input of the remote voltage sense of channel A.  
Positive input of the remote voltage sense of channel A.  
Current sense input for channel B. Connect to the IOUT pins of TI smart power stages. If channel B is  
not used, then connect the BCSP1 pin to GND.  
BCSP1  
BCSP2  
32  
29  
I
I
Current sense input for channel B. Connect to the IOUT pins of TI smart power stages. Tie the  
BCSP2 pin to the V3P3 pin according to Table 1 to disable the corresponding phase.  
BPWM1  
BPWM2  
1
2
O
O
PWM signal for phase 1 of channel B  
PWM signal for phase 2 of channel B  
Connect to TAO pin of TI smart power stages of Channel B to sense the highest temperature of the  
power stages and to sense the built-in fault signal from power stages  
BTSEN  
BVR_EN  
BVR_RDY  
BVSN  
35  
20  
16  
31  
30  
O
I
Active high enable input for channel B. Asserting the BVR_EN pin activates channel B. Re-cycling  
BVR_EN pin clears the faults of channel B.  
Power good open-drain output signal of channel B. This open drain output requires an external pull-  
up resistor. BVR_RDY is pulled low when a shutdown fault occurs.  
O
I
Negative input of the remote voltage sense of channel B. If channel B is not used, connect BVSN to  
GND.  
Positive input of the remote voltage sense of channel B. If channel B is not used, connect BVSP to  
GND.  
BVSP  
I
Input voltage from the positive terminal connecting to the input current sensing shunt. When input  
current sensing is not used, short CSPIN to VIN_CSNIN and connect to the converter input voltage  
(example: 12 V).  
CSPIN  
GND  
37  
I
17  
18  
19  
15  
11  
10  
9
G
Connect to GND  
NC  
No connection.  
RESET  
I/O  
I/O  
I
Resets the output voltage to BOOT voltage  
SMBus or I2C bi-directional ALERT pin interface. (Open drain)  
SMBus or I2C serial clock interface. (Open drain)  
SMBus or I2C bi-directional serial data interface. (Open drain)  
SMB_ALERT  
SMB_CLK  
SMB_DIO  
I/O  
3.3-V power input. Bypass to GND with a ceramic capacitor with a value greater than or equal to 1  
µF. Used to power all digital logic circuits.  
V3P3  
39  
P
Input voltage sensing for on-time control and telemetry. Serves as the negative terminal connecting to  
the input current sensing shunt. When input current sensing is not used, short VIN_CSNIN to CSPIN  
and connect to the converter input voltage (example: 12 V).  
VIN_CSNIN  
38  
P
VR fault indicator. (Open-drain). The failures include the high-side FETs short, over-voltage, over-  
temperature, and the input over-current conditions. Use the fault signal on the platform to remove the  
power source by turning off the AC power supply. When the failure occurs, the VR_FAULT pin is  
LOW, and put the controller into latch-off mode. One NVM bit is used to select whether or not the  
faults from channel B asserts the VR_FAULT. pin.  
VR_FAULT  
VREF  
33  
O
O
1.7-V LDO reference voltage. Bypass to GND with 1-µF ceramic capacitor. Connect the VREF pin to  
the REFIN pin of the TI smart power stages as the current sense common-mode voltage.  
40  
14  
VR_HOT  
O
G
Active low external temperature indicator.  
Thermal Pad  
Analog ground pad. Connect to GND plan with vias.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Table 1. Current Sense Inputs for Active Phases  
Active  
Phase  
Channel  
ACSP1  
ACSP2  
ACSP3  
ACSP4  
ACSP5  
ACSP6  
BSCP1  
BSCP2  
A
1
B
0
1
1
1
1
0
1
2
2
3
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
AIOUT1  
V3P3  
n/a  
n/a  
n/a  
n/a  
n/a  
GND  
V3P3  
V3P3  
2
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
AIOUT2  
V3P3  
n/a  
n/a  
BIOUT1  
BIOUT1  
BIOUT1  
BIOUT1  
GND  
3
AIOUT3  
AIOUT3  
AIOUT3  
AIOUT3  
AIOUT3  
AIOUT3  
AIOUT3  
AIOUT3  
V3P3  
n/a  
n/a  
V3P3  
4
AIOUT4  
AIOUT4  
AIOUT4  
AIOUT4  
AIOUT4  
AIOUT4  
AIOUT4  
V3P3  
n/a  
V3P3  
5
AIOUT5  
AIOUT5  
AIOUT5  
AIOUT5  
AIOUT5  
AIOUT5  
V3P3  
AIOUT6  
AIOUT6  
AIOUT6  
V3P3  
BIOUT3  
V3P3  
6
6(1)  
V3P3  
BIOUT1  
BIOUT1  
BIOUT1  
BIOUT1  
V3P3  
6
BIOUT2  
BIOUT2  
BIOUT2  
5
5(1)  
(1) For n+1 or n+3 applications, the NVM setting must be changed. See also the Phase Configuration for  
Channel B section.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
CSPIN, VIN_CSNIN  
–0.3  
19  
V
ACSP1, ACSP2, ACSP3, ACSP4, ACSP5, ACSP6/BCSP3, ADDR, ATSEN,  
AVR_EN, AVSP, BCSP1, BCSP2, BTSEN, BVR_EN, BVSP, RESET, SMB_CLK,  
SMB_DIO, V3P3  
(1) (2)  
Input voltage  
–0.3  
3.6  
V
AGND, AVSN, BVSN  
–0.3  
–0.3  
0.3  
3.6  
V
V
APWM1, APWM2, APWM3, APWM4, APWM5, APWM6/BPWM3, BPWM2,  
AVR_RDY, BPWM1, BVR_RDY, SMB_ALERT, VREF, VR_FAULT, VR_HOT  
(1) (2)  
Output voltage  
Operating junction temperature, TJ  
Storage temperature, TSTG  
–40  
–55  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal GND unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3000  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
12  
MAX  
17  
UNIT  
CSPIN, VIN_CSNIN  
V3P3  
2.97  
3.3  
3.5  
ACSP1, ACSP2, ACSP3, ACSP4, ACSP5, ACSP6/BSCP3, ADDR,  
ATSEN, AVR_EN, AVSP, BCSP1, BCSP2, BTSEN, BVR_EN, BVSP,  
RESET, SMB_CLK, SMB_DIO, V3P3  
Input voltage  
V
–0.1  
3.5  
AGND, AVSN, BVSN  
VREF  
–0.1  
–0.1  
0.1  
1.72  
APWM1, APWM2, APWM3, APWM4, APWM5, APWM6/BPWM3,  
BPWM2, AVR_RDY, BPWM1, BVR_RDY, SMB_ALERT, VREF,  
VR_FAULT, VR_HOT  
Output voltage  
V
–0.1  
–40  
3.5  
Ambient temperature, TA  
125  
°C  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.4 Thermal Information  
TPS53681  
THERMAL METRIC(1)  
RSB (WQFN)  
UNIT  
40 PINS  
34.1  
16.6  
5.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.7  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Supply: Currents, UVLO, and Power-On Reset  
VVIN_CSNIN = 12.0 V, VV3P3 = 3.3 V, VAVSN = GND, VBVSN = GND, VAVSP = VOUTA, VBVSP = VOUTB (Unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply: Currents, UVLO, and Power-On Reset  
VDAC < VSP < VDAC + 100m V, ENABLE =  
'HI '  
IV3P3  
V3P3 supply current  
13  
9
18  
mA  
IV3P3SBY  
V3NORMAL  
V3UVLOH  
V3UVLOL  
V3P3 standby current  
V3P3 normal range  
ENABLE = 'LO '  
Normal operation  
13.5  
3.5  
mA  
V
2.97  
2.85  
2.65  
3.75  
5
V3P3 UVLO 'OK ' threshold Ramp up  
V3P3 UVLO fault threshold Ramp down  
2.95  
2.75  
4.25  
5.5  
V
V
VIN_ON = 0xF010  
4
5.25  
6.25  
7.25  
8.25  
9.25  
10.25  
11.25  
invalid  
4.25  
5.5  
V
VIN_ON = 0xF015  
V
VIN_ON = 0xF019  
6
6.5  
V
VIN_ON = 0xF01D  
7
7.5  
V
V12ON  
V12 UVLO 'OK ' threshold  
VIN_ON = 0xF021  
8
8.5  
V
VIN_ON = 0xF025  
9
9.5  
V
VIN_ON = 0xF029  
10  
11  
10.5  
11.5  
V
VIN_ON = 0xF02D  
V
VIN_ON = others  
VIN_UV_FAULT_LIMIT = 0xF011  
VIN_UV_FAULT_LIMIT = 0xF80B  
VIN_UV_FAULT_LIMIT = 0xF80D  
VIN_UV_FAULT_LIMIT = 0xF80F  
VIN_UV_FAULT_LIMIT = 0xF811  
VIN_UV_FAULT_LIMIT = 0xF813  
VIN_UV_FAULT_LIMIT = 0xF815  
VIN_UV_FAULT_LIMIT = 0xF817  
VIN_UV_FAULT_LIMIT = others  
4
5.25  
4.48  
5.78  
6.78  
7.78  
8.78  
9.78  
10.78  
11.8  
V
V
V
V
V
V
V
V
6.25  
6.5  
7.25  
7.5  
V12UVF  
V12 UVLO fault threshold  
8.25  
8.5  
9.25  
9.5  
10.25  
11.25  
10.5  
11.5  
invalid  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.6 References: DAC and VREF  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
5
MAX  
UNIT  
mV  
10 mV DAC: Change VID0 HI to LO to HI  
5 mV DAC: Change VID0 HI to LO to HI  
VVIDSTP  
VDAC0  
VID step size  
mV  
10 mV DAC : 0.50 VVSP 0.99 V,  
ICORE = 0 A  
VSP tolerance  
VSP tolerance  
VSP tolerance  
VSP tolerance  
–10  
–8  
10  
8
mV  
mV  
mV  
%
5 mV DAC: 0.25 VVSP 0.795 V,  
ICORE = 0 A  
VDAC1  
VDAC2  
VDAC3  
10 mV DAC: 1.00 V VVSP 1.49 V,  
ICORE = 0 A  
5 mV DAC: 0.8 VVSP 0.995 V,  
ICORE = 0 A  
–5  
5
5mV DAC: 1.00V VSP 1.52 V,  
ICORE = 0 A  
–0.5  
0.5  
10 mV DAC: 1.50 V VVSP 2.50 V,  
ICORE = 0 A  
VVREF  
VREF output deeper sleep  
VREF output source  
VREF output sink  
2.97V VV3P3 3.5 V, IVREF = 0 A  
0 A IVREF = 2 mA  
1.692  
–8  
1.7  
1.708  
8
V
VVREFSRC  
VVREFSNK  
mV  
mV  
–2 mA IVREF = 0 A  
VOUT_SCALE_LOOP = 0xe809,  
VOUT_SCALE_MONITOR = 0xe809  
1.125  
1
KRATIO  
Voltage divider ratio  
VOUT offset LSB  
VOUT_SCALE_LOOP = 0xe808,  
VOUT_SCALE_MONITOR = 0xe808  
VOUT_TRIML  
MFR_SPECIFIC_05 = 0x01  
MFR_SPECIFIC_05 = 0x1F  
MFR_SPECIFIC_05 = 0xA0  
MFR_SPECIFIC_05 = 0x5F  
MFR_SPECIFIC_05 = 0xE0  
0
37.5  
1.25  
38.75  
–40  
2.5  
40  
mV  
mV  
–43.25  
56.25  
–63  
–37.75  
61.25  
–57  
VOUT_TRIMR  
VOUT offset range  
58.75  
–60  
6.7 Voltage Sense: AVSP and BVSP, AVSN and BVSN  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Not in Fault, Disable or UVLO; VVSP = VVDAC  
= 2.3 V, VVSN = 0 V  
IAVSP  
IAVSN  
IBVSP  
IBVSN  
AVSP input bias current  
75  
µA  
Not in Fault, Disable or UVLO; VVSP = VVDAC  
= 2.3 V, VVSN = 0 V  
AVSN input bias current  
BVSP input bias current  
BVSN input bias current  
–75  
µA  
µA  
µA  
Not in Fault, Disable or UVLO; VVSP = VVDAC  
= 1.0 V, VVSN = 0 V  
75  
Not in Fault, Disable or UVLO; VVSP = VVDAC  
= 1.0 V, VVSN = 0 V  
–75  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.8 Telemetry  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
5 mV DAC : 0.25 V VVSP 1.52 V  
10 mV DAC: 0.5 VVSP 2.4 V  
VREAD_VOUT MFR_READ_VOUT Accuracy  
–12  
12  
mV  
VREAD_VIN  
READ_VIN Accuracy  
4.50 V VIN 17 V  
–2.25%  
–7.3%  
–4.2%  
–3.1%  
–2.5%  
–2.3%  
–2%  
2.25%  
7.3%  
4.2%  
3.1%  
2.5%  
2.3%  
2%  
6-phase, ICC(max) = 228 A, IOUT = 22.8 A  
6-phase, ICC(max) = 228 A, IOUT = 45.6 A  
6-phase, ICC(max) = 228 A, IOUT = 68.4 A  
6-phase, ICC(max) = 228 A, IOUT = 91.2 A  
6-phase, ICC(max) = 228 A, IOUT = 114 A  
6-phase, ICC(max) = 228 A, IOUT = 136.8 A  
6-phase, ICC(max) = 228 A, IOUT = 228 A  
6-phase, ICC(max) = 228 A, IOUT = 255 A  
5-phase, ICC(max) = 228 A, IOUT = 22.8 A  
5-phase, ICC(max) = 228 A, IOUT = 45.6 A  
5-phase, ICC(max) = 228 A, IOUT = 68.4 A  
5-phase, ICC(max) = 228 A, IOUT = 91.2 A  
5-phase, ICC(max) = 228 A, IOUT = 114 A  
5-phase, ICC(max) = 228 A, IOUT = 136.8 A  
5-phase, ICC(max) = 228 A, IOUT = 228 A  
4-phase, ICC(max) = 200 A, IOUT = 20 A  
4-phase, ICC(max) = 200 A, IOUT = 40 A  
4-phase, ICC(max) = 200 A, IOUT = 60 A  
4-phase, ICC(max) = 200 A, IOUT = 80 A  
4-phase, ICC(max) = 200 A, IOUT = 100 A  
4-phase, ICC(max) = 200 A, IOUT = 120 A  
4-phase, ICC(max) = 200 A, IOUT = 200 A  
3-phase, ICC(max) = 82 A, IOUT = 8.2 A  
3-phase, ICC(max) = 82 A, IOUT = 16.4 A  
3-phase, ICC(max) = 82 A, IOUT = 24.6 A  
3-phase, ICC(max) = 82 A, IOUT = 32.8 A  
3-phase, ICC(max) = 82 A, IOUT = 41 A  
3-phase, ICC(max) = 82 A, IOUT = 49.2 A  
3-phase, ICC(max) = 82 A, IOUT = 82 A  
2-phase, ICC(max) = 82 A, IOUT = 8.2 A  
2-phase, ICC(max) = 82 A, IOUT = 16.4 A  
2-phase, ICC(max) = 82 A, IOUT = 24.6 A  
2-phase, ICC(max) = 82 A, IOUT = 32.8 A  
2-phase, ICC(max) = 82 A, IOUT = 41 A  
2-phase, ICC(max) = 82 A, IOUT = 49.2 A  
2-phase, ICC(max) = 82 A, IOUT = 82 A  
0.28 V (–40°C) TSEN 1.8 V (150°C)  
Digital current monitor  
accuracy, Rail A (READ_IOUT)  
IMON_ACC  
–1.6%  
–1.5%  
–6.4%  
–3.7%  
–2.9%  
–2.3%  
–2.1%  
–1.9%  
–1.5%  
–6.5%  
–3.7%  
–2.8%  
–2.3%  
–2.1%  
–1.9%  
–1.5%  
–11.4%  
–6.1%  
–4.6%  
–3.4%  
–3%  
1.6%  
1.5%  
6.4%  
3.7%  
2.9%  
2.3%  
2.1%  
1.9%  
1.5%  
6.5%  
3.7%  
2.8%  
2.3%  
2.1%  
1.9%  
1.5%  
11.4%  
6.1%  
4.6%  
3.4%  
3%  
Digital current monitor  
accuracy, Rail A (READ_IOUT)  
IMON_ACC  
IMON_ACC  
IMON_ACC  
Digital current monitor  
accuracy, Rail A (READ_IOUT)  
Digital current monitor  
accuracy, Rail B (READ_IOUT)  
–2.8%  
–2%  
2.8%  
2%  
–8.7%  
–4.7%  
–3.7%  
–2.7%  
–2.5%  
–2.4%  
–1.8%  
–2  
8.7%  
4.7%  
3.7%  
2.7%  
2.5%  
2.4%  
1.8%  
2
Digital current monitor  
accuracy, Rail B (READ_IOUT)  
IMON_ACC  
Temp  
READ_TEMP1  
0
°C  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.9 Input Current Sensing  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(VCSPIN – VCSNIN) = 2.5 mV, IIN = 5 A,  
RSENSE = 0.5 mΩ  
–10%  
10%  
6%  
(VCSPIN – VCSNIN) = 5 mV, IIN = 10 A,  
RSENSE = 0.5 mΩ  
IIN  
READ_IIN accuracy  
–6%  
–3%  
(VCSPIN – VCSNIN) = 15 mV, IIN = 30 A,  
RSENSE = 0.5 mΩ  
3%  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.10 Programmable Loadline Settings  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT_DROOP = 0xD000  
VOUT_DROOP = 0xD008  
VOUT_DROOP = 0xD010  
VOUT_DROOP = 0xD014  
VOUT_DROOP = 0xD018  
VOUT_DROOP = 0xD01C  
VOUT_DROOP = 0xD020  
VOUT_DROOP = 0xD024  
VOUT_DROOP = 0xD028  
VOUT_DROOP = 0xD030  
VOUT_DROOP = 0xD033  
VOUT_DROOP = 0xD034  
VOUT_DROOP = 0xD035  
VOUT_DROOP = 0xD036  
VOUT_DROOP = 0xD037  
VOUT_DROOP = 0xD038  
VOUT_DROOP = 0xD039  
VOUT_DROOP = 0xD03A  
VOUT_DROOP = 0xD03B  
VOUT_DROOP = 0xD03C  
VOUT_DROOP = 0xD03D  
VOUT_DROOP = 0xD03E  
VOUT_DROOP = 0xD03F  
VOUT_DROOP = 0xD040  
VOUT_DROOP = 0xD041  
VOUT_DROOP = 0xD042  
VOUT_DROOP = 0xD043  
VOUT_DROOP = 0xD044  
VOUT_DROOP = 0xD048  
VOUT_DROOP = 0xD050  
VOUT_DROOP = 0xD058  
VOUT_DROOP = 0xD060  
VOUT_DROOP = 0xD068  
VOUT_DROOP = 0xD070  
VOUT_DROOP = 0xD078  
VOUT_DROOP = 0xD07C  
VOUT_DROOP = 0xD080  
VOUT_DROOP = 0xD084  
VOUT_DROOP = 0xD088  
VOUT_DROOP = 0xD08C  
VOUT_DROOP = 0xD090  
VOUT_DROOP = 0xD098  
VOUT_DROOP = 0xD09B  
VOUT_DROOP = 0xD09C  
MIN  
TYP  
0
MAX  
UNIT  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
0.1125  
0.2412  
0.3031  
0.3637  
0.4265  
0.4875  
0.5484  
0.6093  
0.6855  
0.7769  
0.7921  
0.8073  
0.8227  
0.8379  
0.8531  
0.8683  
0.8836  
0.8988  
0.9140  
0.9292  
0.9445  
0.9597  
0.975  
0.125  
0.25  
0.1395  
0.2587  
0.3218  
0.3872  
0.4484  
0.5125  
0.5765  
0.6406  
0.7207  
0.8168  
0.8328  
0.8488  
0.8648  
0.8808  
0.8968  
0.9128  
0.9289  
0.9449  
0.9609  
0.9769  
0.9930  
1.0090  
1.025  
0.3125  
0.375  
0.4375  
0.5  
0.5625  
0.625  
0.7031  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.875  
0.8906  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1
DC loadline settings for  
Channel A  
DCLLChannel A  
0.9902  
1.0055  
1.0207  
1.0359  
1.0968  
1.2187  
1.3406  
1.4625  
1.5843  
1.7062  
1.8281  
1.8890  
1.95  
1.0156  
1.0313  
1.0469  
1.0625  
1.125  
1.25  
1.0409  
1.0570  
1.0730  
1.0890  
1.1531  
1.2812  
1.4093  
1.5375  
1.6656  
1.7937  
1.9218  
1.9859  
2.05  
1.375  
1.5  
1.625  
1.75  
1.875  
1.9375  
2
2.0109  
2.0718  
2.1328  
2.1937  
2.2698  
2.3612  
2.3765  
2.0625  
2.125  
2.1875  
2.25  
2.1141  
2.1781  
2.2421  
2.3062  
2.3862  
2.4823  
2.4984  
2.328  
2.4218  
2.4375  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Programmable Loadline Settings (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VOUT_DROOP = 0xD09D  
VOUT_DROOP = 0xD09E  
VOUT_DROOP = 0xD09F  
VOUT_DROOP = 0xD0A0  
VOUT_DROOP = 0xD0A1  
VOUT_DROOP = 0xD0A2  
VOUT_DROOP = 0xD0A3  
VOUT_DROOP = 0xD0A4  
VOUT_DROOP = 0xD0A5  
VOUT_DROOP = 0xD0A6  
VOUT_DROOP = 0xD0A7  
VOUT_DROOP = 0xD0A8  
VOUT_DROOP = 0xD0A9  
VOUT_DROOP = 0xD0AA  
VOUT_DROOP = 0xD0AB  
VOUT_DROOP = 0xD0AC  
VOUT_DROOP = 0xD0B0  
VOUT_DROOP = 0xD0B8  
VOUT_DROOP = 0xD0C0  
VOUT_DROOP = 0xD0C8  
VOUT_DROOP = 0xD000  
VOUT_DROOP = 0xD008  
VOUT_DROOP = 0xD010  
VOUT_DROOP = 0xD014  
VOUT_DROOP = 0xD018  
VOUT_DROOP = 0xD01C  
VOUT_DROOP = 0xD020  
VOUT_DROOP = 0xD024  
VOUT_DROOP = 0xD028  
VOUT_DROOP = 0xD030  
VOUT_DROOP = 0xD033  
VOUT_DROOP = 0xD034  
VOUT_DROOP = 0xD035  
VOUT_DROOP = 0xD036  
VOUT_DROOP = 0xD037  
VOUT_DROOP = 0xD038  
MIN  
2.3917  
2.4069  
2.4221  
2.4375  
2.4527  
2.4679  
2.4831  
2.4984  
2.5136  
2.5288  
2.5437  
2.5593  
2.5745  
2.5897  
2.6050  
2.6203  
2.6812  
2.8031  
2.925  
TYP  
2.4531  
2.4687  
2.4843  
2.5  
MAX  
UNIT  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
2.5144  
2.5304  
2.5464  
2.5625  
2.5784  
2.5944  
2.6104  
2.6265  
2.6425  
2.6585  
2.6742  
2.6906  
2.7066  
2.7226  
2.7385  
2.7546  
2.8187  
2.9468  
3.075  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
2.625  
2.6406  
2.6562  
2.6718  
2.6875  
2.75  
DC loadline settings for  
Channel A  
DCLLChannel A  
2.875  
3
3.0468  
3.125  
0
3.2031  
0.1125  
0.2355  
0.297  
0.125  
0.25  
0.1395  
0.2625  
0.3234  
0.395  
0.3125  
0.375  
0.4375  
0.5  
0.3637  
0.4244  
0.4875  
0.5464  
0.6093  
0.6855  
0.7769  
0.7921  
0.8073  
0.8227  
0.8379  
0.8531  
0.454  
0.517  
0.5625  
0.625  
0.7031  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.875  
0.5786  
0.648  
DC Loadline settings for  
Channel B  
DCLLChannel B  
0.7207  
0.8168  
0.8335  
0.852  
0.8648  
0.8815  
0.8968  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Programmable Loadline Settings (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MFR_SPECIFIC_07 = 0x00  
MFR_SPECIFIC_07 = 0x01  
MFR_SPECIFIC_07 = 0x02  
MFR_SPECIFIC_07 = 0x03  
MFR_SPECIFIC_07 = 0x04  
MFR_SPECIFIC_07 = 0x05  
MFR_SPECIFIC_07 = 0x06  
MFR_SPECIFIC_07 = 0x07  
MFR_SPECIFIC_07 = 0x08  
MFR_SPECIFIC_07 = 0x09  
MFR_SPECIFIC_07 = 0x0A  
MFR_SPECIFIC_07 = 0x0B  
MFR_SPECIFIC_07 = 0x0C  
MFR_SPECIFIC_07 = 0x0D  
MFR_SPECIFIC_07 = 0x0E  
MFR_SPECIFIC_07 = 0x0F  
MFR_SPECIFIC_07 = 0x10  
MFR_SPECIFIC_07 = 0x11  
MFR_SPECIFIC_07 = 0x12  
MFR_SPECIFIC_07 = 0x13  
MFR_SPECIFIC_07 = 0x14  
MFR_SPECIFIC_07 = 0x15  
MFR_SPECIFIC_07 = 0x16  
MFR_SPECIFIC_07 = 0x17  
MFR_SPECIFIC_07 = 0x18  
MFR_SPECIFIC_07 = 0x19  
MFR_SPECIFIC_07 = 0x1A  
MFR_SPECIFIC_07 = 0x1B  
MFR_SPECIFIC_07 = 0x1C  
MFR_SPECIFIC_07 = 0x1D  
MFR_SPECIFIC_07 = 0x1E  
MFR_SPECIFIC_07 = 0x1F  
MFR_SPECIFIC_07 = 0x20  
MFR_SPECIFIC_07 = 0x21  
MFR_SPECIFIC_07 = 0x22  
MFR_SPECIFIC_07 = 0x23  
MFR_SPECIFIC_07 = 0x24  
MFR_SPECIFIC_07 = 0x25  
MFR_SPECIFIC_07 = 0x26  
MFR_SPECIFIC_07 = 0x27  
MFR_SPECIFIC_07 = 0x28  
MFR_SPECIFIC_07 = 0x29  
MFR_SPECIFIC_07 = 0x2A  
MFR_SPECIFIC_07 = 0x2B  
MIN  
TYP  
0
MAX  
UNIT  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
0.1125  
0.2412  
0.3031  
0.3637  
0.4265  
0.4875  
0.5484  
0.6093  
0.7312  
0.7769  
0.7921  
0.8073  
0.8227  
0.8379  
0.8531  
0.8683  
0.8836  
0.8988  
0.9140  
0.9292  
0.9445  
0.9597  
0.975  
0.125  
0.25  
0.1395  
0.2587  
0.3218  
0.3862  
0.4484  
0.5125  
0.5765  
0.6406  
0.7687  
0.8168  
0.8328  
0.8488  
0.8648  
0.8808  
0.8968  
0.9128  
0.9289  
0.9449  
0.9609  
0.9769  
0.9930  
1.0090  
1.025  
0.3125  
0.375  
0.4375  
0.5  
0.5625  
0.625  
0.75  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.875  
0.8906  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1
AC Loadline settings for  
both Channel A and  
Channel B(1)  
ACLL  
0.9902  
1.0055  
1.0207  
1.0359  
1.0968  
1.2187  
1.3406  
1.4625  
1.5843  
1.7062  
1.8281  
1.8890  
1.95  
1.0156  
1.0313  
1.0469  
1.0625  
1.125  
1.25  
1.0409  
1.0570  
1.0730  
1.0890  
1.1531  
1.2812  
1.4093  
1.5375  
1.6656  
1.7937  
1.9218  
1.9859  
2.05  
1.375  
1.5  
1.625  
1.75  
1.875  
1.9375  
2
2.0109  
2.0718  
2.1328  
2.1937  
2.3156  
2.3612  
2.3765  
2.0625  
2.125  
2.1875  
2.25  
2.1140  
2.1781  
2.2421  
2.3062  
2.4343  
2.4823  
2.4984  
2.375  
2.4218  
2.4375  
(1) Specified by design. Not production tested.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Programmable Loadline Settings (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MFR_SPECIFIC_07 = 0x2C  
MFR_SPECIFIC_07 = 0x2D  
MFR_SPECIFIC_07 = 0x2E  
MFR_SPECIFIC_07 = 0x2F  
MFR_SPECIFIC_07 = 0x30  
MFR_SPECIFIC_07 = 0x31  
MFR_SPECIFIC_07 = 0x32  
MFR_SPECIFIC_07 = 0x33  
MFR_SPECIFIC_07 = 0x34  
MFR_SPECIFIC_07 = 0x35  
MFR_SPECIFIC_07 = 0x36  
MFR_SPECIFIC_07 = 0x37  
MFR_SPECIFIC_07 = 0x38  
MFR_SPECIFIC_07 = 0x39  
MFR_SPECIFIC_07 = 0x3A  
MFR_SPECIFIC_07 = 0x3B  
MFR_SPECIFIC_07 = 0x3C  
MFR_SPECIFIC_07 = 0x3D  
MFR_SPECIFIC_07 = 0x3E  
MFR_SPECIFIC_07 = 0x3F  
MFR_SPEC_7<11:8> = 0000b  
MFR_SPEC_7<11:8> = 0001b  
MFR_SPEC_7<11:8> = 0010b  
MFR_SPEC_7<11:8> = 0011b  
MFR_SPEC_7<11:8> = 0100b  
MFR_SPEC_7<11:8> = 0101b  
MFR_SPEC_7<11:8> = 0110b  
MFR_SPEC_7<11:8> = 0111b  
MFR_SPEC_7<11:8> = 1000b  
MFR_SPEC_7<11:8> = 1001b  
MFR_SPEC_7<11:8> = 1010b  
MFR_SPEC_7<11:8> = 1011b  
MFR_SPEC_7<11:8> = 1100b  
MFR_SPEC_7<11:8> = 1101b  
MFR_SPEC_7<11:8> = 1110b  
MFR_SPEC_7<11:8> = 1111b  
MIN  
2.3917  
2.4069  
2.4221  
2.4375  
2.4527  
2.4679  
2.4831  
2.4984  
2.5136  
2.5288  
2.5437  
2.5593  
2.5745  
2.5897  
2.6050  
2.6203  
2.6812  
2.8031  
2.925  
TYP  
2.4531  
2.4687  
2.4843  
2.5  
MAX  
UNIT  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
µs  
2.5144  
2.5304  
2.5464  
2.5625  
2.5784  
2.5944  
2.6104  
2.6265  
2.6425  
2.6585  
2.6742  
2.6906  
2.7066  
2.7226  
2.7385  
2.7546  
2.8187  
2.9468  
3.075  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
2.625  
2.6406  
2.6562  
2.6718  
2.6875  
2.75  
2.875  
3
AC Loadline settings for  
both Channel A and  
Channel B(1)  
ACLL  
3.0468  
3.125  
5
3.2031  
10  
µs  
15  
µs  
20  
µs  
25  
µs  
30  
µs  
35  
µs  
40  
µs  
tINT  
Integration time constant(1)  
1
µs  
2
µs  
3
µs  
4
µs  
5
µs  
6
µs  
7
µs  
8
µs  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.11 Current Sense and Calibration  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX UNIT  
IACSP1  
IACSP2  
IACSP3  
IACSP4  
IACSP5  
IACSP6  
IBCSP1  
IBCSP2  
ACSP1 leakage current  
ACSP2 leakage current  
ACSP3 leakage current  
ACSP4 leakage current  
ACSP5 leakage current  
ACSP6 leakage current  
BCSP1 leakage current  
BCSP2 leakage current  
VACSP1 = 2.5 V  
VACSP2 = 2.5 V  
VACSP3 = 2.5 V  
VACSP4 = 2.5 V  
VACSP5 = 2.5 V  
VACSP6 = 2.5 V  
VBCSP1 = 2.5 V  
VBCSP2 = 2.5 V  
20  
20  
20  
20  
20  
20  
20  
20  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
0
0
0
0
0
0
0
Current monitor calibration offset IOUT_CAL_OFFSET resolution (per-  
IMON_CAL_OF1  
0.125  
1
A
A
A
A
LSB (per-phase)(1)  
phase)  
IOUT_CAL_OFFSET = 0xE808 (per-  
phase)  
Current monitor calibration offset  
range (per-phase)  
IMON_CAL_OF2  
IOUT_CAL_OFFSET = 0xEFF9 (per-  
phase)  
–0.875  
0.25  
Current monitor calibration offset  
LSB (total)(1)  
IMON_CAL_OF3  
IOUT_CAL_OFFSET resolution (total)  
IOUT_CAL_OFFSET = 0xE820 (total)  
IOUT_CAL_OFFSET = 0xEFE2 (total)  
4
A
A
Current monitor calibration offset  
range (total)  
IMON_CAL_OF4  
–3.75  
Current monitor calibration gain  
LSB(1)  
IMON_CAL_GA_LSB  
IMON_CAL_GA_RNG  
IOUT_CAL_GAIN resolution  
0.3125%  
IOUT_CAL_GAIN = 0xD131  
IOUT_CAL_GAIN = 0xD150  
4.7656  
5.25  
mΩ  
mΩ  
Current monitor calibration gain  
range  
(1) Specified by design. Not production tested.  
6.12 Logic Interface Pins: AVR_EN, AVR_RDY, BVR_EN, BVR_RDY, RESET, VR_FAULT,  
VR_HOT  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Open-drain pulldown  
resistance  
RRPGDL  
VAVR_RDY = VBVR_RDY = VVR_FAULT = 0.45 V  
36  
50  
Ω
SDIO, VR_HOT, AVR_RDY, BVR_RDY,  
VR_FAULT, Hi Z Leakage, apply to 3.3-V  
supply in off state  
IVRTTLK  
Open-drain leakage current  
–2  
0.2  
2
µA  
VAENL  
Channel A ENABLE logic low  
Channel A ENABLE logic high  
Channel A ENABLE hysteresis  
Channel A ENABLE deglitch(1)  
Channel A I/O 1.1-V leakage  
Channel B ENABLE logic low  
Channel B ENABLE logic high  
Channel B ENABLE hysteresis  
Channel B ENABLE deglitch(1)  
0.7  
V
V
VAENH  
VAENHYS  
tAENDIG  
IAENH  
0.8  
0.028  
0.2  
0.05  
0.07  
V
µs  
µA  
V
VAVR_EN = 1.1 V  
25  
VBENL  
0.7  
VBENH  
VBENHYS  
tBENDIG  
0.8  
0.028  
0.2  
V
0.05  
0.07  
1.5  
V
µs  
Channel A ENABLE low to  
AVR_RDY low  
tAENVRRDYF  
From AVR_EN low to AVR_RDY low  
VBENH = 1.1 V  
µs  
IBENH  
Channel B I/O 1.1-V leakage  
25  
µA  
V
VRSTL  
VRSTH  
tRSTTDLY  
RESET logic low  
0.8  
RESET logic high(1)  
RESET delay time  
1.09  
V
1
µs  
(1) Specified by design. Not production tested.  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.13 I/O Timing  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVBOOT > 0 V, no faults, CREF = 1 µF,  
TON_DELAY = 0xB1EC (PAGE 0)  
0.38  
0.48  
0.58  
ms  
TON_DELAY = 0xB396 (PAGE 0)  
TON_DELAY = 0xBAD1 (PAGE 0)  
TON_DELAY = 0xC26E (PAGE 0)  
TON_DELAY = others  
0.8  
1.308  
2.28  
0.9  
1.408  
2.432  
Invalid  
1
1.508  
2.584  
ms  
ms  
ms  
tSTARTUPA Channel A startup time(1)  
VVBOOT > 0 V, no faults, CREF = 1 µF,  
TON_DELAY = 0xB1EC (PAGE 1)  
0.38  
0.48  
0.58  
ms  
TON_DELAY = 0xB396 (PAGE 1)  
TON_DELAY = 0xBAD1 (PAGE 1)  
TON_DELAY = 0xC26E (PAGE 1)  
TON_DELAY = others  
0.8  
1.308  
2.28  
0.9  
1.408  
2.432  
Invalid  
1
1.508  
2.584  
ms  
ms  
ms  
tSTARTUPB Channel B startup time(2)  
ACK of SetVID_x command to start of voltage  
ramp  
(3)  
tVCCVID  
VID change to VSP change  
500  
ns  
tVRTDGLT VR_HOT update time  
Temperature data update time  
MFR_SPEC_09<8:6> = 000b  
MFR_SPEC_09<8:6> = 001b  
MFR_SPEC_09<8:6> = 010b  
MFR_SPEC_09<8:6> = 011b  
MFR_SPEC_09<8:6> = 100b  
MFR_SPEC_09<8:6> = 101b  
MFR_SPEC_09<8:6> = 110b  
MFR_SPEC_09<8:6> = 111b  
0.3  
72  
0.5  
92  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
53  
58  
66  
70  
78  
82  
88  
91  
78  
98  
86  
108  
114  
125  
132  
139  
145  
92  
(3)  
tON_BLANK Rising-edge blanking time  
100  
108  
114  
120  
(1) Time from AVR_EN to output voltage ramp up to target voltage.  
(2) Time from AVR_EN or BVR_EN to output voltage ramp up to target voltage.  
(3) Specified by design. Not production tested.  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.14 PMBus Address Setting  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
ADDR 0.039 V  
MIN  
TYP MAX  
1011000 (B0h)  
UNIT  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
Bin  
V
VADDR = 0.073 V with ±15 mV tolerance  
VADDR = 0.122 V with ±15 mV tolerance  
VADDR = 0.171 V with ±15 mV tolerance  
VADDR = 0.219 V with ±15 mV tolerance  
VADDR = 0.268 V with ±15 mV tolerance  
VADDR = 0.317 V with ±15 mV tolerance  
VADDR = 0.366 V with ±15 mV tolerance  
VADDR = 0.415 V with ±15 mV tolerance  
VADDR = 0.464 V with ±15 mV tolerance  
VADDR = 0.513 V with ±15 mV tolerance  
VADDR = 0.562 V with ±15 mV tolerance  
VADDR = 0.610 V with ±15 mV tolerance  
VADDR = 0.660 V with ±15 mV tolerance  
VADDR = 0.708 V with ±15 mV tolerance  
VADDR = 0.757 V with ±15 mV tolerance  
VADDR = 0.806 V with ±15 mV tolerance  
VADDR = 0.854 V with ±15 mV tolerance  
VADDR = 0.903 V with ±15 mV tolerance  
VADDR = 0.952 V with ±15 mV tolerance  
VADDR = 1.000 V with ±15 mV tolerance  
VADDR = 1.050 V with ±15 mV tolerance  
VADDR = 1.098 V with ±15 mV tolerance  
VADDR = 1.147 V with ±15 mV tolerance  
VADDR = 1.196 V with ±15 mV tolerance  
VADDR = 1.245 V with ±15 mV tolerance  
VADDR = 1.294 V with ±15 mV tolerance  
VADDR = 1.343 V with ±15 mV tolerance  
VADDR = 1.392 V with ±15 mV tolerance  
VADDR = 1.440 V with ±15 mV tolerance  
VADDR = 1.489 V with ±15 mV tolerance  
VADDR = 1.540 V with ±15 mV tolerance  
1011001 (B2h)  
1011010 (B4h)  
1011011 (B6h)  
1011100 (B8h)  
1011101 (BAh)  
1011110 (BCh)  
1011111 (BEh)  
1100000 (C0h)  
1100001 (C2h)  
1100010 (C4h)  
1100011 (C6h)  
1100100 (C8h)  
1100101 (CAh)  
1100110 (CCh)  
1100111 (CEh)  
1101000 (D0h)  
1101001 (D2h)  
1101010 (D4h)  
1101011 (D6h)  
1101100 (D8h)  
1101101 (DAh)  
1101110 (DCh)  
1101111 (DEh)  
1110000 (E0h)  
1110001 (E2h)  
1110010 (E4h)  
1110011 (E6h)  
1110100 (E8h)  
1110101 (EAh)  
1110110 (ECh)  
1110111 (EEh)  
PMBus address bits (7-bit  
format)  
PADDR  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.15 Overcurrent Limit Thresholds  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
12.5  
16.5  
20.5  
24.5  
28.5  
32.5  
36.5  
40.5  
44.5  
48.5  
52.5  
56.5  
60.5  
64.5  
68.5  
72.5  
12  
TYP  
14.5  
18.5  
22.5  
26.5  
30.5  
34.5  
38.5  
42.5  
46.5  
50.5  
54.5  
58.5  
62.5  
66.5  
70.5  
74.5  
14  
MAX  
UNIT  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
MFR_SPEC_00<3:0>, (PAGE0) = 0000b  
MFR_SPEC_00<3:0>, (PAGE0) = 0001b  
MFR_SPEC_00<3:0>, (PAGE0) = 0010b  
MFR_SPEC_00<3:0>, (PAGE0) = 0011b  
MFR_SPEC_00<3:0>, (PAGE0) = 0100b  
MFR_SPEC_00<3:0>, (PAGE0) = 0101b  
MFR_SPEC_00<3:0>, (PAGE0) = 0110b  
MFR_SPEC_00<3:0>, (PAGE0) = 0111b  
MFR_SPEC_00<3:0>, (PAGE0) = 1000b  
MFR_SPEC_00<3:0>, (PAGE0) = 1001b  
MFR_SPEC_00<3:0>, (PAGE0) = 1010b  
MFR_SPEC_00<3:0>, (PAGE0) = 1011b  
MFR_SPEC_00<3:0>, (PAGE0) = 1100b  
MFR_SPEC_00<3:0>, (PAGE0) = 1101b  
MFR_SPEC_00<3:0>, (PAGE0) = 1110b  
MFR_SPEC_00<3:0>, (PAGE0) = 1111b  
MFR_SPEC_00<3:0>, (PAGE1) = 0000b  
MFR_SPEC_00<3:0>, (PAGE1) = 0001b  
MFR_SPEC_00<3:0>, (PAGE1) = 0010b  
MFR_SPEC_00<3:0>, (PAGE1) = 0011b  
MFR_SPEC_00<3:0>, (PAGE1) = 0100b  
MFR_SPEC_00<3:0>, (PAGE1) = 0101b  
MFR_SPEC_00<3:0>, (PAGE1) = 0110b  
MFR_SPEC_00<3:0>, (PAGE1) = 0111b  
MFR_SPEC_00<3:0>, (PAGE1) = 1000b  
MFR_SPEC_00<3:0>, (PAGE1) = 1001b  
MFR_SPEC_00<3:0>, (PAGE1) = 1010b  
MFR_SPEC_00<3:0>, (PAGE1) = 1011b  
MFR_SPEC_00<3:0>, (PAGE1) = 1100b  
MFR_SPEC_00<3:0>, (PAGE1) = 1101b  
MFR_SPEC_00<3:0>, (PAGE1) = 1110b  
MFR_SPEC_00<3:0>, (PAGE1) = 1111b  
16.5  
20.5  
24.5  
28.5  
32.5  
36.5  
40.5  
44.5  
48.5  
52.5  
56.5  
60.5  
64.5  
68.5  
72.5  
76.5  
16  
Phase OCL levels for Channel A  
(ACSPx-VREF), valley current  
limit  
IOCLAx  
16  
18  
20  
20  
22  
24  
24  
26  
28  
28  
30  
32  
32  
34  
36  
36  
38  
40  
Phase OCL levels for Channel B  
(BCSPx-VREF), valley current  
limit  
40  
42  
44  
IOCLBx  
44  
46  
48  
48  
50  
52  
52  
54  
56  
56  
58  
60  
60  
62  
64  
64  
66  
68  
68  
70  
72  
72  
74  
76  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.16 Switching Frequency  
VIN = 12 V, VAVSP = 1.0 V, VBVSP = 0.8 V, TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
270  
315  
360  
405  
450  
500  
540  
585  
630  
675  
720  
765  
810  
855  
900  
TYP  
300  
MAX  
330  
385  
440  
495  
550  
600  
660  
715  
770  
825  
880  
935  
990  
1045  
1100  
UNIT  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
FREQUENCY_SWITCH = 0x012C  
FREQUENCY_SWITCH = 0x015E  
FREQUENCY_SWITCH = 0x0190  
FREQUENCY_SWITCH = 0x01C2  
FREQUENCY_SWITCH = 0x01F4  
FREQUENCY_SWITCH = 0x0226  
FREQUENCY_SWITCH = 0x0258  
FREQUENCY_SWITCH = 0x028A  
FREQUENCY_SWITCH = 0x02BC  
FREQUENCY_SWITCH = 0x02EE  
FREQUENCY_SWITCH = 0x0320  
FREQUENCY_SWITCH = 0x0352  
FREQUENCY_SWITCH = 0x0384  
FREQUENCY_SWITCH = 0x03B6  
FREQUENCY_SWITCH = 0x03E8  
FREQUENCY_SWITCH = others  
350  
400  
450  
500  
550  
600  
650  
fSW  
Switching frequency  
700  
750  
800  
850  
900  
950  
1000  
Invalid  
6.17 Slew Rate Settings  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
6
MAX  
7
UNIT  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
VOUT_TRANSITION_RATE = 0xE050  
VOUT_TRANSITION_RATE = 0xE0A0  
VOUT_TRANSITION_RATE = 0xE0F0  
VOUT_TRANSITION_RATE = 0xE140  
VOUT_TRANSITION_RATE = 0xE190  
VOUT_TRANSITION_RATE = 0xE1E0  
VOUT_TRANSITION_RATE = 0xE230  
VOUT_TRANSITION_RATE = 0xE280  
VOUT_TRANSITION_RATE = 0xE005  
VOUT_TRANSITION_RATE = 0xE00A  
VOUT_TRANSITION_RATE = 0xE00F  
VOUT_TRANSITION_RATE = 0xE014  
VOUT_TRANSITION_RATE = 0xE019  
VOUT_TRANSITION_RATE = 0xE01E  
VOUT_TRANSITION_RATE = 0xE023  
VOUT_TRANSITION_RATE = 0xE028  
VOUT_TRANSITION_RATE = others  
5
10  
12  
18  
24  
30  
36  
42  
48  
14  
15  
20  
25  
30  
35  
40  
SLSET Slew rate setting  
0.3125  
0.625  
0.9375  
1.25  
1.5625  
1.875  
2.1875  
2.5  
Invalid data  
SLSET  
AVSP and BVSP slew rate  
SetVID_Fast  
SLF  
mV/µs  
SLSET / 4  
SLSET / 2  
SLSET / 4  
SLSET / 16  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
SLS1  
AVSP and BVSP slew rate slow  
MFR_SPEC_13<8> = 0b  
MFR_SPEC_13<8> = 1b  
AVSP and BVSP slew rate slew  
rate soft-start  
SLSS  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.18 Ramp Selections  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
30  
TYP  
40  
MAX  
UNIT  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
MFR_SPEC_14<2:0> = 000b  
MFR_SPEC_14<2:0> = 001b  
MFR_SPEC_14<2:0> = 010b  
MFR_SPEC_14<2:0> = 011b  
MFR_SPEC_14<2:0> = 100b  
MFR_SPEC_14<2:0> = 101b  
MFR_SPEC_14<2:0> = 110b  
MFR_SPEC_14<2:0> = 111b  
55  
95  
70  
80  
110  
150  
190  
230  
270  
305  
120  
160  
200  
240  
280  
320  
135  
175  
215  
255  
300  
335  
VRAMP  
RAMP Setting  
6.19 Dynamic Integration and Undershoot Reduction  
TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MFR_SPEC_12<10:8> = 000b;  
MFR_SPEC_12<10:8> = 001b;  
MFR_SPEC_12<10:8> = 010b;  
MFR_SPEC_12<10:8> = 011b;  
MFR_SPEC_12<10:8> = 100b;  
MFR_SPEC_12<10:8> = 101b;  
MFR_SPEC_12<10:8> = 110b;  
MFR_SPEC_12<10:8> = 111b;  
MFR_SPEC_12<7:4> = 0000b;  
MFR_SPEC_12<7:4> = 0001b;  
MFR_SPEC_12<7:4> = 0010b;  
MFR_SPEC_12<7:4> = 0011b;  
MFR_SPEC_12<7:4> = 0100b;  
MFR_SPEC_12<7:4> = 0101b;  
MFR_SPEC_12<7:4> = 0110b;  
MFR_SPEC_12<7:4> = 0111b;  
MFR_SPEC_12<7:4> = 1000b;  
MFR_SPEC_12<7:4> = 1001b;  
MFR_SPEC_12<7:4> = 1010b;  
MFR_SPEC_12<7:4> = 1011b;  
MFR_SPEC_12<7:4> = 1100b;  
MFR_SPEC_12<7:4> = 1101b;  
MFR_SPEC_12<7:4> = 1110b;  
MFR_SPEC_12<7:4> = 1111b;  
MFR_SPEC_09<14:12> = 000b;  
MFR_SPEC_09<14:12> = 001b;  
MFR_SPEC_09<14:12> = 010b;  
MFR_SPEC_09<14:12> = 011b;  
MFR_SPEC_09<14:12> = 100b;  
MFR_SPEC_09<14:12> = 101b;  
MFR_SPEC_09<14:12> = 110b;  
MFR_SPEC_09<14:12> = 111b;  
MIN  
90  
TYP  
100  
150  
200  
250  
300  
350  
400  
OFF  
1
MAX  
116  
175  
230  
285  
345  
400  
455  
UNIT  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
135  
175  
225  
270  
315  
360  
Dynamic integration voltage  
setting  
VDYN  
2
µs  
3
µs  
4
µs  
5
µs  
6
µs  
7
µs  
8
µs  
Dynamic integration time  
constant(1)  
tDINT  
12  
µs  
13  
µs  
14  
µs  
15  
µs  
16  
µs  
17  
µs  
18  
µs  
19  
µs  
120  
155  
190  
230  
265  
300  
335  
140  
180  
220  
260  
300  
340  
380  
OFF  
160  
205  
245  
290  
335  
375  
420  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
VUSR2  
USR level 2 voltage setting  
(1) Specified by design. Not production tested.  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Integration and Undershoot Reduction (continued)  
TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MFR_SPEC_09<2:0> = 000b;  
MFR_SPEC_09<2:0> = 001b;  
MFR_SPEC_09<2:0> = 010b;  
MFR_SPEC_09<2:0> = 011b;  
MFR_SPEC_09<2:0> = 100b;  
MFR_SPEC_09<2:0> = 101b;  
MFR_SPEC_09<2:0> = 110b;  
MFR_SPEC_09<2:0> = 111b;  
MFR_SPEC_09<5> = 0b;  
MIN  
70  
TYP  
90  
MAX  
110  
140  
170  
205  
240  
270  
305  
UNIT  
mV  
100  
130  
160  
185  
215  
240  
120  
150  
180  
210  
240  
270  
OFF  
3
mV  
mV  
mV  
VUSR1  
USR level 1 voltage setting  
mV  
mV  
mV  
mV  
phases  
phases  
mV  
Maximum phase added in USR  
level 1(1)  
PHUSR1  
MFR_SPEC_09<5> = 1b;  
4
MFR_SPEC_09<4:3> = 00b;  
MFR_SPEC_09<4:3> = 01b;  
MFR_SPEC_09<4:3> = 10b;  
MFR_SPEC_09<4:3> = 11b;  
2
5
5
9
15  
20  
25  
10  
mV  
Dynamic integration/USR voltage  
hysteresis  
VOUSRHYS  
10  
15  
15  
mV  
20  
mV  
6.20 Boot Voltage and TMAX Settings  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
90  
MAX  
UNIT  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
V
MFR_SPEC_12<2:0> = 000b  
MFR_SPEC_12<2:0> = 001b  
MFR_SPEC_12<2:0> = 010b  
MFR_SPEC_12<2:0> = 011b  
MFR_SPEC_12<2:0> = 100b  
MFR_SPEC_12<2:0> = 101b  
MFR_SPEC_12<2:0> = 110b  
MFR_SPEC_12<2:0> = 111b  
MFR_SPEC_11<7:0> = 00h  
MFR_SPEC_11<7:0> = 74h  
MFR_SPEC_11<7:0> = 79h  
MFR_SPEC_11<7:0> = 7Eh  
MFR_SPEC_11<7:0> = 00h  
MFR_SPEC_11<7:0> = 83h  
MFR_SPEC_11<7:0> = 97h  
MFR_SPEC_11<7:0> = BFh  
95  
100  
105  
110  
115  
120  
125  
0
TMAX  
Maximum temperature setting  
1.65  
1.7  
1.75  
0
V
BOOT voltage setting (10-mV  
DAC)  
V
V
VBOOT  
V
0.9  
1
V
BOOT voltage setting (5-mV  
DAC)  
V
1.2  
V
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.21 Protections: OVP and UVP  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured at the VSP pin wrt VID code.  
Device latches OFF.  
VRDYH5  
VRDYH0  
330  
400  
mV  
Tracking OVP  
Measured at the VSP pin wrt VID code.  
Device latches OFF.  
140  
200  
mV  
tRDYDGLTO  
tRDYDGLTU  
VRDYL  
VR_RDY deglitch time(1)  
VR_RDY deglitch time(1)  
Undervoltage protection(3)  
(2)2.5  
µs  
µs  
fSW = 500 kHz  
4
(VVSP + VDROOP) with respect to VID  
370  
400  
430  
mV  
Fixed overvoltage protection,  
Channel A(3)  
VAVSP > VOVP for 1 µs, ENABLE = HI or LO,  
PWM to LO  
VOVPA  
VOVPB  
2.75  
2.8  
1.9  
2.86  
V
V
Fixed overvoltage protection,  
Channel B(3)  
VBVSP > VOVP for 1 µs, ENABLE = HI or LO,  
PWM to LO  
1.85  
1.95  
(1) Specified by design. Not production tested.  
(2) Time from VSP out of +200 or +400 mV VDAC boundary to VR_RDY low.  
(3) Can be programmed with different configurations.  
6.22 Protections: ATSEN and BTSEN Pin Voltage Levels and Fault  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VTSEN = 0.28 V  
MIN  
–42  
23  
TYP  
–40  
25  
MAX  
–38  
27  
UNIT  
°C  
VTSEN = 0.8 V  
VTSEN = 1.2 V  
VTSEN = 1.4 V  
VTSEN = 1.6 V  
VTSEN = 1.8 V  
°C  
73  
75  
77  
°C  
TSEN  
Thermal voltage definition  
TSEN leakage current  
98  
100  
125  
150  
102  
127  
152  
3
°C  
123  
148  
–3  
°C  
°C  
ITSEN  
µA  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
6.23 PWM: I/O Voltage and Current  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPWML  
VPWMH  
PWMx output low-level  
PWMx output high-level  
ILOAD = 0.5 mA  
0.15  
0.3  
V
V
V
ILOAD = –0.5 mA; VV3P3 = 2.97 V  
ILOAD = ± 100 µA  
2.8  
1.6  
VPW-SKLK PWMx tri-state  
tP-S_H-L PWMx H-L transition time  
tP-S_TRI  
(1) Specified by design. Not production tested.  
1.7  
1.8  
10  
CLOAD = 10 pF, ILOAD = ± 100 µ A, 10% to  
90% both edges  
(1)  
ns  
ns  
CLOAD = 10 pF, ILOAD = ± 100 µ A, 10% or  
90% to tri-state, both edges  
(1)  
PWMx tri-state transition  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.24 Dynamic Phase Add and Drop  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
21  
23  
25  
27  
29  
31  
27  
29  
31  
33  
29  
31  
33  
35  
31  
33  
35  
37  
A
VRIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
23  
25  
27  
23  
25  
27  
29  
25  
27  
29  
31  
27  
29  
31  
33  
25  
27  
29  
25  
27  
29  
31  
27  
29  
31  
33  
29  
31  
33  
35  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
VRIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
Dynamic phase  
adding threshold, 1 to  
2 Phases (Peak  
Current)  
VRIPPLE 18 A (estimation)  
VDPSTHA1  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_15<4:3> = 00b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_15<4:3> = 01b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<4:3> = 10b);  
VRIPPLE 18 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<4:3> = 11b);  
VRIPPLE 18 A (estimation)  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
4
6
8
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
6
8
8
10  
12  
8
10  
12  
14  
10  
12  
14  
16  
12  
14  
16  
18  
14  
16  
18  
20  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
10  
6
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
8
10  
12  
14  
10  
12  
14  
16  
12  
14  
16  
18  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
10  
12  
8
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Dynamic phase  
shedding threshold, 2  
to 1 phase (average  
current)  
VDPSTHS1  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
10  
12  
14  
10  
12  
14  
16  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -6 A; (MFR_SPECIFIC_15<14:13> =  
00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -4 A; (MFR_SPECIFIC_15<14:13> =  
01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_15<14:13> =  
10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_15<14:13> =  
11b)  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
32.5  
35  
37.5  
39.5  
41.5  
43.5  
41.5  
43.5  
45.5  
47.5  
45.5  
47.5  
49.5  
51.5  
49.5  
51.5  
53.5  
55.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
34.5  
36.5  
38.5  
36.5  
38.5  
40.5  
42.5  
40.5  
42.5  
44.5  
46.5  
44.5  
46.5  
48.5  
50.5  
37  
39  
41  
39  
41  
43  
45  
43  
45  
47  
49  
47  
49  
51  
53  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> = 11b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> = 11b);  
VRIPPLE = 14 A (estimation)  
Dynamic phase  
adding threshold, 2 to  
3 phases (Peak  
Current)  
VDPSTHA2  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> = 11b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_15<6:5> = 00b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<6:5> = 01b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<6:5> = 10b);  
VRIPPLE = 14 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 10 A; (MFR_SPECIFIC_15<6:5> = 11b);  
VRIPPLE = 14 A (estimation)  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
17.5  
20  
22.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
19.5  
21.5  
23.5  
21.5  
23.5  
25.5  
27.5  
25.5  
27.5  
29.5  
31.5  
29.5  
31.5  
33.5  
35.5  
22  
24  
26  
24  
26  
28  
30  
28  
30  
32  
34  
32  
34  
36  
38  
24.5  
26.5  
28.5  
26.5  
28.5  
30.5  
32.5  
30.5  
32.5  
34.5  
36.5  
34.5  
36.5  
38.5  
40.5  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Dynamic phase  
shedding threshold, 3  
to 2 phases (average  
current)  
VDPSTHS2  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -4 A; (MFR_SPECIFIC_14<9:8> = 00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_14<9:8> = 01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_14<9:8> = 10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_14<9:8> = 11b)  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<8:7> = 00b);  
VRIPPLE = 10 A (estimation)  
44  
47  
50  
52  
54  
56  
56  
58  
60  
62  
62  
64  
66  
68  
68  
70  
72  
74  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<8:7> = 01b);  
VRIPPLE = 10 A (estimation)  
46  
48  
50  
50  
52  
54  
56  
56  
58  
60  
62  
62  
64  
66  
68  
49  
51  
53  
53  
55  
57  
59  
59  
61  
63  
65  
65  
67  
69  
71  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 10 A; (MFR_SPECIFIC_15<8:7> = 10b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 12 A; (MFR_SPECIFIC_15<8:7> = 11b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<8:7> = 00b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<8:7> = 01b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 10 A; (MFR_SPECIFIC_15<8:7> = 10b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 12 A; (MFR_SPECIFIC_15<8:7> = 11b);  
VRIPPLE = 10 A (estimation)  
Dynamic phase  
adding threshold, 3 to  
4 Phases (Peak  
Current)  
VDPSTHA3  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<8:7> = 00b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<8:7> = 01b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 10 A; (MFR_SPECIFIC_15<8:7> = 10b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 12 A; (MFR_SPECIFIC_15<8:7> = 11b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<8:7> = 00b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<8:7> = 01b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 10 A; (MFR_SPECIFIC_15<8:7> = 10b);  
VRIPPLE = 10 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 12 A; (MFR_SPECIFIC_15<8:7> = 11b);  
VRIPPLE = 10 A (estimation)  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_14<11:10> =  
00b)  
31  
34  
37  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_14<11:10> =  
01b)  
33  
35  
37  
37  
39  
41  
43  
43  
45  
47  
49  
49  
51  
53  
55  
36  
38  
40  
40  
42  
44  
46  
46  
48  
50  
52  
52  
54  
56  
58  
39  
41  
43  
43  
45  
47  
49  
49  
51  
53  
55  
55  
57  
59  
61  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_14<11:10> =  
10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_14<11:10> =  
11b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_14<11:10> =  
00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_14<11:10> =  
01b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_14<11:10> =  
10b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_14<11:10> =  
11b)  
Dynamic phase  
shedding threshold, 4  
to 3 phases (average  
current)  
VDPSTHS3  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_14<11:10> =  
00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_14<11:10> =  
01b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_14<11:10> =  
10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_14<11:10> =  
11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_14<11:10> =  
00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_14<11:10> =  
01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_14<11:10> =  
10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_14<11:10> =  
11b)  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<10:9> = 00b);  
VRIPPLE = 8 A (estimation)  
54.5  
58  
61.5  
63.5  
65.5  
67.5  
69.5  
71.5  
73.5  
75.5  
77.5  
79.5  
81.5  
83.5  
85.5  
87.5  
89.5  
91.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<10:9> = 01b);  
VRIPPLE = 8 A (estimation)  
56.5  
58.5  
60.5  
62.5  
64.5  
66.5  
68.5  
70.5  
72.5  
74.5  
76.5  
78.5  
80.5  
82.5  
84.5  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
84  
86  
88  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 10 A; (MFR_SPECIFIC_15<10:9> =  
10b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 12 A; (MFR_SPECIFIC_15<10:9> =  
11b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<10:9> = 00b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<10:9> = 01b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 10 A; (MFR_SPECIFIC_15<10:9> =  
10b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 12 A; (MFR_SPECIFIC_15<10:9> =  
11b); VRIPPLE = 8 A (estimation)  
Dynamic phase  
adding threshold, 4 to  
5 Phases (Peak  
Current)  
VDPSTHA4  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<10:9> = 00b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<10:9> = 01b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 10 A; (MFR_SPECIFIC_15<10:9> =  
10b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 12 A; (MFR_SPECIFIC_15<10:9> =  
11b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<10:9> = 00b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<10:9> = 01b);  
VRIPPLE = 8 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 10 A; (MFR_SPECIFIC_15<10:9> =  
10b); VRIPPLE = 8 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 12 A; (MFR_SPECIFIC_15<10:9> =  
11b); VRIPPLE = 8 A (estimation)  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_14<13:12> =  
00b)  
42.5  
46  
49.5  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_14<13:12> =  
01b)  
44.5  
46.5  
48.5  
50.5  
52.5  
54.5  
56.5  
58.5  
60.5  
62.5  
64.5  
66.5  
68.5  
70.5  
72.5  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
51.5  
53.5  
55.5  
57.5  
59.5  
61.5  
63.5  
65.5  
67.5  
69.5  
71.5  
73.5  
75.5  
77.5  
79.5  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_14<13:12> =  
10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_14<13:12> =  
11b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_14<13:12> =  
00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_14<13:12> =  
01b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_14<13:12> =  
10b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_14<13:12> =  
11b)  
Dynamic phase  
shedding threshold, 5  
to 4 phases (average  
current)  
VDPSTHS4  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_14<13:12> =  
00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_14<13:12> =  
01b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_14<13:12> =  
10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_14<13:12> =  
11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_14<13:12> =  
00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_14<13:12> =  
01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_14<13:12> =  
10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_14<13:12> =  
11b)  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 6 A; (MFR_SPECIFIC_15<12:11> =  
00b); VRIPPLE = 6 A (estimation)  
65  
69  
73  
75  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 8 A; (MFR_SPECIFIC_15<12:11> =  
01b); VRIPPLE = 6 A (estimation)  
67  
69  
71  
75  
77  
79  
81  
85  
87  
89  
91  
95  
97  
99  
101  
71  
73  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 10 A; (MFR_SPECIFIC_15<12:11> =  
10b); VRIPPLE = 6 A (estimation)  
77  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 12 A; (MFR_SPECIFIC_15<12:11> =  
11b); VRIPPLE = 6 A (estimation)  
75  
79  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 6 A; (MFR_SPECIFIC_15<12:11> =  
00b); VRIPPLE = 6 A (estimation)  
79  
83  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 8 A; (MFR_SPECIFIC_15<12:11> =  
01b); VRIPPLE = 6 A (estimation)  
81  
85  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 10 A; (MFR_SPECIFIC_15<12:11> =  
10b); VRIPPLE = 6 A (estimation)  
83  
87  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 12 A; (MFR_SPECIFIC_15<12:11> =  
11b); VRIPPLE = 6 A (estimation)  
85  
89  
Dynamic phase  
adding threshold, 5 to  
6 Phases (Peak  
Current)  
VDPSTHA5  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 6 A; (MFR_SPECIFIC_15<12:11> =  
00b); VRIPPLE = 6 A (estimation)  
89  
93  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 8 A; (MFR_SPECIFIC_15<12:11> =  
01b); VRIPPLE = 6 A (estimation)  
91  
95  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 10 A; (MFR_SPECIFIC_15<12:11> =  
10b); VRIPPLE = 6 A (estimation)  
93  
97  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 12 A; (MFR_SPECIFIC_15<12:11> =  
11b); VRIPPLE = 6 A (estimation)  
95  
99  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 6 A; (MFR_SPECIFIC_15<12:11> =  
00b); VRIPPLE = 6 A (estimation)  
99  
103  
105  
107  
109  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 8 A; (MFR_SPECIFIC_15<12:11> =  
01b); VRIPPLE = 6 A (estimation)  
101  
103  
105  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 10 A; (MFR_SPECIFIC_15<12:11> =  
10b); VRIPPLE = 6 A (estimation)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 12 A; (MFR_SPECIFIC_15<12:11> =  
11b); VRIPPLE = 6 A (estimation)  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Dynamic Phase Add and Drop (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = -2 A; (MFR_SPECIFIC_14<15:14> =  
00b)  
54  
58  
62  
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 0 A; (MFR_SPECIFIC_14<15:14> =  
01b)  
56  
58  
60  
64  
66  
68  
70  
74  
76  
78  
80  
84  
86  
88  
90  
60  
62  
64  
68  
70  
72  
74  
78  
80  
82  
84  
88  
90  
92  
94  
64  
66  
68  
72  
74  
76  
78  
82  
84  
86  
88  
92  
94  
96  
98  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 2 A; (MFR_SPECIFIC_14<15:14> =  
10b)  
Peak Efficiency = 12 A; (MFR_SPECIFIC_15<1:0> =  
00b); Offset = 4 A; (MFR_SPECIFIC_14<15:14> =  
11b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = -2 A; (MFR_SPECIFIC_14<15:14> =  
00b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 0 A; (MFR_SPECIFIC_14<15:14> =  
01b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 2 A; (MFR_SPECIFIC_14<15:14> =  
10b)  
Peak Efficiency = 14 A; (MFR_SPECIFIC_15<1:0> =  
01b); Offset = 4 A; (MFR_SPECIFIC_14<15:14> =  
11b)  
Dynamic phase  
shedding threshold, 6  
to 5 phases (average  
current)  
VDPSTHS5  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = -2 A; (MFR_SPECIFIC_14<15:14> =  
00b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 0 A; (MFR_SPECIFIC_14<15:14> =  
01b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 2 A; (MFR_SPECIFIC_14<15:14> =  
10b)  
Peak Efficiency = 16 A; (MFR_SPECIFIC_15<1:0> =  
10b); Offset = 4 A; (MFR_SPECIFIC_14<15:14> =  
11b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = -2 A; (MFR_SPECIFIC_14<15:14> =  
00b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 0 A; (MFR_SPECIFIC_14<15:14> =  
01b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 2 A; (MFR_SPECIFIC_14<15:14> =  
10b)  
Peak Efficiency = 18 A; (MFR_SPECIFIC_15<1:0> =  
11b); Offset = 4 A; (MFR_SPECIFIC_14<15:14> =  
11b)  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6.25 Typical Characteristics  
1.9  
98  
97  
96  
95  
94  
93  
92  
91  
90  
Load Line  
- 1/2 Ripple  
+ 1/2 Ripple  
Lower Limit (VOUT(min)  
Upper Limit (VOUT(max)  
1.85  
1.8  
)
)
1.75  
1.7  
1.65  
1.6  
DPS  
On  
Off  
1.55  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Current (A)  
Load Current (A)  
D001  
D001  
VVIN = 12 V  
VOUT = 1.82 V  
VVIN = 12 V  
VOUT = 1.8 V  
fSW = 600 kHz  
Load Line = 0.9 mΩ  
Load Line = 0.9 mΩ  
2. VOUTA Load Line  
3. Efficiency  
250  
225  
200  
175  
150  
125  
100  
75  
450  
400  
350  
300  
250  
200  
150  
100  
50  
50  
Load Current  
Upper Limit  
Lower Limit  
Input Power  
Upper Limit  
Lower Limit  
25  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
50  
100 150 200 250 300 350 400 450  
Input Power (W)  
Load Current (%)  
D001  
D001  
VVIN = 12 V  
VOUT = 1.82 V  
VVIN = 12 V  
VOUT = 1.82 V  
Load Line = 0.9 mΩ  
Load Line = 0.9 mΩ  
5. VOUTA Reported Output Current by PMBus  
4. VOUTA Reported Input Power by PMBus  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7 Detailed Description  
7.1 Overview  
The TPS53681 is a multiphase step-down controller with dual channels, built-in non-volatile memory (NVM), and  
PMBus™ interface, and is fully compatible with TI NexFET ™ power stages. Advanced control features such as  
D-CAP+™ architecture with undershoot reduction (USR) provide transient response,  
7.2 Functional Block Diagram  
DCLLA  
COMPA  
AVSP  
AVSN  
Differential  
Amplifier  
VRAMPA  
VCOMPA  
VISUMA  
+
VDIFFA  
VISUMA  
VFBDRPA  
VDACA  
+
+
CLKA_ON  
Loadline  
Control  
Programmable  
Loop  
FREQA  
CK1  
TONA  
On-Time  
A1  
APWM1  
APWM2  
BVSP  
BVSN  
Differential  
Amplifier  
VRAMPB  
VCOMPB  
VISUMB  
CK2  
CK3  
CK4  
CK5  
On-Time  
A2  
+
VDIFFB  
VISUMB  
VFBDRPB  
VDACB  
+
+
CLKB_ON  
Loadline  
Control  
Programmable  
Loop  
On-Time  
A3  
APWM3  
APWM4  
VIA1  
VIA2  
VIA3  
DCLLB  
COMPB  
ACSP1  
ACSP2  
ACSP3  
Mode Control  
and  
Programmable  
Phase Manager  
On-Time  
A4  
VISUMA  
VISUMB  
PHASE  
On-Time  
A5  
VIA4  
VIA5  
VIA6  
VIB1  
VIB2  
APWM5  
ACSP4  
ACSP5  
VIA1  
VIA2  
VIA3  
VIA4  
CK6  
On-Time  
A6  
APWM6/BPWM3  
BPWM1  
Adaptive  
On-Time Control  
and  
Current Sharing  
Circuitry  
ACSP6/BCSP3  
BCSP1  
CKB1  
VIA5  
VIA6  
VIB1  
On-Time  
B1  
TONB  
BCSP2  
VIB2  
VDACA  
VDACB  
Ramp  
Generator  
CKB2  
On-Time  
B2  
BPWM2  
FREQB  
VIA1  
VIA2  
VIA3  
VIA4  
CPU Logic,  
Protection,  
and  
IIN  
I2C Interface  
VIA5  
VIA6  
VIB1  
VIB2  
V3P3  
GND  
Status Circuitry  
SMB_CLK  
NVM  
SMB_ALERT  
SMB_DIO  
VDACA  
VDACB  
FAULT  
AFE, ADC, and DAC  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Phase Interleaving and PWM Operation  
As shown in the Overview section, in 8-phase continuous conduction mode, the device operates as described in  
6.  
版权 © 2017–2019, Texas Instruments Incorporated  
35  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
VCORE  
ISUM  
VCOMP+VRAMP  
CLKA_ON  
APWM1  
APWM2  
APWM3  
APWM4  
APWM5  
APWM6  
Time  
6. D-CAP+ Mode Basic Waveforms  
Starting with the condition that the high-side FETs are off and the low-side FETs are on, the summed current  
feedback (VISUM) is higher than the summed error amplifier output (VCOMP) and the internal ramp signal (VRAMP).  
ISUM falls until it hits VCOMP+VRAMP, which contains a component of the output ripple voltage. The PWM  
comparator senses where the two waveforms cross and triggers the on-time generator. This generates the  
internal CLKA_ON signal. Each CLKA_ON signal corresponds to one switching ON pulse for one phase.  
In case of single-phase operation, every CLKA_ON signal generates a switching pulse on the same phase. Also,  
VISUM corresponds to just a single-phase inductor current.  
In case of multi-phase operation, the CLKA_ON signal gets distributed to each of the phases in a cycle. This  
approach of using the summed inductor current and cyclically distributing the ON pulses to each phase  
automatically gives the required interleaving of 360 / n, where n is the number of phases.  
7.3.1.1 Setting the Load-Line (DROOP)  
V
DAC  
Slope of Loadline R  
LL  
V
V
= R x I  
DROOP LL OUT  
DROOP  
I
OUT  
7. Load Line  
The loadline can be set with VOUT_DROOP register via PMBus. The programmable range for channel A is  
between 0 mand 3.125 mwith 64 options, and the range for channel B is between 0 mand 0.875 mwith  
16 options to fulfill the requirements for different applications.  
36  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Feature Description (接下页)  
7.3.1.2 Load Transitions  
When there is a sudden load increase, the output voltage immediately drops. The TPS53681 device reacts to  
this drop in a rising voltage on the COMP pin. This rise forces the PWM pulses to come in sooner and more  
frequently which causes the inductor current to rapidly increase. As the inductor current reaches the new load  
current, the device reaches a steady-state operating condition and the PWM switching resumes the steady-state  
frequency.  
When there is a sudden load release, the output voltage flies high. The TPS53681 device reacts to this rise in a  
falling voltage on the COMP pin. This drop forces the PWM pulses to be delayed until the inductor current  
reaches the new load current. At that point, the switching resumes and steady-state switching continues.  
Please note in 8 and 9, the ripples on VOUT, VRAMP, and VCOMP voltages are not shown for simplicity.  
LOAD  
LOAD  
VOUT  
VOUT  
VISUM  
VCOMP + VRAMP  
VISUM  
VCOMP + VRAMP  
CLKA_ON  
CLKA_ON  
APWM1  
APWM1  
APWM2  
APWM2  
APWM3  
APWM3  
APWM4  
APWM4  
APWM5  
APWM5  
APWM6  
APWM6  
8. Load Insertion  
9. Load Release  
The TPS53681 achieves fast load transient performance using the inherent variable switching frequency  
characteristics.8 illustrates the load insertion behavior that the PWM pulses can be generated with faster  
frequency than the steady-state frequency to provide more energy to improve the undershoot performance. 9  
illustrates the load release behavior that PWM pulses can be gated to avoid charging extra energy to the load  
until the output voltage reaches the peak overshoot.  
7.3.1.2.1 VID Table  
The DAC voltage VDAC can be changed via PMBus according to 2 . Set the VOUT_SCALE_LOOP command  
to 1.125 to achieve output voltages higher than 2.500. The controller will acknowledge all VID codes and ignore  
those which are unsupported per the table below.  
版权 © 2017–2019, Texas Instruments Incorporated  
37  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
2. VID Table  
2. VID Table (接下页)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
0
0
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
0.48  
0.485  
0.49  
0.25  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.255  
0.26  
0.495  
0.50  
0.265  
0.27  
0.505  
0.51  
0.275  
0.28  
0.515  
0.52  
0.285  
0.29  
0.525  
0.53  
0.295  
0.30  
0.535  
0.54  
0.305  
0.31  
0.545  
0.55  
0.315  
0.32  
0.555  
0.56  
0.325  
0.33  
0.565  
0.57  
0.335  
0.34  
0.575  
0.58  
0.345  
0.35  
0.585  
0.59  
0.355  
0.36  
0.595  
0.60  
0.365  
0.37  
0.605  
0.61  
0.375  
0.38  
0.615  
0.62  
0.385  
0.39  
0.625  
0.63  
0.395  
0.40  
0.635  
0.64  
0.405  
0.41  
0.645  
0.65  
0.415  
0.42  
0.655  
0.66  
0.425  
0.43  
0.665  
0.67  
0.435  
0.44  
0.675  
0.68  
0.445  
0.45  
0.685  
0.69  
0.455  
0.46  
0.695  
0.70  
0.465  
0.47  
0.705  
0.71  
0.475  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
2. VID Table (接下页)  
2. VID Table (接下页)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
0.715  
0.72  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
1.68  
1.69  
1.70  
1.71  
1.72  
1.73  
1.74  
1.75  
1.76  
1.77  
1.78  
1.79  
1.80  
1.81  
1.82  
1.83  
1.84  
1.85  
1.86  
1.87  
1.88  
1.89  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
0.95  
0.955  
0.96  
1.90  
1.91  
1.92  
1.93  
1.94  
1.95  
1.96  
1.97  
1.98  
1.99  
2.00  
2.01  
2.02  
2.03  
2.04  
2.05  
2.06  
2.07  
2.08  
2.09  
2.10  
2.11  
2.12  
2.13  
2.14  
2.15  
2.16  
2.17  
2.18  
2.19  
2.20  
2.21  
2.22  
2.23  
2.24  
2.25  
2.26  
2.27  
2.28  
2.29  
2.30  
2.31  
2.32  
2.33  
2.34  
2.35  
2.36  
0.725  
0.73  
0.965  
0.97  
0.735  
0.74  
0.975  
0.98  
0.745  
0.75  
0.985  
0.99  
0.755  
0.76  
0.995  
1.00  
0.765  
0.77  
1.005  
1.01  
0.775  
0.78  
1.015  
1.02  
0.785  
0.79  
1.025  
1.03  
0.795  
0.80  
1.035  
1.04  
0.805  
0.81  
1.045  
1.05  
0.815  
0.82  
1.055  
1.06  
0.825  
0.83  
1.065  
1.07  
0.835  
0.84  
1.075  
1.08  
0.845  
0.85  
1.085  
1.09  
0.855  
0.86  
1.095  
1.10  
0.865  
0.87  
1.105  
1.11  
0.875  
0.88  
1.115  
1.12  
0.885  
0.89  
1.125  
1.13  
0.895  
0.90  
1.135  
1.14  
0.905  
0.91  
1.145  
1.15  
0.915  
0.92  
1.155  
1.16  
0.925  
0.93  
1.165  
1.17  
0.935  
0.94  
1.175  
1.18  
0.945  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
2. VID Table (接下页)  
2. VID Table (接下页)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
VID Hex  
VALUE  
DAC STEP  
(5 mV)  
DAC STEP  
(10 mV)  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
1.185  
1.19  
2.37  
2.38  
2.39  
2.40  
2.41  
2.42  
2.43  
2.44  
2.45  
2.46  
2.47  
2.48  
2.49  
2.50  
n/a  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1.355  
1.36  
1.195  
1.20  
1.365  
1.37  
1.205  
1.21  
1.375  
1.38  
1.215  
1.22  
1.385  
1.39  
1.225  
1.23  
1.395  
1.40  
1.235  
1.24  
1.405  
1.41  
1.245  
1.25  
1.415  
1.42  
1.255  
1.26  
1.425  
1.43  
n/a  
1.265  
1.27  
n/a  
1.435  
1.44  
n/a  
1.275  
1.28  
n/a  
1.445  
1.45  
n/a  
1.285  
1.29  
n/a  
1.455  
1.46  
n/a  
1.295  
1.30  
n/a  
1.465  
1.47  
n/a  
1.305  
1.31  
n/a  
1.475  
1.48  
n/a  
1.315  
1.32  
n/a  
1.485  
1.49  
n/a  
1.325  
1.33  
n/a  
1.495  
1.50  
n/a  
1.335  
1.34  
n/a  
1.505  
1.51  
n/a  
1.345  
1.35  
n/a  
1.515  
1.52  
n/a  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.3.1.3 Temperature and Fault Sensing  
TI smart power stage senses the die temperature and sends out the temperature information as a voltage  
through the TAO pin. In a multi-phase application, the TAO pin of the TI smart power stages are connected  
together and then tied to the ATSEN and BTSEN pins of the TPS53681 device. In this case, the device reports  
the temperature of the hottest power stage. The reported temperature can be calculated as shown in 公式 1.  
(VTSEN F 0.6)  
TEMP =  
0.008  
where  
TEMP is the sensed temperature in °C  
VTSEN is the voltage at ATSEN and BTSEN pins  
(1)  
TSEN signal is also used as an indicator for power stage fault. When an internal fault occurs in the TI smart  
power stage, the power stage pulls the xTAO pins high. If the TSEN voltage is higher than 2.5 V, the TPS53681  
device senses the fault and turns off both the high-side and the low-side MOSFETS.  
The TSEN signal is also used to indicate hand-shaking between the controller and the power stages. If the power  
stages are not powered, the TAO pin is pulled down to prevent switching, even if the controller is enabled.  
A Rail Power Stage  
ATAO  
Temperature  
Sense  
A Rail Power Stage  
ATAO  
Controller  
ATSEN  
Temperature  
Sense  
B Rail Power Stage  
BTAO  
BTSEN  
Temperature  
Sense  
Temp  
ADC  
Copyright © 2017, Texas Instruments Incorporated  
10. Temperature Sense  
7.3.1.4 AutoBalance™ Current Sharing  
The basic mechanism for current sharing is to sense the average phase current, then adjust the pulse width of  
each phase to equalize the current in each phase as shown in 11. The PWM comparator (not shown) starts a  
pulse when the feedback voltage meets the reference. The VIN voltage charges Ct(on) through Rt(on). The pulse  
terminates when the voltage at Ct(on) matches the on-time reference, which normally equals the DAC voltage  
(VDAC).  
The circuit operates in the following fashion. First assume that the 1-µs averaged value from each phase current  
are equal. In this case, the PWM modulator terminates at VDAC, and the normal pulse width is delivered to the  
system. If instead, I1 > IAVG, then an offset is subtracted from VDAC, and the pulse width for Phase 1 is shortened  
to reduce the phase current in Phase 1 for balancing. If I1 < IAVG, then a longer pulse is generated to increase  
the phase current in Phase 1 to achieve current balancing.  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
VDAC  
+
I1  
+
+
+
+
K X (I1 œ IAVG  
)
)
)
)
1 µs  
ACSP1  
Filter  
œ
œ
+
RT(on)  
RT(on)  
RT(on)  
RT(on)  
APWM1  
APWM2  
APWM3  
APWM4  
œ
œ
œ
œ
VIN  
IAVG  
VDAC  
CT(on)  
+
I2  
K X (I2 œ IAVG  
1 µs  
ACSP2  
Filter  
+
VIN  
IAVG  
VDAC  
+
CT(on)  
I3  
K X (I3 œ IAVG  
1 µs  
ACSP3  
Filter  
œ
œ
+
IAVG  
VIN  
VDAC  
+
CT(on)  
I4  
K X (I4 œ IAVG  
1 µs  
ACSP4  
Filter  
+
IAVG  
VIN  
VDAC  
CT(on)  
+
I5  
+
+
K X (I5 œ IAVG  
)
1 µs  
ACSP5  
Filter  
œ
œ
+
RT(on)  
APWM5  
APWM6  
œ
IAVG  
VIN  
VDAC  
CT(on)  
+
I6  
K X (I6 œ IAVG)  
1 µs  
ACSP6  
Filter  
+
RT(on)  
œ
IAVG  
VIN  
Averaging Circuit  
CT(on)  
11. AutoBalance Current Sharing Circuit Detail  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.3.1.5 Phase Configuration for Channel B  
By default, the second rail of the TPS53681 is configured for two-phase operation. Two NVM bits, CHB_2PH and  
CHB_3PH control the number of phases available to channel B. The CHB_2PH bit is found in  
MFR_SPECIFIC_13 (bit 12), and the CHB_3PH bit is found in USER_DATA_11. See 3 below, which  
describes these bit settings, versus phase configuration for channel B. Refer to the accompanying Technical  
Reference Manual for a register map of MFR_SPECIFIC_13 and USER_DATA_11. Refer to Current Sense  
Inputs for Active Phases for information about pin configuration of CSP signals for various channel B phase  
configuration settings.  
3. Channel B Phase Configuration  
CHB_2PH  
MFR_SPECIFIC_13[PAGE0][12]  
USER_DATA_11[PAGE0][9]  
CHB_3PH  
USER_DATA_11[PAGE0][9]  
Channel B Phases  
1
2
3
1b  
0b  
0b  
0b  
0b  
1b  
7.3.1.6 RESET Function  
During adaptive voltage scaling (AVS) operation, the voltage may become falsely adjusted to be out of ASIC  
operating range. The RESET function returns the voltage to the VBOOT voltage. When the voltage is out of  
ASIC operating range, the ASIC issues a RESET signal to the TPS53681 device, as shown in 12. The device  
senses this signal and after a delay of greater than 1 µs, it sets an internal RESET_FAULT signal and sets  
VOUT_COMMAND to VBOOT. The device pulls the output voltage to the VBOOT level with the slew rate set by  
VOUT_TRANSITION_RATE command, as shown in 13.  
When the RESET pin signal goes high, the internal RESET_FAULT signal goes low.  
TPS53681  
ASIC Power Stage  
ASIC V  
RESET  
RESET  
TPS53681 V  
RESET  
RESET  
PMB_CLK  
PMB_DIO  
PMB_CLK  
PMB_DIO  
Internal  
RESET_FAULT  
PMB_ALERT  
PMB_ALERT  
Response Delay  
Default VBOOT  
Pre-AVS V  
.
OUT .  
(A)  
V
OUT  
(C)  
(B)  
Time  
12. RESET Pin Connection  
13. Reset Function  
7.4 Device Functional Modes  
7.5 Programming  
7.5.1 PMBus Connections  
The TPS53681 device can support either 100kHz class, 400 kHz class or 1 MHz class operation, with 1.8-V or  
3.3-V logic levels. Connection for the PMBus interface should follow the DC specifications given in Section 4.3 of  
the System Management Bus (SMBus) Specification V3.0 . The complete SMBus specification is available from  
the SMBus website, smbus.org.  
7.5.2 PMBus Address Selection  
The PMBus slave addresses for TPS53681 are selected with a resistor divider from VREF to ADDR.  
Copyright © 2017–2019, Texas Instruments Incorporated  
43  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Programming (continued)  
The PMBus slave address is set by the voltage on the ADDR pin. Refer to Table 4. With the desired PMBus  
address, and RADDRL selected, calculate the RADDRH using Equation 2.  
Note that TPS53681 uses 7 bit addressing, per the SMBus specification. Users communicating to the device  
using generic I2C drivers should be aware that these 7 bits occupy the most significant bits of the first byte in  
each transaction, with the least significant bit being the data direction bit (0 for write operations, 1 for read  
operations). That is, for read transactions, the address byte is A6A5A4A3A2A1A01 and for write operations the  
address byte is A6A5A4A3A2A1A00. Refer to the SMBus specification for more information.  
The general procedure for selecting these resistors is as follows:  
1. Determine the desired PMBus slave addresses, per system requirements  
2. Select an RADDRL value of 10 kΩ or 20 kΩ  
3. Using the desired PMBus address, refer to Table 4 for the desired address pin voltage  
4. Use Equation 2 to calculate RADDRH  
VREF  
RADDRH  
ADDR  
RADDRL  
Figure 14. PMBus Address Selection  
Contact your local Texas Instruments representative for a copy of the PMBus address setting design tool  
spreadsheet.  
VREF  
RADDRH = RADDRL  
l
F 1p  
VADDR  
(2)  
Table 4. PMBus Slave Address Selection  
VADDR (V)  
PMBus Address  
(7 bit binary)  
PMBus Address  
(7-bit decimal)  
I2C Address Byte  
(Write Operation)  
I2C Address Byte  
(Read Operation)  
A6A5A4A3A2A1A0  
0.039 V  
1011000b  
1011001b  
1011010b  
1011011b  
1011100b  
1011101b  
1011110b  
1011111b  
1100000b  
1100001b  
1100010b  
1100011b  
1100100b  
1100101b  
1100110b  
88d  
89d  
90d  
91d  
92d  
93d  
94d  
95d  
96d  
97d  
98d  
99d  
100d  
101d  
102d  
B0h  
B2h  
B4h  
B6h  
B8h  
BAh  
BCh  
BEh  
C0h  
C2h  
C4h  
C6h  
C8h  
CAh  
CCh  
B1h  
B3h  
B5h  
B7h  
B9h  
BBh  
BDh  
BFh  
C1h  
C3h  
C5h  
C7h  
C9h  
CBh  
CDh  
0.073 V ± 15 mV  
0.122 V ± 15 mV  
0.171 V ± 15 mV  
0.219 V ± 15 mV  
0.268 V ± 15 mV  
0.317 V ± 15 mV  
0.366 V ± 15 mV  
0.415 V ± 15 mV  
0.464 V ± 15 mV  
0.513 V ± 15 mV  
0.562 V ± 15 mV  
0.610 V ± 15 mV  
0.660 V ± 15 mV  
0.708 V ± 15 mV  
44  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Table 4. PMBus Slave Address Selection (continued)  
VADDR (V)  
PMBus Address  
(7 bit binary)  
PMBus Address  
(7-bit decimal)  
I2C Address Byte  
(Write Operation)  
I2C Address Byte  
(Read Operation)  
A6A5A4A3A2A1A0  
0.757 V ± 15 mV  
0.806 V ± 15 mV  
0.854 V ± 15 mV  
0.903 V ± 15 mV  
0.952 V ± 15 mV  
1.000 V ± 15 mV  
1.050 V ± 15 mV  
1.098 V ± 15 mV  
1.147 V ± 15 mV  
1.196 V ± 15 mV  
1.245 V ± 15 mV  
1.294 V ± 15 mV  
1.343 V ± 15 mV  
1.392 V ± 15 mV  
1.440 V ± 15 mV  
1.489 V ± 15 mV  
1.540 V ± 15 mV  
1100111b  
1101000b  
1101001b  
1101010b  
1101011b  
1101100b  
1101101b  
1101110b  
1101111b  
1110000b  
1110001b  
1110010b  
1110011b  
1110100b  
1110101b  
1110110b  
1110111b  
103d  
104d  
105d  
106d  
107d  
108d  
109d  
110d  
111d  
112d  
113d  
114d  
115d  
116d  
117d  
118d  
119d  
CEh  
D0h  
D2h  
D4h  
D6h  
D8h  
DAh  
DCh  
DEh  
E0h  
E2h  
E4h  
E6h  
E8h  
EAh  
ECh  
EEh  
CFh  
D1h  
D3h  
D5h  
D7h  
D9h  
DBh  
DDh  
DFh  
E1h  
E3h  
E5h  
E7h  
E9h  
EBh  
EDh  
EFh  
7.5.3 Supported Commands  
The table below summarizes the PMBus commands supported by the TPS53681. Only selected commands,  
which are most commonly used during device configuration and usage are reproduced in this document. For a  
full set of register maps for this device, refer to the accompanying Technical Reference Manual.  
Copyright © 2017–2019, Texas Instruments Incorporated  
45  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Default Value  
R/W,  
NVM  
CMD  
Command Name  
Description  
Default Behavior  
Ch. A  
Ch. B  
(PAGE 0)  
PAGE 1  
Selects which channel subsequent  
PMBus commands address  
All commands  
address Channel A  
00h PAGE  
RW  
RW  
N/A  
Conversion  
disabled. Margin  
None.  
Enable or disable each channel,  
enter or exit margin.  
01h OPERATION  
00h  
1Bh  
00h  
1Bh  
Configure the combination of  
OPERATION, and enable pin  
required to enable power conversion  
for each channel.  
RW,  
OPERATION  
NVM command only.  
02h ON_OFF_CONFIG  
Clears all fault status registers to 00h  
and releases PMB_ALERT  
03h CLEAR_FAULT  
04h PHASE  
W
Write-only  
N/A  
00h  
Selects which phase of the active  
channel subsequent PMBus  
commands address  
Commands  
address all phases.  
RW  
FFh  
FFh  
Used to control writing to the volatile  
operating memory (PMBus and  
restore from NVM).  
Writes to all  
commands are  
allowed  
10h WRITE_PROTECT  
RW  
Stores all current storable register  
settings into NVM as new defaults.  
11h STORE_DEFAULT_ALL  
12h RESTORE_DEFAULT_ALL  
W
W
Write-only  
Write-only  
N/A  
N/A  
Restores all storable register settings  
from NVM.  
Provides a way for a host system to  
determine key PMBus capabilities of  
the device.  
1 MHz, PEC,  
PMB_ALERT  
Supported  
19h CAPABILITY  
R
D0h  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
All bits may assert  
00h  
00h  
00h  
00h  
(STATUS_VOUT)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_IOUT)  
NVM PMB_ALERT  
LOW_VIN does not  
assert  
PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
NVM  
08h  
08h  
(STATUS_INPUT)  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
All bits may assert  
00h  
00h  
00h  
00h  
00h  
00h  
(STATUS_TEMPERATURE)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_CML)  
NVM PMB_ALERT  
SMBALERT_MASK  
1Bh  
Selects which faults/status bits may  
to assert PMB_ALERT  
RW,  
All bits may assert  
(STATUS_MFR_SPECIFIC)  
NVM PMB_ALERT  
VID mode.  
5 mV Step (Ch A),  
20h VOUT_MODE  
Read-only output mode indicator  
R(1)  
21h  
21h  
5 mV Step (Ch B)  
RW,  
0.500 V (Ch A)  
21h VOUT_COMMAND  
24h VOUT_MAX  
Output voltage target.  
0033h  
00FFh  
0033h  
00FFh  
NVM 0.500 V (Ch B)  
RW, 1.520 V (Ch A)  
NVM 1.520 V (Ch B)  
Sets the maximum output voltage  
Load the unit with the voltage to  
which the output is to be changed  
when OPERATION command is set  
to “Margin High”.  
0.000 V (CH A)  
RW  
25h VOUT_MARGIN_HIGH  
26h VOUT_MARGIN_LOW  
27h VOUT_TRANSITION_RATE  
0000h  
0000h  
E019h  
0000h  
0000h  
E019h  
0.000 V (Ch B)  
Load the unit with the voltage to  
which the output is to be changed  
when OPERATION command is set  
to “Margin Low”.  
0.000 V (CH A)  
RW  
0.000 V (Ch B)  
1.5625 mV/µs (Ch  
Used to set slew rate settings for  
output voltage updates  
RW,  
A)  
NVM 1.5625 mV/µs (Ch  
B)  
(1) NVM-backed bits in the MFR_SPECIFIC or USER_DATA commands affect the reset value of these commands. Refer to the individual  
register maps for more detail.  
46  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
CMD  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Default Value  
R/W,  
NVM  
Command Name  
Description  
Default Behavior  
Ch. A  
Ch. B  
(PAGE 0)  
PAGE 1  
The VOUT_DROOP sets the rate, in  
mV/A (mΩ) at which the output  
voltage decreases (or increases) with  
increasing (or decreasing) output  
current for use with Adaptive Voltage  
Positioning  
RW,  
0.000 mΩ (Ch A)  
28h VOUT_DROOP  
D000h  
D000h  
NVM 0.000 mΩ (Ch B)  
RW,  
1.000 (Ch A)  
29h VOUT_SCALE_LOOP  
2Ah VOUT_SCALE_MONITOR  
2Bh VOUT_MIN  
Used for scaling the VID code  
E808h  
E808h  
0000h  
01F4h  
E808h  
E808h  
0000h  
01F4h  
NVM 1.000 (Ch B)  
Used for scaling output voltage  
telemetry  
RW, 1.000 (Ch A)  
NVM 1.000 (Ch B)  
RW, 0.000 V (Ch A)  
NVM 0.000 V (Ch B)  
RW, 500 kHz (Ch A)  
Sets the minimum output voltage  
Sets the switching frequency  
33h FREQUENCY_SWITCH  
NVM 500 kHz (Ch B)  
Sets value of input voltage at which  
the device should start power  
conversion.  
RW,  
35h VIN_ON  
6.25 V  
NVM  
F019h  
Sets the ratio of voltage at the current  
sense pins to the sensed current.  
RW,  
5.000 mΩ (Ch A)  
38h IOUT_CAL_GAIN  
39h IOUT_CAL_OFFSET  
D140h  
E800h  
D140h  
E800h  
NVM 5.000 mΩ (Ch B)  
0.000 A (Ch A)  
RW,  
Used to null offsets in the output  
current sensing circuit  
0.000 A (Ch B)  
NVM  
(All Phases)  
Sets the value of the sensed output  
voltage which triggers an output  
overvoltage fault  
1.520 V (Ch A)  
1.520 V (Ch B)  
40h VOUT_OV_FAULT_LIMIT  
41h VOUT_OV_FAULT_RESPONSE  
44h VOUT_UV_FAULT_LIMIT  
R
00FFh  
80h  
00FFh  
80h  
Sets the converter response to an  
output overvoltage event  
Shutdown, do not  
restart  
R
Sets the value of the sensed output  
voltage which triggers an output  
undervoltage fault  
0.000 V (Ch A)  
0.000 V (Ch B)  
R
0000h  
0000h  
Sets the converter response to an  
output undervoltage event  
RW,  
NVM restart  
Shutdown, do not  
45h VOUT_UV_FAULT_RESPONSE  
46h IOUT_OC_FAULT_LIMIT  
80h  
0027h  
FAh  
80h  
0027h  
FAh  
Sets the output Over Current fault  
limit  
RW,  
39 A (Ch A)  
NVM(1) 39 A (Ch B)  
Define the over-current fault  
response.  
RW,  
NVM Hiccup  
Shutdown, and  
47h IOUT_OC_FAULT_RESPONSE  
Sets the value of the output current  
that causes the over current detector  
to indicate an over current warning.  
RW,  
26 A (Ch A)  
4Ah IOUT_OC_WARN_LIMIT  
001Ah  
001Ah  
NVM(1) 26 A (Ch B)  
Sets the temperature, in degrees  
Celsius, of the unit at which it should  
indicate an Over temperature Fault.  
RW,  
135 °C (Ch A)  
4Fh OT_FAULT_LIMIT  
0087h  
80h  
0087h  
80h  
NVM(1) 135 °C (Ch B)  
Sets the converter response to an  
over temperature fault.  
RW,  
NVM restart  
Shutdown, do not  
50h OT_FAULT_RESPONSE  
Sets the temperature, in degrees  
Celsius, of the unit at which it should  
indicate an Over temperature  
warning.  
105 °C (Ch A)  
105 °C (Ch B)  
51h OT_WARN_LIMIT  
RW  
0069h  
0069h  
Set the voltage, in volts, of the unit at  
which it should indicate a Vin Over-  
voltage Fault.  
RW,  
NVM  
55h VIN_OV_FAULT_LIMIT  
14.000 V  
000Eh  
Instructs the device on what action to  
take in response to an input  
overvoltage fault.  
Continue  
Uninterrupted  
56h VIN_OV_FAULT_RESPONSE  
R
00h  
Sets the value of the input voltage  
that causes an Input Under voltage  
Fault  
RW,  
NVM  
59h VIN_UV_FAULT_LIMIT  
5.500 V  
F80Bh  
C0h  
Sets the converter response to an  
input undervoltage event  
Shutdown, do not  
restart  
5Ah VIN_UV_FAULT_RESPONSE  
R
Copyright © 2017–2019, Texas Instruments Incorporated  
47  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Default Value  
R/W,  
NVM  
CMD  
Command Name  
Description  
Default Behavior  
Ch. A  
Ch. B  
(PAGE 0)  
PAGE 1  
Sets the value in amperes that  
causes the over current fault  
condition of the input current  
RW,  
NVM  
5Bh IIN_OC_FAULT_LIMIT  
5Ch IIN_OC_FAULT_RESPONSE  
5Dh IIN_OC_WARN_LIMIT  
63.5 A  
F87Fh  
Sets the converter response to input  
overcurrent events  
Shutdown, do not  
restart  
R
C0h  
Sets the value in amperes that  
causes the over current warning  
condition of the input current  
RW,  
NVM  
63.5 A  
F87Fh  
Sets the time, in milliseconds, from  
when a start condition is received (as  
programmed by the  
ON_OFF_CONFIG command) until  
the output voltage starts to rise.  
RW,  
2.43 ms (Ch A)  
60h TON_DELAY  
C26Eh  
C26Eh  
NVM 2.43 ms (Ch B)  
The PIN_OP_WARN_LIMIT  
command sets the value of the input  
power, in watts, that causes a  
warning that the input power is high  
6Bh PIN_OP_WARN_LIMIT  
RW  
450 W  
08E1h  
78h STATUS_BYTE  
79h STATUS_WORD  
7Ah STATUS_VOUT  
7Bh STATUS_IOUT  
7Ch STATUS_INPUT  
7Dh STATUS_TEMPERATURE  
7Eh STATUS_CML  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
PMBus read-only status and flag bits.  
Returns the input voltage in volts  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
Current Status  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
80h STATUS_MFR_SPECIFIC  
88h READ_VIN  
N/A  
N/A  
89h READ_IIN  
Returns the input current in amperes  
R
Returns the output voltage in VID  
format  
8Bh READ_VOUT  
R
R
R
Current Status  
Current Status  
Current Status  
N/A  
N/A  
N/A  
N/A  
Returns the output current in  
amperes  
8Ch READ_IOUT  
Returns the highest power stage  
temperature in °C  
8Dh READ_TEMPERATURE_1  
N/A  
N/A  
N/A  
N/A  
96h READ_POUT  
97h READ_PIN  
Returns the output power in Watts  
Returns the input power in Watts  
R
R
Current Status  
Current Status  
N/A  
33h  
Returns the version of the PMBus  
specification to which this device  
complies  
PMBus 1.3  
Part I, Part II  
98h PMBUS_REVISION  
R
Loads the unit with bits that contain  
the manufacturer’s ID  
RW,  
NVM user  
Arbitrary NVM for  
99h MFR_ID  
0000h  
0000h  
0400h  
1103h  
Loads the unit with bits that contain  
the manufacturer’s model number  
RW,  
NVM user  
Arbitrary NVM for  
9Ah MFR_MODEL  
9Bh MFR_REVISION  
Loads the unit with bits that contain  
the manufacturer’s model revision  
RW,  
NVM user  
Arbitrary NVM for  
Loads the unit with bits that contain  
the manufacture date  
RW,  
NVM  
9Dh MFR_DATE  
9Eh MFR_SERIAL  
ADh IC_DEVICE_ID  
March 2017  
NVM Checksum  
R
NVM checksum  
TPS53681  
484D2979h  
81h  
Returns a number indicating the part  
number of the device  
R
Returns a number indicating the  
device revision  
AEh IC_DEVICE_REV  
B0h USER_DATA_00  
B1h USER_DATA_01  
R
Rev 1.0  
Current  
00h  
RW  
Factory Default  
Settings  
Used for batch NVM programming.  
Used for batch NVM programming.  
NVM configuration  
RW Current  
NVM configuration  
Factory Default  
Settings  
48  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
CMD  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Default Value  
R/W,  
NVM  
Command Name  
Description  
Default Behavior  
Ch. A  
Ch. B  
(PAGE 0)  
PAGE 1  
RW  
Current  
Factory Default  
B2h USER_DATA_02  
B3h USER_DATA_03  
B4h USER_DATA_04  
B5h USER_DATA_05  
B6h USER_DATA_06  
B7h USER_DATA_07  
B8h USER_DATA_08  
B9h USER_DATA_09  
BAh USER_DATA_10  
BBh USER_DATA_11  
BCh USER_DATA_12  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
Used for batch NVM programming.  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
RW Current  
NVM configuration  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Factory Default  
Settings  
Configures per-phase overcurrent  
levels, current share thresholds, and  
other miscellaneous settings.  
RW  
Misc. configuration,  
D0h MFR_SPECIFIC_00  
0006h  
3006h  
NVM See register maps  
Returns information regarding current  
imbalance warnings for each phase  
D3h MFR_SPECIFIC_03  
D4h MFR_SPECIFIC_04  
R
R
Current status  
Current status  
0 mV offset  
N/A  
N/A  
Returns the output voltage for the  
active channel, in linear format  
N/A  
00h  
N/A  
00h  
Used to trim the output voltage of the  
active channel, by applying an offset  
to the currently selected VID code.  
RW  
D5h MFR_SPECIFIC_05  
D6h MFR_SPECIFIC_06  
D7h MFR_SPECIFIC_07  
D8h MFR_SPECIFIC_08  
D9h MFR_SPECIFIC_09  
NVM (Ch A and Ch B)  
Configures dynamic load line options  
for both channels, and selects Auto-  
DCM operation.  
RW Misc. configuration,  
NVM See register maps  
0000h  
118Fh  
00h  
0000h  
118Fh  
00h  
Misc. configuration,  
See to register  
maps  
Configures the internal loop  
compensation for both channels.  
RW  
NVM  
Used to identify catastrophic faults  
which occur first, and store this  
information to NVM  
RW  
Current status  
NVM  
Used to configure non-linear transient  
performance enhancements such as  
undershoot reduction (USR)  
RW  
Misc. configuration,  
76C7h  
06C7h  
NVM See register maps  
Used to configure input current  
sensing, and set the maximum output  
current  
RW  
Misc. configuration,  
DAh MFR_SPECIFIC_10  
DBh MFR_SPECIFIC_11  
DCh MFR_SPECIFIC_12  
C81Ah  
33h  
001Ah  
33h  
NVM See register maps  
RW  
VID 51d (Ch A)  
Boot-up VID code for each channel  
NVM VID 51d (Ch B)  
Used to configure input current  
sensing and other miscellaneous  
settings  
RW  
Misc. configuration,  
C704h  
0700h  
NVM See register maps  
Used to configure output voltage slew  
rates, DAC stepsize, and other  
miscellaneous settings.  
RW  
Misc. configuration,  
DDh MFR_SPECIFIC_13  
8825h  
0025h  
NVM See register maps  
Copyright © 2017–2019, Texas Instruments Incorporated  
49  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Default Value  
R/W,  
NVM  
CMD  
Command Name  
Description  
Default Behavior  
Ch. A  
Ch. B  
(PAGE 0)  
PAGE 1  
Used to configure dynamic phase  
shedding, and compensation ramp  
amplitude, and dynamic ramp  
amplitude during USR, and different  
power states  
RW  
Misc. configuration,  
DEh MFR_SPECIFIC_14  
0005h  
0005h  
NVM See register maps  
Used to configure dynamic phase  
shedding.  
RW  
Misc. configuration,  
DFh MFR_SPECIFIC_15  
E4h MFR_SPECIFIC_20  
F0h MFR_SPECIFIC_32  
FAh MFR_SPECIFIC_42  
1FFAh  
0000h  
NVM See register maps  
Used to set the maximum operational  
phase number, on-the-fly.  
RW Misc. configuration,  
NVM See register maps  
Hardware Configured  
00E1h  
Used to set the input over-power  
warning  
RW  
450 W  
RW  
NVM  
NVM Security  
NVM Security Key  
0000h  
50  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.4 Commonly Used PMBus Commands  
The following sections describe the most commonly used PMBus commands and their usage in the  
configuration, operation and testing of TPS53681 power solutions:  
Voltage, Current, Power, and Temperature Readings  
Input Current Sense and Calibration  
Output Current Sense and Calibration  
Output Voltage Margin Testing  
Loop Compensation  
Converter Protection and Response  
Dynamic Phase Shedding  
NVM Programming  
NVM Security  
Black Box Fault Recording  
Board Identification and Inventory Tracking  
Status Reporting  
版权 © 2017–2019, Texas Instruments Incorporated  
51  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.5 Voltage, Current, Power, and Temperature Readings  
Using an internal ADC, the TPS53681 provides a full set of telemetry capabilities, allowing the user to read back  
critical information about the converter's input voltage, input current, input power, output voltage, output current,  
output power and temperature. The table below summarizes the available commands and their formats. Register  
maps for each command are included.  
5. Telemetry Functions  
Command  
Description  
Format  
Units  
Channel/Phase  
Shared, Channel  
A and B  
READ_VIN  
READ_IIN  
Input voltage telemetry  
Linear  
V
Shared, Channel  
A and B  
Input current telemetry  
Linear  
VID  
A
VID Code  
A
READ_VOUT  
READ_IOUT  
Output voltage telemetry (VID format)  
Output current telemetry  
Per Channel  
Per Channel and Per  
Phase  
Linear  
Per Channel,  
Highest phase  
temperature only  
READ_TEMPERATURE_1  
Power stage temperature telemetry  
Linear  
°C  
READ_POUT  
READ_PIN  
Output power telemetry  
Linear  
Linear  
Linear  
W
W
V
Per Channel  
Shared, Channel  
A and B  
Input power telemetry  
MFR_SPECIFIC_04  
Output voltage telemetry (linear format)  
Per Channel  
7.5.5.1 (88h) READ_VIN  
The READ_VIN command returns the input voltage in volts. The two data bytes are formatted in the Linear Data  
format. The refresh rate is 1200 µs. This command should be accessed through Read Word transactions, and is  
shared between channel A and channel B.  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_VIN_EXP  
READ_VIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
15. READ_VIN  
6. READ_VIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
15:11  
READ_VIN_EXP  
R
Current  
Status  
10:0  
READ_VIN_MAN  
R
7.5.5.2 (89h) READ_IIN  
The READ_IIN command returns the input current in amperes. The refresh rate is 100 µs. The two data bytes  
are formatted in the Linear Data format. This command should be accessed through Read Word transactions,  
and is shared between channel A and channel B.  
52  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_IIN_EXP  
READ_IIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
16. READ_IIN  
7. READ_IIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
15:11  
READ_IIN_EXP  
R
Current  
Status  
10:0  
READ_IIN_MAN  
R
7.5.5.3 (8Bh) READ_VOUT  
The READ_VOUT command returns the actual, measured output voltage. The two data bytes are formatted in  
the VID Data format, and the refresh rate is 1200 us. This command should be accessed through Read Word  
transactions. READ_VOUT is a paged register. In order to access READ_VOUT command for channel A, PAGE  
must be set to 00h. In order to access READ_VOUT register for channel B, PAGE must be set to 01h.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VOUT_VID  
LEGEND: R/W = Read/Write; R = Read only  
17. READ_VOUT  
8. READ_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Output voltage, VID format  
7:0  
READ_VOUT_VID  
R
7.5.5.4 (8Ch) READ_IOUT  
The READ_IOUT command returns the output current in amperes. The update rate is 100us. READ_IOUT is a  
linear format command, and must be accessed through Read Word Transactions.  
READ_IOUT is a paged register. In order to access READ_IOUT for channel A, PAGE must be set to 00h. In  
order to access the READ_IOUT register for channel B, PAGE must be set to 01h. For simultaneous access of  
channels A and B, the PAGE command must be set to FFh. READ_IOUT is also a phased register. Depending  
on the configuration of the design, for channel A, PHASE must be set to 00h to access Phase 1, 01h to access  
Phase 2, etc... PHASE must be set to FFh to access all phases simultaneously. PHASE may also be set to 80h  
to readack the total phase current (sum of all active phase currents for the active channel) measurement, as  
described in Output Current Sense and Calibration. Note that READ_IOUT is only a phased command for  
Channel A (PAGE 0).  
版权 © 2017–2019, Texas Instruments Incorporated  
53  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_IOUT_EXP  
READ_IOUT_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IOUT_MAN  
LEGEND: R/W = Read/Write; R = Read only  
18. READ_IOUT  
9. READ_IOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
15:11  
READ_IOUT_EXP  
R
Current  
Status  
10:0  
READ_IOUT_MAN  
R
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction.  
7.5.5.5 (8Dh) READ_TEMPERATURE_1  
The READ_TEMPERATURE_1 command returns the temperature in degree Celsius. The refresh rate is 1200  
us.  
READ_TEMPERATURE_1 is a linear format command. The READ_TEMPERATURE_1 command must be  
accessed through Read Word transactions.  
READ_TEMPERATURE_1 is a paged register. In order to access READ_TEMPERATURE_1 command for  
channel A, PAGE must be set to 00h. In order to access READ_TEMPERATURE_1 register for channel B,  
PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE command must be set to  
FFh.  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_TEMP_EXP  
READ_TEMP_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_TEMP_MAN  
LEGEND: R/W = Read/Write; R = Read only  
19. READ_TEMPERATURE_1  
10. READ_TEMPERATURE_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
15:11  
READ_TEMP_EXP  
R
Current  
Status  
Linear two's complement format mantissa.  
10:0  
READ_TEMP_MAN  
R
54  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction  
7.5.5.6 (96h) READ_POUT  
The READ_POUT command returns the calculated output power, in watts for the active channel. The refresh  
rate is 1200 µs.  
READ_POUT is a linear format command. The READ_POUT command must be accessed through Read Word  
transactions.  
READ_POUT is a paged register. In order to access READ_POUT command for channel A, PAGE must be set  
to 00h. In order to access READ_POUT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_POUT_EXP  
READ_POUT_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_POUT_MAN  
LEGEND: R/W = Read/Write; R = Read only  
20. READ_POUT  
11. READ_POUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
Linear two's complement format mantissa.  
15:11  
READ_POUT_EXP  
R
Current  
Status  
10:0  
READ_POUT_MAN  
R
Attempts to write to this command results in invalid transactions. The device ignores the invalid data, sets the  
appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT signal to notify the  
system host of an invalid transaction  
7.5.5.7 (97h) READ_PIN  
The READ_PIN command returns the calculated input power. The refresh rate is 1200 µs.  
READ_PIN is a linear format command. The READ_PIN command must be accessed through Read Word  
transactions.  
The READ_PIN command is shared between Channel A and Channel B. All transactions to this command will  
affect both channels regardless of the PAGE command.  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
READ_PIN_EXP  
READ_PIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_PIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
21. READ_PIN  
版权 © 2017–2019, Texas Instruments Incorporated  
55  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
12. READ_PIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear two's complement format exponent.  
15:11  
READ_PIN_EXP  
R
Current  
Status  
Linear two's complement format mantissa.  
10:0  
READ_PIN_MAN  
R
7.5.5.8 (D4h) MFR_SPECIFIC_04  
The MFR_SPECIFIC_04 command is used to return the output voltage for the active channel, in the linear  
format (READ_VOUT uses VID format).  
The MFR_SPECIFIC_04 command must be accessed through Read Word transactions. MFR_SPECIFIC_04 is a  
Linear format command.  
MFR_SPECIFIC_04 is a paged register. In order to access MFR_SPECIFIC_04 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_04 register for channel B, PAGE must be set to 01h.  
15  
R
14  
R
13  
12  
R
11  
R
10  
R
9
8
R
R
R
VOUT_LIN_EXP  
VOUT_LIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VOUT_LIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
22. MFR_SPECIFIC_04  
13. MFR_SPECIFIC_04 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Current  
Status  
Linear format two's complement exponent.  
Linear format two's complement mantissa.  
15:11  
VOUT_LIN_EXP  
R
Current  
Status  
10:0  
VOUT_LIN_MAN  
R
56  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.6 Input Current Sense and Calibration  
The READ_IIN command reports the total input current to both channels. TPS53681 supports shunt or inductor  
DCR sensing. The section below describes how to calibrate the gain and offset of the sensed signal for accurate  
input current reporting. When input current sensing is not used, the CSPIN and VIN_CSNIN pins should be  
shorted together and connected to the power input voltage.  
7.5.6.1 Measured Input Current Calibration  
The TPS53681 reports input current via an integrated current sense interface on the CSPIN and VIN_CSNIN  
pins. A conceptual block diagram is shown in 23. This circuit must be calibrated to the value of the sense  
element, RSENSE (e.g. shunt resistance or DCR), chosen. The values of AIIN, IIN_MAX and IIN_OFS may be used  
to calibrate input current sensing. These settings are programmed using the MFR_SPECIFIC_10 and  
MFR_SPECIFIC_12 commands.  
Input Voltage  
CSPIN  
+
-
+
RSENSE  
ADC  
READ_IIN  
œ
AIIN  
IIN_MAX  
IIN_OFS  
VIN_CSNIN  
Input to  
Power Stages  
23. Measured Input Current Interface  
The IIN_RGAIN bits in MFR_SPECIFIC_12, and the IIN_GAIN_CTRL bit in MFR_SPECIFIC_10 select AIIN, the  
gain of the analog input current sense interface. Refer to 18 for a table of supported AIIN values. Note that the  
analog gain setting also corresponds to maximum allowed signal level and measured input current according to  
14.  
14. AIIN, Input Current Sense Analog Gain  
Maximum Supported  
(CSPIN–VIN_CSNIN)  
Voltage  
Maximum Supported  
Input Current  
IIN_GAIN_CTRL  
( MFR_SPECIFIC_10)  
IIN_RGAIN  
( MFR_SPECIFIC_12)  
Effective AIIN  
Measurement  
0b  
0b  
0b  
0b  
1b  
1b  
1b  
1b  
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
0.15 mΩ  
0.25 mΩ  
0.3 mΩ  
0.5 mΩ  
1.2 mΩ  
2.0 mΩ  
2.4 mΩ  
4.0 mΩ  
7.5 mV  
12.5 mV  
15.0 mV  
25.0 mV  
7.5 mV  
50.0 A  
50.0 A  
50.0 A  
50.0 A  
6.25 A  
6.25 A  
6.25 A  
6.25 A  
12.5 mV  
15.0 mV  
25.0 mV  
The IIN_MAX bits in MFR_SPECIFIC_10 may also be used to digitally calibrate the gain of the input current  
reporting. Changing IIN_MAX allows the user to achieve fine gain calibration of the input current sense circuit, as  
well as support sense element resistor values other than those directly supported using AIIN  
.
The nominal value of IIN_MAX is 50d. When the sense element resistance and AIIN are equal, IIN_MAX should  
remain set to 50d. Changing IIN_MAX adjusts the current sense gain ratiometrically with respect to the nominal  
value of 50d. For example, changing IIN_MAX to 25d, reduces the effective gain by a factor of 2, and changing  
IIN_MAX to 10d, reduces the effective gain by a factor of 5. IIN_MAX has a maximum value of 64d. When using  
a sense element RSENSE not equal to one of the supported AIIN values, the IIN_MAX register must be adjusted  
according to 公式 3 to achieve accurate gain calibration.  
版权 © 2017–2019, Texas Instruments Incorporated  
57  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
AIIN  
IIN_MAX = 50d ×  
RSENSE  
(3)  
The IIN_OFS bits in MFR_SPECIFIC_10 may also be used to apply an offset to the sensed current in amperes.  
Example #1: 0.5 mΩ RSENSE  
With a 0.5 mΩ sense element value, for example, (VCSPIN - VVIN_CSNIN) = 10 mV corresponds to 20 A current.  
Select the analog interface gain, AIIN =0.5 mΩ, since this selection is available in 18, and do not apply any  
scaling via IIN_MAX (set it to 50d).  
1. Select the value of AIIN that most closely matches the target sense resistance. In this case, AIIN = 0.5 mΩ is  
available, which gives IIN_RGAIN = 11b, and IIN_GAIN_CTRL = 0b.  
2. Set IIN_MAX = 50d × (0.5 mΩ / 0.5 mΩ) = 50d  
3. Set IIN_OFS = 0 A to start with, and tune as needed based on measurements.  
Example #2: 1.0 mΩ RSENSE  
With a 1.0 mΩ sense element value, for example, (VCSPIN - VVIN_CSNIN) = 10 mV corresponds to 10 A current.  
With the analog interface gain, AIIN set to 0.5 mΩ, 10 mV would be interpreted as 20 A. Therefore apply IIN_MAX  
= 50*(0.5 mΩ / 1 mΩ) to reduce the effective gain by a factor of 2, so 10 mV is interpreted as 10 A.  
1. Select the value of AIIN that most closely matches the target sense resistance. In this case, 1.0 mΩ is not  
directly available. Select AIIN = 0.5 mΩ , which gives IIN_RGAIN = 11b, and IIN_GAIN_CTRL = 0b.  
2. Set IIN_MAX = 50d × (0.5 mΩ / 1.0 mΩ) = 25d  
3. Set IIN_OFS = 0 A to start with, and tune as needed based on measurements.  
7.5.6.2 (DAh) MFR_SPECIFIC_10  
The MFR_SPECIFIC_10 command is used to configure input current sensing, and set the maximum output  
current. These values are used for input current and output current telemetry.  
The MFR_SPECIFIC_10 command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_10 is a paged register. In order to access MFR_SPECIFIC_10 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_10 register for channel B, PAGE must be set to 01h.  
Note that input current calibration is shared across both channels, but the configuration makes use of both  
PAGEs.  
15  
14  
13  
12  
11  
R
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIN_MAX (PAGE 0, bits 15:8)  
IIN_GAIN_CTRL (PAGE 1, bit 13)  
IIN_OFS (PAGE 1, bits 12:8)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOUT_MAX (PAGE 0, PAGE 1)  
LEGEND: R/W = Read/Write; R = Read only  
24. MFR_SPECIFIC_10  
15. MFR_SPECIFIC_10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Maximum IIN setting. LSB = 0.25 A. Valid values range from 0 A  
to 63.75 A.  
15:8  
IIN_MAX (PAGE 0)  
RW  
NVM  
Used to increase the effective IIN_RGAIN. See  
MFR_SPECIFIC_12 for more information.  
13  
12:8  
7:0  
IIN_GAIN_CTRL (PAGE 1)  
IIN_OFS (PAGE 1)  
IOUT_MAX  
RW  
RW  
RW  
NVM  
NVM  
NVM  
Input current sense offset calibration. See 16.  
Sets the maximum output current for each channel (PAGE 0 for  
channel A, PAGE 1 for channel B). LSB = 1 A.  
58  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
16. Input Current Offset Calibration Settings  
IIN_OFS (hex)  
00h  
IIN Offset (A)  
0
01h  
0.1  
02h  
0.2  
03h  
0.3  
04h  
0.4  
05h  
0.5  
06h  
0.6  
07h  
0.7  
08h  
0.8  
09h  
0.9  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
-1.6  
-1.5  
-1.4  
-1.3  
-1.2  
-1.1  
-1.0  
-0.9  
-0.8  
-0.7  
-0.6  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
7.5.6.3 (DCh) MFR_SPECIFIC_12  
The MFR_SPECIFIC_12 command is used to configure input current sensing.  
The MFR_SPECIFIC_12 command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_12 is a paged register, but all relevant configuration bits are associated with PAGE 0. PAGE  
should be set to 00h when accessing MFR_SPECIFIC_12.  
15  
14  
13  
R
12  
11  
10  
RW  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
IIN_RGAIN  
0
TI_INTERNAL  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TI_INTERNAL  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017–2019, Texas Instruments Incorporated  
59  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
25. MFR_SPECIFIC_12  
17. MFR_SPECIFIC_12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Input shunt resistance value. Combined with IIN_RGAIN,  
IIN_OFS, IIN_MAX to calibrate measured input current sensing.  
Note that finer adjustments can be made using IIN_MAX.  
15:14  
IIN_RGAIN (PAGE 0 only)  
RW  
NVM  
TI Internal bits. These bits are writeable, but should not be  
modified from their factory default setting.  
12:0  
TI_INTERNAL  
RW  
NVM  
18. AIIN, Input Current Sense Analog Gain(1)  
IIN_GAIN_CTRL  
( MFR_SPECIFIC_10)  
IIN_RGAIN  
( MFR_SPECIFIC_12)  
Effective AIIN  
0b  
0b  
0b  
0b  
1b  
1b  
1b  
1b  
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
0.15 mΩ  
0.25 mΩ  
0.3 mΩ  
0.5 mΩ  
1.2 mΩ  
2.0 mΩ  
2.4 mΩ  
4.0 mΩ  
(1) See Also 14  
19. Maximum Temperature Settings  
TMAX (binary)  
Maximum Temperature (°C)  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
90  
95  
100  
105  
110  
115  
120  
125  
60  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.7 Output Current Sense and Calibration  
The READ_IOUT command may be used to read the individual phase currents, and the total channel current.  
7.5.7.1 Reading Individual Phase Currents  
Using the PAGE and PHASE commands, the TPS53681 can be configured to return output current information  
for each individual phase. The examples below demonstrate this process:  
Example #1: Read back the output current of Channel A, First Phase  
1. Select Channel A. Write PAGE to 00h  
2. Select first phase. Write PHASE to 00h  
3. Read READ_IOUT  
Example #2: Read back the output current of Channel B, Second Phase  
1. Select Channel B. Write PAGE to 01h  
2. Select second phase. Write PHASE to 01h  
3. Read READ_IOUT  
7.5.7.1.1 Reading Total Current  
When the PHASE command is set to 80h, the TPS53681 device is configured to return the total channel current  
(sum of individual phase currents) in response to the READ_IOUT command.  
Example: Read the Total Output Current of Channel A  
1. Select Channel A. Write PAGE to 00h  
2. Select total current measurement. Write PHASE to 80h  
3. Read READ_IOUT  
7.5.7.1.2 Calibrating Current Measurements  
The IOUT_CAL_GAIN and IOUT_CAL_OFFSET commands are available to allow the user to fine-tune current  
measurements. Setting the PHASE command to 80h also allows the total current measurement to be calibrated  
in a similar manner. The TI power stage devices supply current information to the controller device, using the  
CSPx and CSNx pins, with a scale of 5 mV/A. The IOUT_CAL_GAIN command may be used to fine-tune the  
scaling inside the controller to account for any gain mismatch. Likewise, the IOUT_CAL_OFFSET command may  
be used to apply an offset to the controller current measurements, to null offset errors.  
Example: Calibrating Total Output Current Measurement  
1. Select Channel A. Write PAGE to 00h  
2. Select the total current. Write PHASE to 80h  
3. First read back READ_IOUT under two known output currents:  
1. For this example, apply a load of 60 A  
2. Read back READ_IOUT, record the value. For this example, consider that READ_IOUT gives 59.0 A.  
3. For this example, apply a load of 120 A  
4. Read back READ_IOUT, record the value. For this example, consider that READ_IOUT gives 119.6 A  
4. Calculate the gain error:  
1. The current reading increased (119.6 A - 59.0 A) = 60.6 A for a 60 A current step  
2. Hence, the current reading gain is (60.6 A / 60 A ) = 1.01.  
3. Ideally, the current reading gain is 1.00, so the readings show a +1% gain error.  
5. Apply IOUT_CAL_GAIN to correct the gain error:  
1. The gain error is +1%, and the nominal current sense gain is 5 mΩ, so the current sense gain must be  
lowered by 1%.  
2. Hence, the IOUT_CAL_GAIN should be programmed to 5 mΩ × (1-1%) = 4.95 mΩ  
3. Referring to 21 the closest acceptable value is 4.953125 mΩ, or D13Dh.  
4. Write IOUT_CAL_GAIN to D13Dh.  
版权 © 2017–2019, Texas Instruments Incorporated  
61  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6. Determine the offset error at a given point:  
1. Apply a known load. In this example, 90 A.  
2. Read back READ_IOUT. For this example, consider that READ_IOUT gives 89 A.  
3. Hence, the offset error is (89 A - 90A) = -1A.  
7. Apply IOUT_CAL_OFFSET to correct the gain error  
1. The offset error is -1 A, so an offset of +1 A must be applied.  
2. Refer to 24, the closest available value of IOUT_CAL_OFFSET is +1.0 A or E808h  
3. Write IOUT_CAL_OFFSET to E808h.  
8. Issue STORE_DEFAULT_ALL to commit the calibration values to NVM.  
7.5.7.2 (38h) IOUT_CAL_GAIN  
The IOUT_CAL_GAIN command is used to set the ratio of the voltage at the current sense pins to the sensed  
current, in mΩ.  
IOUT_CAL_GAIN is a linear format command. The IOUT_CAL_GAIN command must be accessed through Read  
Word/Write Word transactions.  
IOUT_CAL_GAIN is a paged register. In order to access IOUT_CAL_GAIN for channel A, PAGE must be set to  
00h. In order to access the IOUT_CAL_GAIN register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh. IOUT_CAL_GAIN is also a phased  
register. Depending on the configuration of the design, for channel A, PHASE must be set to 00h to access  
Phase 1, 01h to access Phase 2, etc... PHASE must be set to FFh to access all phases simultaneously. PHASE  
may also be set to 80h to apply IOUT_CAL_GAIN to the total phase current (sum of all active phases for the  
current channel) measurement, as described in Output Current Sense and Calibration.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
IOCG_EXP  
IOCG_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCG_MAN  
LEGEND: R/W = Read/Write; R = Read only  
26. IOUT_CAL_GAIN  
20. IOUT_CAL_GAIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IOCG_EXP  
R
11010b  
Linear two's complement exponent, –6. LSB = 0.015625 mΩ  
Linear two's complement mantissa. See the table of acceptable  
values below.  
10:0  
IOCG_MAN  
RW  
NVM  
21. Acceptable Values of IOUT_CAL_GAIN  
IOUT_CAL_GAIN (hex)  
D131h  
Current Sense Gain (mΩ)  
4.765625  
D132h  
D133h  
D134h  
D135h  
D136h  
D137h  
D138h  
D139h  
D13Ah  
4.78125  
4.796875  
4.8125  
4.828125  
4.84375  
4.859375  
4.875  
4.890625  
4.90625  
62  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
21. Acceptable Values of IOUT_CAL_GAIN (接下页)  
IOUT_CAL_GAIN (hex)  
D13Bh  
D13Ch  
D13Dh  
D13Eh  
D13Fh  
Current Sense Gain (mΩ)  
4.921875  
4.9375  
4.953125  
4.96875  
4.984375  
5
D140h  
D141h  
5.015625  
5.03125  
5.046875  
5.0625  
D142h  
D143h  
D144h  
D145h  
5.078125  
5.09375  
5.109375  
5.125  
D146h  
D147h  
D148h  
D149h  
5.140625  
5.15625  
5.171875  
5.1875  
D14Ah  
D14Bh  
D14Ch  
D14Dh  
D14Eh  
D14Fh  
5.203125  
5.21875  
5.234375  
5.25  
D150h  
Attempts to write any value other than those specified above results in invalid transactions. The device ignores  
the invalid data, sets the appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT  
signal to notify the system host of an invalid transaction.  
7.5.7.3 (39h) IOUT_CAL_OFFSET  
The IOUT_CAL_OFFSET command is used to compensate for offset errors in the READ_IOUT command, in  
Amperes.  
IOUT_CAL_OFFSET is a linear format command. The IOUT_CAL_OFFSET command must be accessed  
through Read Word/Write Word transactions  
IOUT_CAL_OFFSET is a paged register. In order to access IOUT_CAL_OFFSET for channel A, PAGE must be  
set to 00h. In order to access the IOUT_CAL_OFFSET register for channel B, PAGE must be set to 01h. For  
simultaneous access of channels A and B, the PAGE command must be set to FFh. IOUT_CAL_OFFSET is also  
a phased register. Depending on the configuration of the design, for channel A, PHASE must be set to 00h to  
access Phase 1, 01h to access Phase 2, etc... PHASE must be set to FFh to access all phases simultaneously.  
PHASE may also be set to 80h to apply IOUT_CAL_OFFSET to the total phase current (sum of all active phases  
for the current channel) measurement, as described in Output Current Sense and Calibration.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
IOCOS_EXP  
IOCOS_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCOS_MAN  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017–2019, Texas Instruments Incorporated  
63  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
27. IOUT_CAL_OFFSET  
22. IOUT_CAL_OFFSET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IOCOS_EXP  
R
11101b  
Linear two's complement exponent, –3. LSB = 0.125 A  
Linear two's complement mantissa. See the table of acceptable  
values below. Note that there is a different set of acceptable  
values for individual phases (e.g. PHASE = 00h - 05h, and FFh)  
vs. the total current telemetry function (e.g. PHASE = 80h). See  
Output Current Sense and Calibration for more information.  
10:0  
IOCOS_MAN  
RW  
NVM  
23. Acceptable Values of IOUT_CAL_OFFSET (Individual Phases, PHASE  
80h)  
IOUT_CAL_OFFSET (hex)  
E800h  
Current Sense Offset (A)  
0.00  
0.125  
0.25  
E801h  
E802h  
E803h  
0.375  
0.5  
E804h  
E805h  
0.625  
0.75  
E806h  
E807h  
0.875  
1.0  
E808h  
EFF9h  
-0.875  
-0.75  
-0.625  
-0.5  
EFFAh  
EFFBh  
EFFCh  
EFFDh  
-0.375  
-0.25  
-0.125  
EFFEh  
EFFFh  
24. Acceptable Values of IOUT_CAL_OFFSET (Total Current, PHASE = 80h)  
IOUT_CAL_OFFSET (hex)  
E800h  
Current Sense Offset (A)  
0.00  
0.25  
0.5  
E802h  
E804h  
E806h  
0.75  
1.0  
E808h  
E80Ah  
1.25  
1.5  
E80Ch  
E80Eh  
1.75  
2.0  
E810h  
E812h  
2.25  
2.5  
E814h  
E816h  
2.75  
3.0  
E818h  
E81Ah  
3.25  
3.5  
E81Ch  
E81Eh  
3.75  
4.0  
E820h  
64  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
24. Acceptable Values of IOUT_CAL_OFFSET (Total Current, PHASE = 80h)  
(接下页)  
IOUT_CAL_OFFSET (hex)  
EFE2h  
Current Sense Offset (A)  
-3.75  
-3.5  
EFE4h  
EFE6h  
-3.25  
-3.0  
EFE8h  
EFEAh  
-2.75  
-2.5  
EFECh  
EFEEh  
-2.25  
-2.0  
EFF0h  
EFF2h  
-1.75  
-1.5  
EFF4h  
EFF6h  
-1.25  
-1.0  
EFF8h  
EFFAh  
-0.75  
-0.5  
EFFCh  
EFFEh  
-0.25  
Attempts to write any value other than those specified above results in invalid transactions. The device ignores  
the invalid data, sets the appropriate flags in STATUS_CML and STATUS_WORD, and asserts the PMB_ALERT  
signal to notify the system host of an invalid transaction.  
版权 © 2017–2019, Texas Instruments Incorporated  
65  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.8 Output Voltage Margin Testing  
The TPS53681 provides several commands to enable voltage margin testing.  
The upper two MARGIN bits in the OPERATION command can be used to toggle the active channel between  
three states:  
1. Margin None (MARGIN = 0000b). The output voltage target is equal to VOUT_COMMAND.  
2. Margin Low (MARGIN = 01xxb). The output voltage target is equal to VOUT_MARGIN_LOW.  
3. Margin High (MARGIN = 10xxb). The output voltage target is equal to VOUT_MARGIN_HIGH.  
In order to use OPERATION, the active channel must be configured for to respect the OPERATION command,  
via ON_OFF_CONFIG. Output voltage transitions will occur at the slew rate defined by  
VOUT_TRANSITION_RATE.  
The lower two MARGIN bits in the OPERATION command select overvoltage/undervoltage fault handling during  
margin testing:  
1. Ignore Faults (MARGIN = xx01b) . Overvoltage/Undervoltage faults will not trigger during margin tests.  
2. Act on Faults (MARGIN = xx10b). Overvoltage/Undervoltage faults will trigger during margin tests.  
Example: Output Voltage Margin Testing (Ignore Faults)  
1. Write to the PAGE command to select the desired channel (E.g. PAGE = 00h for channel A).  
2. Write VOUT_COMMAND to the desired VID code during Margin None operation.  
3. Write VOUT_MARGIN_LOW to the desired VID code during Margin Low operation.  
4. Write VOUT_MARGIN_HIGH to the desired VID code during Margin High operation.  
5. Set the CMD bit in ON_OFF_CONFIG to 1b to ensure the device is configured to respect the OPERATION  
command.  
6. Margin None. Write OPERATION to 80h.  
7. Margin Low. Write OPERATION to 94h.  
8. Margin High. Write OPERATION to A4h.  
7.5.8.1 (01h) OPERATION  
The OPERATION command is used to turn the device output on or off in conjunction with the input from the  
AVR_EN pin for channel A, and BEN pin for channel B, according to the configuration of the ON_OFF_CONFIG  
command. It is also used to set the output voltage to the upper or lower MARGIN levels.  
OPERATION is a paged register. In order to access OPERATION command for channel A, PAGE must be set to  
00h. In order to access OPERATION register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
The OPERATION command must be accessed through Read Byte/Write Byte transactions.  
7
6
R
0
5
4
3
2
1
RW  
0
0
RW  
0
RW  
ON  
RW  
RW  
RW  
RW  
MARGIN  
LEGEND: R/W = Read/Write; R = Read only  
28. OPERATION  
66  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
25. OPERATION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable/disable power conversion for the currently selected  
channel(s) according to the PAGE command, when the  
ON_OFF_CONFIG command is configured to require input from  
the ON bit for output control. Note that there may be several  
other requirements that must be satisfied before the currently  
selected channel(s) can begin converting power (e.g. input  
voltages above UVLO thresholds, AVR_EN/BEN pins high if  
required by ON_OFF_CONFIG, etc...)  
7
ON  
RW  
0b  
0b: Disable power conversion  
1b: Enable power conversion  
Set the output voltage to either the value selected by the  
VOUT_MARGIN_HIGH or MARGIN_LOW commands, for the  
currently selected channel(s), according to the PAGE command.  
0000b: Margin Off. Output voltage is set to the value of  
VOUT_COMMAND  
0101b: Margin Low (Ignore Fault). Output voltage is set to the  
value of VOUT_MARGIN_LOW.  
5:2  
1:0  
MARGIN  
RW  
RW  
0000b  
0110b: Margin Low (Act on Fault). Output voltage is set to the  
value of VOUT_MARGIN_LOW.  
1001b: Margin High (Ignore Fault). Output voltage is set to the  
value of VOUT_MARGIN_HIGH  
1010b: Margin High (Act on Fault). Output voltage is set to the  
value of VOUT_MARGIN_HIGH.  
0
00b  
These bits are writeable but should always be set to 00b.  
Note that the VOUT_MAX_WARN bit in STATUS_VOUT can be caused by a margin operation, if "Act on Fault"  
is selected, and the VOUT_MARGIN_HIGH/VOUT_MARGIN_LOW value loaded by the margin operation  
exceeds the value of VOUT_COMMAND.  
7.5.8.2 (21h) VOUT_COMMAND  
VOUT_COMMAND is used to set the output voltage of the active PAGE.  
VOUT_COMMAND is a VID format command. VOUT_COMMAND command must be accessed through Read  
Word/Write Word transactions.  
VOUT_COMMAND is a paged register. In order to access VOUT_COMMAND for channel A, PAGE must be set  
to 00h. In order to access the VOUT_COMMAND register for channel B, PAGE must be set to 01h. For  
simultaneous access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_CMD_VID  
LEGEND: R/W = Read/Write; R = Read only  
29. VOUT_COMMAND  
26. VOUT_COMMAND Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set the commanded VOUT. Cannot be set to a level  
above the value set by VOUT_MAX.  
7:0  
VOUT_CMD_VID  
RW  
NVM  
版权 © 2017–2019, Texas Instruments Incorporated  
67  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.8.3 (26h) VOUT_MARGIN_LOW  
The VOUT_MARGIN_LOW command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to “Margin Low”.  
VOUT_MARGIN_LOW is a VID format command. The VOUT_MARGIN_LOW command must be accessed  
through Read Word/Write Word transactions.  
VOUT_MARGIN_LOW is a paged register. In order to access VOUT_MARGIN_LOW for channel A, PAGE must  
be set to 00h. In order to access the VOUT_MARGIN_LOW register for channel B, PAGE must be set to 01h.  
For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGL_VID  
LEGEND: R/W = Read/Write; R = Read only  
30. VOUT_MARGIN_LOW  
27. VOUT_MARGIN_LOW Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set the output voltage to be loaded when the active  
PAGE is set to Margin Low, in VID format.  
7:0  
VOUT_MARGL_VID  
RW  
00h  
7.5.8.4 (25h) VOUT_MARGIN_HIGH  
The VOUT_MARGIN_HIGH command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to “Margin High”.  
VOUT_MARGIN_HIGH is a VID format command. The VOUT_MARGIN_HIGH command must be accessed  
through Read Word/Write Word transactions.  
VOUT_MARGIN_HIGH is a paged register. In order to access VOUT_MARGIN_HIGH for channel A, PAGE must  
be set to 00h. In order to access the VOUT_MARGIN_HIGH register for channel B, PAGE must be set to 01h.  
For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGH_VID  
LEGEND: R/W = Read/Write; R = Read only  
31. VOUT_MARGIN_HIGH  
28. VOUT_MARGIN_HIGH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set the output voltage to be loaded when the active  
PAGE is set to Margin High, in VID format.  
7:0  
VOUT_MARGH_VID  
RW  
00h  
68  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.9 Loop Compensation  
The TPS53681 provides several options for tuning the output voltage feedback and response to transients.  
These may be configured by programming the MFR_SPECIFIC_07, VOUT_DROOP, and MFR_SPECIFIC_14.  
Several such parameters may be configured through these commands:  
DC Load Line - Selects the DC shift in output voltage corresponding to increased output current. The DC  
load line affects both the final value the output voltage settles to, as well as the settling time. Use the  
VOUT_DROOP command to select the DC load line.  
Integration Time Constant - In order to maintain DC accuracy, the control loop includes an integration  
stage. Use MFR_SPECIFIC_07 to select the integration time constant.  
Integration Path Gain - The gain of the integration and AC paths may be selected independently. The AC  
and DC gains both affect the small-signal bandwidth of the converter. Use MFR_SPECIFIC_07 to select the  
integration path gain.  
AC Load Line - Selects the AC response to output voltage error. The AC load line affects the settling and  
response time following a load transient event. Use the MFR_SPECIFIC_07 command to select the AC load  
line.  
AC Path Gain - The gain of the integration and AC paths may be selected independently. The AC and DC  
gains both affect the small-signal bandwidth of the converter. Use MFR_SPECIFIC_07 to select the AC path  
gain.  
Ramp Amplitude - Smaller ramp settings result in faster response, but may also lead to increased frequency  
jitter. Likewise, large ramp settings result in lower frequency jitter, but may be slightly slower to respond to  
changing conditions. The ramp setting also affects the small-signal bandwidth of the converter. Use  
MFR_SPECIFIC_14 to select the ramp heigh setting.  
7.5.9.1 (D7h) MFR_SPECIFIC_07  
The MFR_SPECIFIC_07 command is used to configure the internal loop compensation for both channels. The  
MFR_SPECIFIC_07 command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_07 is a paged register. In order to access MFR_SPECIFIC_07 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_07 register for channel B, PAGE must be set to 01h.  
15  
R
14  
R
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
0
0
INT_GAIN  
INT_TC  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
AC_GAIN  
LEGEND: R/W = Read/Write; R = Read only  
ACLL  
32. MFR_SPECIFIC_07  
29. MFR_SPECIFIC_07 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
Not used  
R
0
Not used and set to 0.  
13:12  
11:8  
7:6  
INT_GAIN  
INT_TC  
AC_GAIN  
ACLL  
RW  
RW  
RW  
RW  
NVM  
NVM  
NVM  
NVM  
Integration path gain. See 30.  
Integration time constant. See 31.  
AC path gain. See 32.  
AC Load Line. See 33.  
5:0  
30. Integration path gain settings  
INT_GAIN (binary)  
Integration path gain (V/V)  
2 × AC_GAIN  
00b  
01b  
10b  
1 × AC_GAIN  
0.66 × AC_GAIN  
版权 © 2017–2019, Texas Instruments Incorporated  
69  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
30. Integration path gain settings (接下页)  
INT_GAIN (binary)  
Integration path gain (V/V)  
11b  
0.5 × AC_GAIN  
31. Integration time constant settings  
INT_TC (binary)  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
Time constant (µs)  
5
10  
15  
20  
25  
30  
35  
40  
1
2
3
4
5
6
7
8
32. AC path gain settings  
AC_GAIN (binary)  
AC path gain (V/V)  
00b  
01b  
10b  
11b  
1
1.5  
2
0.5  
33. AC Load line settings  
Bin  
0
ACLL (hex)  
AC Load line (mΩ)  
0.0000  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
1
0.1250  
2
0.2500  
3
0.3125  
4
0.3750  
5
0.4375  
6
0.5000  
7
0.5625  
8
0.6250  
9
0.7500  
10  
11  
12  
13  
14  
15  
16  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.8750  
0.8906  
70  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
33. AC Load line settings (接下页)  
Bin  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
ACLL (hex)  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
AC Load line (mΩ)  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1.000  
1.0156  
1.0313  
1.0469  
1.0625  
1.1250  
1.2500  
1.3750  
1.5000  
1.6250  
1.7500  
1.8750  
1.9375  
2.000  
2.0625  
2.1250  
2.1875  
2.2500  
2.375  
2.4218  
2.4375  
2.4531  
2.4687  
2.4843  
2.5000  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
2.625  
2.6406  
2.6562  
2.6718  
2.6875  
2.750  
2.875  
3.000  
3.125  
版权 © 2017–2019, Texas Instruments Incorporated  
71  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.9.2 (28h) VOUT_DROOP  
The VOUT_DROOP command sets the rate, in mV/A (mΩ) at which the output voltage decreases (or increases)  
with increasing (or decreasing) output current for use with adaptive voltage positioning. This is also referred to as  
the DC Load Line (DCLL).  
VOUT_DROOP is a linear format command. The VOUT_DROOP command must be accessed through Read  
Word/Write Word transactions.  
VOUT_DROOP is a paged register. In order to access VOUT_DROOP for channel A, PAGE must be set to 00h.  
In order to access the VOUT_DROOP register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
12  
R
11  
R
10  
9
RW  
8
R
RW  
RW  
VDROOP_EXP  
VDROOP_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VDROOP_MAN  
LEGEND: R/W = Read/Write; R = Read only  
33. VOUT_DROOP  
34. VOUT_DROOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Linear two's complement fixed exponent, –6. LSB = 0.015625  
mΩ  
15:11  
VDROOP_EXP  
R
11010b  
Linear two's complement mantissa. See table of acceptable  
values below, note that Channel A and Channel B support  
different acceptable values of VOUT_DROOP.  
10:0  
VDROOP_MAN  
RW  
NVM  
The table below summarizes the acceptable values of VOUT_DROOP for channel A and channel B. Attempts to  
write any value other than those specified below will be treated as invalid data - invalid data will be ignored, the  
appropriate flags in STATUS_CML and STATUS_WORD will be set, and the PMB_ALERT will be asserted to  
notify the system host of an invalid transaction.  
35. Acceptable VOUT_DROOP Values  
VOUT_DROOP  
(hex)  
Supported by  
Channel A  
Supported by  
Channel B  
DC Load Line  
Bin  
(mΩ)  
0
1
D000h  
D008h  
D010h  
D014h  
D018h  
D01Ch  
D020h  
D024h  
D028h  
D030h  
D033h  
D034h  
D035h  
D036h  
D037h  
D038h  
D039h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
0
0.125  
0.25  
2
3
0.3125  
0.375  
0.4375  
0.5  
4
5
6
7
0.5625  
0.625  
0.7031  
0.7969  
0.8125  
0.8281  
0.8438  
0.8594  
0.875  
0.8906  
8
9
10  
11  
12  
13  
14  
15  
16  
72  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
35. Acceptable VOUT_DROOP Values (接下页)  
VOUT_DROOP  
(hex)  
Supported by  
Channel A  
Supported by  
Channel B  
DC Load Line  
Bin  
(mΩ)  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
D03Ah  
D03Bh  
D03Ch  
D03Dh  
D03Eh  
D03Fh  
D040h  
D041h  
D042h  
D043h  
D044h  
D048h  
D050h  
D058h  
D060h  
D068h  
D070h  
D078h  
D07Ch  
D080h  
D084h  
D088h  
D08Ch  
D090h  
D098h  
D09Bh  
D09Ch  
D09Dh  
D09Eh  
D09Fh  
D0A0h  
D0A1h  
D0A2h  
D0A3h  
D0A4h  
D0A5h  
D0A6h  
D0A7h  
D0A8h  
D0A9h  
D0AAh  
D0ABh  
D0ACh  
D0B0h  
D0B8h  
D0C0h  
D0C8h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
0.9063  
0.9219  
0.9375  
0.9531  
0.9688  
0.9844  
1
1.0156  
1.0313  
1.0469  
1.0625  
1.125  
1.25  
1.375  
1.5  
1.625  
1.75  
1.875  
1.9375  
2
2.0625  
2.125  
2.1875  
2.25  
2.328  
2.4218  
2.4375  
2.4531  
2.4687  
2.4843  
2.5  
2.5156  
2.5312  
2.5468  
2.5625  
2.5781  
2.5937  
2.609  
2.625  
2.6406  
2.6562  
2.6718  
2.6875  
2.75  
2.875  
3
3.125  
版权 © 2017–2019, Texas Instruments Incorporated  
73  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.10 Converter Protection and Response  
The TPS53681 supports a variety of power supply protection features. The table below summarizes these  
protection features, and their related PMBus registers. See the following sections for more details.  
Table 36. TPS53681 Protection and Response  
Threshold  
Command Name  
Response  
Command Name  
Default Value  
Default Value  
Output Voltage  
1.520 V (Ch A)  
1.520 V (Ch B)  
Shutdown,  
do not restart  
Over-Voltage Protection  
VOUT_OV_FAULT_LIMIT  
VOUT_MAX  
VOUT_OV_FAULT_RESPONSE  
Maximum Allowed Output  
Voltage  
1.520 V (Ch A)  
1.520 V (Ch B)  
Refer to Register Description  
0.000 V (Ch A)  
0.000 V (Ch B)  
Shutdown,  
do not restart  
Under-Voltage Protection  
VOUT_UV_FAULT_LIMIT  
VOUT_MIN  
VOUT_UV_FAULT_RESPONSE  
Minimum Allowed Output  
Voltage  
0.000 V (Ch A)  
0.000 V (Ch B)  
Refer to Register Description  
Output Current  
IOUT_OC_FAULT_LIMIT  
MFR_SPECIFIC_10  
39 A (Ch A)  
39 A (Ch B)  
Shutdown,  
do not restart  
Over-Current Protection  
IOUT_OC_FAULT_RESPONSE  
N/A. Warning Only.  
26 A (Ch A)  
26 A (Ch B)  
Over-Current Warning  
IOUT_OC_WARN_LIMIT  
Input Voltage  
Turn-On Threshold  
VIN_ON  
6.25 V  
N/A  
Continue  
Uninterrupted  
Over-Voltage Protection  
VIN_OV_FAULT_LIMIT  
14.00 V  
VIN_OV_FAULT_RESPONSE  
Shutdown,  
do not restart  
Under-Voltage Protection  
Input Current  
VIN_UV_FAULT_LIMIT  
5.50 V  
VIN_UV_FAULT_RESPONSE  
Shutdown,  
do not restart  
Over-Current Protection  
IIN_OC_FAULT_LIMIT  
IIN_OC_WARN_LIMIT  
63.5 A  
63.5 A  
IIN_OC_FAULT_RESPONSE  
N/A. Warning Only  
Over-Current Warning  
Temperature  
Over-Temperature  
Protection  
135 °C (Ch A)  
135 °C (Ch B)  
Shutdown,  
do not restart  
OT_FAULT_LIMIT  
OT_FAULT_RESPONSE  
N/A. Warning Only.  
105 °C (Ch A)  
105 °C (Ch B)  
Over-Temperature Warning OT_WARN_LIMIT  
74  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.11 Output Overvoltage Protection and Response  
The output overvoltage thresholds track the configured maximum output voltage, VOUT_MAX, with a fixed offset,  
and may be read back in VID format via the read-only VOUT_OV_FAULT_LIMIT command. The converter  
response to an overvoltage fault is configured by the read-only VOUT_OV_FAULT_RESPONSE command.  
7.5.11.1 (40h) VOUT_OV_FAULT_LIMIT  
The VOUT_OV_FAULT_LIMIT is used to read back the value of the output voltage measured at the sense or  
output pins that causes an output overvoltage fault in VID format. VOUT_OV_FAULT_LIMIT is a VID format  
command, and must be accessed through Read Word/Write Word transactions. VOUT_OV_FAULT_LIMIT is a  
paged register. In order to access VOUT_OV_FAULT_LIMIT for channel A, PAGE must be set to 00h. In order to  
access the VOUT_OV_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_OVF_VID  
LEGEND: R/W = Read/Write; R = Read only  
34. VOUT_OV_FAULT_LIMIT  
37. VOUT_OV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Read-only overvoltage fault limit, in VID format.  
See  
below.  
7:0  
VO_OVF_VID  
R
When the 5-mV DAC mode VID table is selected via MFR_SPECIFIC_13, the VOUT_OV_FAULT_LIMIT register  
will be set to FFh. When the 10-mV DAC mode VID table is enabled, the VOUT_OV_FAULT_LIMIT is  
determined according to the value of VOUT_MAX, with a fixed offset applied.  
7.5.11.2 (41h) VOUT_OV_FAULT_RESPONSE  
The VOUT_OV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
overvoltage fault. The VOUT_OV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VOUT_OV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-voltage fault, the controller is latched off, and the following actions are taken:  
Set the VOUT_OV_FAULT bit in the STATUS_BYTE  
Set the VOUT bit in the STATUS_WORD  
Set the VOUT_OV_FAULT bit in the STATUS_VOUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_OV_RESP  
LEGEND: R/W = Read/Write; R = Read only  
35. VOUT_OV_FAULT_RESPONSE  
版权 © 2017–2019, Texas Instruments Incorporated  
75  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
38. VOUT_OV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
80h: Latch-off and do not restart. To clear a shutdown event due  
to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7:0  
VO_OV_RESP  
R
80h  
7.5.12 Maximum Allowed Output Voltage Setting  
The VOUT_MAX command sets an upper limit on the output voltage that the unit may be commanded to,  
regardless of an other commands or combinations. The intent of this command is to provide a safeguard against  
a user accidentally setting the output voltage to a possibly destructive level.  
7.5.12.1 (24h) VOUT_MAX  
The VOUT_MAX command sets an upper limit on the output voltage that the unit may be commanded to,  
regardless of an other commands or combinations. The intent of this command is to provide a safeguard against  
a user accidentally setting the output voltage to a possibly destructive level. VOUT_MAX is a VID format  
command, and must be accessed through Read Word/Write Word transactions. VOUT_MAX is a paged register.  
In order to access VOUT_MAX for channel A, PAGE must be set to 00h. In order to access the  
VOUT_COMMAND register for channel B, PAGE must be set to 01h. For simultaneous access of channels A  
and B, the PAGE command must be set to FFh.  
The device detects that an attempt has been made to program the output to a voltage greater than the value set  
by the VOUT_MAX command. Attempts to program the output voltage greater than VOUT_MAX can include  
VOUT_COMMAND attempts, and margin events where the VOUT_MARGIN_HIGH/VOUT_MARGIN_LOW  
values exceed the value of VOUT_MAX. These events will be treated as warning conditions and not as fault  
conditions. If an attempt is made to program the output voltage higher than the limit set by the VOUT_MAX  
command,  
the  
device  
will  
respond  
as  
follows:  
The commanded output voltage will be clamped to VOUT_MAX,  
The OTHER bit will be set in the STATUS_BYTE,  
The VOUT bit will be set in the STATUS_WORD,  
The VOUT_MIN_MAX warning bit will be set in the STATUS_VOUT register, and  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set).  
This register should be programmed by the user depending upon the maximum output voltage the converter can  
support.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MAX_VID  
LEGEND: R/W = Read/Write; R = Read only  
36. VOUT_MAX  
39. VOUT_MAX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
VOUT_MAX_VID  
RW  
NVM  
Used to set the maximum VOUT of the device in VID format.  
76  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.13 Output Undervoltage Protection and Response  
The output undervoltage protection threshold is configured based on commanded output voltage,  
VOUT_COMMAND, including the shift due to the DC load line, and a fixed offset. The undervoltage threshold  
may be read back in VID format via the read-only VOUT_UV_FAULT_LIMIT command. The converter response  
to an undervoltage fault is configured by the read-only VOUT_UV_FAULT_RESPONSE command.  
7.5.13.1 (44h) VOUT_UV_FAULT_LIMIT  
The VOUT_UV_FAULT_LIMIT is used to read back the value of the output voltage measured at the sense or  
output pins that causes an output undervoltage fault in VID format. VOUT_UV_FAULT_LIMIT is a VID format  
command, and must be accessed through Read Word transactions. VOUT_UV_FAULT_LIMIT is a paged  
register. In order to access VOUT_UV_FAULT_LIMIT for channel A, PAGE must be set to 00h. In order to  
access the VOUT_UV_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous access  
of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VO_UVF_VID  
LEGEND: R/W = Read/Write; R = Read only  
37. VOUT_UV_FAULT_LIMIT  
40. VOUT_UV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Read-only undervoltage fault limit, in VID format.  
See  
below.  
7:0  
VO_UVF_VID  
R
7.5.13.2 (45h) VOUT_UV_FAULT_RESPONSE  
The VOUT_UV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
undervoltage fault.  
Upon triggering the undervoltage fault, the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE  
Set the VOUT bit in the STATUS_WORD  
Set the VOUT_UV_FAULT bit in the STATUS_VOUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
The VOUT_UV_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte transactions.  
The VOUT_UV_FAULT_RESPONSE command is shared between Channel A and Channel B. All transactions to  
this command will affect both channels regardless of the PAGE command.  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VO_UV_RESP  
LEGEND: R/W = Read/Write; R = Read only  
38. VOUT_UV_FAULT_RESPONSE  
版权 © 2017–2019, Texas Instruments Incorporated  
77  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
41. VOUT_UV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00h: Ignore. The controller will set the appropriate status bits,  
and alert the host, but continue converting power.  
BAh: Shutdown and restart. The controller will shutdown the  
channel on which the fault occurred, and attempt to restart 20ms  
later. This will occur continuously until the condition causing the  
fault has disappeared, or the controller has been disabled.  
7:0  
VO_UV_RESP  
RW  
NVM  
80h: Latch-off and do not restart. To clear a shutdown event due  
to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7.5.14 Minimum Allowed Output Voltage Setting  
The VOUT_MIN command sets a lower bound on the output voltage to which the unit can be commanded,  
regardless of any other commands or combinations. The intent of this command is to provide a safeguard  
against a user accidentally setting the output voltage to a possibly destructive level rather than to be the primary  
output under voltage protection.  
7.5.14.1 (2Bh) VOUT_MIN  
The VOUT_ MIN command sets a lower bound on the output voltage to which the unit can be commanded,  
regardless of any other commands or combinations. The intent of this command is to provide a safeguard  
against a user accidentally setting the output voltage to a possibly destructive level rather than to be the primary  
output under voltage protection. VOUT_MIN is a VID format command, and must be accessed through Read  
Word/Write Word transactions. VOUT_MIN is a paged register. In order to access VOUT_MIN for channel A,  
PAGE must be set to 00h. In order to access the VOUT_MIN register for channel B, PAGE must be set to 01h.  
For simultaneous access of channels A and B, the PAGE command must be set to FFh.  
If an attempt is made to program the output voltage lower than the limit set by this command, the device will  
respond as follows:  
The commanded output voltage will be clamped to VOUT_MIN  
The OTHER bit will be set in the STATUS_BYTE  
The VOUT bit will be set in the STATUS_WORD  
The VOUT_MIN_MAX Warning bit will be set in the STATUS_VOUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set).  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
0
8
R
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MIN_VID  
LEGEND: R/W = Read/Write; R = Read only  
39. VOUT_MIN  
42. VOUT_MIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Used to set a lower bound for output voltage programming for  
the active PAGE, is set to in VID format.  
7:0  
VOUT_MIN_VID  
RW  
NVM  
78  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.15 Output Overcurrent Protection and Response  
Overcurrent thresholds are configured using the IOUT_OC_FAULT_LIMIT. When the overcurrent fault threshold  
is reached, the converter will respond according to the settings in IOUT_OC_FAULT_RESPONSE. The  
IOUT_OC_WARN_LIMIT may also be used to configure an information-only overcurrent warning, which triggers  
prior to an overcurrent fault. Note, that the MFR_SPECIFIC_00 command, not listed below, also contains  
settings for per-phase overcurrent limits. Refer to the device Technical Reference Manual for more information.  
7.5.15.1 (46h) IOUT_OC_FAULT_LIMIT  
The IOUT_OC_FAULT_LIMIT command sets the value of the total output current, in amperes, that causes the  
over-current detector to indicate an over-current fault condition. The command has two data bytes and the data  
format is Linear as shown in the table below. The units are amperes. IOUT_OC_FAULT_LIMIT is a linear format  
command, and must be accessed through Read Word/Write Word transactions. IOUT_OC_FAULT_LIMIT is a  
paged register. In order to access IOUT_OC_FAULT_LIMIT command for channel A, PAGE must be set to 00h.  
In order to access IOUT_OC_FAULT_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
IOOCF_EXP  
IOOCF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
40. IOUT_OC_FAULT_LIMIT  
43. IOUT_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IOOCF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1.0 A  
Linear two's complement mantissa  
See  
below.  
10:0  
IOOCF_MAN  
RW  
At power-on, or after a RESTORE_DEFAULT_ALL operation, the IOUT_OC_FAULT_LIMIT command will be  
loaded with the value of IOUT_MAX × 1.50. The IOUT_MAX bits for each channel are stored in  
MFR_SPECIFIC_10 (PAGE 0 for channel A, PAGE 1 for channel B). IOUT_OC_FAULT_LIMIT may be changed  
during operation, but returns to this value on reset.  
7.5.15.2 (4Ah) IOUT_OC_WARN_LIMIT  
The IOUT_OC_WARN_LIMIT command sets the value of the output current, in amperes, that causes the over-  
current detector to indicate an over-current warning condition. IOUT_OC_WARN_LIMIT is a linear format  
command, and must be accessed through Read Word/Write Word transactions. IOUT_OC_WARN_LIMIT is a  
paged register. In order to access IOUT_OC_WARN_LIMIT command for channel A, PAGE must be set to 00h.  
In order to access IOUT_OC_WARN_LIMIT register for channel B, PAGE must be set to 01h. For simultaneous  
access of channels A and B, the PAGE command must be set to FFh.  
IOUT_OC_WARN_LIMIT maximum default value is 255A. In case, Application maximum  
load current is greater than 255A, IOUT_OC_WARN_LIMIT needs to change as max load  
current value each time after power-on or RESTORE_DEFAULT_ALL operation.  
Upon triggering the overcurrent warning, the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE  
Set the IOUT bit in the STATUS_WORD  
Set the IOUT Over current Warning bit in the STATUS_IOUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
版权 © 2017–2019, Texas Instruments Incorporated  
79  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
set)  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
IOOCW_EXP  
IOOCW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
41. IOUT_OC_WARN_LIMIT  
44. IOUT_OC_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IOOCW_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1.0 A  
Linear two's complement mantissa.  
See  
below.  
10:0  
IOOCW_MAN  
RW  
At power-on, or after a RESTORE_DEFAULT_ALL operation, the IOUT_OC_WARN_LIMIT command will be  
loaded with the value of IOUT_MAX. The IOUT_MAX bits for each channel are stored in MFR_SPECIFIC_10  
(PAGE 0 for channel A, PAGE 1 for channel B). IOUT_OC_WARN_LIMIT may be changed during operation, but  
will return to this value on reset.  
7.5.15.3 (47h) IOUT_OC_FAULT_RESPONSE  
The IOUT_OC_FAULT_RESPONSE instructs the device on what action to take in response to an output over-  
current fault. The IOUT_OC_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte  
transactions. The IOUT_OC_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-current fault, the controller is latched off, and the following actions are taken:  
Set the IOUT_OC_FAULT bit in the STATUS_BYTE  
Set the IOUT bit in the STATUS_WORD  
Set the IOUT_OC_FAULT bit in the STATUS_IOUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IO_OC_RESP  
LEGEND: R/W = Read/Write; R = Read only  
42. IOUT_OC_FAULT_RESPONSE  
45. IOUT_OC_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
C0h: Latch-off and do not restart. To clear a shutdown event  
due to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7:0  
IO_OC_RESP  
RW  
NVM  
FAh: Shutdown and restart. The controller will shutdown the  
channel on which the fault occurred, and attempt to restart 20ms  
later. This will occur continuously until the condition causing the  
fault has disappeared, or the controller has been disabled.  
80  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.16 Input Under-Voltage Lockout (UVLO)  
The TPS53681 may not start converting power, until the power stage input voltage reaches the level specified by  
VIN_ON.  
7.5.16.1 (35h) VIN_ON  
The VIN_ON command sets the value of the input voltage, in Volts, at which the unit should start power  
conversion. This command has two data bytes encoded in linear data format, and must be accessed through  
Read Word/Write Word transactions. The VIN_ON command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command. The supported range  
for VIN_ON is from 4.0 V volts to 11.25 Volts.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
VINON_EXP  
VINON_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINON_MAN  
LEGEND: R/W = Read/Write; R = Read only  
43. VIN_ON  
46. VIN_ON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Linear two's complement exponent, –2. LSB = 0.25 V  
15:11  
VINON_EXP  
R
11110b  
Linear two's complement mantissa. See the table of acceptable  
values below.  
10:0  
VINON_MAN  
RW  
NVM  
47. Acceptable Values of VIN_ON  
VIN_ON (hex)  
Turn-On Voltage (V)  
F010h  
F015h  
F019h  
F01Dh  
F021h  
F025h  
F029h  
F02Dh  
4.0  
5.25  
6.25  
7.25  
8.25  
9.25  
10.25  
11.25  
7.5.17 Input Over-Voltage Protection and Response  
The TPS53681 provides protection from input transients via the VIN_OV_FAULT_LIMIT and  
VIN_OV_FAULT_RESPONSE commands.  
7.5.17.1 (55h) VIN_OV_FAULT_LIMIT  
The VIN_OV_FAULT_LIMIT command sets the value of the input voltage that causes an input overvoltage fault.  
VIN_OV_FAULT_LIMIT is a linear format command, and must be accessed through Read Word/Write Word  
transactions. The VIN_OV_FAULT_LIMIT command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
版权 © 2017–2019, Texas Instruments Incorporated  
81  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
RW  
8
RW  
RW  
VIN_OVF_EXP  
VIN_OVF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIN_OVF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
44. VIN_OV_FAULT_LIMIT  
48. VIN_OV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
VIN_OVF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1 V  
Linear two's complement mantissa. Valid values of the mantissa  
range from 0d to 31d.  
10:0  
VIN_OVF_MAN  
RW  
NVM  
7.5.17.2 (56h) VIN_OV_FAULT_RESPONSE  
The VIN_OV_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
overvoltage fault. The VIN_OV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VIN_OV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
In response to the VIN_OV_LIMIT being exceeded, the device will:  
Set the OTHER bit in the STATUS_BYTE  
Set the INPUT bit in the upper byte of the STATUS_WORD  
Sets the VIN_OV_FAULT bit in the STATUS_INPUT register  
Notify the host (assert the PMB_ALERT signal, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VI_OVF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
45. VIN_OV_FAULT_RESPONSE  
49. VIN_OV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00h: Ignore. The controller will set the appropriate status bits,  
and alert the host, but continue converting power.  
7:0  
VI_OVF_RESP  
R
00h  
7.5.18 Input Undervoltage Protection and Response  
The TPS53681 provides protection from input transients via the VIN_UV_FAULT_LIMIT and  
VIN_UV_FAULT_RESPONSE commands.  
7.5.18.1 (59h) VIN_UV_FAULT_LIMIT  
The VIN_UV_FAULT_LIMIT command sets the value of the input voltage that causes an Input Under voltage  
Fault. This fault is masked until the input exceeds the value set by the VIN_ON command for the first time, and  
the unit has been enabled. VIN_UV_FAULT_LIMIT is a linear format command, and must be accessed through  
Read Word/Write Word transactions. The VIN_UV_FAULT_LIMIT command is shared between Channel A and  
Channel B. All transactions to this command will affect both channels regardless of the PAGE command.  
82  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
15  
14  
13  
RW  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
VIN_UVF_EXP  
VIN_UVF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VIN_UVF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
46. VIN_UV_FAULT_LIMIT  
50. VIN_UV_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Linear two's complement exponent. See the table of acceptable  
values below.  
15:11  
VIN_UVF_EXP  
RW  
NVM  
Linear two's complement mantissa. See the table of acceptable  
values below.  
10:0  
VIN_UVF_MAN  
RW  
NVM  
51. Acceptable Values of VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_LIMIT (hex)  
VIN UVF Limit (V)  
F011h  
F80Bh  
F80Dh  
F80Fh  
F811h  
F813h  
F815h  
F817h  
4.25  
5.5  
6.5  
7.5  
8.5  
9.5  
10.5  
11.5  
7.5.18.2 (5Ah) VIN_UV_FAULT_RESPONSE  
The VIN_UV_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
overvoltage fault. The VIN_UV_FAULT_RESPONSE command must be accessed through Read Byte  
transactions. The VIN_UV_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
In response to the VIN_UV_LIMIT being exceeded, the device will:  
Set the OTHER bit in the STATUS_BYTE  
Set the INPUT bit in the upper byte of the STATUS_WORD  
Set the VIN_UV_FAULT bit in the STATUS_INPUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VI_UVF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
47. VIN_UV_FAULT_RESPONSE  
52. VIN_UV_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
C0h: Shutdown and restart when the fault condition is no longer  
present.  
7:0  
VI_UVF_RESP  
R
C0h  
版权 © 2017–2019, Texas Instruments Incorporated  
83  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.19 Input Overcurrent Protection and Response  
Input overcurrent protection is configured via the IIN_OC_FAULT_LIMIT, IIN_OC_WARN_LIMIT and  
IIN_OC_FAULT_RESPONSE commands.  
7.5.19.1 (5Bh) IIN_OC_FAULT_LIMIT  
The IIN_OC_FAULT_LIMIT command sets the value of the input current, in amperes, that causes the input over  
current fault condition. IIN_OC_FAULT_LIMIT is a linear format command, and must be accessed through Read  
Word/Write Word transactions. The IIN_OC_FAULT_LIMIT command is shared between Channel A and Channel  
B. All transactions to this command will affect both channels regardless of the PAGE command.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
IIN_OCF_EXP  
IIN_OCF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIN_OCF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
48. IIN_OC_FAULT_LIMIT  
53. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IIN_OCF_EXP  
R
11111b  
Linear two's complement format exponent, –1. LSB = 0.5 A.  
See  
below.  
Linear two's complement format mantissa. Acceptable values  
range from 0d (0 A) to 127d (63.5 A).  
10:0  
IIN_OCF_MAN  
RW  
During operation, the IIN_OC_FAULT_LIMIT may be changed to any valid value, as specified above. The  
IIN_OC_FAULT_LIMIT command has only limited NVM backup. The table below summarizes the values that  
IIN_OC_FAULT_LIMIT may be restored to following a reset, or RESTORE_DEFAULT_ALL operation.  
54. IIN_OC_FAULT_LIMIT reset values  
IIN_OC_FAULT_LIMIT during  
NVM store operation  
IIN_OC_FAULT_LIMIT following  
Reset/Restore Operation  
Hex Value  
F810h  
F820h  
8 A  
8 A  
16 A  
24 A  
32 A  
40 A  
48 A  
56 A  
63.5 A  
63.5 A  
16 A  
F830h  
24 A  
F840h  
32 A  
40 A  
F850h  
F860h  
48 A  
F870h  
56 A  
F87Fh  
63.5 A  
Any other valid data  
Any other valid data  
7.5.19.2 (5Dh) IIN_OC_WARN_LIMIT  
The IIN_OC_WARN_LIMIT command sets the value of the input current, in amperes, that causes the input  
overcurrent warning condition. The IIN_OC_WARN_LIMIT command must be accessed through Read  
Word/Write Word transactions. The IIN_OC_WARN_LIMIT command is shared between Channel A and Channel  
B. All transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-current warning, the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE  
Set the INPUT bit in the STATUS_WORD  
Set the IIN Over-current Warning bit in the STATUS_INPUT register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set)  
84  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
IIN_OCW_EXP  
IIN_OCW_MAN  
7
6
5
4
3
2
1
0
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIN_OCW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
49. IIN_OC_WARN_LIMIT  
55. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IIN_OCW_EXP  
R
11111b  
Linear two's complement format exponent, –1. LSB = 0.5 A.  
See  
below.  
Linear two's complement format mantissa. Acceptable values  
range from 0d (0 A) to 127d (63.5 A).  
10:0  
IIN_OCW_MAN  
RW  
During operation, the IIN_OC_FAULT_LIMIT may be changed to any valid value, as specified above. The  
IIN_OC_FAULT_LIMIT command has only limited NVM backup. The table below summarizes the values that  
IIN_OC_FAULT_LIMIT may be restored to following a reset, or RESTORE_DEFAULT_ALL operation.  
56. IIN_OC_WARN_LIMIT reset values  
IIN_OC_WARN_LIMIT during  
NVM store operation  
IIN_OC_WARN_LIMIT following  
Reset/Restore Operation  
Hex Value  
F810h  
F820h  
8 A  
8 A  
16 A  
24 A  
32 A  
40 A  
48 A  
56 A  
63.5 A  
63.5 A  
16 A  
F830h  
24 A  
F840h  
32 A  
40 A  
F850h  
F860h  
48 A  
F870h  
56 A  
F87Fh  
63.5 A  
Any other valid data  
Any other valid data  
7.5.19.3 (5Ch) IIN_OC_FAULT_RESPONSE  
The IIN_OC_FAULT_RESPONSE command instructs the device on what action to take in response to an input  
over-current fault. IIN_OC_FAULT_RESPONSE command must be accessed through Read Byte transactions.  
The IIN_OC_FAULT_RESPONSE command is shared between Channel A and Channel B. All transactions to  
this command will affect both channels regardless of the PAGE command.  
Upon triggering the input over-current fault, the controller is latched off, and the following actions are taken:  
Set the OTHER bit in the STATUS_BYTE  
Set the INPUT bit in the STATUS_WORD  
Set the IIN_OC_FAULT bit in the STATUS_INPUT register  
The device notifies the host (asserts PMB_ALERT and VR_FAULT, if the corresponding mask bit in  
SMBALERT_MASK is not set)  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
IIN_OC_RESP  
LEGEND: R/W = Read/Write; R = Read only  
版权 © 2017–2019, Texas Instruments Incorporated  
85  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
50. IIN_OC_FAULT_RESPONSE  
57. IIN_OC_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
C0h: Latch-off and do not restart. To clear a shutdown event  
due to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7:0  
IIN_OC_RESP  
R
C0h  
7.5.20 Over-Temperature Protection and Response  
Overtemperature protection is configured via  
the  
OT_FAULT_LIMIT,  
OT_WARN_LIMIT  
and  
OT_FAULT_RESPONSE commands.  
7.5.20.1 (4Fh) OT_FAULT_LIMIT  
The OT_FAULT_LIMIT command sets the value of the temperature limit, in degrees Celsius, that causes an  
overtemperature fault condition when the sensed temperature from the external sensor exceeds this limit. The  
default value is selected inMFR_SPECIFIC_13, using the OTF_DFLT bit. Refer to the device Technical  
Reference Manual for more information. OT_FAULT_LIMIT is a linear format command, and must be accessed  
through Read Word/Write Word transactions. OT_FAULT_LIMIT is a paged register. In order to access  
OT_FAULT_LIMIT command for channel A, PAGE must be set to 00h. In order to access OT_FAULT_LIMIT  
register for channel B, PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE  
command must be set to FFh.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
OTF_EXP  
OTF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
51. OT_FAULT_LIMIT  
58. OT_FAULT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Linear two's complement exponent, 0. LSB = 1 ºC  
Linear two's complement mantissa.  
OT_FAULT_LIMIT is set by the OTF_DFLT bit in  
MFR_SPECIFIC_13.  
15:11  
OTF_EXP  
R
00000b  
The  
default  
10:0  
OTF_MAN  
RW  
NVM  
7.5.20.2 (51h) OT_WARN_LIMIT  
The OT_WARN_LIMIT command sets the temperature, in degrees Celsius, of the unit at which it should indicate  
an Over-temperature Warning event. OT_WARN_LIMIT is a linear format command, and must be accessed  
through Read Word/Write Word transactions. OT_WARN_LIMIT is a paged register. In order to access  
OT_WARN_LIMIT command for channel A, PAGE must be set to 00h. In order to access OT_WARN_LIMIT  
register for channel B, PAGE must be set to 01h. For simultaneous access of channels A and B, the PAGE  
command must be set to FFh.  
In response to the OT_WARN_LIMIT being exceeded, the device will:  
Set the TEMPERATURE bit in the STATUS_BYTE  
Set the Over-temperature Warning bit in the STATUS_TEMPERATURE register  
Notify the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not set)  
86  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
9
8
RW  
RW  
RW  
OTW_EXP  
OTW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
52. OT_WARN_LIMIT  
59. OT_WARN_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
OTF_EXP  
R
00000b  
Linear two's complement exponent, 0. LSB = 1 ºC  
Linear two's complement mantissa. Default = 105 ºC  
10:0  
OTF_MAN  
RW  
105d  
7.5.20.3 (50h) OT_FAULT_RESPONSE  
The OT_FAULT_RESPONSE instructs the device on what action to take in response to an output over-  
temperature fault. The OT_FAULT_RESPONSE command must be accessed through Read Byte/Write Byte  
transactions. The OT_FAULT_RESPONSE command is shared between Channel A and Channel B. All  
transactions to this command will affect both channels regardless of the PAGE command.  
Upon triggering the over-temperature fault, the controller is latched off, and the following actions are taken:  
Set the TEMPERATURE bit in the STATUS_BYTE  
Set the OT_FAULT bit in the STATUS_TEMPERATURE register  
The device notifies the host (asserts PMB_ALERT, if the corresponding mask bit in SMBALERT_MASK is not  
set).  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_RESP  
LEGEND: R/W = Read/Write; R = Read only  
53. OT_FAULT_RESPONSE  
60. OT_FAULT_RESPONSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
80h: Latch-off and do not restart. To clear a shutdown event due  
to a fault event, the user must toggle the AVR_EN/BEN pin  
and/or the ON bit in OPERATION, per the settings in  
ON_OFF_CONFIG, or power cycle the bias power to the V3P3  
pin of the controller device.  
7:0  
OTF_RESP  
RW  
NVM  
C0h: Shutdown and restart when the fault condition is no longer  
present.  
版权 © 2017–2019, Texas Instruments Incorporated  
87  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.21 Dynamic Phase Shedding (DPS)  
The dynamic phase shedding (DPS) feature allows the TPS53681 to dynamically select the number of  
operational phases for each channel, based on the total output current. This increases the total converter  
efficiency by reducing unnecessary switching losses when the output current is low enough to be supported by a  
fewer number of phases, than are available in hardware. The MFR_SPECIFIC_14 and MFR_SPECIFIC_15  
commands may be used to configure dynamic phase shedding behavior and thresholds.  
The DPS_EN bit in MFR_SPECIFIC_14 may be used to enable or disable dynamic phase shedding. Un-setting  
(writing to 0b) this bit forces each channel to use the maximum number of available phases, regardless of the  
output current.  
The phase add/drop thresholds, at which phases are added or dropped are configured based on the peak  
efficiency point per phase. For a given switching frequency/duty cycle, the efficiency of an individual power stage  
has a "peak" point, at which switching losses become less significant and conduction losses begin to dominate.  
For a multiphase converter, the optimum efficiency is achieved when all of the power stages operate as close as  
possible to their peak efficiency point. For example, consider a 4-phase design, with power stages that have a  
peak efficiency point of 12 A per phase. When the total output current is 25 A, if all four phases were active, each  
phase would be supplying 6.25 A, and hence would be operating far away from their peak efficiency point. With  
only two phases active, however, each phase supplies 12.5A, meaning that each power stage is operating close  
to its peak efficiency point, therefore the total converter efficiency is higher overall.  
In order to maintain regulation during severe load transient events, phases may be added immediately whenever  
the total peak current reaches phase addition thresholds. To prevent chattering, phases are dropped when the  
total average current falls below phase drop thresholds, after a delay of 85 µs typically. Phases are always  
added/dropped, in numerical order. For example, phase 3 is added after phase 2, and dropped after phase 4.  
The DPS_COURSE_TH bits in MFR_SPECIFIC_15 select the peak efficiency point per phase. Refer to the  
power stage datasheet to determine the peak efficiency point per phase.  
Phase adding thresholds are configured based on the peak efficiency point per phase. Each phase transition has  
a configurable threshold of 6 A to 12 A above the peak efficiency point. For example, the threshold at which the  
converter transitions from 2 phases to 3 phases is determined by the DPS_2TO3_FINE_ADD bits in  
MFR_SPECIFIC_15. When 8 A is selected, the total peak current which causes the third phase to be added is 2  
× IEFF(PEAK) + 8 A. See the register descriptions below for more detailed information.  
Likewise, phase drop thresholds are configured based on the peak efficiency point per phase. Each phase  
transition has a configurable threshold of 2A below to 4 A above the peak efficiency point. For example, the  
threshold at which the converter transitions from  
3 phases to 2 phases is determined by the  
DPS_3TO2_FINE_DROP bits in MFR_SPECIFIC_14. When 0 A is selected, the total average current which  
causes the third phase to be dropped is 2 × IEFF(PEAK). See the register descriptions below for more detailed  
information.  
88  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.21.1 (DEh) MFR_SPECIFIC_14  
The MFR_SPECIFIC_14 command is used to configure dynamic phase shedding, and compensation ramp  
amplitude, and dynamic ramp amplitude during USR, and different power states. The MFR_SPECIFIC_14  
command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_14 is a paged register. In order to access MFR_SPECIFIC_14 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_14 register for channel B, PAGE must be set to 01h.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DPS_6TO5_FINE_DROP  
(PAGE 0 only)  
DPS_5TO4_FINE_DROP  
(PAGE 0 only)  
DPS_4TO3_FINE_DROP  
(PAGE 0 only)  
DPS_3TO2_FINE_DROP  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DYN_RAMP_2 DYN_RAMP_1  
PH PH  
DPS_EN  
DYN_RAMP_USR  
RAMP  
LEGEND: R/W = Read/Write; R = Read only  
54. MFR_SPECIFIC_14  
61. MFR_SPECIFIC_14 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Dynamic phase drop threshold, fine adjustment, 6 phases to 5  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH in MFR_SPECIFIC_15.  
DPS_6TO5_FINE_DROP  
(PAGE 0 only)  
15:14  
RW  
NVM  
00b: Threshold = 5 × IEFF(PEAK) – 2 A  
01b: Threshold = 5 × IEFF(PEAK)  
10b: Threshold = 5 × IEFF(PEAK) + 2 A  
11b: Threshold = 5 × IEFF(PEAK) + 4 A  
Dynamic phase drop threshold, fine adjustment, 5 phases to 4  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH in MFR_SPECIFIC_15.  
DPS_5TO4_FINE_DROP  
(PAGE 0 only)  
13:12  
11:10  
9:8  
RW  
RW  
RW  
NVM  
NVM  
NVM  
00b: Threshold = 4 × IEFF(PEAK) – 2 A  
01b: Threshold = 4 × IEFF(PEAK)  
10b: Threshold = 4 × IEFF(PEAK) + 2 A  
11b: Threshold = 4 × IEFF(PEAK) + 4 A  
Dynamic phase drop threshold, fine adjustment, 4 phases to 3  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH in MFR_SPECIFIC_15.  
DPS_4TO3_FINE_DROP  
(PAGE 0 only)  
00b: Threshold = 3 × IEFF(PEAK) – 2 A  
01b: Threshold = 3 × IEFF(PEAK)  
10b: Threshold = 3 × IEFF(PEAK) + 2 A  
11b: Threshold = 3 × IEFF(PEAK) + 4 A  
Dynamic phase drop threshold, fine adjustment, 3 phases to 2  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH in MFR_SPECIFIC_15.  
DPS_3TO2_FINE_DROP  
00b: Threshold = 2 × IEFF(PEAK) – 2 A  
01b: Threshold = 2 × IEFF(PEAK)  
10b: Threshold = 2 × IEFF(PEAK) + 2 A  
11b: Threshold = 2 × IEFF(PEAK) + 4 A  
版权 © 2017–2019, Texas Instruments Incorporated  
89  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
61. MFR_SPECIFIC_14 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
Enable or Disable Dynamic Phase Shedding  
0b: Disable dynamic phase shedding  
1b: Enable dynamic phase shedding  
7
DPS_EN  
RW  
NVM  
Dynamic ramp amplitude setting during USR operation. Only  
applies to USR Level 1.  
00b: Equal to the settings in the RAMP bits  
6:5  
DYN_RAMP_USR  
DYN_RAMP_2PH  
RW  
RW  
NVM  
NVM  
01b: 40 mV  
10b: 80 mV  
11b: 120 mV  
Dynamic ramp amplitude setting during 2 phase operation.  
0b: Equal to the settings in the RAMP bits  
1b: 120 mV  
4
Dynamic ramp amplitude setting during 1 phase operation.  
0b: Equal to the settings in the RAMP bits  
1b: 80 mV  
3
DYN_RAMP_1PH  
RAMP  
RW  
RW  
NVM  
NVM  
2:0  
Ramp amplitude settings. See 62.  
62. Ramp Amplitude Settings  
RAMP (binary)  
Ramp Amplitude Setting (mV)  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
40  
80  
120  
160  
200  
240  
280  
320  
7.5.21.2 (DFh) MFR_SPECIFIC_15  
The MFR_SPECIFIC_15 command is used to configure dynamic phase shedding. The MFR_SPECIFIC_15  
command must be accessed through Write Word/Read Word transactions.  
MFR_SPECIFIC_15 is a paged register. In order to access MFR_SPECIFIC_15 command for channel A, PAGE  
must be set to 00h. In order to access the MFR_SPECIFIC_15 register for channel B, PAGE must be set to 01h.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DPS_3TO4_FI  
NE_ADD  
(PAGE 0 only)  
DPS_5TO6_FINE_ADD  
(PAGE 0 only)  
DPS_4TO5_FINE_ADD  
(PAGE 0 only)  
DPS_DCM  
DPS_2TO1_FINE_DROP  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DPS_3TO4_FI  
NE_ADD  
DPS_2TO3_FINE_ADD  
DPS_1TO2_FINE_ADD  
2TO1_PH_EN  
DPS_COURSE_TH  
(PAGE 0 only)  
LEGEND: R/W = Read/Write; R = Read only  
55. MFR_SPECIFIC_15  
90  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
63. MFR_SPECIFIC_15 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable DCM mode during 1 phase operation, when higher order  
phases are dropped due to dynamic phase shedding.  
15  
DPS_DCM  
RW  
NVM  
0b: Disable DCM operation during 1 phase operation  
1b: Enable DCM operation during 1 phase operation  
Dynamic phase drop threshold, fine adjustment, 2 phases to  
1phase. Set as an offset from peak efficiency point per phase in  
Amperes. Phases drop when average phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below.  
14:13  
12:11  
10:9  
8:7  
DPS_2TO1_FINE_DROP  
RW  
RW  
RW  
RW  
RW  
NVM  
NVM  
NVM  
NVM  
NVM  
00b: Threshold = 1× IEFF(PEAK) – 2 A  
01b: Threshold = 1 × IEFF(PEAK)  
10b: Threshold = 1 × IEFF(PEAK) + 2 A  
11b: Threshold = 1 × IEFF(PEAK) + 4 A  
Dynamic phase add threshold, fine adjustment, 5 phases to 6  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below.  
DPS_5TO6_FINE_ADD  
(PAGE 0 only)  
00b: Threshold = 5 × IEFF(PEAK) + 6A  
01b: Threshold = 5 × IEFF(PEAK) + 8 A  
10b: Threshold = 5 × IEFF(PEAK) + 10 A  
11b: Threshold = 5 × IEFF(PEAK) + 12 A  
Dynamic phase add threshold, fine adjustment, 4 phases to 5  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
DPS_4TO5_FINE_ADD  
(PAGE 0 only)  
00b: Threshold = 4 × IEFF(PEAK) + 6A  
01b: Threshold = 4 × IEFF(PEAK) + 8 A  
10b: Threshold = 4 × IEFF(PEAK) + 10 A  
11b: Threshold = 4 × IEFF(PEAK) + 12 A  
Dynamic phase add threshold, fine adjustment, 3 phases to 4  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
DPS_3TO4_FINE_ADD  
(PAGE 0 only)  
00b: Threshold = 3 × IEFF(PEAK) + 6A  
01b: Threshold = 3 × IEFF(PEAK) + 8 A  
10b: Threshold = 3 × IEFF(PEAK) + 10 A  
11b: Threshold = 3 × IEFF(PEAK) + 12 A  
Dynamic phase add threshold, fine adjustment, 2 phases to 3  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
6:5  
DPS_2TO3_FINE_ADD  
00b: Threshold = 2 × IEFF(PEAK) + 6A  
01b: Threshold = 2 × IEFF(PEAK) + 8 A  
10b: Threshold = 2 × IEFF(PEAK) + 10 A  
11b: Threshold = 2 × IEFF(PEAK) + 12 A  
版权 © 2017–2019, Texas Instruments Incorporated  
91  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
63. MFR_SPECIFIC_15 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
Dynamic phase add threshold, fine adjustment, 1 phase to 2  
phases. Set as an offset from peak efficiency point per phase in  
Amperes. Phases add when peak phase current reaches the  
stated threshold. IEFF(PEAK) refers to the value selected by  
DPS_COURSE_TH below  
5:4  
DPS_1TO2_FINE_ADD  
RW  
NVM  
00b: Threshold = 1 × IEFF(PEAK) + 6A  
01b: Threshold = 1 × IEFF(PEAK) + 8 A  
10b: Threshold = 1 × IEFF(PEAK) + 10 A  
11b: Threshold = 1 × IEFF(PEAK) + 12 A  
Enable phase dropping from 2 phases to 1 phase operation.  
0b: Disable phase shedding to 1 phase  
3
2TO1_PH_EN  
RW  
RW  
NVM  
NVM  
1b: Enable phase shedding to 1 phase  
Sets the peak efficiency point per phase. This is used to  
determine phase add/drop thresholds.  
00b: IEFF(PEAK) = 12 A  
01b: IEFF(PEAK) = 14 A  
10b: IEFF(PEAK) = 16 A  
11b: IEFF(PEAK) = 18 A  
2:0  
DPS_COURSE_TH  
92  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.22 NVM Programming  
The USER_DATA_00 - USER_DATA_12 commands are provided to streamline NVM programming. These 6-  
byte block commands are mapped internally to all of the user-configurable parameters the TPS53681 supports.  
The MFR_SERIAL command also provides a checksum, to streamline verification of desired programming  
values.  
The generalized procedure for programming the TPS53681 is summarized below.  
Configure User-Programmable Parameters  
1. First, configure all of the user-accessible parameters via the standard PMBus, and Manufacturer Specific  
commands. TI provides the Fusion Digital Power Designer graphical interface software to streamline this  
step. The user can also refer to the Technical Reference Manual for a full set of register maps for these  
commands.  
2. Once the device is configured as desired, issue the STORE_DEFAULT_ALL command to commit these  
values to NVM, and update the checksum value. Wait approximately 100 ms after issuing  
STORE_DEFAULT_ALL before communicating with the device again.  
3. Write PAGE to 00h  
4. Read-back and Record the value of IC_DEVICE_ID and IC_DEVICE_REV commands  
5. Read-back and Record the value of the USER_DATA_00 through USER_DATA_12 commands  
6. Read-back and Record the value of the MFR_SERIAL command  
7. Read-back and Record the value of VOUT_MAX  
8. Write PAGE to 01h  
9. Read-back and Record the value of VOUT_MAX  
Program and Verify NVM (repeat for each device)  
1. Power the device by supplying +3.3V to the V3P3 pin. Power conversion should be disabled for NVM  
programming.  
2. Read-back and verify that IC_DEVICE_ID and IC_DEVICE_REV values match those recorded previously.  
This ensures that user-parameters being programmed correspond to the same device/revision as previously  
configured.  
3. Write PAGE to 00h.  
4. Write the USER_DATA_00 through USER_DATA_12 commands, with the values recorded previously.  
5. Write VOUT_MAX (Page 0) with the value recorded previously.  
6. Write PAGE to 01h  
7. Write VOUT_MAX (Page 1) with the value recorded previously.  
8. Issue STORE_DEFAULT_ALL. Wait appx 100 ms after issuing STORE_DEFAULT_ALL before  
communicating with the device again.  
9. Read-back the MFR_SERIAL command, and compare the value to that recorded previously. If the new  
MFR_SERIAL matches the value recorded previously, NVM programming was successful.  
版权 © 2017–2019, Texas Instruments Incorporated  
93  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.23 NVM Security  
The MFR_SPECIFIC_42 command can be optionally used to set a password for NVM programming. To prevent  
a hacker from simply sending the password command with all possible passwords, the TPS53681 goes into a  
special extra-secure state when an incorrect password is received. In this state, all passwords are rejected, even  
the valid one. The device must be power cycled to clear this state so that another password attempt may be  
made. When NVM security is enabled, the TPS53681 will not accept writes to any command other than PAGE  
and PHASE, which are necessary for reading certain parameters.  
Enabling NVM Security  
1. Set the NVM password. Write MFR_SPECIFIC_42 to a value other than FFFFh.  
2. Issue STORE_DEFAULT_ALL  
3. Wait 100ms for the NVM store to complete  
4. Power cycle V3P3. NVM Security will be enabled at the next power-up.  
Disabling NVM Security  
To disable NVM security, use the following procedure:  
1. Write the password to MFR_SPECIFIC_42 to disable NVM security. Once the correct password has been  
given, NVM security will be disabled, and the device will once again accept write transactions to configuration  
registers.  
NVM security will be re-enabled at the next power-on, unless MFR_SPECIFIC_42 is set to FFFFh (NVM Security  
Disabled), and an NVM store operation (issue STORE_DEFAULT_ALL and wait 100 ms) is performed.  
Determining Whether NVM Security is Active  
Reads to the MFR_SPECIFIC_42 command returns one of three values:  
0000h = NVM Security is Disabled  
0001h = NVM Security is Enabled  
0002h = MFR_SPECIFIC_42 is locked due to incorrect password entry  
7.5.23.1 (FAh) MFR_SPECIFIC_42  
MFR_SPECIFIC_42 is used for NVM Security. The MFR_SPECIFIC_42 command must be accessed through  
Read Word/Write Word transactions.  
MFR_SPECIFIC_42 is a shared register. Write transactions to this register will apply to both channels, and read  
transactions to this register returns the same data regardless of the current PAGE.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NVM_SECURITY_KEY  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NVM_SECURITY_KEY  
LEGEND: R/W = Read/Write; R = Read only  
56. MFR_SPECIFIC_42  
64. MFR_SPECIFIC_42 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
NVM_SECURITY_KEY  
RW  
NVM  
16 bit code for NVM security key.  
94  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.24 Black Box Recording  
The TPS53681 provides a "black box" feature to aid in system-level debugging. According to the PMBus  
specification, status bits are latched whenever the condition causing them occurs, regardless of whether or not  
other status bits are already set. This, however, makes it difficult for the system designer to understand which  
fault condition occurred first, in the case that one fault condition causes others to trigger. The  
MFR_SPECIFIC_08 command provides a "snapshot" of the first faults to occur chronologically, for each channel,  
which may be stored to NVM, for future debugging. Only the most catastrophic fault conditions are logged, such  
as the over-voltage fault, over-current fault, and power stage failure. The black box command may also be reset,  
or cleared by writing 00h to the register, and storing to NVM if the NVM value must also be cleared.  
Resetting the Black Box Record  
Resetting the record allows the user to determine which faults occur first, after the register is cleared. To clear  
the record, write 00h to MFR_SPECIFIC_08, and issue STORE_DEFAULT_ALL.  
Triggering Black Box Recording  
Black box recording is always active, whether or not the TPS53681 is converting power. Note however many of  
the critical faults summarized in MFR_SPECIFIC_08 are only possible to trigger during power conversion.  
Whenever any of the following catastrophic faults occur, the MFR_SPECIFIC_08 register will be updated  
according to the register description below, but only if the black box record has been cleared since the last  
catastrophic faults occurred. Faults logged include:  
Overvoltage Fault (Device was Converting Power)  
Overvoltage Fault (Device was not Converting Power)  
Input Overcurrent Fault  
Output Overcurrent Fault  
Power Stage Fault  
Input Over-Power Fault  
Retrieving the Black Box Record  
Reading the MFR_SPECIFIC_08 returns the current value of the Black Box record. If the register reads 00h, no  
catastrophic faults have occurred since the record was last cleared. If any value other than 00h is stored in the  
register, then de-code the value according to the register description below. In order to read-back the black box  
record following a power-down, the STORE_DEFAULT_ALL command must be issued, to store the contents of  
the black box record to NVM.  
7.5.24.1 (D8h) MFR_SPECIFIC_08  
The MFR_SPECIFIC_08 command is used to identify catastrophic faults which occur first, and store this  
information to NVM. The MFR_SPECIFIC_08 command must be accessed through Write Byte/Read Byte  
transactions. MFR_SPECIFIC_08 is a shared register. Transactions to this register do not require specific PAGE  
settings. However, note that channels A and B have independent bit fields within the command.  
7
R
0
6
R
0
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
CF_CHB  
CF_CHA  
LEGEND: R/W = Read/Write; R = Read only  
57. MFR_SPECIFIC_08  
65. MFR_SPECIFIC_08 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Not used  
R
0
Not used and set to 0.  
5:3  
2:0  
CF_CHB  
CF_CHA  
RW  
RW  
NVM  
NVM  
Catastrophic fault record for channel B.  
Catastrophic fault record for channel A.  
版权 © 2017–2019, Texas Instruments Incorporated  
95  
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Whenever a catastrophic fault occurs, the first event detected will trigger the MFR_SPECIFIC_08 command to  
update according to the tables below. This recording happens independently for channel A and channel B. If the  
PMBus host issues a STORE_DEFAULT_ALL, this information will be committed to NVM, and may be retrieved  
at a later time. In order to clear the record for either channel, the PMBus host must write the corresponding bits  
(CF_CHA for channel A, CF_CHB for channel B) to 000b, and issue STORE_DEFAULT_ALL.  
Attempts to write any non-zero value to this command will be treated as invalid data - data will be ignored, the  
appropriate flags in STATUS_CML, and STATUS_WORD, will be set, and the PMB_ALERT pin will be asserted  
to notify the host of the invalid transaction.  
66. Catastrophic Fault Recording Interpretation  
CF_CHA / CF_CHB (binary)  
Interpretation  
No fault occurred  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
OVF occurred, power conversion was disabled  
OVF occurred, power conversion was enabled  
IIN Overcurrent fault occurred  
IOUT Overcurrent fault occurred  
Overtemperature fault occurred  
Power stage fault occurred  
Input overpower warning occurred  
7.5.25 Board Identification and Inventory Tracking  
The TPS53681 provides several bytes of arbitrarily programmable NVM-backed memory to allow for inventory  
management and board identification. By default, these values reflect information about the date/revision of the  
TPS53681 device being used itself. However, they may be re-programmed by the user, at the board level during  
manufacturing. This provides a convenient and easy to use method of tracking boards, revisions and  
manufacturing dates. The following commands are provided for this purpose:  
MFR_ID - 16 bits of NVM for end-users to track the PCB/power supply supplier name  
MFR_MODEL - 16 bits of NVM for tracking the manufacturer model number  
MFR_REVISION - 16 bits of NVM for tracking PCB/power supply revision code  
MFR_DATE - 16 bits of NVM for tracking PCB manufacturing date code  
7.5.25.1 (9Ah) MFR_MODEL  
The MFR_MODEL command is used to either set or read the manufacturer’s model number.  
The MFR_MODEL command must be accessed through Block Write/Block Read transactions.  
The MFR_MODEL command is shared between Channel A and Channel B. All transactions to this command will  
affect both channels regardless of the PAGE command.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_MODEL  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_MODEL  
LEGEND: R/W = Read/Write; R = Read only  
58. MFR_MODEL  
67. MFR_MODEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Arbitrary 16 bits with NVM backup for Model number  
identification  
15:0  
MFR_MODEL  
RW  
NVM  
96  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.25.2 (9Bh) MFR_REVISION  
The MFR_REVISION command is used to either set or read the manufacturer’s revision number  
The MFR_REVISION command must be accessed through Block Write/Block Read transactions.  
The MFR_REVISION command is shared between Channel A and Channel B. All transactions to this command  
will affect both channels regardless of the PAGE command.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_REV  
MFR_REV  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
59. MFR_REVISION  
68. MFR_REVISION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Arbitrary 16 bits with NVM backup for revision number  
identification  
15:0  
MFR_REV  
RW  
NVM  
7.5.25.3 (9Dh) MFR_DATE  
The MFR_DATE command is used to either set or read the manufacturing date.  
The MFR_DATE command must be accessed through Block Write/Block Read transactions.  
The MFR_DATE command is shared between Channel A and Channel B. All transactions to this command will  
affect both channels regardless of the PAGE command.  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_DATE  
MFR_DATE  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
60. MFR_DATE  
69. MFR_DATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Arbitrary 16 bits with NVM backup for manufacture date  
identification  
15:0  
MFR_DATE  
RW  
NVM  
版权 © 2017–2019, Texas Instruments Incorporated  
97  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.5.26 Status Reporting  
The TPS53681 provides several registers containing status information. The flags in these registers are latched  
whenever their corresponding condition occurs, and are not cleared until either the CLEAR_FAULTS command is  
issued, or the host writes a value of 1b to that bit location. Register maps for the all of the supported status  
registers are shown in the following sections.  
7.5.26.1 (78h) STATUS_BYTE  
The STATUS_BYTE command returns one byte of information with a summary of the most critical faults, such as  
over-voltage, overcurrent, over-temperature, etc.  
The STATUS_BYTE command must be accessed through Read Byte transactions. STATUS_BYTE is a paged  
register. In order to access STATUS_BYTE command for channel A, PAGE must be set to 00h. In order to  
access STATUS_BYTE register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device return  
value will reflect the status of Channel A.  
7
0
6
R
5
R
4
R
3
R
2
R
1
R
0
R
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
CML  
OTHER  
61. STATUS_BYTE  
70. STATUS_BYTE Register Field Descriptions  
Bit  
Field  
BUSY  
OFF  
Type  
R
Reset  
Description  
7
6
0
Not supported and always set to 0.  
R
Current  
Status  
This bit is asserted if the unit is not providing power to the  
output, regardless of the reason, including simply not being  
enabled.  
0: Raw status indicating the IC is providing power to VOUT.  
1: Raw status indicating the IC is not providing power to VOUT.  
5
4
3
2
1
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
R
R
R
R
R
Current  
Status  
Output Over-Voltage Fault Condition  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault occurred  
Current  
Status  
Output Over-Current Fault Condition  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating an IOUT OC fault has occurred.  
Current  
Status  
Input Under-Voltage Fault Condition  
0: Latched flag indicating VIN is above the UVLO threshold.  
1: Latched flag indicating VIN is below the UVLO threshold.  
Current  
Status  
Over-Temperature Fault/Warning  
0: Latched flag indicating no OT fault or warning has occurred.  
1: Latched flag indicating an OT fault or warning has occurred.  
CML  
Current  
Status  
Communications, Memory or Logic Fault  
0: Latched flag indicating no communication, memory, or logic  
fault has occurred.  
1: Latched flag indicating a communication, memory, or logic  
fault has occurred.  
0
OTHER  
R
Current  
Status  
Other Fault (None of the Above)  
This bit is used to flag faults not covered with the other bit faults.  
In this case, UVF or OCW faults are examples of other faults not  
covered by the bits [7:1] in this register.  
0: No fault has occurred  
1: A fault or warning not listed in bits [7:1] has occurred.  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. However, the bits in the STATUS_BYTE are summary bits only and reflect the  
status of corresponding bits in STATUS_VOUT, STATUS_IOUT, etc... To clear these bits individually, the user  
must clear them by writing to the corresponding STATUS_X register. For example: the output overcurrent fault  
sets the IOUT_OC bit in STATUS_BYTE, and the IOUT_OC_FLT bit in STATUS_IOUT. Writing a 1 to the  
IOUT_OC_FLT bit in STATUS_IOUT clears the fault in both STATUS_BYTE and STATUS_IOUT. Writes to  
STATUS_BYTE itself will be treated as invalid transactions.  
98  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
7.5.26.2 (79h) STATUS_WORD  
The STATUS_WORD command returns two bytes of information with a summary of critical faults, such as over-  
voltage, overcurrent, over-temperature, etc..  
The STATUS_WORD command must be accessed through Read Word transactions. STATUS_WORD is a  
paged register. In order to access STATUS_WORD command for channel A, PAGE must be set to 00h. In order  
to access STATUS_WORD register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device  
return value will reflect the status of Channel A.  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
R
8
R
VOUT  
IOUT  
INPUT  
MFR  
PGOOD  
FANS  
OTHER  
UNKNOWN  
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
R
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
CML  
OTHER  
62. STATUS_WORD  
71. STATUS_WORD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
VOUT  
R
Current  
Status  
Output Voltage Fault/Warning. Refer to STATUS_VOUT for  
more information.  
0: Latched flag indicating no VOUT fault or warning has  
occurred.  
1: Latched flag indicating a VOUT fault or warning has occurred.  
14  
13  
IOUT  
R
R
Current  
Status  
Output Current Fault/Warning. Refer to STATUS_IOUT for more  
information.  
0: Latched flag indicating no IOUT fault or warning has occurred.  
1: Latched flag indicating an IOUT fault or warning has occurred.  
INPUT  
Current  
Status  
Input Voltage/Current Fault/Warning. Refer to STATUS_INPUT  
for more information.  
0: Latched flag indicating no VIN or IIN fault or warning has  
occurred.  
1: Latched flag indicating a VIN or IIN fault or warning has  
occurred.  
12  
11  
MFR  
R
R
Current  
Status  
MFR_SPECIFIC Fault. Refer to STATUS_MFR for more  
information.  
0: Latched flag indicating no MFR_SPECIFIC fault has occurred.  
1: Latched flag indicating a MFR_SPECIFIC fault has occurred.  
PGOOD  
Current  
Status  
Power Good Status. Note: Per the PMBus specification, the  
PGOOD bit is not latched, always reflecting the current status of  
the AVR_RDY/BVR_RDY pin.  
0: Raw status indicating AVR_RDY/BVR_RDY pin is at logic  
high.  
1: Raw status indicating AVR_RDY/BVR_RDY pin is at logic  
low.  
10  
9
FANS  
R
R
R
R
R
0
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
OTHER  
8
UNKNOWN  
BUSY  
7
6
OFF  
Current  
Status  
This bit is asserted if the unit is not providing power to the  
output, regardless of the reason, including simply not being  
enabled.  
0: Raw status indicating the IC is providing power to VOUT.  
1: Raw status indicating the IC is not providing power to VOUT.  
5
4
VOUT_OV  
IOUT_OC  
R
R
Current  
Status  
Output Over-Voltage Fault Condition  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault occurred  
Current  
Status  
Output Over-Current Fault Condition  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating an IOUT OC fault has occurred.  
版权 © 2017–2019, Texas Instruments Incorporated  
99  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
71. STATUS_WORD Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
3
VIN_UV  
R
Current  
Status  
Input Under-Voltage Fault Condition  
0: Latched flag indicating VIN is above the UVLO threshold.  
1: Latched flag indicating VIN is below the UVLO threshold.  
2
1
TEMP  
CML  
R
R
Current  
Status  
Over-Temperature Fault/Warning  
0: Latched flag indicating no OT fault or warning has occurred.  
1: Latched flag indicating an OT fault or warning has occurred.  
Current  
Status  
Communications, Memory or Logic Fault  
0: Latched flag indicating no communication, memory, or logic  
fault has occurred.  
1: Latched flag indicating a communication, memory, or logic  
fault has occurred.  
0
OTHER  
R
Current  
Status  
Other Fault (None of the Above)  
This bit is used to flag faults not covered with the other bit faults.  
In this case, UVF or OCW faults are examples of other faults not  
covered by the bits [7:1] in this register.  
0: No fault has occurred  
1: A fault or warning not listed in bits [7:1] has occurred.  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. However, the bits in the STATUS_WORD are summary bits only and reflect the  
status of corresponding bits in STATUS_VOUT, STATUS_IOUT, etc... To clear these bits individually, the user  
must clear them by writing to the corresponding STATUS_X register. For example: the output overcurrent fault  
sets the IOUT_OC bit in STATUS_WORD, and the IOUT_OC_FLT bit in STATUS_IOUT. Writing a 1 to the  
IOUT_OC_FLT bit in STATUS_IOUT clears the fault in both STATUS_WORD and STATUS_IOUT. Writes to  
STATUS_WORD will be treated as invalid transactions.  
7.5.26.3 (7Ah) STATUS_VOUT  
The STATUS_VOUT command returns one byte of information relating to the status of the converter's output  
voltage related faults.  
The STATUS_VOUT command must be accessed through Read Byte/Write Byte transactions. STATUS_VOUT  
is a paged register. In order to access STATUS_VOUT command for channel A, PAGE must be set to 00h. In  
order to access STATUS_VOUT register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the  
device return value will reflect the status of Channel A.  
7
6
5
4
3
2
0
1
0
RW  
0
0
RW  
RW  
0
0
VOUT_OVF  
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
VOUT_MIN_M  
AX  
TON_MAX  
TOFF_MAX  
VOUT_TRACK  
63. STATUS_VOUT  
72. STATUS_VOUT Register Field Descriptions  
Bit  
Field  
VOUT_OVF  
Type  
Reset  
Description  
7
RW  
Current  
Status  
Output Over-Voltage Fault  
0: Latched flag indicating no VOUT OV fault has occurred.  
1: Latched flag indicating a VOUT OV fault has occurred.  
6
5
4
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
R
RW  
Current  
Status  
Output Under-Voltage Fault  
0: Latched flag indicating no VOUT UV fault has occurred.  
1: Latched flag indicating a VOUT UV fault has occurred.  
100  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
72. STATUS_VOUT Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
3
VOUT_MIN_MAX  
RW  
Current  
Status  
Output Voltage Max/Min Exceeded Warning  
0: Latched flag indicating no VOUT_MAX/VOUT_MIN warning  
has occurred.  
1: Latched flag indicating that an attempt has been made to set  
the output voltage to a value higher than allowed by the  
VOUT_MAX/VOUT_MIN command.  
2
1
0
TON_MAX  
R
R
R
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
TOFF_MAX  
VOUT_TRACK  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.26.4 (7Bh) STATUS_IOUT  
The STATUS_IOUT command returns one byte of information relating to the status of the converter's output  
current related faults.  
The STATUS_IOUT command must be accessed through Read Byte/Write Byte transactions. STATUS_IOUT is  
a paged register. In order to access STATUS_IOUT command for channel A, PAGE must be set to 00h. In order  
to access STATUS_IOUT register for channel B, PAGE must be set to 01h. If PAGE is set FFh, the device return  
value will reflect the status of Channel A.  
7
6
5
4
3
2
1
0
RW  
0
RW  
0
RW  
0
0
0
IOUT_OCF  
IOUT_OCUVF  
IOUT_OCW  
IOUT_UCF  
CUR_SHAREF  
POW_LIMIT  
POUT_OPF  
POUT_OPW  
64. STATUS_IOUT  
73. STATUS_IOUT Register Field Descriptions  
Bit  
Field  
IOUT_OCF  
Type  
Reset  
Description  
7
RW  
Current  
Status  
Output Over-Current Fault  
0: Latched flag indicating no IOUT OC fault has occurred.  
1: Latched flag indicating a IOUT OC fault has occurred .  
6
5
IOUT_OCUVF  
IOUT_OCW  
R
0
Not supported and always set to 0.  
RW  
Current  
Status  
0: Latched flag indicating no IOUT OC warning has occurred  
1: Latched flag indicating a IOUT OC warning has occurred  
4
3
IOUT_UCF  
R
0
Not supported and always set to 0.  
CUR_SHAREF  
RW  
Current  
Status  
0: Latched flag indicating no current sharing fault has occurred  
1: Latched flag indicating a current sharing fault has occurred  
2
1
0
POW_LIMIT  
POUT_OPF  
POUT_OPW  
R
R
R
0
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Not supported and always set to 0.  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.26.5 (7Ch) STATUS_INPUT  
The STATUS_INPUT command returns one byte of information relating to the status of the converter's input  
voltage and current related faults.  
The STATUS_INPUT command must be accessed through Read Byte/Write Byte transactions. The  
STATUS_INPUT command is shared between Channel A and Channel B. All transactions to this command will  
affect both channels regardless of the PAGE command.  
版权 © 2017–2019, Texas Instruments Incorporated  
101  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
7
6
0
5
0
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
VIN_OVF  
VIN_OVW  
VIN_UVW  
VIN_UVF  
LOW_VIN  
IIN_OCF  
IIN_OCW  
PIN_OPW  
65. STATUS_INPUT Register  
74. STATUS_INPUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VIN_OVF  
R
Current  
Status  
Input Over-Voltage Fault  
0: Latched flag indicating no VIN OV fault has occurred.  
1: Latched flag indicating a VIN OV fault has occurred.  
6
5
4
VIN_OVW  
VIN_UVW  
VIN_UVF  
R
R
R
0
0
Not supported and always set to 0.  
Not supported and always set to 0.  
Current  
Status  
Input Under-Voltage Fault  
0: Latched flag indicating no VIN UV fault has occurred.  
1: Latched flag indicating a VIN UV fault has occurred.  
3
2
1
0
LOW_VIN  
IIN_OCF  
IIN_OCW  
PIN_OPW  
R
R
R
R
Current  
Status  
Unit Off for insufficient input voltage  
0: Latched flag indicating no LOW_VIN fault has occurred.  
1: Latched flag indicating a LOW_VIN fault has occurred  
Current  
Status  
Input Over-Current Fault  
0: Latched flag indicating no IIN OC fault has occurred.  
1: Latched flag indicating a IIN OC fault has occurred.  
Current  
Status  
Input Over-Current Warning  
0: Latched flag indicating no IIN OC warning has occurred.  
1: Latched flag indicating a IIN OC warning has occurred.  
Current  
Status  
Input Over-Power Warning  
0: Latched flag indicating no input over-power warning has  
occurred.  
1: Latched flag indicating a input over-power warning has  
occurred.  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.26.6 (7Dh) STATUS_TEMPERATURE  
The STATUS_TEMPERATURE command returns one byte of information relating to the status of the converter's  
temperature related faults.  
The STATUS_TEMPERATURE command must be accessed through Read Byte/Write Byte transactions.  
STATUS_TEMPERATURE is a paged register. In order to access STATUS_TEMPERATURE command for  
channel A, PAGE must be set to 00h. In order to access STATUS_TEMPERATURE register for channel B,  
PAGE must be set to 01h. If PAGE is set FFh, the device return value will reflect the status of Channel A.  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
RW  
OTF  
RW  
OTW  
UTW  
UTF  
Reserved  
66. STATUS_TEMPERATURE Register  
75. STATUS_TEMPERATURE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OTF  
RW  
Current  
Status  
Over-Temperature Fault  
0: (Default) A temperature fault has not occurred.  
1: A temperature fault has occurred.  
6
OTW  
RW  
Current  
Status  
Over-Temperature Warning  
0: (Default) A temperature warning has not occurred.  
1: A temperature warning has occurred.  
102  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
75. STATUS_TEMPERATURE Register Field Descriptions (接下页)  
Bit  
5
Field  
Type  
R
Reset  
0
Description  
UTW  
Not supported and always set to 0.  
Not supported and always set to 0.  
Always set to 0.  
4
UTF  
R
0
3-0  
Reserved  
R
0000  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
7.5.26.7 (7Eh) STATUS_CML  
The STATUS_CML command returns one byte with contents regarding communication, logic, or memory  
conditions.  
The STATUS_CML command must be accessed through Read Byte/Write Byte transactions. The STATUS_CML  
command is shared between Channel A and Channel B. All transactions to this command will affect both  
channels regardless of the PAGE command.  
7
6
5
4
3
2
0
1
0
RW  
RW  
RW  
RW  
MEM  
0
RW  
0
IV_CMD  
IV_DATA  
PEC_FAIL  
PRO_FAULT  
Reserved  
COM_FAIL  
CML_OTHER  
67. STATUS_CML Register  
76. STATUS_CML Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IV_CMD  
RW  
Current  
Status  
Invalid or Unsupported Command Received  
0: Latched flag indicating no invalid or unsupported command  
has been received.  
1: Latched flag indicating an invalid or unsupported command  
has been received.  
6
5
IV_DATA  
RW  
RW  
Current  
Status  
Invalid or Unsupported Data Received  
0: Latched flag indicating no invalid or unsupported data has  
been received.  
1: Latched flag indicating an invalid or unsupported data has  
been received.  
PEC_FAIL  
Current  
Status  
Packet Error Check Failed  
0: Latched flag indicating no packet error check has failed  
1: Latched flag indicating a packet error check has failed  
4
3
Reserved  
MEM  
R
0
Always set to 0.  
RW  
Current  
Status  
Memory/NVM Error  
0: Latched flag indicating no memory error has occurred  
1: Latched flag indicating a memory error has occurred  
2
1
Reserved  
R
0
Always set to 0.  
COM_FAIL  
RW  
Current  
Status  
Other Communication Faults  
0: Latched flag indicating no communication fault other than the  
ones listed in this table has occurred.  
1: Latched flag indicating a communication fault other than the  
ones listed in this table has occurred.  
0
CML_OTHER  
R
0
Not supported and always set to 0.  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any bit in this register will attempt to clear it as a fault condition.  
7.5.26.8 (80h) STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC command returns one byte containing manufacturer-defined faults or warnings.  
版权 © 2017–2019, Texas Instruments Incorporated  
103  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
The STATUS_MFR_SPECIFIC command must be accessed through Read Byte/Write Byte transactions.  
STATUS_MFR_SPECIFIC is a paged register. In order to access STATUS_MFR_SPECIFIC command for  
channel A, PAGE must be set to 00h. In order to access STATUS_MFR_SPECIFIC register for channel B, PAGE  
must be set to 01h. If PAGE is set FFh, the device return value will reflect the status of Channel A.  
68. STATUS_MFR_SPECIFIC Register  
7
6
5
4
3
2
0
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
FLT_PS  
VSNS_OPEN MAX_PH_WAR  
N
TSNS_LOW  
RST_VID  
(Page 0)  
Reserved  
PHFLT  
77. STATUS_MFR_SPECIFIC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MFR_FAULT_PS  
RW  
Current  
Status  
Power Stage Fault  
0b: Latched flag indicating no fault from TI power stage has  
occurred.  
1b: Latched flag indicating a fault from TI power stage has  
occurred.  
6
5
VSNS_OPEN  
RW  
RW  
Current  
Status  
VSNS pin open  
0b: Latched flag indicating VSNS pin was not open at power-up.  
1b: Latched flag indicating VSNS pin was open at power-up.  
MAX_PH_WARN  
Current  
Status  
Maximum Phase Warning  
If the selected operational phase number is larger than the  
maximum available phase number specified by the hardware,  
then MAX_PH_WARN is set, and the operational phase number  
is changed to the maximum available phase number.  
0b: Latched flag indicating no maximum phase warning has  
occurred.  
1b: Latched flag indicating a maximum phase warning has  
occurred.  
4
3
TSNS_LOW  
RW  
RW  
Current  
Status  
0b: Latched flag indicating that TSEN < 150 mV before soft-  
start.  
1b: Latched flag indicating that TSEN 150 mV before soft-start.  
RST_VID (Page 0)  
Current  
Status  
RST_VID (Page 0 only)  
0b: A VID reset operation has NOT occurred  
1b: A VID reset operation has occurred  
Always set to 0.  
2:1  
0
Reserved  
PHFLT  
R
00b  
RW  
Current  
Status  
Phase current share fault. The PHFLT bit is set if any phase has  
current imbalance warnings occurring repetitively for 7 detection  
cycles (~500 µs continuously). Phases with current imbalance  
warnings may be read back via MFR_SPECIFIC_03.  
0b: No repetitive current share fault has occurred  
1b: Repetitive current share fault has occurred  
Per the description in the PMBus 1.3 specification, part II, TPS53681 does support clearing of status bits by  
writing to STATUS registers. Writing a 1 to any supported bit in this register will attempt to clear it as a fault  
condition.  
104  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
8 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS53681 device has a very simple design procedure. All programmable parameters can be configured by  
PMBus and stored in NVM as the new default values to minimize external component count. This design  
describes a typical 6-phase, 0.9-V, 300-A application and 2-phase 0.8-V, 90-A application.  
8.2 Typical Application  
8.2.1 6-phase, 0.9-V, 300-A Application and 2-phase 0.8-V, 90-A Application  
Copyright © 2017–2019, Texas Instruments Incorporated  
105  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.2.1.1 Schematic  
C2  
C1  
C3  
1 mF  
1 mF  
1 mF  
VREF_P  
R17 475 kΩ  
R2  
0 Ω  
R16  
154 kΩ  
3.3-V VIN  
R12  
0  
C4  
1 mF  
R1  
0 Ω  
38  
37  
36  
35  
34  
33  
32  
31  
40  
39  
VREF_P  
C5  
1 mF  
R15 0 Ω  
30  
29  
28  
VOUT_B  
BVSP  
BCSP2  
ACSP6/BCSP3  
BPWM1  
BPWM2  
BPWM1  
1
2
3
4
5
6
7
8
9
BCSP2  
BPWM2  
APWM6/BPWM3  
APWM5  
ACSP6/BCSP3  
APWM6/BPWM3  
ACSP5 27  
ACSP5  
ACSP4  
APWM5  
APWM4  
APWM3  
APWM2  
APWM1  
SMB_DIO  
26  
25  
24  
23  
22  
21  
ACSP4  
APWM4  
TPS53681  
U1  
ACSP3  
ACSP2  
ACSP3  
ACSP2  
ACSP1  
AVSN  
APWM3  
APWM2  
ACSP1  
APWM1  
R6 0 Ω  
PMB_DIO  
R5 0 Ω  
AVSP  
VOUT_A  
R18  
SMB_CLK  
11  
PMB_CLK  
10  
3.3-V VIN  
12 13 14  
15  
16  
17  
18  
19  
20  
R27  
R20  
10 kΩ  
R19  
R21  
10 kΩ  
R28  
C9  
10 kΩ  
10 kΩ 10 kΩ  
10 kΩ  
BVR_EN  
0.1 mF  
C7  
1 nF  
C6  
1 nF  
Figure 69. 6-Phase + 2-Phase Application  
106  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
C20  
DNP  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
ACSP2  
R21  
R24 0  
C10  
DNP  
ACSP1  
R16  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
R19 0ꢀ  
R22  
2.2 Ω  
110 kΩ  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
APWM2  
R17  
2.2 Ω  
110 kΩ  
4
VDD  
5-V VIN  
APWM1  
BOOT  
CSD95490Q5MC  
9
C21  
2.2 µF  
C22  
2.2 µF  
4
VDD  
5-V VIN  
U3  
R25  
0 Ω  
C25  
0.1 mF  
BOOT  
CSD95490Q5MC  
9
C11  
2.2 µF  
C12  
2.2 µF  
U2  
12-V VIN  
R20  
0 Ω  
C15  
0.1 mF  
VOS  
SW  
BOOTR  
VIN  
8
7
12-V VIN  
5
6
VOS  
SW  
BOOTR  
VIN  
8
7
VOUTA  
L1  
5
6
VOUTA  
C26  
C27  
C28  
C29  
L1  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C23  
0.1 mF  
PC8  
PC7  
PC6  
C16  
C17  
C18  
C19  
PC5 0.18 mΩ  
470 mF  
R23  
DNP  
150 nH  
470 mF 470 mF 470 mF  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
PC4  
PC3  
PC2  
PC1 0.18 mΩ  
470 mF  
R18  
DNP  
0.1 mF  
470 mF 470 mF 470 mF  
C24  
DNP  
C14  
DNP  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
C40  
DNP  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
ACSP4  
R31  
R34 0ꢀ  
C30  
DNP  
ACSP3  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
R26  
R29 0ꢀ  
R32  
2.2 Ω  
110 kΩ  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
APWM4  
R27  
2.2 Ω  
110 kΩ  
4
VDD  
5-V VIN  
APWM3  
BOOT  
CSD95490Q5MC  
9
C41  
2.2 µF  
C42  
2.2 µF  
4
VDD  
5-V VIN  
U5  
R35  
0 Ω  
C45  
0.1 mF  
BOOT  
CSD95490Q5MC  
9
C31  
2.2 µF  
C32  
2.2 µF  
U4  
12-V VIN  
R30  
0 Ω  
C35  
0.1 mF  
VOS  
SW  
BOOTR  
VIN  
8
7
12-V VIN  
5
6
VOS  
SW  
BOOTR  
VIN  
8
7
VOUTA  
L1  
5
6
VOUTA  
C46  
C47  
C48  
C49  
L1  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
0.1 mF  
PC16 PC15 PC14  
470 mF 470 mF 470 mF  
C36  
C37  
C38  
C39  
PC13 0.18 mΩ  
470 mF  
R33  
DNP  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
PC12 PC11 PC10  
PC9 0.18 mΩ  
470 mF  
R28  
DNP  
0.1 mF  
470 mF 470 mF 470 mF  
C44  
DNP  
C34  
DNP  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
C60  
DNP  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
ATAO  
ACSP6  
R41  
R44 0ꢀ  
C50  
DNP  
ACSP5  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
R36  
R39 0ꢀ  
R42  
2.2 Ω  
110 kΩ  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
APWM6  
R37  
2.2 Ω  
110 kΩ  
4
VDD  
5-V VIN  
APWM5  
BOOT  
CSD95490Q5MC  
9
C61  
2.2 µF  
C62  
2.2 µF  
4
VDD  
5-V VIN  
U7  
R45  
0 Ω  
C65  
0.1 mF  
BOOT  
CSD95490Q5MC  
9
C51  
2.2 µF  
C52  
2.2 µF  
U6  
12-V VIN  
R40  
0 Ω  
C55  
0.1 mF  
VOS  
SW  
BOOTR  
VIN  
8
7
12-V VIN  
5
6
VOS  
SW  
BOOTR  
VIN  
8
7
VOUTA  
L1  
5
6
VOUTA  
C66  
C67  
C68  
C69  
L1  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
0.1 mF  
PC24 PC23 PC22  
470 mF 470 mF 470 mF  
C56  
C57  
C58  
C59  
PC21 0.18 mΩ  
470 mF  
R43  
DNP  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
PC20 PC19 PC18  
PC17 0.18 mΩ  
470 mF  
R38  
DNP  
0.1 mF  
470 mF 470 mF 470 mF  
C64  
DNP  
C54  
DNP  
VREF_P  
1
2
3
REFIN  
TAO/FLT 12  
BTAO  
VREF_P  
1
2
3
REFIN  
IOUT  
TAO/FLT 12  
BTAO  
C80  
DNP  
C70  
DNP  
BCSP2  
IOUT  
LSET  
BCSP1  
R46  
R51  
R54 0ꢀ  
R49 0ꢀ  
5-V VIN  
EN/FCCM 11  
PWM 10  
5-V VIN  
LSET  
EN/FCCM 11  
PWM 10  
R52  
2.2 Ω  
110 kΩ  
R47  
2.2 Ω  
110 kΩ  
BPWM2  
BPWM1  
4
VDD  
5-V VIN  
4
VDD  
5-V VIN  
BOOT  
CSD95490Q5MC  
9
C81  
2.2 µF  
C82  
2.2 µF  
BOOT  
CSD95490Q5MC  
9
U9  
C71  
2.2 µF  
C72  
2.2 µF  
U8  
R55  
C85  
R50  
0 Ω  
C75  
0.1 mF  
12-V VIN  
0 Ω  
0.1 mF  
12-V VIN  
VOS  
SW  
BOOTR  
VIN  
8
7
VOS  
SW  
BOOTR  
VIN  
8
7
5
6
5
6
VOUTB  
L1  
VOUTB  
L1  
150 nH  
C86  
C87  
C88  
C89  
C76  
C77  
C78  
C79  
150 nH  
4.7 nF 22 mF 22 mF  
22 mF  
C13  
0.1 mF  
4.7 nF 22 mF 22 mF  
22 mF  
PC32 PC31 PC30  
470 mF 470 mF 470 mF  
PC29 0.18 mΩ  
470 mF  
C13  
0.1 mF  
PC28 PC27 PC26  
470 mF 470 mF 470 mF  
R53  
DNP  
PC25 0.18 mΩ  
470 mF  
R48  
DNP  
C84  
DNP  
C74  
DNP  
Figure 70. Power Stage  
Copyright © 2017–2019, Texas Instruments Incorporated  
107  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
IIN_CSN  
IIN_CSP  
L2  
55 nH  
0.2 mΩ  
R48  
0.5 mΩ  
12 V  
VIN  
P12V  
C43  
22 µF  
C40  
22 µF  
C41  
22 µF  
PC2  
470 µF  
PC3  
470 µF  
C44  
22 µF  
Figure 71. 12-V Input Filter  
VOUTA  
C60  
DNP  
C61  
DNP  
C62  
DNP  
C63  
DNP  
C64  
DNP  
C65  
DNP  
C66  
DNP  
C67  
DNP  
C68  
DNP  
C69  
DNP  
C70  
DNP  
C71  
10 mF  
C72  
10 mF  
C73  
10 mF  
C74  
10 mF  
C75  
10 mF  
C76  
10 mF  
Figure 72. VOUTA Filter for a 6-Phase Application  
VOUTB  
C77  
C78  
C79  
C80  
10 mF  
10 mF  
DNP  
DNP  
VOUTB  
C81  
C82  
C83  
DNP  
DNP  
DNP  
Figure 73. VOUTB Filter for a 2-Phase Application  
8.2.1.2 Design Requirements  
Table 78. Target Application Specifications  
VOUTA  
VOUTB  
Number of phases  
6
2
Input voltage range  
Output voltage  
IOUT  
10.8 V – 13.2 V  
0.9 V  
300 A  
150 A  
0 mΩ  
0.8 V  
90 A  
45 A  
0 mΩ  
IDYN(max)  
Load-line  
Fast slew rate (min)  
Boot voltage, VBOOT  
Maximum temperature, TMAX  
PMBus Address  
10 mV/μs  
0.9 V  
0.8 V  
90°C  
1100000 (C0h)  
500 kHz  
Switching frequeny (fSW  
)
108  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
8.2.1.3 Detailed Design Procedure  
The following steps illustrate how to configure and fine-tune via PMBus and stored in NVM as the new default  
setting.  
8.2.1.3.1 Choose Inductor  
Smaller inductance values yield better transient performance, but also have a higher ripple and lower efficiency.  
Higher inductance values have the opposite characteristics. It is common practice to limit the ripple current to  
between 30% and 45% of the maximum per-phase current. In this design example, 30% of the maximum per-  
phase current is used.  
IOUT  
n
; F VOUT  
300 A  
6
IPFP  
=
× 30% =  
× 0.3 = 15 A  
13.2 V F 0.9 V 0.9 V  
(4)  
V
VOUT  
1
1
:
IN max  
L N  
×
×
=
×
×
= 0.112 µH  
IPFP  
V
fSW  
15 A  
13.2 V 500 kHz  
:
;
IN max  
(5)  
A standard inductor value of 150 nH with 0.18 mDCR is chosen. With the same design procedure, the inductor  
value for the Rail B (VOUTB) of 150 nH is chosen.  
8.2.1.3.2 Select the Per-Phase Valley Current Limit  
Equation 6 shows the calculation of the per-phase, valley current limit based on the maximum processor current,  
the operating phase number and the per-phase current ripple IP-P  
.
IOUT  
n
IPFP  
2
300 A  
6
15 A  
2
IOCL = lk ×  
p F l  
p = 150% ×  
F l  
p = 67.5A  
where  
k is the maximum operating margin  
IOUT is the maximum processor current  
IP-P is the ripple current  
n is the number of phases  
(6)  
The factor k of 150% is used to avoid reaching current limits during transients. For this design, a 70-A valley  
current limit is selected in PMBus GUI.  
ISAT = IOCL + IPFP = 70 A + 15 A = 85A  
(7)  
Equation 7 indicates that the maximum saturation current for the inductor needs to be higher than 85 A. Using  
the same design procedure, the valley current limit for Channel B is selected to be 80 A.  
8.2.1.3.3 Set the Maximum Temperature Level (TMAX  
)
For this design, TMAX is selected as 90°C. The temperature is sensed by the ATSEN and BTSEN pins through its  
connection to the xTAO pins of each phase of the CSD95490Q5MC. The controller reports the highest  
temperature sensed by power stages of Rail A and Rail B.  
8.2.1.3.4 Set USR Thresholds to Improve Load Transient Performance  
There are two levels of undershoot reduction protection (USR) (USR1/USR2) selection. USR1 enables up to 3 or  
4 phases and USR2 enables up to the maximum number of phases. The initial setting of the USR threshold is to  
start with USR1 and USR2 as OFF, and then to meet the load insertion transient requirement by lowering the  
threshold to enable pulse-overlap during the load transients.  
For this design, VOUTA USR1 is selected as 240 mV and USR2 is selected as 300 mV. VOUTB USR1 and  
USR2 are selected as OFF.  
8.2.1.4 Inductor DCR and Shunt Current Sensing Design for Input Power  
This section describes designing the thermal compensation network. The NTC thermistor is used to compensate  
thermal variations in the resistance of the inductor winding. The winding is usually copper. And as such has a  
resistance coefficient of 3900 PPM/°C. Alternatively, the NTC thermistor characteristic is very non-linear and  
requires two or three resistors to linearize them over the range of interest. Figure 74 shows a typical DCR circuit.  
Copyright © 2017–2019, Texas Instruments Incorporated  
109  
 
 
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
RDCR  
L
To load  
VIN  
RNTC RSERIES  
RSEQU  
RPAR  
CSENSE  
IIN_CSP  
IIN_CSN  
Figure 74. Typical DCR Current Sensing Circuit  
Equation 8 calculates the voltage across the CSENSE capacitor when it exactly equals the voltage across RDCR  
.
.
CSENSE × REQ  
=
RDCR  
where  
REQ is the series/parallel combination of RSEQU, RNTC, RSERIES and RPAR  
(8)  
(9)  
RP_N × RSEQU  
REQ  
=
RP_N + RSEQU  
RPAR × (RNTC + RSERIES  
RPAR + RNTC +RSERIES  
)
RP_N  
=
(10)  
Ensure that CSENSE is a capacitor type which is stable over temperature, use X7R or better dielectric (C0G  
preferred). Because calculating these values by hand can be time-consuming, TI offers a spreadsheet using the  
Excel Solver function available to provide calculation assistance. Contact your local TI representative to get a  
copy of the spreadsheet.  
This example uses a simple design process to enable input shunt sensing, so no DCR network is needed. Insert  
a 0.5-mΩ shunt resistor in series between the input inductor and the input bulk capacitors.  
8.2.1.4.1 Compensation Design  
Figure 75 shows the compensation block diagram of the DCAP+ architecture.  
VRAMP  
1/KACLL  
+
+
VFB  
+
+
+
+
+
tINT  
1/KDCLL  
RSENSE  
KDIV  
KINT  
KAC  
VDAC  
ISUM_U  
IL  
Figure 75. DCAP+ Compensation Block Diagram  
RSENSE: typical 5 mwhich is gain from power stage  
KDCLL: DC load line which is adjustable from 0 mto 3.125 mΩ  
KACLL: AC load line which is adjustable from 0.5 mto 3.125 mΩ  
KDIV: not be adjustable. Changing DCLL, this parameter changes automatically  
τINT: Integrator time constant which is adjustable from 01 µs to 08 µs (scale = 1 µs) and from 10 µs to 40 µs  
(scale = 5 µs)  
KINT: Integrator time gain which can be adjustable from 0.5×, 0.66×, 1×, 2×  
KAC: AC gain which is adjustable from 0.5×, 1×, 1.5×, 2×  
For this design, Table 79 lists the default values that are preset into the PMBus GUI.  
110  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Table 79. PMBus GUI Default Values  
VOUTA  
VOUTB  
AC_gain  
AC_LL  
2×  
0.5 mΩ  
INT_Time  
INTGAIN  
01 µs  
10 µs  
2×  
8.2.1.4.2 Set PMBus Addresses  
To communicate with other system controllers with the PMBus interfaces, use the values of R16 and R17  
resistors to set the PMBus address.  
R17  
475 kΩ  
VREF_P  
ADDR  
R16  
154 kΩ  
Figure 76. PMBus Address Setting  
Contact your local Texas Instruments representative for a copy of PMBus address setting design tool  
spreadsheet.  
Copyright © 2017–2019, Texas Instruments Incorporated  
111  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.2.1.5 Application Performance Plots  
For this design, choose 500 kHz for the switching frequency. The frequency is an approximate frequency and is  
expected to vary based on load and input voltage.  
VVIN = 12 V  
IOUTA = 10 A  
VVOUT_A = 0.9 V  
VVIN = 12 V  
IOUTA = 10 A  
VVOUT_A = 0.9 V  
Figure 77. VOUT_A Enable Start-up  
Figure 78. VOUT_A Enable Shut-down  
VVIN = 12 V  
IOUTB = 10 A  
VVOUT_B = 0.8 V  
VVIN = 12 V  
IOUTB = 10 A  
VVOUT_B = 0.8 V  
Figure 79. VOUT_B Enable Start-up  
Figure 80. VOUT_B Enable Shut-down  
112  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
VVIN = 12 V  
IOUTA = 30 A  
VVOUT_A = 0.9 V  
VVIN = 12 V  
VVOUT_B = 0.8 V  
IOUT_B = 30 A  
Figure 81. Output Voltage (VOUTA) Ripple  
Figure 82. Output Voltage (VOUTB) Ripple  
VVIN = 12 V  
VVOUT_A = 0.9 V  
VVIN = 12 V  
IOUT_A = 10 A  
VVOUT_A = 0.9 V  
IOUT_A = 10 A  
Figure 83. VOUTA PWM Interleaving (Phases 1-4)  
Figure 84. VOUTA PWM Interleaving (Phases 4-6)  
VVIN = 12 V  
VVOUT_B = 0.8 V  
VVIN = 12 V  
VVOUT_A = 0.9 V  
IOUT_B = 10 A  
IOUT_A = 10 A  
Figure 86. VOUTB PWM Jitter  
Figure 85. VOUTA PWM Jitter  
Copyright © 2017–2019, Texas Instruments Incorporated  
113  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
VVIN = 12 V  
VVOUT_A = 0.9 V  
VVIN = 12 V  
VVOUT_B = 0.8 V  
IOUT_A from 150 A to 300 A  
Slew rate = 100 A/µs  
IOUT_B from 1 A to 41 A  
Slew rate = 100 A/µs  
Figure 87. VOUTA Transient Response  
Figure 88. VOUTB Transient Response  
VVIN = 12 V  
IVOUT_A = 30 A  
VVIN = 12 V  
IVOUT_A = 30 A  
VOUT_A VID step from 0.8 V to 1.2 V  
VOUT_A VID step from 1.2 V to 0.8 V  
Figure 89. VOUTA VID-up Change  
Figure 90. VOUTA VID-down Change  
VVIN = 12 V  
IVOUT_B = 30 A  
VVIN = 1.2 V  
IVOUT_B = 30 A  
VOUT_B VID step from 0.8 V to 1.2 V  
VOUT_B VID step from 1.2 V to 0.8 V  
Figure 91. VOUTB VID-up Change  
Figure 92. VOUTB VID-down Change  
114  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
VVIN = 12 V  
VOUT_A change from 0.9 V to 1.2 V  
VOUT_B change from 0.8 V to 1.2 V  
Figure 93. RESET Function  
60  
50  
40  
30  
20  
10  
0
300  
250  
60  
50  
300  
250  
200  
150  
100  
50  
200  
150  
100  
50  
40  
30  
20  
10  
0
0
0
-10  
-20  
-50  
-100  
-150  
-200  
-10  
-20  
-30  
-40  
-50  
-100  
-150  
-200  
Gain  
Phase  
Gain  
Phase  
-30  
-40  
103  
104  
105  
106  
103  
104  
105  
106  
Frequency (Hz)  
Frequency (Hz)  
D00182  
D00182  
VVIN = 12 V  
VVOUT_A = 900 mV  
VVIN = 12 V  
VVOUT_B = 800 mV  
IOUT_A = 100 A  
IOUT_B = 30 A  
Figure 94. Bode Plot  
Figure 95. Bode Plot  
版权 © 2017–2019, Texas Instruments Incorporated  
115  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS53681 device operates from 3.3-V supply at the V3P3 pin (pin 39) and the 12-V supply from the  
VIN_CSNIN pin (pin 38). TI recommends the following power-up and power-down sequence in order for the  
controller to monitor the complete power-up and power-down procedure, fault protection and fault recording. The  
device provides pre-start up overvoltage protection when the controller and the power stage are enabled before  
the 12-V input is applied.  
3.3V  
5V  
PS_EN  
12V  
VR_EN  
96. StartUp Waveforms  
The recommended power-up sequence is:  
1. 3.3 V  
2. 5 V  
3. PS_EN  
4. 12 V  
5. VR_EN  
The recommended power-down sequence is:  
1. VR_EN  
2. 12 V  
3. PS_EN  
4. 5 V  
5. 3.3 V  
116  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
10 Layout  
10.1 Layout Guidelines  
Contact your local TI representative to get a copy of the schematic and PCB layout guide.  
10.1.1 Device Guidelines  
The TPS53681 device makes it easy to separate noisy driver interface lines from sensitive interface lines.  
Because the power stage is external to the device, all gate-drive and switch-node traces must be local to the  
inductor and power stages.  
The device does not require special care in the layout of power chain components, because independent isolated  
current feedback is provided. Route the phases as symmetrically as possible. Current feedback from each phase  
must be free of noise and have equal amounts of effective current sense resistance.  
MOST IMPORTANT LAYOUT SUGGESTION  
Separate noisy driver interface lines from sensitive analog and PMBus interface  
lines.  
10.1.2 Power Stage Guidelines  
Use the recommended land pattern including the via pattern for the power stage footprint.  
The input voltage bypass capacitors require a minimum of two vias per pad (for both VIN and GND).  
Place additional GND vias along the sides of the device as space allows.  
For multi-phase systems, ensure that the GND pour connects all phases.  
The VOS pin feedback point begins at the inner edge of the inductor output voltage pad.  
Place the VDD and PVDD bypass capacitors directly next to pins on the top layer of the board.  
版权 © 2017–2019, Texas Instruments Incorporated  
117  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
10.2 Layout Examples  
97. Controller Layout Example  
118  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
Layout Examples (接下页)  
ACSP6  
ACSP3  
ACSP5  
ACSP2  
ACSP4  
ACSP1  
BCSP1  
VREF_P  
VREF_P  
VREF_P  
VREF_P  
VREF_P  
VREF_P  
VREF_P  
98. Power Stage Current Sense Differential Pairs Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
119  
TPS53681  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
NexFET, AutoBalance, PowerPad, PMBus, D-CAP+, E2E are trademarks of Texas Instruments.  
Broadcom is a registered trademark of Broadcom Limited .  
Cavium is a registered trademark of Cavium, Inc..  
Intel is a registered trademark of Intel Corporation.  
PMBus is a trademark of SMIF, Inc..  
Xilinx is a registered trademark of Xilinx Inc..  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
120  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS53681  
www.ti.com.cn  
ZHCSGE0B JUNE 2017REVISED JANUARY 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
121  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53681RSBR  
TPS53681RSBT  
ACTIVE  
WQFN  
WQFN  
RSB  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS  
53681  
ACTIVE  
RSB  
NIPDAUAG  
TPS  
53681  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS53681RSBR  
TPS53681RSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
330.0  
330.0  
12.4  
12.4  
5.25  
5.25  
5.25  
5.25  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS53681RSBR  
TPS53681RSBT  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
3000  
250  
338.0  
338.0  
355.0  
355.0  
50.0  
50.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSB0040E  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
(0.2) TYP  
EXPOSED  
11  
20  
THERMAL PAD  
36X 0.4  
10  
21  
2X  
41  
SYMM  
3.6  
3.15 0.1  
1
30  
0.25  
0.15  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
40X  
4219096/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
40  
31  
40X (0.6)  
40X (0.2)  
1
30  
36X (0.4)  
41  
SYMM  
(4.8)  
(1.325)  
(
0.2) TYP  
VIA  
10  
21  
(R0.05)  
TYP  
11  
20  
(1.325)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219096/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785)  
4X ( 1.37)  
40  
31  
40X (0.6)  
1
30  
40X (0.2)  
36X (0.4)  
SYMM  
(0.785)  
(4.8)  
41  
(R0.05) TYP  
10  
21  
METAL  
TYP  
20  
11  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219096/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS53681RSBR

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器 | RSB | 40 | -40 to 125
TI

TPS53681RSBT

具有 PMBus 和 NVM 的双通道 6+2/5+3 D-CAP+™ 多相降压控制器 | RSB | 40 | -40 to 125
TI

TPS53685

适用于 AMD 平台且具有 SVI3 和 PMBus 的八相数字降压多相控制器
TI

TPS53685RSBR

适用于 AMD 平台且具有 SVI3 和 PMBus 的八相数字降压多相控制器 | RSB | 40 | -40 to 105
TI

TPS53688

Dual-channel, 8-phase step-down, digital multiphase D-CAP+™ controller with VR13.HC SVID and PMBus
TI

TPS53688RSBR

Dual-channel, 8-phase step-down, digital multiphase D-CAP+™ controller with VR13.HC SVID and PMBus | RSB | 40 | -40 to 125
TI

TPS53688RSBT

Dual-channel, 8-phase step-down, digital multiphase D-CAP+™ controller with VR13.HC SVID and PMBus | RSB | 40 | -40 to 125
TI

TPS53689

具有 VR14 SVID 和 PMBus 的双通道八相降压数字多相 D-CAP+™ 控制器
TI

TPS53689RSBR

具有 VR14 SVID 和 PMBus 的双通道八相降压数字多相 D-CAP+™ 控制器 | RSB | 40 | -40 to 125
TI

TPS53689RSBT

具有 VR14 SVID 和 PMBus 的双通道八相降压数字多相 D-CAP+™ 控制器 | RSB | 40 | -40 to 125
TI

TPS536C5

适用于 AMD 平台且具有 SVI3 和 PMBus 的 12 相数字降压多相控制器
TI

TPS536C5RSLR

适用于 AMD 平台且具有 SVI3 和 PMBus 的 12 相数字降压多相控制器 | RSL | 48 | -40 to 105
TI