TPS54336ADDA [TI]

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150;
TPS54336ADDA
型号: TPS54336ADDA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150

转换器
文件: 总52页 (文件大小:3213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
TPS5433xA 4.5V 28V 输入、3A 输出、同步  
降压 DC-DC 转换器  
1 特性  
3 说明  
1
同步 128mΩ 84mΩ 金属氧化物半导体场效应晶  
TPS5433xA 系列器件为同步转换器,输入电压范围介  
体管 (MOSFET),用于实现  
3A 持续输出电流  
4.5V 28V 之间。该系列器件集成有低侧开关场  
效应晶体管 (FET),免除了对外部二极管的需求,从而  
减少了组件数。  
TPS54335A:内部 2ms 软启动,  
50kHz 1.5MHz 可调频率  
凭借集成的 128mΩ 84mΩ MOSFET、低 IQ 以及轻  
负载时的脉冲跳跃模式,大大提升了效率。通过使能引  
脚可以将关断电源电流减小至 2µA。该降压转换器的  
基准电压在整个温度范围内保持 1.5% 的精度,可为各  
类负载提供精确稳压。  
TPS54336A:可调软启动,  
340kHz 固定频率  
关断时静态电流低至 2µA  
0.8V 基准电压,精度为 ±0.8%  
电流模式控制  
针对预偏置输出的单调性启动  
用于在轻负载时提高效率的脉冲跳跃模式  
断续模式过流保护  
高侧 FET 的逐周期电流限制可在过载情况下保护  
TPS5433xA 系列器件,并通过低侧电源限流防止电流  
失控,从而实现功能增强。低侧灌电流限制可关闭低侧  
MOSFET,以防止过多的反向电流。在过流情况持续  
时间超过预设时间时,将触发断续保护功能。热关断将  
在芯片温度超出阈值时禁用器件,并在经过一段内置的  
热断续时间后再次使能器件。  
热关断 (TSD) 和  
过压变换保护  
8 引脚小外形尺寸 (SO) PowerPAD™10 引脚超  
薄小外形尺寸无引线 (VSON) 封装  
2 应用范围  
器件信息(1)  
消费类 应用 消费类应用,例如数字电视 (DTV)、  
机顶盒(STB、数字化视频光盘 (DVD)/蓝光播放  
器)、液晶显示器、客户端设备 (CPE)(电缆调制  
解调器、WiFi 路由器)、数字光处理 (DLP) 投影  
仪、智能电表  
器件型号  
TPS54335A  
封装  
SO PowerPAD (8)  
VSON (10)  
封装尺寸(标称值)  
4.89mm × 3.90mm  
3.00mm × 3.00mm  
3.00mm x 3.00mm  
TPS54336A  
TPS54335-1A  
VSON (10)(2)  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
电池充电器  
(2) TPS54335-1A 器件的 DRC 封装具有更窄的散热焊盘,可为引  
脚与散热焊盘之间留出更多的间隙。请参见Differences  
Between the Two DRC Packages部分。  
工业用和车载音频电源  
5V12V 24V 分布式电源总线供电  
简化电路原理图  
VIN  
EN  
V
VIN  
EN  
V
IN  
IN  
C
C
1
1
TPS54335A  
TPS54336A  
C
C
BOOT  
BOOT  
BOOT  
BOOT  
L
L
O
O
V
PH  
PH  
OUT  
V
OUT  
RT  
SS  
C
C
O
O
COMP  
COMP  
R
R
O1  
R
R
O1  
C
C
C
R
C
C
VSENSE  
VSENSE  
C
C
2
2
R
RT  
R
C
O2  
O2  
C
SS  
GND  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCD5  
 
 
 
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Applications ................................................ 21  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 器件支持................................................................ 35  
11.2 文档支持................................................................ 35  
11.3 相关链接................................................................ 35  
11.4 社区资源................................................................ 35  
11.5 ....................................................................... 35  
11.6 静电放电警告......................................................... 35  
11.7 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
Changes from Revision C (March 2015) to Revision D  
Page  
已从数据表标题中删除 SWIFT............................................................................................................................................ 1  
Changes from Revision B (August 2015) to Revision C  
Page  
已添加 TPS54335-1A 器件至数据表....................................................................................................................................... 1  
Changes from Revision A (December 2014) to Revision B  
Page  
已删除 选择性披露数据表中的声明并已添加相关链接部分..................................................................................................... 1  
Changed the Device Functional Modes section .................................................................................................................. 19  
Changed the Power Supply Recommendations section ..................................................................................................... 33  
Changes from Original (November 2014) to Revision A  
Page  
已更改 器件状态,从产品预览改为量产数据 .......................................................................................................................... 1  
2
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
5 Pin Configuration and Functions  
DDA Package  
DDA Package  
8-Pin SO PowerPAD  
TPS54335A Top View  
8-Pin SO PowerPAD  
TPS54336A Top View  
BOOT  
VIN  
1
2
3
4
8
7
6
5
RT  
BOOT  
VIN  
1
2
3
4
8
7
6
5
SS  
EN  
EN  
PowerPAD  
PowerPAD  
PH  
COMP  
VSENSE  
PH  
COMP  
VSENSE  
GND  
GND  
DRC Package  
DRC Package  
10-Pin VSON With Exposed Thermal Pad  
TPS54335A and TPS54335-1A Top View  
10-Pin VSON With Exposed Thermal Pad  
TPS54336A Top View  
VIN  
PH  
1
2
3
4
5
10 RT  
VIN  
PH  
1
2
3
4
5
10 SS  
9
8
7
6
BOOT  
9
8
7
6
BOOT  
Exposed  
Thermal  
Pad  
Exposed  
Thermal  
Pad  
GND  
GND  
GND  
EN  
GND  
GND  
GND  
EN  
COMP  
VSENSE  
COMP  
VSENSE  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
SO  
PowerPAD  
NAME  
VSON  
A bootstrap capacitor is required between the BOOT and PH pins. If the voltage  
on this capacitor is below the minimum required by the output device, the output is  
forced to switch off until the capacitor is refreshed.  
BOOT  
1
9
O
This pin is the error-amplifier output and the input to the output switch-current  
comparator. Connect frequency compensation components to this pin.  
COMP  
EN  
6
7
7
O
I
8
3
4
5
2
This pin is the enable pin. Float the EN pin to enable.  
GND  
PH  
4
3
O
Ground  
The PH pin is the source of the internal high-side power MOSFET.  
RT (TPS54335A  
and TPS54335-1A)  
Connect the RT pin to an external timing resistor to adjust the switching frequency  
of the device.  
8
10  
O
The SS pin is the soft-start and tracking pin. An external capacitor connected to  
this pin sets the internal voltage-reference rise time. The voltage on this pin  
overrides the internal reference.  
SS (TPS54336A)  
VIN  
2
5
1
6
I
This pin is the 4.5- to 28-V input supply voltage.  
VSENSE  
This pin is the inverting node of the transconductance (gm) error amplifier.  
PowerPAD (SO only)  
Thermal pad (VSON only)  
For proper operation, connect the GND pin to the exposed thermal pad. This  
thermal pad should be connected to any internal PCB ground plane using multiple  
vias for good thermal performance.  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
UNIT  
VIN  
30  
EN  
6
BOOT  
(VPH + 7.5)  
Input voltage  
VSENSE  
3
V
COMP  
3
RT  
3
SS  
3
BOOT-PH  
PH  
7.5  
Output voltage  
–1  
30  
30  
V
PH, 10-ns transient  
–3.5  
–0.2  
100  
100  
VDIFF (GND to exposed thermal pad)  
EN  
0.2  
V
100  
µA  
Source current  
RT  
100  
PH  
Current-limit  
Current-limit  
200  
A
A
PH  
Sink current  
COMP  
200  
–40  
–65  
µA  
°C  
°C  
Operating junction temperature  
Storage temperature, Tstg  
150  
150  
(1) Stresses beyond those listed under the absolute maximum ratings may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the recommended  
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001, all pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
28  
UNIT  
V
VSS Supply input voltage  
VOUT Output voltage  
IOUT Output current  
4.5  
0.8  
0
24  
V
3
A
TJ  
Operating junction temperature(1)  
–40  
150  
°C  
(1) The device must operate within 150°C to ensure continuous function and operation of the device.  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
6.4 Thermal Information  
TPS5433xA  
TPS5433xA and  
TPS54335-1A  
THERMAL METRIC(1)  
UNIT  
DDA (SO PowerPAD)  
DRC (VSON)  
10 PINS  
43.9  
8 PINS  
42.1  
50.9  
31.8  
8
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55.4  
18.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
13.5  
7.1  
19.1  
RθJC(bot)  
5.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. TJ = –40°C to 150°C, VIN = 4.5 to 28 V, (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE AND UVLO (VIN PIN)  
Operating input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.5  
28  
4.5  
400  
10  
V
V
Input UVLO threshold  
Rising VIN  
VEN = 0 V  
4
180  
2
Input UVLO hysteresis  
mV  
µA  
VIN-shutdown supply current  
VIN-operating non-switching supply  
current  
VVSENSE = 810 mV  
310  
800  
µA  
ENABLE (EN PIN)  
Enable threshold  
Enable threshold  
Input current  
Rising  
1.21  
1.17  
1.15  
3.3  
1.28  
V
V
Falling  
1.1  
VEN = 1.1 V  
VEN = 1.3 V  
µA  
µA  
Hysteresis current  
VOLTAGE REFERENCE  
TJ =25°C  
0.7936  
0.788  
0.8 0.8064  
0.8 0.812  
Reference  
V
MOSFET  
V(BOOT-PH) = 3 V  
V(BOOT-PH) = 6 V  
VIN = 12 V  
160  
128  
84  
280  
230  
170  
mΩ  
mΩ  
mΩ  
High-side switch resistance(1)  
Low-side switch resistance(1)  
ERROR AMPLIFIER  
Error-amplifier transconductance (gm)  
Error-amplifier source and sink  
Start switching peak current threshold  
COMP to ISWITCH gm  
–2 µA < ICOMP < 2 µA, VCOMP = 1 V  
VCOMP = 1 V, 100-mV overdrive  
1300  
100  
0.5  
8
µmhos  
µA  
A
A/V  
CURRENT-LIMIT  
High-side switch current-limit threshold  
Low-side switch sourcing current-limit  
Low-side switch sinking current-limit  
4
4.9  
4.7  
0
6.5  
6.1  
A
A
A
3.5  
(1) Measured at pins  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. TJ = –40°C to 150°C, VIN = 4.5 to 28 V, (unless otherwise noted)  
PARAMETER  
THERMAL SHUTDOWN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal shutdown  
160  
175  
10  
°C  
°C  
Thermal shutdown hysteresis  
BOOT PIN  
BOOT-PH UVLO  
SOFT START  
2.1  
2.3  
3
V
Soft-start charge current, TPS54336A  
µA  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
CURRENT-LIMIT  
Hiccup wait time  
512  
Cycles  
Cycles  
Hiccup time before restart  
THERMAL SHUTDOWN  
Thermal shutdown hiccup time  
SOFT START  
16384  
32768  
2
Cycles  
ms  
Internal soft-start time, TPS54335A and TPS54335-1A  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PH PIN  
Minimum on time  
Measured at 90% to 90% of VIN, IPH = 2 A  
(BOOT-PH) 3 V  
94  
145  
ns  
Minimum off time  
V
0%  
SWITCHING FREQUENCY  
50  
384  
40  
1500  
576  
60  
kHz  
kHz  
kHz  
kHz  
kHz  
R(RT) = 100 kΩ  
480  
50  
Switching frequency range, TPS54335A and  
TPS54335-1A  
R(RT) = 1000 k, –40°C to 105°C  
R(RT) = 30 kΩ  
1200  
272  
1500  
340  
1800  
408  
Internal switching frequency, TPS54336A  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
6.8 Typical Characteristics  
140  
130  
120  
110  
100  
90  
210  
190  
170  
150  
130  
110  
90  
80  
70  
60  
50  
70  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C002  
Junction Temperature (°C)  
C001  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 2. Low-Side MOSFET on Resistance vs Junction  
Temperature  
Figure 1. High-Side MOSFET on Resistance vs Junction  
Temperature  
0.808  
0.804  
0.800  
0.796  
0.792  
495  
490  
485  
480  
475  
470  
465  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C003  
C004  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 3. Voltage Reference vs Junction Temperature  
Figure 4. Oscillator Frequency vs Junction Temperature  
1.230  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
1.225  
1.220  
1.215  
1.210  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C005  
C006  
Junction Temperature (°C)  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 5. UVLO Threshold vs Junction Temperature  
Figure 6. Hysteresis Current vs Junction Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
1.2  
400  
350  
300  
250  
200  
1.175  
1.15  
1.125  
1.1  
T = œ40°C  
J
T = 25°C  
J
T = 150°C  
J
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
4
8
12  
16  
20  
24  
28  
C007  
C008  
Junction Temperature (°C)  
Input Voltage (V)  
VIN = 12 V  
Figure 7. Pullup Current vs Junction Temperature  
Figure 8. Non-Switching Operating Quiescent Current vs  
Input Voltage  
10  
2.40  
2.35  
2.30  
2.25  
2.20  
TJ = œ40°C  
T=25°C
J
8
6
4
2
0
T=150°C
J
4
8
12  
16  
20  
24  
28  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C009  
C010  
Input Voltage (V)  
Junction Temperature (°C)  
VEN = 0 V  
Figure 9. Shutdown Quiescent Current vs Input Voltage  
Figure 10. SS Charge Current vs Junction Temperature  
120  
6.0  
110  
100  
90  
5.0  
4.0  
3.0  
80  
70  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C011  
C012  
Junction Temperature (°)  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 11. Minimum Controllable On Time vs Junction  
Temperature  
Figure 12. Minimum Controllable Duty Ratio vs Junction  
Temperature  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
Typical Characteristics (continued)  
6.0  
5.5  
5.0  
4.5  
4.0  
2.3  
TJ=40°C
T = 25°C  
J
T = 150°C  
J
2.2  
2.1  
2.0  
4
8
12  
16  
20  
24  
28  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C014  
Input Voltage (V)  
C013  
Junction Temperature (°C)  
Figure 14. Current-Limit Threshold vs Input Voltage  
Figure 13. BOOT-PH UVLO Threshold vs Junction  
Temperature  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The device is a 28-V, 3-A, synchronous step-down (buck) converter with two integrated n-channel MOSFETs. To  
improve performance during line and load transients the device implements a constant-frequency, peak current-  
mode control which reduces output capacitance and simplifies external frequency-compensation design.  
The device has been designed for safe monotonic startup into pre-biased loads. The device has a typical default  
startup voltage of 4 V. The EN pin has an internal pullup-current source that can provide a default condition when  
the EN pin is floating for the device to operate. The total operating current for the device is 310 µA (typical) when  
not switching and under no load. When the device is disabled, the supply current is less than 5 μA.  
The integrated 128-mand 84-mΩ MOSFETs allow for high-efficiency power-supply designs with continuous  
output currents up to 3 A.  
The device reduces the external component count by integrating the boot recharge diode. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor between the BOOT and PH pins. The boot capacitor  
voltage is monitored by an UVLO circuit and turns off the high-side MOSFET when the voltage falls below a  
preset threshold. The output voltage can be stepped down to as low as the 0.8-V reference voltage.  
The device minimizes excessive output overvoltage transients by taking advantage of the overvoltage power-  
good comparator. When the regulated output voltage is greater than 106% of the nominal voltage, the  
overvoltage comparator is activated, and the high-side MOSFET is turned off and masked from turning on until  
the output voltage is lower than 104%.  
The TPS54335A device has a wide switching frequency of 50 kHz to 1500 kHz which allows for efficiency and  
size optimization when selecting the output filter components. The internal 2-ms soft-start time is implemented to  
minimize inrush currents.  
The TPS54336A device has a fixed 340-kHz switching frequency. The device adjusts the soft-start time with the  
SS pin.  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
7.2 Functional Block Diagram  
VIN  
EN  
Thermal  
UVLO  
Hiccup  
Enable  
I
p
I
h
Comparator  
Shutdown  
Logic  
Hiccup  
Shutdown  
Enable  
Threshold  
OV  
Boot  
Charge  
Current  
Sense  
Minimum Clamp  
Pulse Skip  
ERROR  
AMPLIFIER  
VSENSE  
BOOT  
Boot  
UVLO  
+
+
SS  
(TPS54336A)  
HS MOSFET  
Current  
Comparator  
Voltage  
Reference  
Power Stage  
and  
Deadtime  
Control  
Logic  
PH  
Slope  
Compensation  
Regulator  
V
IN  
Hiccup  
Shutdown  
LS MOSFET  
Current-Limit  
Overload  
Recovery  
Maximum  
Clamp  
Oscillator  
Current  
Sense  
GND  
RT  
COMP  
EXPOSED THERMAL PAD  
(TPS54335A)  
7.3 Feature Description  
7.3.1 Fixed-Frequency PWM Control  
The device uses a fixed-frequency, peak current-mode control. The output voltage is compared through external  
resistors on the VSENSE pin to an internal voltage reference by an error amplifier which drives the COMP pin.  
An internal oscillator initiates the turn on of the high-side power switch. The error amplifier output is compared to  
the current of the high-side power switch. When the power-switch current reaches the COMP voltage level the  
high-side power switch is turned off and the low-side power switch is turned on. The COMP pin voltage increases  
and decreases as the output current increases and decreases. The device implements a current-limit by  
clamping the COMP pin voltage to a maximum level and also implements a minimum clamp for improved  
transient-response performance.  
7.3.2 Light-Load Operation  
The device monitors the peak switch current of the high-side MOSFET. When the peak switch current is lower  
than 0.5 A (typical), the device stops switching to boost the efficiency until the peak switch current again rises  
higher than 0.5 A (typical).  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Voltage Reference  
The voltage-reference system produces a precise ±1.5% voltage-reference over temperature by scaling the  
output of a temperature-stable bandgap circuit.  
7.3.4 Adjusting the Output Voltage  
The output voltage is set with a resistor divider from the output node to the VSENSE pin. Using divider resistors  
with 1% tolerance or better is recommended. Begin with a value of 10 kΩ for the upper resistor divider, R1, and  
use Equation 1 to calculate the value of R2. Consider using larger value resistors to improve efficiency at light  
loads. If the values are too high then the regulator is more susceptible to noise and voltage errors from the  
VSENSE input current are noticeable.  
VREF  
R2 =  
´R1  
VOUT - VREF  
(1)  
7.3.5 Enabling and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the device begins operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the low-quiescent (IQ) state.  
The EN pin has an internal pullup-current source which allows the user to float the EN pin to enable the device. If  
an application requires control of the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The device implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a  
hysteresis of 180 mV.  
If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown  
in Figure 15. When using the external UVLO function, setting the hysteresis at a value greater than 500 mV is  
recommended.  
The EN pin has a small pullup-current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih when the EN pin crosses the enable threshold. Use Equation 2, and  
Equation 3 to calculate the values of R1 and R2 for a specified UVLO threshold.  
Device  
VIN  
Ip  
Ih  
R1  
R2  
EN  
Figure 15. Adjustable VIN Undervoltage Lockout  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
Feature Description (continued)  
æ
ç
ç
è
ö
÷
÷
ø
VENfalling  
VSTART  
- VSTOP  
VENrising  
R1 =  
æ
ö
÷
÷
ø
VENfalling  
I
1-  
+I  
ç
p ç  
h
VENrising  
è
where  
IP = 1.15 μA  
IH = 3.3 μA  
VENfalling = 1.17 V  
VENrising = 1.21 V  
(2)  
R1´ VENfalling  
R2 =  
V
STOP - VENfalling +R1(Ip +Ih )  
where  
IP = 1.15 μA  
IH = 3.3 μA  
VENfalling = 1.17 V  
VENrising = 1.21 V  
(3)  
7.3.6 Error Amplifier  
The device has a transconductance amplifier as the error amplifier. The error amplifier compares the VSENSE  
voltage to the lower of the internal soft-start voltage or the internal 0.8-V voltage reference. The  
transconductance of the error amplifier is 1300 μA/V (typical). The frequency compensation components are  
placed between the COMP pin and ground.  
7.3.7 Slope Compensation and Output Current  
The device adds a compensating ramp to the signal of the switch current. This slope compensation prevents  
subharmonic oscillations as the duty cycle increases. The available peak inductor current remains constant over  
the full duty-cycle range.  
7.3.8 Safe Startup into Pre-Biased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output. During  
monotonic pre-biased startup, both high-side and low-side MOSFETs are not allowed to be turned on until the  
internal soft-start voltage (TPS54335A), or SS pin voltage (TPS54336A) is higher than VSENSE pin voltage.  
7.3.9 Bootstrap Voltage (BOOT)  
The device has an integrated boot regulator. The boot regulator requires a small ceramic capacitor between the  
BOOT and PH pins to provide the gate-drive voltage for the high-side MOSFET. The boot capacitor is charged  
when the BOOT pin voltage is less than the VIN voltage and when the BOOT-PH voltage is below regulation.  
The value of this ceramic capacitor should be 0.1 μF. A ceramic capacitor with an X7R or X5R grade dielectric  
with a voltage rating of 10 V or higher is recommended because of the stable characteristics over temperature  
and voltage. When the voltage between BOOT and PH pins drops below the BOOT-PH UVLO threshold, which  
is 2.1 V (typical), the high-side MOSFET turns off and the low-side MOSFET turns on, allowing the boot  
capacitor to recharge.  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
 
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.10 Adjustable Switching Frequency (TPS54335A Only)  
To determine the RT resistance, RRT, for a given switching frequency, use Equation 4 or the curve in Figure 16.  
To reduce the solution size, set the switching frequency as high as possible, but consider the tradeoffs of the  
supply efficiency and minimum controllable on time.  
RRT (kW) = 55300´ ƒSW -1.025(kHz)  
(4)  
1000  
800  
600  
400  
200  
0
0
250  
500  
750  
1000  
1250  
1500  
C026  
Oscillator Frequency (kHz)  
Figure 16. RT Set Resistor vs Switching Frequency  
7.3.11 Soft-Start (TPS54336A Only)  
The TPS54336A device uses the lower voltage of the internal voltage reference or the SS pin voltage as the  
reference voltage and regulates the output accordingly. A capacitor on the SS pin to ground implements a soft-  
start time. The device has an internal pullup current source of 2.3 μA that charges the external soft-start  
capacitor. Use Equation 5 to calculate the soft time (tSS, 10% to 90%) and soft capacitor (CSS).  
CSS (nF) ´ VREF (V)  
tSS (ms) =  
ISS (µA)  
where  
VREF is the voltage reference (0.8 V)  
ISS is the soft-start charge current (2.3 μA)  
(5)  
When the input UVLO is triggered, the device stops switching and enters low-current operation when either the  
EN pin is pulled below 1.21 V or a thermal-shutdown event occurs. At the subsequent power-up, when the  
shutdown condition is removed, the device does not begin switching until it has discharged the SS pin to ground  
ensuring proper soft-start behavior.  
7.3.12 Output Overvoltage Protection (OVP)  
The device incorporates an output overvoltage-protection (OVP) circuit to minimize output voltage overshoot. For  
example, when the power-supply output is overloaded, the error amplifier compares the actual output voltage to  
the internal reference voltage. If the VSENSE pin voltage is lower than the internal reference voltage for a  
considerable time, the output of the error amplifier demands maximum output current. When the condition is  
removed, the regulator output rises and the error-amplifier output transitions to the steady-state voltage. In some  
applications with small output capacitance, the power-supply output voltage can respond faster than the error  
amplifier which leads to the possibility of an output overshoot. The OVP feature minimizes the overshoot by  
comparing the VSENSE pin voltage to the OVP threshold. If the VSENSE pin voltage is greater than the OVP  
threshold, the high-side MOSFET is turned off which prevents current from flowing to the output and minimizes  
output overshoot. When the VSENSE voltage drops lower than the OVP threshold, the high-side MOSFET is  
allowed to turn on at the next clock cycle.  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
Feature Description (continued)  
7.3.13 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET.  
7.3.13.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. During each cycle, the switch  
current and the current reference generated by the COMP pin voltage are compared. When the peak switch  
current intersects the current reference the high-side switch turns off.  
7.3.13.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, the conduction current is monitored by the internal circuitry. During  
normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current-limit. If the low-side  
sourcing current-limit is exceeded, the high-side MOSFET does not turn on and the low-side MOSFET stays on  
for the next cycle. The high-side MOSFET turns on again when the low-side current is below the low-side  
sourcing current-limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current-limit is exceeded the  
low-side MOSFET turns off immediately for the remainder of that clock cycle. In this scenario, both MOSFETs  
are off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) occurs for more than the  
hiccup wait time, which is programmed for 512 switching cycles, the device shuts down and restarts after the  
hiccup time of 16384 cycles. The hiccup mode helps to reduce the device power dissipation under severe  
overcurrent conditions.  
7.3.14 Thermal Shutdown  
The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
175°C typically. When the junction temperature drops below 165°C typically, the internal thermal-hiccup timer  
begins to count. The device reinitiates the power-up sequence after the built-in thermal-shutdown hiccup time  
(32768 cycles) is over.  
7.3.15 Small-Signal Model for Loop Response  
Figure 17 shows an equivalent model for the device control loop which can be modeled in a circuit-simulation  
program to check frequency and transient responses. The error amplifier is a transconductance amplifier with a  
gm of 1300 μA/V. The error amplifier can be modeled using an ideal voltage-controlled current source. The  
resistor, Roea (3.07 M), and capacitor, Coea (20.7 pF), model the open-loop gain and frequency response of the  
error amplifier. The 1-mV AC-voltage source between the nodes a and b effectively breaks the control loop for  
the frequency response measurements. Plotting ac-c and c-b show the small-signal responses of the power  
stage and frequency compensation respectively. Plotting a-b shows the small-signal response of the overall loop.  
The dynamic loop response can be checked by replacing the load resistance, RL, with a current source with the  
appropriate load-step amplitude and step rate in a time-domain analysis.  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
PH  
VOUT  
Power Stage  
8 A/V  
a
b
RESR  
R1  
COMP  
RL  
c
VSENSE  
R2  
+
VREF  
R3  
CO  
Roea  
gmea  
C2  
Coea  
1300 µA/V  
C1  
Figure 17. Small-Signal Model For Loop Response  
7.3.16 Simple Small-Signal Model for Peak Current-Mode Control  
Figure 18 is a simple small-signal model that can be used to understand how to design the frequency  
compensation. The device power stage can be approximated to a voltage-controlled current-source (duty-cycle  
modulator) supplying current to the output capacitor and load resistor. The control-to-output transfer function is  
shown in Equation 6 and consists of a DC gain, one dominant pole and one ESR zero. The quotient of the  
change in switch current and the change in the COMP pin voltage (node c in Figure 17) is the power-stage  
transconductance (gmps) which is 8 A/V for the device. The DC gain of the power stage is the product of gmps  
and the load resistance, RL, with resistive loads as shown in Equation 7. As the load current increases, the DC  
gain decreases. This variation with load may seem problematic at first glance, but fortunately the dominant pole  
moves with the load current (see Equation 8). The combined effect is highlighted by the dashed line in Figure 19.  
As the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover  
frequency the same for the varying load conditions which makes designing the frequency compensation easier.  
VOUT  
VC  
RESR  
RL  
gmps  
CO  
Figure 18. Simplified Small-Signal Model for Peak Current-Mode Control  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
Feature Description (continued)  
VOUT  
Adc  
VC  
RESR  
ƒp  
RL  
gmps  
CO  
ƒz  
Figure 19. Simplified Frequency Response for Peak Current-Mode Control  
æ
ç
è
ö
÷
ø
s
1+  
1+  
2p ´ ƒz  
VOUT  
VC  
= Adc ´  
æ
ç
ç
è
ö
÷
÷
ø
s
2p ´ ƒp  
(6)  
(7)  
(8)  
(9)  
Adc = gmps ´ RL  
where  
gmps is the power stage gain (8 A/V)  
RL is the load resistance  
1
ƒp  
=
CO ´ RL ´ 2p  
where  
CO is the output capacitance  
1
ƒz =  
CO ´ RESR ´ 2p  
where  
RESR is the equivalent series resistance of the output capacitor  
7.3.17 Small-Signal Model for Frequency Compensation  
The device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly  
used Type II compensation circuits and a Type III frequency compensation circuit, as shown in Figure 20. In  
Type 2A, one additional high frequency pole, C6, is added to attenuate high frequency noise. In Type III, one  
additional capacitor, C11, is added to provide a phase boost at the crossover frequency. See Designing Type III  
Compensation for Current Mode Step-Down Converters (SLVA352) for a complete explanation of Type III  
compensation.  
The following design guidelines are provided for advanced users who prefer to compensate using the general  
method. The following equations only apply to designs whose ESR zero is above the bandwidth of the control  
loop which is usually true with ceramic output capacitors.  
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
VOUT  
C11  
R8  
VSENSE  
Type 2A  
Type 2B  
COMP  
Coea  
Type III  
R9  
VREF  
+
R4  
C4  
R4  
C4  
gmea  
C6  
Roea  
Figure 20. Types of Frequency Compensation  
The general design guidelines for device loop compensation are as follows:  
1. Determine the crossover frequency, ƒc. A good starting value for ƒc is 1/10th of the switching frequency, ƒSW  
.
2. Use Equation 10 to calculate the value of R4.  
2p ´ ƒc ´ VOUT ´ CO  
R4 =  
gmea ´ VREF ´ gmps  
where  
gmea is the GM amplifier gain (1300 μA/V)  
gmps is the power stage gain (8 A/V)  
VREF is the reference voltage (0.8 V)  
(10)  
3. Place a compensation zero at the dominant pole and use Equation 11 to calculate the value of ƒp.  
æ
ç
è
ö
÷
ø
1
ƒ =  
p
CO ´ RL ´ 2p  
(11)  
(12)  
4. Use Equation 12 to calculate the value of C4.  
RL ´ CO  
C4 =  
R4  
5. The use of C6 is optional. C6 can be used to cancel the zero from the ESR (equivalent series resistance) of  
the output capacitor CO. If used, use Equation 13 to calculate the value of C6.  
RESR ´ CO  
C6 =  
R4  
(13)  
6. Type III compensation can be implemented with the addition of one capacitor, C11. The use of C11 allows  
for slightly higher loop bandwidths and higher phase margins. If used, use Equation 14 to calculate the value  
of C11.  
1
C11=  
2´ p´R8´ ƒ  
(
)
C
(14)  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
7.4 Device Functional Modes  
7.4.1 Operation With VI < 4.5 V (minimum VI)  
The device is designed to operate with input voltages above 4.5 V. The typical VIN UVLO threshold is 4V and if  
VIN falls below this threshold the device stops switching. If the EN pin voltage is above EN threshold the device  
becomes active when the VIN pin passes the UVLO threshold. .  
7.4.2 Operation With EN Control  
The enable threshold is 1.2-V typical. If the EN pin voltage is below this threshold the device does not switch  
even though the Vin is above the UVLO threshold. The IC quiescent current is reduced in this state. Once the  
EN is above the threshold with VIN above UVLO threshold the device is active again and the soft-start sequence  
is initiated.  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS5433xA family of devices are step-down DC-DC converters. The devices are typically used to convert a  
higher DC voltage to a lower DC voltage with a maximum available output current of 3 A. Use the following  
design procedure to select component values for each device. Alternately, use the WEBENCH software to  
generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a  
comprehensive database of components when generating a design. This section presents a simplified discussion  
of the design process.  
8.1.1 Supplementary Guidance  
The device must operate within 150°C to ensure continuous function and operation of the device.  
8.1.2 Differences Between the Two DRC Packages  
The TPS54335A and TPS54335-1A devices are packaged in the same 3-mm × 3-mm SON package family  
which is designated as DRC (see the 机械、封装和可订购信息 section for all package options). However, these  
two DRC packages are not exactly the same.  
The difference between these two DRC packages is the clearance between the pins and heat pad. Figure 21  
shows a side-by-side picture of these two packages. In some applications, controlling the amount of solder paste  
during the assembly process of an application board is difficult. The risk of a pin-to-heat pad short (solder bridge)  
is possible in such an assembly process. The TPS54335-1A device is intended to support this type of application  
by having wider clearance.  
NOTE  
This heat-pad shape is the only difference between the TPS54335A and TPS54335-1A  
devices. The electrical functions and performances of both devices are the same. The  
thermal resistance and parameter values between these two packages are almost the  
same with negligible differences.  
TPS54335A  
TPS54335-1A  
TPS54336A  
1mm  
Figure 21. Difference Between the Two DRC Packages  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
8.2 Typical Applications  
8.2.1 TPS5433xA and TPS54335-1A Family Application  
The application designs for the TPS54335A, TPS54335-1A, and TPS54336A devices are identical. The design  
for the TPS54336A device has small difference which is described in the TPS54336A Typical Application section.  
U1  
TPS54335ADDA  
L1 15 µH  
VIN = 8 to 28 V  
C3 0.1 µF  
VOUT = 5 V, 3 A max  
2
5
7
8
1
3
6
4
VIN  
VIN  
BOOT  
PH  
VOUT  
VSENSE  
VSENSE  
EN  
C1  
10 µF  
C2  
0.1 µF  
C6  
47 µF  
C7  
47 µF  
R4  
51.1 Ω  
COMP  
R1  
220 kΩ  
RT  
GND  
PAD  
R3  
3.74 kΩ  
R5  
100 kΩ  
C5  
120 pF  
VSENSE  
R2  
43.2 kΩ  
R7  
143 kΩ  
C4  
0.012 µF  
R6  
19.1 kΩ  
Figure 22. Typical Application Schematic, TPS54335A and TPS54335-1A  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
8 to 28 V  
5 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVO = ±5 %  
400 mV  
Output ripple voltage  
Output current rating  
Operating Frequency  
30 mV  
3 A  
340 kHz  
8.2.1.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS54335A and TPS54336A  
devices. Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH  
software uses an iterative design procedure and accesses a comprehensive database of components when  
generating a design. This section presents a simplified discussion of the design process using the TPS54335A  
device.  
For this design example, use the input parameters listed in Table 1.  
8.2.1.2.1 Switching Frequency  
The switching frequency of the TPS54335A device is set at 340 kHz to match the internally set frequency of the  
TPS54336A device for this design. Use Equation 4 to calculate the required value for R7. The calculated value is  
140.6 kΩ. Use the next higher standard value of 143 kΩ for R7.  
8.2.1.2.2 Output Voltage Set Point  
The output voltage of the TPS54335A device is externally adjustable using a resistor divider network. In the  
application circuit of Figure 22, this divider network is comprised of R5 and R6. Use Equation 15 and Equation 16  
to calculate the relationship of the output voltage to the resistor divider.  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
R5 ´ V  
ref  
R6 =  
VOUT - V  
ref  
(15)  
(16)  
R5  
é
ù
VOUT = V  
´
+1  
ref  
ê
ú
R6  
ë
û
Select a value of R5 to be approximately 100 k. Slightly increasing or decreasing R5 can result in closer output-  
voltage matching when using standard value resistors. In this design, R5 = 100 kand R6 = 19.1 kwhich  
results in a 4.988-V output voltage. The 51.1-Ω resistor, R4, is provided as a convenient location to break the  
control loop for stability testing.  
8.2.1.2.3 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) set point can be adjusted using the external-voltage divider network of R1 and  
R2. R1 is connected between the VIN and EN pins of the TPS54335A device. R2 is connected between the EN  
and GND pins. The UVLO has two thresholds, one for power up when the input voltage is rising and one for  
power down or brown outs when the input voltage is falling. For the example design, the minimum input voltage  
is 8 V, so the start-voltage threshold is set to 7.15 V with 1-V hysteresis. Use Equation 2 and Equation 3 to  
calculate the values for the upper and lower resistor values of R1 and R2.  
8.2.1.2.4 Input Capacitors  
The TPS54335A device requires an input decoupling capacitor and, depending on the application, a bulk input  
capacitor. The typical recommended value for the decoupling capacitor is 10 μF. A high-quality ceramic type X5R  
or X7R is recommended. The voltage rating should be greater than the maximum input voltage. A smaller value  
can be used as long as all other requirements are met; however a 10-μF capacitor has been shown to work well  
in a wide variety of circuits. Additionally, some bulk capacitance may be needed, especially if the TPS54335A  
circuit is not located within about 2 inches from the input voltage source. The value for this capacitor is not critical  
but should be rated to handle the maximum input voltage including ripple voltage, and should filter the output so  
that input ripple voltage is acceptable. For this design, a 10-μF, X7R dielectric capacitor rated for 35 V is used for  
the input decoupling capacitor. The ESR is approximately 2 m, and the current rating is 3 A. Additionally, a  
small 0.1-μF capacitor is included for high frequency filtering.  
Use Equation 17 to calculate the input ripple voltage (ΔVIN).  
IOUT(MAX) ´ 0.25  
DV  
=
+ IOUT(MAX) ´ ESRMAX  
(
)
IN  
CBULK ´ ƒSW  
where  
CBULK is the bulk capacitor value  
ƒSW is the switching frequency  
IOUT(MAX) is the maximum load current  
ESRMAX is the maximum series resistance of the bulk capacitor  
(17)  
The maximum RMS (root mean square) ripple current must also be checked. For worst case conditions, use  
Equation 18 to calculate ICIN(RMS)  
IO(MAX)  
.
ICIN(RMS)  
=
2
(18)  
In this case, the input ripple voltage is 227 mV and the RMS ripple current is 1.5 A.  
NOTE  
The actual input-voltage ripple is greatly affected by parasitics associated with the layout  
and the output impedance of the voltage source.  
The Design Requirements section shows the actual input voltage ripple for this circuit which is larger than the  
calculated value. This measured value is still below the specified input limit of 400 mV. The maximum voltage  
across the input capacitors is VIN(MAX) + ΔVIN / 2. The selected bypass capacitor is rated for 35 V and the ripple  
current capacity is greater than 3 A. Both values provide ample margin. The maximum ratings for voltage and  
current must not be exceeded under any circumstance.  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
8.2.1.2.5 Output Filter Components  
Two components must be selected for the output filter, the output inductor (LO) and CO. Because the TPS54335A  
device is an externally compensated device, a wide range of filter component types and values can be  
supported.  
8.2.1.2.5.1 Inductor Selection  
Use Equation 19 to calculate the minimum value of the output inductor (LMIN).  
VOUT  
´
VIN(MAX) - VOUT  
(
)
´ KIND ´ IOUT ´ ƒSW  
LMIN  
=
V
IN(MAX)  
where  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output  
current  
(19)  
In general, the value of KIND is at the discretion of the designer; however, the following guidelines may be used.  
For designs using low-ESR output capacitors, such as ceramics, a value as high as KIND = 0.3 can be used.  
When using higher ESR output capacitors, KIND = 0.2 yields better results.  
For this design example, use KIND = 0.3. The minimum inductor value is calculated as 13.4 μH. For this design, a  
close standard value of 15 µH was selected for LMIN  
.
For the output filter inductor, the RMS current and saturation current ratings must not be exceeded. Use  
Equation 20 to calculate the RMS inductor current (IL(RMS)).  
æ
ç
ö2  
÷
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
IL(RMS)  
=
IO2 UT(MAX)  
+
´
ç
÷
12  
V
´ LOUT ´ ƒSW ´ 0.8  
IN(MAX)  
è
ø
(20)  
Use Equation 21 to calculate the peak inductor current (IL(PK)).  
VOUT  
´
V
- VOUT  
)
´ LOUT ´ ƒSW  
(
IN(MAX)  
IN(MAX)  
IL(PK) = IOUT(MAX)  
+
1.6 ´ V  
(21)  
For this design, the RMS inductor current is 3.002 A and the peak inductor current is 3.503 A. The selected  
inductor is a Coilcraft 15 μH, XAL6060-153MEB. This inductor has a saturation current rating of 5.8 A and an  
RMS current rating of 6 A which meets the requirements. Smaller or larger inductor values can be used  
depending on the amount of ripple current the designer wants to allow so long as the other design requirements  
are met. Larger value inductors have lower AC current and result in lower output voltage ripple. Smaller inductor  
values increase AC current and output voltage ripple. In general, for the TPS54335A device, use inductors with  
values in the range of 0.68 μH to 100 μH.  
8.2.1.2.5.2 Capacitor Selection  
Consider three primary factors when selecting the value of the output capacitor. The output capacitor determines  
the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current.  
The output capacitance must be selected based on the more stringent of these three criteria.  
The desired response to a large change in the load current is the first criterion. The output capacitor must supply  
the load with current when the regulator cannot. This situation occurs if the desired hold-up times are present for  
the regulator. In this case, the output capacitor must hold the output voltage above a certain level for a specified  
amount of time after the input power is removed. The regulator is also temporarily unable to supply sufficient  
output current if a large, fast increase occurs affecting the current requirements of the load, such as a transition  
from no load to full load. The regulator usually requires two or more clock cycles for the control loop to notice the  
change in load current and output voltage and to adjust the duty cycle to react to the change. The output  
capacitor must be sized to supply the extra current to the load until the control loop responds to the load change.  
The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only  
allowing a tolerable amount of drop in the output voltage. Use Equation 22 to calculate the minimum required  
output capacitance.  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
2´DIOUT  
CO  
>
ƒ
SW ´DVOUT  
where  
ΔIOUT is the change in output current  
ƒSW is the switching frequency of the regulator  
ΔVOUT is the allowable change in the output voltage  
(22)  
For this example, the transient load response is specified as a 5% change in the output voltage, VOUT, for a load  
step of 1.5 A. For this example, ΔIOUT = 1.5 A and ΔVOUT = 0.05 × 5 = 0.25 V. Using these values results in a  
minimum capacitance of 35.3 μF. This value does not consider the ESR of the output capacitor in the output  
voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.  
Equation 23 calculates the minimum output capacitance required to meet the output voltage ripple specification.  
In this case, the maximum output voltage ripple is 30 mV. Under this requirement, Equation 23 yields 12.3 µF.  
1
1
CO  
>
´
VOUTripple  
8´ ƒSW  
Iripple  
where  
ƒSW is the switching frequency  
VOUTripple is the maximum allowable output voltage ripple  
Iripple is the inductor ripple current  
(23)  
Use Equation 24 to calculate the maximum ESR an output capacitor can have to meet the output-voltage ripple  
specification. Equation 24 indicates the ESR should be less than 29.8 mΩ. In this case, the ESR of the ceramic  
capacitor is much smaller than 29.8 mΩ.  
VOUTripple  
RESR  
<
Iripple  
(24)  
Additional capacitance deratings for aging, temperature, and DC bias should be considered which increases this  
minimum value. For this example, two 47-μF 10-V X5R ceramic capacitors with 3 mΩ of ESR are used.  
Capacitors generally have limits to the amount of ripple current they can handle without failing or producing  
excess heat. An output capacitor that can support the inductor ripple current must be specified. Some capacitor  
data sheets specify the RMS value of the maximum ripple current. Use Equation 25 to calculate the RMS ripple  
current that the output capacitor must support. For this application, Equation 25 yields 116.2 mA for each  
capacitor.  
æ
ç
ç
è
ö
÷
÷
ø
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
ICOUT(RMS)  
=
´
V
´ LOUT ´ ƒSW ´ NC  
12  
IN(MAX)  
(25)  
8.2.1.2.6 Compensation Components  
Several possible methods exist to design closed loop compensation for DC-DC converters. For the ideal current-  
mode control, the design equations can be easily simplified. The power stage gain is constant at low frequencies,  
and rolls off at –20 dB/decade above the modulator pole frequency. The power stage phase is 0 degrees at low  
frequencies and begins to fall one decade below the modulator pole frequency reaching a minimum of –90  
degrees which is one decade above the modulator pole frequency. Use Equation 26 to calculate the simple  
modulator pole (ƒp_mod).  
IOUT max  
ƒp_mod  
=
2p´ VOUT ´ COUT  
(26)  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
For the TPS54335A device, most circuits have relatively high amounts of slope compensation. As more slope  
compensation is applied, the power stage characteristics deviate from the ideal approximations. The phase loss  
of the power stage will now approach –180 degrees, making compensation more difficult. The power stage  
transfer function can be solved but it requires a tedious calculation. Use the PSpice model to accurately model  
the power-stage gain and phase so that a reliable compensation circuit can be designed. Alternately, a direct  
measurement of the power stage characteristics can be used which is the technique used in this design  
procedure. For this design, the calculated values are as follows:  
L1 = 15 µH  
C6 and C7 = 47 µF  
ESR = 3 mΩ  
Figure 23 shows the power stage characteristics.  
60  
180  
120  
60  
40  
Gain = 2.23 dB  
at ƒ = 31.62 kHz  
20  
0
0
–20  
–40  
–60  
–60  
–120  
–180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
C020  
Frequency (Hz)  
Figure 23. Power Stage Gain and Phase Characteristics  
For this design, the intended crossover frequency is 31.62 kHz (an actual measured data point exists for that  
frequency). From the power stage gain and phase plots, the gain at 31.62 kHz is 2.23 dB and the phase is about  
-106 degrees. For 60 degrees of phase margin, additional phase boost from a feed-forward capacitor in parallel  
with the upper resistor of the voltage set point divider is not needed. R3 sets the gain of the compensated error  
amplifier to be equal and opposite the power stage gain at crossover. Use Equation 27 to calculate the required  
value of R3.  
-GPWRSTG  
20  
VOUT  
VREF  
10  
R3 =  
´
gmea  
(27)  
To maximize phase gain, the compensator zero is placed one decade below the crossover frequency of 31.62  
kHz. Use Equation 28 to calculate the required value for C4.  
1
C4 =  
ƒCO  
2´ p´R3´  
10  
(28)  
To maximize phase gain the high frequency pole is placed one decade above the crossover frequency of 31.62  
kHz. The pole can also be useful to offset the ESR of aluminum electrolytic output capacitors. Use Equation 29  
to calculate the value of C5.  
1
C5 =  
2´ p´R3´10´ ƒCO  
(29)  
For this design the calculated values for the compensation components are as follows:  
R3 = 3.74 kΩ  
C4 = 0.012 µF  
C5 = 120 pF  
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
 
 
 
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
8.2.1.2.7 Bootstrap Capacitor  
Every TPS54335A design requires a bootstrap capacitor, C3. The bootstrap capacitor value must 0.1 μF. The  
bootstrap capacitor is located between the PH and BOOT pins. The bootstrap capacitor should be a high-quality  
ceramic type with X7R or X5R grade dielectric for temperature stability.  
8.2.1.2.8 Power Dissipation Estimate  
The following formulas show how to estimate the device power dissipation under continuous-conduction mode  
operations. These formulas should not be used if the device is working in the discontinuous conduction mode  
(DCM) or pulse-skipping Eco-mode™.  
The device power dissipation includes:  
1. Conduction loss:  
PCON = IOUT2 × rDS(on) × VOUT / VIN  
where  
IOUT is the output current (A)  
rDS(on) is the on-resistance of the high-side MOSFET ()  
VOUT is the output voltage (V)  
VIN is the input voltage (V)  
2. Switching loss:  
E = 0.5 × 10–9 × VIN 2 × IOUT × ƒSW  
where  
ƒSW is the switching frequency (Hz)  
3. Gate charge loss:  
PG = 22.8 × 10–9 × ƒSW  
4. Quiescent current loss:  
PQ = 0.11 × 10-3 × VIN  
Therefore:  
Ptot = PCON + E + PG + PQ  
where  
Ptot is the total device power dissipation (W)  
For given TA :  
TJ = TA + Rth × Ptot  
where  
TA is the ambient temperature (°C)  
TJ is the junction temperature (°C)  
Rth is the thermal resistance of the package (°C/W)  
For given TJmax = 150°C:  
TAmax = TJmax – Rth × Ptot  
where  
TAmax is the maximum ambient temperature (°C)  
TJmax is the maximum junction temperature (°C)  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
8.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12 V  
VIN = 24 V  
VIN = 12 V  
VIN = 24 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.001  
0.01  
0.1  
1
10  
C015  
C016  
Output Current (A)  
Output Current (A)  
Figure 24. TPS54335A Efficiency  
Figure 25. TPS54335A Low-Current Efficiency  
±0.  
±0.±  
±0±8  
VIN = ꢃꢂ V  
VIN = ꢂꢀ V  
IOUT = .05 A  
±0ꢀ  
±0ꢁ  
±0±6  
±0ꢂ  
±0±4  
±0ꢃ  
±0±2  
±0±  
±0±±  
±±0ꢃ  
±±0ꢂ  
±±0ꢁ  
±±0ꢀ  
±±0.  
±±0±2  
±±0±4  
±±0±6  
±±0±8  
±±0.±  
±0±  
±0.  
ꢃ0±  
ꢃ0.  
ꢂ0±  
ꢂ0.  
ꢁ0±  
8
.±  
.2  
.4  
.6  
.8  
2±  
22  
24  
26  
28  
C±ꢃ7  
C±.8  
Output Current (A)  
Input Voltage (V)  
Figure 26. TPS54335A Load Regulation  
Figure 27. TPS54335A Line Regulation  
60  
40  
180  
120  
60  
V
= 200 mV/div (AC coupled)  
OUT  
20  
0
0
I
= 1 A/div  
OUT  
–20  
–40  
–60  
–60  
–120  
–180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
1000000  
C019  
Frequency (Hz)  
Time = 200 µs/div  
0.75- to 2.25-A load step  
Slew rate = 500 mA/µs  
Figure 29. TPS54335A Loop Response  
Figure 28. TPS54335A Transient Response  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
V
= 20 mV/div (AC coupled)  
OUT  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 2 µs/div  
Time = 2 µs/div  
Figure 30. TPS54335A Full-Load Output Ripple  
Figure 31. TPS54335A 100-mA Output Ripple  
V
= 200 mV/div (AC coupled)  
IN  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 100 µs/div  
Time = 2 µs/div  
Figure 32. TPS54335A No-Load Output Ripple  
Figure 33. TPS54335A Full-Load Input Ripple  
V
= 10 V/div  
IN  
V
= 10 V/div  
IN  
EN = 2 V/div  
EN = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 34. TPS54335A Startup Relative To VIN  
Figure 35. TPS54335A Startup Relative To Enable  
28  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
V
= 10 V/div  
V
= 10 V/div  
IN  
IN  
EN = 2 V/div  
EN = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 36. TPS54335A Shutdown Relative To VIN  
Figure 37. TPS54335A Shutdown Relative To EN  
8.2.2 TPS54336A Typical Application  
U1  
TPS54336ADDA  
L1 15 µH  
VIN = 8 to 28 V  
C3 0.1 µF  
VOUT = 5 V, 3 A max  
2
5
7
8
1
3
6
4
VIN  
VIN  
BOOT  
PH  
VOUT  
VSENSE  
VSENSE  
EN  
C1  
10 µF  
C2  
0.1 µF  
C6  
47 µF  
C7  
47 µF  
R4  
51.1 Ω  
COMP  
R1  
220 kΩ  
SS  
GND  
PAD  
R3  
3.74 kΩ  
R5  
100 kΩ  
C5  
120 pF  
VSENSE  
R2  
43.2 kΩ  
C8  
0.01 µF  
C4  
0.012 µF  
R6  
19.1 kΩ  
Figure 38. Typical Application Schematic, TPS54336A  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 2.  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
8 to 28 V  
5 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVOUT = ±5 %  
400 mV  
Output ripple voltage  
Output current rating  
Soft-start time  
30 mV  
3 A  
3.5 ms  
Copyright © 2014–2016, Texas Instruments Incorporated  
29  
 
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 TPS54336A Design  
The design procedure for the TPS54336A device is identical to the TPS54335A device, except that the  
TPS54336A device uses a soft-start circuit rather than an externally set switching frequency at pin 8. The  
switching frequency is internally set for 340 kHz.  
8.2.2.2.2 Soft-Start Capacitor  
The soft-start capacitor determines the minimum amount of time required for the output voltage to reach the  
nominal programmed value during power up. This feature is useful if a load requires a controlled-voltage slew  
rate. This feature is also used if the output capacitance is very large and requires large amounts of current to  
quickly charge the capacitor to the output voltage level. The large currents required to charge the capacitor can  
cause the TPS54336A device to reach the current-limit. Excessive current draw from the input power supply can  
cause the input voltage rail to sag. Limiting the output voltage slew rate solves both of these problems. Use  
Equation 5 to calculate the value of the soft-start capacitor. For the example circuit, the soft-start time is not too  
critical because the output capacitor value is 2 × 47 μF which does not require much current to charge to 5 V.  
The example circuit has the soft-start time set to an arbitrary value of 3.5 ms which requires a 10-nF capacitor.  
For the TPS54336A device, the calculated values are as follows:  
ISS = 2.3 µA  
VREF = 0.8 V  
8.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12 V  
VIN = 24 V  
VIN = 12 V  
VIN = 24 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.001  
0.01  
0.1  
1
10  
C021  
C022  
Output Current (A)  
Output Current (A)  
Figure 39. TPS54336A Efficiency  
Figure 40. TPS54336A Low-Current Efficiency  
30  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
0.5  
0.4  
±0.  
±0ꢀ  
VIN = 12 V  
VIN = 24 V  
VIN = ꢃꢂ V  
VIN = ꢂꢀ V  
0.3  
±0ꢁ  
0.2  
±0ꢂ  
0.1  
±0ꢃ  
0.0  
±0±  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
±±0ꢃ  
±±0ꢂ  
±±0ꢁ  
±±0ꢀ  
±±0.  
±0±  
±0.  
ꢃ0±  
ꢃ0.  
ꢂ0±  
ꢂ0.  
ꢁ0±  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
C±ꢂꢁ  
C023  
Output Current (A)  
Output Current (A)  
Figure 41. TPS54336A DDA Load Regulation  
Figure 42. TPS54336A DRC Load Regulation  
±0.±  
±0±8  
0.10  
0.08  
IOUT = .05 A  
±0±6  
0.06  
±0±4  
0.04  
±0±2  
0.02  
±0±±  
0.00  
±±0±2  
±±0±4  
±±0±6  
±±0±8  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
±±0.±  
8
.2  
.6  
2±  
24  
28  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
C±24  
C023  
Input Voltage (V)  
Input Voltage (V)  
IOUT = 1.5 A  
Figure 43. TPS54336A DDA Line Regulation  
Figure 44. TPS54336A DRC Line Regulation  
60  
180  
40  
20  
120  
60  
V
= 200 mV/div (AC coupled)  
OUT  
0
0
I
= 1 A/div  
OUT  
-20  
-40  
-60  
-60  
-120  
-180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
1000000  
C025  
Frequency (Hz)  
Time = 200 µs/div  
0.75- to 2.25-A load step  
Slew rate = 500 mA/µs  
Figure 46. TPS54336A Loop Response  
Figure 45. TPS54336A Transient Response  
Copyright © 2014–2016, Texas Instruments Incorporated  
31  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
V
= 20 mV/div (AC coupled)  
OUT  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 2 µs/div  
Time = 2 µs/div  
Figure 47. TPS54336A Full-Load Output Ripple  
Figure 48. TPS54336A 100-mA Output Ripple  
V
= 200 mV/div (AC coupled)  
IN  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 100 µs/div  
Time = 2 µs/div  
Figure 49. TPS54336A No-Load Output Ripple  
Figure 50. TPS54336A Full- Load Input Ripple  
V
= 20 V/div  
IN  
V
= 20 V/div  
IN  
EN = 5 V/div  
EN = 5 V/div  
SS = 2 V/div  
SS = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 51. TPS54336A Startup Relative to VIN  
Figure 52. TPS54336A Startup Relative to Enable  
32  
Copyright © 2014–2016, Texas Instruments Incorporated  
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
V
= 20 V/div  
V
= 20 V/div  
IN  
IN  
EN = 5 V/div  
SS = 2 V/div  
EN = 5 V/div  
SS = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 53. TPS54336A Shutdown Relative to VIN  
Figure 54. TPA54336A Shutdown Relative to EN  
9 Power Supply Recommendations  
The devices are designed to operate from an input supply ranging from 4.5 V to 28 V. The input supply should  
be well regulated. If the input supply is located more than a few inches from the converter an additional bulk  
capacitance typically 100 µF may be required in addition to the ceramic bypass capacitors.  
Copyright © 2014–2016, Texas Instruments Incorporated  
33  
TPS54335A, TPS54335-1A, TPS54336A  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The VIN pin should be bypassed to ground with a low-ESR ceramic bypass capacitor. Care should be taken to  
minimize the loop area formed by the bypass capacitor connection, the VIN pin, and the GND pin of the IC. The  
typical recommended bypass capacitance is 10-μF ceramic with a X5R or X7R dielectric and the optimum  
placement is closest to the VIN and GND pins of the device. See Figure 55 for a PCB layout example. The GND  
pin should be tied to the PCB ground plane at the pin of the IC. To facilitate close placement of the input bypass  
capacitors, the PH pin should be routed to a small copper area directly adjacent to the pin. Use vias to route the  
PH signal to the bottom side or an inner layer. If necessary, allow the top-side copper area to extend slightly  
under the body of the closest input bypass capacitor. Make the copper trace on the bottom or internal layer short  
and wide as practical to reduce EMI issues. Connect the trace with vias back to the top side to connect with the  
output inductor as shown after the GND pin. In the same way use a bottom or internal layer trace to route the PH  
signal across the VIN pin to connect to the boot capacitor as shown. Make the circulating loop from the PH pin to  
the output inductor and output capacitors and then back to GND as tight as possible while preserving adequate  
etch width to reduce conduction losses in the copper . For operation at a full rated load, the ground area near the  
IC must provide adequate heat dissipating area. Connect the exposed thermal pad to the bottom or internal layer  
ground plane using vias as shown. Additional vias may be used adjacent to the IC to tie top-side copper to the  
internal or bottom layer copper. The additional external components can be placed approximately as shown. Use  
a separate ground trace to connect the feedback, compensation, UVLO, and RT (SS for TPS54336A) returns.  
Connect this ground trace to the main power ground at a single point to minimize circulating currents. Obtaining  
acceptable performance with alternate layout schemes is possible; however this layout has been shown to  
produce good results and is intended as a guideline.  
10.2 Layout Example  
Via to Power Ground Plane  
Via to SW Copper Pour on Bottom  
or Internal Layer  
Connect to VIN on  
internal or bottom  
layer  
Analog  
Ground  
Trace  
VIN  
VIN  
High-frequency  
Bypass  
Capacitor  
VIN  
Input  
Bypass  
Capacitor  
Frequency  
Set Resistor  
BOOT  
Capacitor  
BOOT  
RT  
EN  
UVLO  
Resistors  
VIN  
PH  
COMP  
VSENSE  
GND  
Compensation  
Network  
Exposed  
Thermal Pad  
Area  
Power  
Ground  
Feedback  
Resistors  
Output  
Inductor  
SW node copper pour  
area on internal or  
bottom layer  
Power  
Ground  
Output  
Filter  
Capacitor  
VOUT  
Note: Pin 8 for the TPS54336A device is SS. Connect an SS capacitor instead of an RT resistor from pin 8 to GND.  
Figure 55. TPS54335ADDA Board Layout  
34  
版权 © 2014–2016, Texas Instruments Incorporated  
 
TPS54335A, TPS54335-1A, TPS54336A  
www.ti.com.cn  
ZHCSEL6D NOVEMBER 2014REVISED FEBRUARY 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
如需 WEBENCH 电路设计和选择仿真服务,请访问:www.ti.com/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《设计电流模式降压转换器的第 III 类补偿》(文献编号:SLVA352)  
11.3 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文章  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPS54335A  
TPS54335-1A  
TPS54336A  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
PowerPAD, Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2016, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54335-1ADRCR  
TPS54335-1ADRCT  
TPS54335ADDAR  
TPS54335ADRCR  
TPS54335ADRCT  
TPS54336ADDA  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
DDA  
DRC  
DRC  
DDA  
DDA  
DRC  
DRC  
10  
10  
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
543351  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
SN  
543351  
54335A  
54335A  
54335A  
54336A  
54336A  
54336A  
54336A  
ACTIVE SO PowerPAD  
2500 RoHS & Green  
3000 RoHS & Green  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
ACTIVE  
ACTIVE  
VSON  
VSON  
10  
10  
8
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
NIPDAU  
250  
75  
RoHS & Green  
RoHS & Green  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
TPS54336ADDAR  
TPS54336ADRCR  
TPS54336ADRCT  
8
2500 RoHS & Green  
3000 RoHS & Green  
ACTIVE  
ACTIVE  
VSON  
VSON  
10  
10  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS54335-1ADRCR  
TPS54335-1ADRCT  
TPS54335ADDAR  
VSON  
VSON  
DRC  
DRC  
DDA  
10  
10  
8
3000  
250  
330.0  
180.0  
330.0  
12.4  
12.4  
12.8  
3.3  
3.3  
6.4  
3.3  
3.3  
5.2  
1.1  
1.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q1  
SO  
2500  
PowerPAD  
TPS54335ADRCR  
TPS54335ADRCT  
TPS54336ADDAR  
VSON  
VSON  
DRC  
DRC  
DDA  
10  
10  
8
3000  
250  
330.0  
180.0  
330.0  
12.4  
12.4  
12.8  
3.3  
3.3  
6.4  
3.3  
3.3  
5.2  
1.1  
1.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q1  
SO  
2500  
PowerPAD  
TPS54336ADRCR  
TPS54336ADRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS54335-1ADRCR  
TPS54335-1ADRCT  
TPS54335ADDAR  
TPS54335ADRCR  
TPS54335ADRCT  
TPS54336ADDAR  
TPS54336ADRCR  
TPS54336ADRCT  
VSON  
VSON  
DRC  
DRC  
DDA  
DRC  
DRC  
DDA  
DRC  
DRC  
10  
10  
8
3000  
250  
346.0  
210.0  
366.0  
346.0  
210.0  
366.0  
335.0  
182.0  
346.0  
185.0  
364.0  
346.0  
185.0  
364.0  
335.0  
182.0  
33.0  
35.0  
50.0  
33.0  
35.0  
50.0  
25.0  
20.0  
SO PowerPAD  
VSON  
2500  
3000  
250  
10  
10  
8
VSON  
SO PowerPAD  
VSON  
2500  
3000  
250  
10  
10  
VSON  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DDA HSOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS54336ADDA  
8
75  
517  
7.87  
635  
4.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010M  
VSON - 1 mm max height  
SCALE 3.800  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
4X (0.22)  
6X (0.18)  
2X (0.98)  
TIE BAR OPTION  
C
1 MAX  
SEATING PLANE  
0.08 C  
1.06±0.1  
(0.2) TYP  
2X (0.73)  
4X (0.23)  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
5
6
2X  
2
11  
2.15±0.1  
1
10  
8X 0.5  
0.30  
10X  
0.18  
0.5  
0.3  
PIN 1 ID  
(OPTIONAL)  
10X  
0.1  
C A  
C
B
0.05  
SEE DETAIL  
4222672/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010M  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
(1.06)  
1
10  
10X (0.24)  
(0.83)  
SYMM  
11  
(2.15)  
8X (0.5)  
(R0.05) TYP  
6
5
SYMM  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222672/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010M  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
SYMM  
METAL  
TYP  
1
10  
10X (0.24)  
(0.58)  
SYMM  
11  
8X (0.5)  
(0.96)  
6
(R0.05) TYP  
5
(1)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
84% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222672/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54336ADDAR

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150
TI

TPS54336ADRCR

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150
TI

TPS54336ADRCT

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150
TI

TPS54336DDA

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54336DDAR

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54336DRC

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54336DRCR

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54336DRCT

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54339

4.5 V to 23 V Input, 3-A Synchronous Step-Down SWIFT Converter
TI

TPS54339DDA

4.5 V to 23 V Input, 3-A Synchronous Step-Down SWIFT Converter
TI

TPS54339DDAR

4.5 V to 23 V Input, 3-A Synchronous Step-Down SWIFT Converter
TI

TPS54339E

4.5V to 23V Input, 3-A Synchronous Step-Down SWIFT Converter with Eco-Mode
TI