TPS543B20RVFR [TI]

具有自适应内部补偿功能的 4V 至 19V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125;
TPS543B20RVFR
型号: TPS543B20RVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有自适应内部补偿功能的 4V 至 19V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

开关 转换器
文件: 总46页 (文件大小:5976K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
具有自适应内部补偿功能的 TPS543B20 4VIN 19VIN25A 可堆叠同步降  
SWIFT™ 转换器  
1 特性  
2 应用  
1
内部补偿高级电流模式控制 25A POL  
无线和有线通信基础设施设备  
输入电压范围:4V 19V  
输出电压范围:0.6V 5.5V  
企业服务器、交换机和路由器  
企业级存储、SSD  
集成 4.1/1.9mΩ 堆叠式 NexFET™功率级,带有无  
损低侧电流检测功能  
ASICSoCFPGADSP 内核和 I/O 电源轨  
3 说明  
固定频率 - 同步到外部时钟和/或同步输出  
TPS543B20 采用内部补偿的仿真峰值电流模式控制方  
式,具有适用于 EMI 敏感型 POL 的时钟同步固定频率  
调制器。内部积分器和直接放大式斜坡跟踪环路在较宽  
频率范围内消除了对外部补偿的需求,从而使系统设计  
具有灵活、密集和简单的特点。可选的 API 和体制动  
功能有助于分别通过显著减少下冲和过冲来提高瞬态性  
能。具有低损耗开关特性的集成式  
可通过引脚搭接进行编程的开关频率  
独立模式下为 300kHz 2MHz  
堆叠模式下为 300kHz 1MHz  
通过双倍堆叠实现高达 50A 负载,并具有电流共  
享、电压共享和 CLK 同步功能  
可通过引脚搭接进行编程的基准电压介于 0.6V 至  
1.1V 之间,精度达 0.5%  
差分遥感  
NexFET™MOSFET 有助于提高效率和提供高达 25A  
的输出电流(采用 5mm × 7mm PowerStack™封  
装,带有方便布局的散热垫)。两个 TPS543B20 器件  
可以堆叠在一起,以便提供高达 50A 的负载点。  
安全启动至预偏置输出电压  
高精度打嗝电流限制  
异步脉冲注入 (API) 和体制动  
40 引脚 5mm × 7mm LQFN 封装,具有 0.5mm 间  
距和单个散热垫  
器件信息(1)  
使用 TPS543B20 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件型号  
TPS543B20  
封装  
封装尺寸(标称值)  
LQFN-CLIP (40)  
5.00mm x 7.00mm  
1. 如需了解所有可用封装,请参阅数据表末尾的可订  
购产品附录。  
简化原理图  
VIN  
VOUT  
ILIM  
RSP  
RSN  
BOOT  
SW  
RAMP  
RT  
TPS543B20  
VSEL  
+
LOAD  
t
BP  
SS  
MODE  
AGND  
PGND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCR1  
 
 
 
 
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information ................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 14  
9
Application and Implementation ........................ 23  
9.1 Application Information............................................ 23  
9.2 Typical Application: TPS543B20 Stand-alone  
Device ...................................................................... 23  
9.3 System Example ..................................................... 29  
10 Power Supply Recommendations ..................... 31  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 33  
11.3 Package Size, Efficiency and Thermal  
Performance............................................................. 34  
12 器件和文档支持 ..................................................... 36  
12.1 器件支持................................................................ 36  
12.2 接收文档更新通知 ................................................. 36  
12.3 社区资源................................................................ 36  
12.4 ....................................................................... 36  
12.5 静电放电警告......................................................... 36  
12.6 Glossary................................................................ 36  
13 机械、封装和可订购信息....................................... 37  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (July 2017) to Revision B  
Page  
已添加 在数据表的标题中添加可堆叠”................................................................................................................................... 1  
已添加 可堆叠模式的频率选................................................................................................................................................ 1  
Added Frequency range for stackable applications ............................................................................................................ 10  
已添加 sentence after "公式 3 is valid for VDD 5 V." ........................................................................................................ 20  
已添加 "Place a 10-nF to 100-nF capacitor close to IC from Pin 25 VIN to Pin 27 GND." to Layout Guidelines ............... 32  
Changes from Original (May 2017) to Revision A  
Page  
已添加 WEBENCH 的链接...................................................................................................................................................... 1  
已更改 "40-A" to "25-A" ....................................................................................................................................................... 14  
已更改 "40-A" to "25-A" ....................................................................................................................................................... 32  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
5 Device Comparison Table  
DEVICE  
OUTPUT CURRENT  
TPS543B20  
TPS543C20  
25 A  
40 A  
6 Pin Configuration and Functions  
RVF Package  
40-Pin LQFN  
Top View  
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGD  
SYNC  
VSEL  
SS  
RT  
Thermal Tab  
MODE  
RAMP  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NO.  
NAME  
The positive input of the remote sense amplifier. Connect RSP pin to the output voltage at the  
load. For multi-phase configuration, the remote sense amplifier is not needed for slave devices.  
1
RSP  
I
I
The negative input of the remote sense amplifier. Connect RSN pin to the ground at load side.  
For multi-phase configuration, the remote sense amplifier is not needed for slave devices.  
2
RSN  
NC  
3 – 6  
Not connected  
Bootstrap pin for the internal flying high-side driver. Connect a typical 100-nF capacitor from this  
pin to SW. To reduce the voltage spike at SW, a BOOT resistor with a value between 1 Ω to 10  
Ω may be placed in series with the BOOT capacitor to slow down turnon of the high-side FET.  
7
BOOT  
I
8 – 12  
SW  
B
Output of converted power. Connect this pin to the output Inductor.  
13 – 20  
PGND  
G
These ground pins are connected to the return of the internal low-side MOSFET  
Input power to the power stage. Low impedance bypassing of these pins to PGND is critical. A  
10-nF to 100-nF capacitor from PVIN to PGND close to IC is required.  
21 – 25  
26  
PVIN  
VDD  
GND  
I
I
Controller power supply input  
Ground return for the controller. This pin should be directly connected to the thermal pad on the  
PCB board. A 10-nF to 100-nF capacitor from PVIN to GND close to IC is required.  
27  
G
Output of the 5 V on board regulator. This regulator powers the driver stage of the controller  
and must be bypassed with a minimum of 2.2 µF to the thermal pad (power stage ground, that  
is, GND). Low impedance bypassing of this pin to PGND is critical.  
28  
BP  
O
29  
30  
31  
32  
33  
AGND  
ILIM  
G
O
I
GND return for internal analog circuits.  
Current protection pin; connect a resistor from this pin to AGND sets current limit level.  
Current sharing signal for multi-phase operation. Float this pin for single phase.  
Voltage sharing signal for multi-phase operation. Float this pin for single phase.  
The enable pin turns on the switcher.  
ISHARE  
VSHARE  
EN  
B
I
Open-drain power-good status signal which provides start-up delay after the FB voltage falls  
34  
PGD  
O
within the specified limits. After the FB voltage moves outside the specified limits, PGOOD goes  
low.  
For frequency synchronization. This pin can be configured as sync in or sync out by MODE pin  
and RT pin for master and slave devices.  
35  
SYNC  
B
36  
37  
VSEL  
SS  
I
Connect a resistor from this pin to AGND to select internal reference voltage.  
Connect a resistor from this pin to AGND to select soft-start time.  
O
Frequency setting pin. Connect a resistor from this pin to AGND to program the switching  
frequency. This pin also selects sync point for devices in stackable applications  
38  
RT  
O
Enable or disable API or body brake function, choose API threshold, also selects the operation  
mode in stackable applications  
39  
40  
MODE  
RAMP  
B
B
Ramp level selection, with a resistor to AGND to adjust internal loop.  
Package thermal tab, internally connected to PGND. The thermal tab must have adequate  
solder coverage for proper operation.  
Thermal Tab  
(1) I = Input, O = Output, B = Bidirectional, P = Supply, G = Ground  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–5  
MAX  
20  
24  
24  
22  
34.5  
6.5  
7
UNIT  
VIN  
DC  
VIN to SW  
< 10 ns  
VDD  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
BOOT  
DC  
BOOT to SW  
Input voltage  
< 10 ns  
V
VSEL, SS, MODE, RT, SYNC, EN, ILIM  
7
RSP  
3.6  
0.3  
03  
24  
24  
7
RSN  
PGND, GND  
DC  
SW  
< 10 ns  
BP, RAMP  
PGD  
–0.3  
–0.3  
–55  
–55  
Output voltage  
V
7
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
4
MAX  
19  
UNIT  
VIN  
DC  
–0.1  
–3  
24  
VIN to SW  
< 10 ns  
24  
VDD  
4
22  
BOOT  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–5  
23.5  
5.5  
6
DC  
BOOT to SW  
Input voltage(2)  
< 10 ns  
V
VSEL, SS, MODE, RT, SYNC, EN, ILIM  
5.5  
1.7  
0.1  
0.1  
24  
RSP  
RSN  
PGND, GND  
DC  
SW  
< 10 ns  
24  
BP, RAMP  
PGD  
–0.3  
–0.3  
–40  
–55  
7
Output  
V
voltage(2)  
7
Junction temperature, TJ  
Storage temperature, Tstg  
125  
125  
°C  
°C  
(1) Stresses beyond those listed under may cause permanent damage to the device.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
7.4 Thermal Information  
TPS543B20  
RVF (LQFN)  
40 PINS  
29.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.3  
4.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ψJB  
4.2  
RθJC(bot)  
1.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MOSFET RDS(ON)  
RDS(on)HS  
HS FET  
LS FET  
VBST – VSW = 5 V, ID = 20 A, Tj = 25°C  
VDD = 5 V, ID = 20 A, Tj = 25°C  
4.1  
1.9  
mΩ  
mΩ  
RDS(on)LS  
Power stage driver dead-time  
from Low-side off to High-side  
on(1)  
tDEAD(LtoH)  
VDD 12 V, TJ = 25°C  
VDDN 12 V, TJ = 25°C  
12  
15  
ns  
ns  
Power stage driver dead-time  
from High-side off to Low-side  
on(1)  
tDEAD(HtoL)  
INPUT SUPPLY and CURRENT  
VVIN  
Power stage voltage  
VDD supply voltage  
4
4
19  
22  
VVDD  
TA = 25°C, no load, power conversion enabled (no  
switching)  
IVDD  
VDD bias current  
4.3  
4.3  
mA  
mA  
IVDDSTBY  
VDD standby current  
TA = 25°C, no load, power conversion disabled  
UNDERVOLTAGE LOCKOUT  
VVDD_UVLO  
VDD UVLO rising threshold  
3.8  
0.2  
3.2  
0.2  
1.6  
300  
0
V
v
VVDD_UVLO_HYS VDD UVLO hysteresis  
VVIN_UVLO  
VIN UVLO rising threshold  
V
v
VVIN_UVLO_HYS VIN UVLO hysteresis  
VEN_ON_TH  
VHYS  
EN on threshold  
1.45  
270  
–1  
1.75  
330  
1
V
EN hysteresis  
mV  
µA  
IEN_LKG  
EN input leakage current  
INTERNAL REFERENCE VOLTAGE  
VINTREF  
Internal REF voltage  
RVSEL = OPEN  
1000  
mV  
V
VINTREFTOL  
VINTREF_VSEL  
OUTPUT VOLTAGE  
Internal REF voltage tolerance  
TJ = -40°C to 125°C  
Programable by VSEL (pin 36)  
–0.5%  
0.6  
+0.5%  
1.1  
Internal REF voltage range  
IRSP  
RSP input current  
VRSP= 600 mV  
–1  
1
µA  
DIFFERENTIAL REMOTE SENSE AMPLIFIER  
fUGBW  
A0  
Unity gain bandwidth(1)  
Open loop gain(1)  
5
8.5  
MHz  
dB  
75  
SR  
SLew rate(1)  
Input common mode range(1)  
±10  
V/µs  
V
VICM  
–0.2  
–1  
1.7  
1
VRSN-VGND = 0 mV  
VOFFSET  
Input offset voltage(1)  
mV  
VRSN-VGND = ±100 mV  
–1.9  
1.9  
(1) Specified by design. Not production tested.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
SWITCHING FREQUENCY  
TEST CONDITIONS  
MIN  
TYP  
VIN = 12 V, VVO= 1 V, RT = 66.5 kΩ  
VIN = 12 V, VVO = 1 V, RT = 48.7 kΩ  
VIN = 12 V, VVO = 1 V, RT = 39.2 kΩ  
VIN = 12 V, VVO= 1 V, RT = 28.0 kΩ  
VIN = 12 V, VVO= 1 V, RT = 22.6 kΩ  
VIN = 12 V, VVO = 1 V, RT = 19.1 kΩ  
VIN = 12 V, VVO = 1 V, RT = 15.4 kΩ  
VIN = 12 V, VVO = 1 V, RT = 8.06 kΩ  
DRVH rising to falling  
300  
400  
500  
VO switching frequency maximum  
frequency for multi-phase is  
1MHz  
700  
FSW  
kHz  
850  
1000  
1200  
2000  
30  
tON(min)  
Minimum on-time(1)  
Minimum off-time(1)  
ns  
ns  
tOFF(min)  
DRVH falling to rising  
250  
INTERNAL BOOTSTRAP SWITCH  
VF  
Forward voltage  
VBP-VBST, TA= 25°C, IF= 5 mA  
0.1  
0.2  
V
VSEL  
RVSEL= 0 kΩ  
0.6  
0.7  
RVSEL= 8.66 kΩ  
RVSEL= 15.4 kΩ  
RVSEL= 23.7 kΩ  
RVSEL= 34.8 kΩ  
RVSEL= 51.1 kΩ  
RVSEL= 78.7 kΩ  
RVSEL= OPEN  
RVSEL= 121 kΩ  
RVSEL= 187 kΩ  
0.75  
0.8  
0.85  
0.9  
VSEL  
Internal reference voltage  
V
0.95  
1
1.05  
1.1  
SOFT START  
RSS = 0 kΩ  
0.5  
1
RSS = 8.66 kΩ  
RSS = 15.4 kΩ  
RSS = Open  
2
4
VO rising from 0 V  
to 95% of final set  
point  
RSS = 23.7 kΩ  
5
tSS  
Soft-start time  
ms  
RSS = 34.8 kΩ  
8
RSS = 51.1 kΩ  
RSS = 78.7 kΩ  
RSS = 121 kΩ  
RSS = 187 kΩ  
12  
16  
24  
32  
POWER ON DELAY  
tPODLY Power-on delay time  
Delay from enable to switching  
512  
µs  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PGOOD COMPARATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OV warning threshold on RSP  
pin, PGOOD fault threshold on  
rising  
VREF = 600 mV  
VREF = 600 mV  
VREF = 600 mV  
VREF = 600 mV  
108  
84  
112  
88  
116  
VPG(thresh)  
%VREF  
UV warning threshold on RSP  
pin, PGOOD fault threshold on  
falling  
92  
PGOOD threshold on rising and  
UV warning threshold de-  
assertion threshold at RSP pin  
VPGD(rise)  
95  
%VREF  
%VREF  
PGOOD threshold on falling and  
OV warning threshold de-  
VPGD(fall)  
105  
assertion threshold at RSP pin  
RPGD  
PGOOD pulldown resistance  
IPGOOD = 5 mA, VRSP = 0 V  
Delay for PGOOD going in  
Delay for PGOOD coming out  
30  
45  
60  
Ω
1.024  
ms  
µs  
tPGDLY  
PGOOD delay time  
2
0.8  
15  
PGOOD output low level voltage  
at no supply voltage  
VPGD(OL)  
IPGLK  
VDD=0, IPGOOD = 80 µA  
VPGOOD = 5 V  
V
PGOOD leakage current  
µA  
CURRENT SHARE ACCURACY  
Output current sharing accuracy  
among stackable devices, defined  
as the ratio of the current  
I
OUT 20 A/phase  
OUT 20 A/phase  
–15%  
15%  
ISHARE(acc)  
I
±3  
A
difference between devices to  
total current(sensing error only)(1)  
CURRENT DETECTION  
VILIM VTRIP voltage range  
Rdson sensing  
0.1  
5.5  
1.2  
7.5  
V
A
RILIM= 48.7 kΩ  
20  
±15%  
–23  
Low-side FET current protection  
threshold and tolerance  
IOCP  
OC tolerance  
IOCP_N  
Negative current limit threshold  
Valley-point current sense  
A
A
Clamp current at VTRIP clamp at  
lowest  
ICLMP_LO  
25°C, VTRIP = 0.1 V  
6.5  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HIGH-SIDE SHORT-CIRCUIT PROTECTION  
High-side short circuit protection  
IHSOC  
45  
A
fault threshold(1)  
OV / UV PROTECTION  
VOVP  
OVP threshold voltage  
OVP response time(1)  
UVP threshold voltage  
UVP delay(1)  
OVP detect voltage  
113  
79  
117  
83  
121 %VREF  
tOVPDLY  
VUVP  
tUVPDLY  
tHICDLY  
OVP response time with 100-mV overdrive  
UVP detect voltage  
1
µs  
87 %VREF  
UVP delay  
1.5  
5.5  
µs  
Hiccup delay time  
Regular tSS setting  
7 × tSS  
ms  
BP LDO REGULATOR  
BP  
LDO output voltage  
VIN = 12 V, ILOAD = 0 to 10 mA  
Wakeup  
4.5  
5
3.32  
3.11  
V
V
VBPUVLO  
BP UVLO threshold voltage  
Shutdown  
VLDOBP  
ILDOMAX  
LDO low dropout voltage  
LDO overcurrent limit  
VIN= 4.5 V, ILOAD= 30 mA, TA = 25°C  
VIN= 12 V, TA = 25°C  
365  
mV  
mA  
100  
SYNCHRONIZATION  
VIH(SYNC)  
VIL(SYNC)  
tPSW(SYNC)  
High-level input voltage  
2
V
Low-level input voltage  
Sync input minimum pulse width  
Synchronization frequency  
Dual-phase  
0.8  
100  
ns  
300  
300  
2000  
1000  
FSYNC  
kHz  
Sync to SW delay tolerance,  
percentage from phase-to-  
phase(1)  
tSYNC to SW  
FSYNC = 300 kHz to 1 MHz,  
FSYNC = 300 kHz  
10%  
5
tLose_SYNC_delay Delay when lose sync clock(1)  
µs  
°C  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
165  
30  
Built-in thermal shutdown  
TSDN  
threshold(1)  
7.6 Typical Characteristics  
5
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
0.6 Vout  
1.0 Vout  
1.5 Vout  
2.5 Vout  
4.5  
4
3.3 Vout  
3.5  
3
2.5  
2
1.5  
1
0.6 Vout  
1.0 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
0.5  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D002  
D004  
VIN = 5 V  
500 kHz  
1. Efficiency vs Output Current  
25°C  
VIN = 5 V  
500 kHz  
2. Power Loss vs Output Current  
25°C  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
Typical Characteristics (接下页)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
6
5
4
3
2
1
0
0.6 Vout  
1.0 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
5 Vout  
0.6 Vout  
1.0 Vout  
1.5 Vout  
2.5 Vout  
3.3 Vout  
5 Vout  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D003  
D005  
VIN = 12 V  
500 kHz  
3. Efficiency vs Output Current  
25°C  
VIN = 12 V  
500 kHz  
4. Power Loss vs Output Current  
25°C  
700  
650  
600  
550  
500  
450  
400  
350  
5 Vin, 0.6 Vout  
5 Vin, 1.0 Vout  
5 Vin, 1.5 Vout  
5 Vin, 2.5 Vout  
5 Vin, 3.3 Vout  
18 Vin, 6.0 Vout  
12 Vin, 0.6 Vout  
12 Vin, 1.0 Vout  
12 Vin, 1.5 Vout  
12 Vin, 2.5 Vout  
12 Vin, 3.3 Vout  
12 Vin, 5.0 Vout  
8
7
6
5
4
3
2
1
5 Vin, 0.6 Vout  
5 Vin, 1.0 Vout  
5 Vin, 1.5 Vout  
5 Vin, 2.5 Vout  
5 Vin, 3.3 Vout  
18 Vin, 0.6 Vout  
12 Vin, 0.6 Vout  
12 Vin, 1.0 Vout  
12 Vin, 1.5 Vout  
12 Vin, 2.5 Vout  
12 Vin, 3.3 Vout  
12 Vin, 5.0 Vout  
0
0
300  
0
5
10  
15  
20  
25  
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Current (A)  
Output Current (A)  
D00510  
D006  
500 MHz  
25°C  
25°C  
6. Switching Frequency vs Output Current  
5. Output Current vs Output Voltage  
VIN = 12 V  
500 kHz  
VOUT = 900 mV  
0 A Load  
VIN = 12 V  
500 kHz  
10 A to 20 A to 10 A  
VOUT = 900 mV  
10-A Step at 40 A/μs  
8. Output Voltage Ripple at Steady State  
7. Output Voltage Transient Response  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V  
500 kHz  
VOUT = 900 mV  
20 A Load  
VIN = 12 V  
500 kHz  
VOUT = 900 mV  
50 mA Load  
9. Output Voltage Ripple at Steady State  
10. Startup From EN  
VIN = 12 V  
500 kHz  
VOUT = 900 mV  
20 A Load  
11. Start-Up From EN  
12. Output Voltage Start-Up and Shutdown  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
8 Detailed Description  
8.1 Overview  
The TPS543B20 device is 25-A, high-performance, synchronous buck converter with two integrated N-channel  
NexFET™ power MOSFETs. These devices implement the fixed frequency non-compensation mode control.  
Safe pre-bias capability eliminates concerns about damaging sensitive loads. Two TPS543B20 devices can be  
paralleled together to provide up to 50-A load. Current sensing for over-current protection and current sharing  
between devices is done by sampling a small portion of the power stage current providing accurate information  
independent on the device temperature.  
Advanced Current Mode (ACM) is an emulated peak current control topology. It supports stable static and  
transient operation without complex external compensation design. This control architecture includes an internal  
ramp generation network that emulates inductor current information, enabling the use of low ESR output  
capacitors such as multi-layered ceramic capacitors (MLCC). The internal ramp also creates a high signal to  
noise ratio for good noise immunity. The TPS543B20 has 10 ramp options (see Ramp Selections for detail) to  
optimize internal loop for various inductor and output capacitor combinations with only a simple resistor to GND.  
The TPS543B20 is easy to use and allows low external component count with fast load transient response.  
Fixed-frequency modulation also provides ease-of-filter design to overcome EMI noise.  
8.2 Functional Block Diagram  
VDD  
PVIN  
BP  
BOOT  
BP  
Linear Regulators  
BP3  
MODE  
API  
SW  
SYNC  
RT  
Driver  
Phase Managment  
PWM  
Q
S
R
Control:  
Anti-Cross-  
Conduction,  
Prebias  
Oscillator  
BP  
Stacked NexFET  
Power Stage  
PGND  
ACM Controller  
Overcurrent  
Detection,  
Current sensing  
OC Event  
Average Iout  
GND  
VSHARE  
ISHARE  
Phase  
Balance  
AGND  
Fault  
Control  
RSP  
RSN  
Fault  
Start and Reference  
EN  
SS  
VSEL  
PGD  
ILIM  
REMOTE SENSE AMP  
RAMP  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
8.3 Feature Description  
The TPS543B20 device is a high-performance, integrated FET converter supporting current rating up to 25-A  
thermally. It integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB  
layout area. In order to limit the switch node ringing of the device, TI recommends adding a R-C snubber from  
the SW node to the PGND pins. Also a 10~100nF capacitor from VIN (Pin 25) to GND (Pin2 7) is mandatory to  
reduce high side FET stress. Refer to Layout Guidelines for the detailed recommendations.  
The typical on-resistance (RDS(on)) for the high-side MOSFET is 4.1 mΩ and typical on-resistance for the low-  
side MOSFET is 1.9 mΩ with a nominal gate voltage (VGS) of 5 V.  
8.4 Device Functional Modes  
8.4.1 Soft-Start Operation  
In the TPS543B20 device, the soft-start time controls the inrush current required to charge the output capacitor  
bank during start-up. The device offers 10 selectable soft-start options ranging from 0.5 ms to 32 ms. When the  
device is enabled the reference voltage ramps from 0 V to the final level defined by VSEL pin strap configuration,  
in a given soft-start time, which can be selected by SS pin. See 1 for details.  
1. SS Pin Configuration  
SS TIME (ms)  
RESISTOR VALUE (k)(1)  
0.5  
1
0
8.66  
15.4  
23.7  
OPEN  
34.8  
51.1  
78.7  
121  
2
5
4
8
12  
16  
24  
32  
187  
(1) The E48 series resistors with no more than 1% tolerance are recommended.  
8.4.2 Input and VDD Undervoltage Lockout (UVLO) Protection  
The TPS543B20 provides fixed VIN and VDD undervoltage lockout threshold and hysteresis. The typical VIN  
turnon threshold is 3.2 V and hysteresis is 0.2 V. The typical VDD turnon threshold is 3.8 V and hysteresis is  
0.2 V. No specific power-up sequence is required.  
8.4.3 Power Good and Enable  
The TPS543B20 has power-good output that indicates logic high when output voltage is within the target. The  
power-good function is activated after soft-start has finished. When the soft-start ramp reaches 90% of setpoint,  
PGOOD detection function will be enabled. If the output voltage becomes within ±8% of the target value, internal  
comparators detect power-good state and the power good signal becomes high after a delay. If the output  
voltage goes outside of ±12% of the target value, the power good signal becomes low after an internal delay.  
The power-good output is an open-drain output and must be pulled up externally.  
This part has internal pull up for EN. EN is internally pulled up to BP when EN pin is floating. EN can be pulled  
low through external grounding. When EN pin voltage is below its threshold, TPS543B20 enters into shutdown  
operation, and the minimum time for toggle EN to reset is 5 µs.  
8.4.4 Voltage Reference  
VSEL pin strap is used to program initial boot voltage value from 0.6 V to 1.1 V by the resistor connected from  
VSEL to AGND. The initial boot voltage is used to program the main loop voltage reference point. VSEL voltage  
settings provide TI designated discrete internal reference voltages. 2 lists internal reference voltage  
selections.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
2. VSEL Pin Configuration  
DEFAULT Vref (V)  
RESISTOR VALUE (k)(1)  
0.6  
0.7  
0
8.66  
15.4  
23.7  
34.8  
51.1  
78.7  
OPEN  
121  
0.75  
0.8  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
187  
(1) The E48 series resistors with no worse than 1% tolerance are  
recommended  
8.4.5 Prebiased Output Start-up  
The TPS543B20 device prevent current from being discharged from the output during start-up, when a pre-  
biased output condition exists. No SW pulses occur until the internal soft-start voltage rises above the error  
amplifier input voltage, if the output is pre-biased. As soon as the soft-start voltage exceeds the error amplifier  
input, and SW pulses start, the device limits synchronous rectification after each SW pulse with a narrow on-time.  
The low-side MOSFET on-time slowly increases on a cycle-by-cycle basis until 128 pulses have been generated  
and the synchronous rectifier runs fully complementary to the high-side MOSFET. This approach prevents the  
sinking of current from a pre-biased output, and ensures the output voltage start-up and ramp-to regulation  
sequences are smooth and monotonic.  
8.4.6 Internal Ramp Generator  
Internal ramp voltage is generated from duty cycle that contains emulated inductor ripple current information and  
then feed it back for control loop regulation and optimization according to required output power stage, duty ratio  
and switching frequency. Internal ramp amplitude is set by RAMP pin by adjusting an internal ramp generation  
capacitor CRAMP, selected by the resistor connected from MODE pin to GND. For best performance, we  
recommend ramp signal to be no more than 4 times of output ripple signal for all Low ESR output capacitor  
(MLCC) applications, or no more than 2 times larger than output ripple signal for regular ESR output capacitor  
(Pos-cap) applications. For design recommendation, please find the design tool at www.ti.com/WEBENCH.  
RAMP  
RRAMP  
Duty Cycle  
RAMP  
SLOPE  
Slope  
Compensation  
10 Selections  
CRAMP  
13. Internal Ramp Generator  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
8.4.6.1 Ramp Selections  
RAMP pin sets internal ramp amplitude for the control loop. RAMP amplitude is determined by internal RC,  
selected by the resistor connected from MODE pin to GND, to optimize the control loop. See 3.  
3. RAMP Pin-strapping Selection  
CRAMP (pF)  
1
RESISTOR VALUE (k)(1)  
0
1.42  
1.94  
2.58  
3.43  
4.57  
6.23  
8.91  
14.1  
29.1  
8.66  
15.4  
23.7  
34.8  
51.1  
78.7  
121  
187  
Open  
(1) The E48 series resistors with tolerance of 1% or less are  
recommended.  
8.4.7 Switching Frequency  
The converter supports analog frequency selections from 300 kHz to 2 MHz, for stand alone device and sync  
frequency from 300 kHz to 1 MHz for stackable configuration. The RT pin also sets clock sync point (SP) for the  
slave device.  
Switching Frequency Configuration for Stand-alone and Master Device in Stackable Configuration  
MODE  
TPS543B20  
SYNC  
RT  
14. Stand-alone: RT Pin Sets the Switching Frequency  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
RT  
RT  
SYNC  
SYNC  
15. Stackable: Master (as Clock Master) RT Pin Sets Switching Frequency, and passes it to Slave  
Resistor RRT sets the continuous switching frequence selection by  
20 ´ 109  
¦
´ 2  
SW  
RRT  
=
-
¦
2000  
SW  
where  
R is the resistor from RT pin to GND, in Ω  
ƒSW is the desired switching frequency, in Hz  
(1)  
8.4.8 Clock Sync Point Selection  
The TPS543B20 device implements an unique clock sync scheme for phase interleaving during stackable  
configuration. The device will receive the clock through sync pin and generate sync points for another  
TPS543B20 device to sync to one of them to achieve phase interleaving. Sync point options can be selected  
through RT pin when 1) device is configurated as master sync in, 2) device is configured as slave. See 5 for  
Control Mode Selection.  
System Clock  
or  
Master Clock  
0
1/2  
0
Slave clock  
1/2  
16. 2-Phase Stackable with 180° Clock Phase Shift  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
4. RT Pin Sync Point Selection  
CLOCK SYNC OPTIONS  
0 (0° Interleaving)  
RESISTOR VALUE (k)  
0
1/4 (90° Interleaving)  
1/3 (120° Interleaving)  
2/3 (240° Interleaving)  
3/4 (270° Interleaving)  
1/2 (180° Interleaving)  
8.66  
15.4  
23.7  
34.8  
OPEN  
8.4.9 Synchronization and Stackable Configuration  
The TPS543B20 device can synchronize to an external clock which must be equal to or higher than internal  
frequency setting. For stand alone device, the external clock should be applied to the SYNC pin. A sudden  
change in synchronization clock frequency causes an associated control loop response, resulting in an overshoot  
or undershoot on the output voltage.  
In dual phase stackable configuration:  
1. when there is no external system clock applied, the master device will be configured as clock master,  
sending out pre-set switching frequency clock to slave device through SYNC pin. Slave will receive this clock  
as switching clock with phase interleaving.  
2. when a system clock is applied, both master and slave devices will be configured as clock slave, they will  
sync to the external system clock as switching frequency with proper phase shift  
8.4.10 Dual-Phase Stackable Configurations  
8.4.10.1 Configuration 1: Master Sync Out Clock-to-Slave  
Direct SYNC, VSHARE and ISHARE connections between Master and Slave.  
Switching frequency is set by RT pin of Master, and pass to slave through SYNC pin. SYNC pin of master will  
be configured as sync out by it’s MODE pin.  
Slave receives clock from SYNC pin. It’s RT pin determines the sync point for clock phase shift.  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
23.7 k  
F_SW  
51.1 k  
RT  
RT  
SYNC  
SYNC  
Open  
Sync Point  
17. 2-Phase Stackable with 180° Phase Shift: Master Sync Out Clock-to-Slave  
8.4.10.2 Configuration 2: Master and Slave Sync to External System Clock  
Direct connection between external clock and SYNC pin of Master and Slave.  
Direct VSHARE and ISHARE connections between Master and Slave.  
SYNC pin of master will be configured as sync in by it’s MODE pin.  
Master and Slave receive external system clock from SYNC pin. Their RT pin determine the sync point for  
clock phase shift.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
Master  
Slave  
VSHARE  
ISHARE  
VSHARE  
ISHARE  
MODE  
MODE  
51.1 k  
34.8 k  
RT  
RT  
SYNC  
SYNC  
0 k  
Sync Point  
Open  
Sync Point  
System Clock  
18. 2-Phase Stackable with 180° Phase Shift: Master and Slave Sync to External System Clock  
8.4.11 Operation Mode  
The operation mode and API/Body Brake feature is set by the MODE pin. They are selected by the resistor  
connected from MODE pin to GND. Mode pin sets the device to be stand-alone mode or stackable mode. In  
stand-alone mode, MODE pin sets the API on/off or trigger point sensitivity of API (1x stands for most sensitive  
and 4x stands for least sensitive). In stackable mode, the MODE pin sets the device as master or slave, as well  
as SYNC pin function (sync in or sync out) of the master device.  
5. MODE Pin-Strapping Selection  
CONTROL MODE  
SELECTION  
RESISTOR VALUE (kΩ) and API/BB  
API/BODY BRAKE  
NOTE  
Threshold(1)  
API OFF  
BB OFF  
Open  
API ON  
BB OFF  
15.4, API = 35 mV  
Standalone  
API/body brake  
Sync pin to receive clock  
RT pin to set frequency  
121, API = 15 mV, BB = 30 mV  
187, API = 25 mV, BB = 30 mV  
8.66, API = 35 mV, BB = 30 mV  
78.7, API = 45 mV, BB = 30 mV  
API ON  
BB ON  
(API Threshold Setting)  
Sync pin to send out clock  
RT pin to set frequency  
(Master sync out)  
(Master sync in)  
(Slave Sync In)  
23.7  
34.8  
51.1  
API OFF  
BB OFF  
Sync pin to receive clock  
RT pin to set sync point  
Sync pin to receive clock  
RT pin to set sync point  
(1) The E48 series resistors with tolerance of 1% or less are recommended.  
8.4.12 API/BODY Brake  
TPS543B20 is a true fixed frequency converter. The major limitation for any fixed frequency converter is that  
during transient load step up, the converter needs to wait for the next clock cycle to response to the load change,  
depending on loop bandwidth design and the timing of load transient, this delay time could cause additional  
output voltage drop. TPS543B20 implements a special circuitry to improve transient performance. During load  
step up, the converter senses both the speed and the amplitude of the output voltage change, if the output  
voltage change is fast and big enough, the converter will issue an additional PWM pulse before the next  
available clock cycle to stop output voltage from further dropping, thus reducing the undershoot voltage.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
During load step down, TPS543B20 implements a body brake function, that turns off both high-side and lowside  
FET, and allows power to dissipate through the low-side body diode, reducing overshoot. This approach is very  
effective while having some impact on efficiency during transient. See 19 and 20.  
Vout œ API enabled  
Vout œ API disabled  
Vout œ Body Brake disabled  
Vout œ Body Brake enabled  
LOAD  
LOAD  
Switch Node  
Switch Node  
19. Undershoot Comparison with API ON/OFF  
20. Overshoot Comparison with API ON/OFF  
8.4.13 Sense and Overcurrent Protection  
8.4.13.1 Low-Side MOSFET Overcurrent Protection  
The TPS543B20 utilizes ILIM pin to set the OCP level. The ILIM pin should be connected to AGND through the  
ILIM voltage setting resistor, RILIM. The ILIM terminal sources IILIM current, which is around 11.2 μA typically at  
room temperature, and the ILIM level is set to the OCP ILIM voltage VILIM as shown in 公式 2. In order to  
provide both good accuracy and cost effective solution, TPS543B20 supports temperature compensated  
MOSFET RDS(on) sensing.  
VILIM mV = RILIM (kW) ì IILIM (mA)  
(
)
Consider RDS(on) variation vs VDD in calculation  
(2)  
Also, TPS543B20 performs both positive and fixed negative inductor current limiting.  
The inductor current is monitored by the voltage between GND pin and SW pin during the OFF time. ILIM has  
1200 ppm/°C temperature slope to compensate the temperature dependency of the RDS(on). The GND pin is used  
as the positive current sensing node.  
The device has cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. VILIM sets the Peak level of the inductor current. Thus, the load current at the overcurrent  
threshold, IOCP, can be calculated as shown in 公式 3.  
IOCP = V  
(14 × RDS(on)) - I  
2
ILIM  
IND(ripple)  
V
(VIN - VOUT ) × VOUT  
1
ILIM  
=
-
14 × RDS(on) 2 × L × ƒSW  
×
V
IN  
where  
RDS(on) is the on-resistance of the low-side MOSFET.  
(3)  
公式 3 is valid for VDD 5 V. Use 1.58 mΩ for RDS(on) in calculation, which is the pure on-resistance for current  
sense.  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
If an overcurrent event is detected in a given switching cycle, the device increments an overcurrent counter.  
When the device detects three consecutive overcurrent (either high-side or low-side) events, the converter  
responds, entering continuous restart hiccup. In continuous hiccup mode, the device implements a 7 soft-start  
cycle timeout, followed by a normal soft-start attempt. When the overcurrent fault clears, normal operation  
resumes; otherwise, the device detects overcurrent and the process repeats.  
8.4.13.2 High-Side MOSFET Overcurrent Protection  
The device also implements a fixed high-side MOSFET overcurrent protection to limit peak current, and prevent  
inductor saturation in the event of a short circuit. The device detects an overcurrent event by sensing the voltage  
drop across the high-side MOSFET during ON state. If the peak current reaches the IHOSC level on any given  
cycle, the cycle terminates to prevent the current from increasing any further. High-side MOSFET overcurrent  
events are counted. If the devices detect three consecutive overcurrent events (high-side or low-side), the  
converter responds by entering continuous restart hiccup.  
8.4.14 Output Overvoltage and Undervoltage Protection  
The device includes both output overvoltage protection and output undervoltage protection capability. The  
devices compare the RSP pin voltage to internal selectable pre-set voltages. If the RSP voltage with respect to  
RSN voltage rises above the output overvoltage protection threshold, the device terminates normal switching and  
turns on the low-side MOSFET to discharge the output capacitor and prevent further increases in the output  
voltage. Then the device enters continuous restart hiccup.  
If the RSP pin voltage falls below the undervoltage protection level, after soft-start has completed, the device  
terminates normal switching and forces both the high-side and low-side MOSFETs off, then enters hiccup time-  
out delay prior to restart.  
8.4.15 Overtemperature Protection  
An internal temperature sensor protects the devices from thermal runaway. The internal thermal shutdown  
threshold, TSD, is fixed at 165°C typical. When the devices sense a temperature above TSD, power conversion  
stops until the sensed junction temperature falls by the thermal shutdown hysteresis amount; then, the device  
starts up again.  
8.4.16 RSP/RSN Remote Sense Function  
RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for  
output voltage programming, the RSP pin should be connected to the mid-point of the resistor divider and the  
RSN pin should always be connected to the load return.  
In the case where feedback resistors are not required as when the VSEL programs the output voltage set point,  
the RSP pin should be connected to the positive sensing point of the load and the RSN pin should always be  
connected to the load return. RSP and RSN pins are extremely high-impedance input terminals of the true  
differential remote sense amplifier. The feedback resistor divider should use resistor values much less than 100  
kΩ. A simple rule of thumb is to use a 10-kΩ lower divider resistor and then size the upper resistor to achieve the  
desired ratio.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
TPS543B20  
TPS543B20  
2
1
RSN  
RSP  
2
1
RSN  
RSP  
BOOT  
5
BOOT  
5
Load  
Load  
+
+
Copyright ©2017, Texas Instruments Incorporated  
Copyright ©2017, Texas Instruments Incorporated  
21. Remote Sensing With Feedback Resistors  
22. Remote Sensing Without Feedback Resistors  
8.4.17 Current Sharing  
When devices operate in dual-phase stackable application, a current sharing loop maintains the current balance  
between devices. Both devices share the same internal control voltage through VSHARE pin. The sensed  
current in each phase is compared first in a current share block by connecting ISHARE pin of each device, then  
the error current is added into the internal loop. The resulting voltage is compared with the PWM ramp to  
generate the PWM pulse.  
8.4.18 Loss of Synchronization  
During sync clock condition, each individual converter will continuously compare current falling edge and  
previous falling edge, if current falling edge exceeded a 1us delay versus previous pulse, converter will declare a  
lost sync fault, and response by pulling down ISHARE to shut down all phases.  
Declare fault and take action  
Sync fault delay  
Switching  
pulses  
Tp  
Tp  
Tdelay  
Tp +  
23. Switching Response When Sync Clock Lost  
22  
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS543B20 device is a highly-integrated synchronous step-down DC/DC converter. The device is used to  
convert a higher DC input voltage to a lower DC output voltage, with a maximum output current of 25 A. Use the  
following design procedure to select key component values for this device.  
9.2 Typical Application: TPS543B20 Stand-alone Device  
PVIN  
EN  
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
PGD  
SYNC  
VSEL  
SS  
RT  
Thermal Tab  
MODE  
RAMP  
+
-
Figure 24. 4.5-V to 19-V Input, 1-V Output, 25-A Converter  
Copyright © 2017–2018, Texas Instruments Incorporated  
23  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
9.2.1 Design Requirements  
For this design example, use the input parameters shown in Table 6.  
Table 6. Design Example Specifications  
PARAMETER  
Input voltage  
VIN(ripple) Input ripple voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN  
4
12  
19  
V
V
V
IOUT = 25 A  
0.4  
VOUT  
Output voltage  
0.9  
Line regulation  
5 V VIN 19 V  
0 V IOUT 25 A  
IOUT = 25 A  
0.5%  
0.5%  
Load regulation  
VPP  
VOVER  
VUNDER  
IOUT  
tSS  
Output ripple voltage  
Transient response overshoot  
Transient response undershoot  
Output current  
20  
50  
mV  
mV  
mV  
A
ISTEP = 10 A  
ISTEP = 10A  
50  
5 V VIN 19 V  
VIN = 12 V  
20  
25  
Soft-start time  
4
ms  
A
IOC  
Overcurrent trip point(1)  
30  
η
Peak efficiency  
IOUT = 10 A, VIN = 12 V, VDD = 5 V  
90%  
500  
fSW  
Switching frequency  
300  
700  
kHz  
(1) DC overcurrent level  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS543B20 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Switching Frequency Selection  
Select a switching frequency for the TPS543B20. There is a trade off between higher and lower switching  
frequencies. Higher switching frequencies may produce smaller solution size using lower valued inductors and  
smaller output capacitors compared to a power supply that switches at a lower frequency. However, the higher  
switching frequency causes extra switching losses, which decrease efficiency and impact thermal performance.  
In this design, a moderate switching frequency of 500 kHz achieves both a small solution size and a high  
efficiency operation is selected. The device supports continuous switching frequency programming; see  
Equation 4. additional considerations (internal ramp compensation) other than switching frequency need to be  
included.  
24  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
20 ´ 109  
500 ´103  
500 ´103  
RRT  
=
- 2 ´  
= 39.5 kW  
2000  
(4)  
In this case, a standard resistor value of 40.2 kΩ is selected.  
9.2.2.3 Inductor Selection  
To calculate the value of the output inductor (L), use . The coefficient KIND represents the amount of inductor-  
ripple current relative to the maximum output current. The output capacitor filters the inductor-ripple current.  
Therefore, selecting a high inductor-ripple current impacts the selection of the output capacitor because the  
output capacitor must have a ripple-current rating equal to or greater than the inductor-ripple current. Generally,  
the KIND should be kept between 0.1 and 0.3 for balanced performance. Using this target ripple current, the  
required inductor size can be calculated as shown in Equation 5.  
VOUT  
IN ´ ƒSW  
V
IN - VOUT  
0.9 V ´ (12 V - 0.9 V)  
L =  
-
=
= 444 nH  
V
I
OUT ´KIND  
12 V ´ 500 kHz ´ 25 A ´ 0.15  
(5)  
A standard inductor value of 470 nH is selected. For this application, Wurth 744309047 was used from the web-  
orderable EVM.  
9.2.2.4 Input Capacitor Selection  
The TPS543B20 devices require a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a  
value of at least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input  
decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high  
switching currents demanded when the high-side MOSFET switches on, while providing minimal input voltage  
ripple as a result. This effective capacitance includes any DC bias effects. The voltage rating of the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple to the device during full load. The input ripple current can be  
calculated using Equation 6.  
V -V  
VOUT  
(
)
IN OUT  
ICIN(rms) = IOUT(max)  
´
´
= 6.6 Arms  
V
V
IN  
IN  
(6)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in Equation 7 and Equation 8. The input ripple is composed of a capacitive portion, VRIPPLE(cap), and a  
resistive portion, VRIPPLE(esr)  
.
IOUT (max ) × VOUT  
CIN(min )  
=
= 38.5 JF  
VRIPPLE  
× V  
× f  
;
IN max SW  
:
cap  
;
:
(7)  
(8)  
VRIPPLE(ESR)  
ESRCIN (max )  
=
= 7 m3  
IRIPPLE  
IOUT max + @  
A
:
;
2
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor  
must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input  
ripple for VRIPPLE(cap), and 0.3-V input ripple for VRIPPLE(esr). Using Equation 7 and Equation 8, the minimum input  
capacitance for this design is 38.5 µF, and the maximum ESR is 9.4 mΩ. For this example, four 22-μF, 25-V  
ceramic capacitors and one additional 100-μF, 25-V low-ESR polymer capacitors in parallel were selected for the  
power stage.  
9.2.2.5 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with  
a voltage rating of 25 V or higher.  
Copyright © 2017–2018, Texas Instruments Incorporated  
25  
 
 
 
 
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
9.2.2.6 BP Pin  
Bypass the BP pin to GND with 4.7-µF of capacitance. In order for the regulator to function properly, it is  
important that these capacitors be localized to the TPS543B20 , with low-impedance return paths. See Power  
Good and Enable section for more information.  
9.2.2.7 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS543B20 within absolute maximum ratings without ringing reduction  
techniques, some designs may require external components to further reduce ringing levels. This example uses  
two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between  
the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the  
outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and  
discharge once the high-side MOSFET is turned on. For this example twin 2.2-nF, 25-V, 0603-sized high-  
frequency capacitors are used. The placement of these capacitors is critical to its effectiveness.  
Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF  
capacitor and a 1-Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125  
W, nearly twice the estimated power dissipation. See SLUP100 for more information about snubber circuits.  
9.2.2.8 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
9.2.2.8.1 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use Equation 9 and Equation 10 to estimate the amount of capacitance needed for a given dynamic load step  
and release.  
NOTE  
There are other factors that can impact the amount of output capacitance for a specific  
design, such as ripple and stability.  
26  
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
2
L ´ DILOAD(max)  
DILOAD(max) ´ 1- D ´ t  
SW  
(
)
DVLOAD(INSERT)  
COUT(min_under)  
=
+
2 ´ DVLOAD(INSERT) ´ (V -VVOUT  
)
IN  
(9)  
2
LOUT  
´
DI  
LOAD(max)  
(
)
2 ´ DVLOAD(release) × VOUT  
COUT(min_over)  
=
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over)is the minimum output capacitance to meet the overshoot requirement  
D is the duty cycle  
L is the output inductance value (0.47 µH)  
ILOAD(max) is the maximum transient step (10 A)  
VOUT is the output voltage value (900 mV)  
tSW is the switching period (2.0 µs)  
VIN is the minimum input voltage for the design (12 V)  
VLOAD(insert) is the undershoot requirement (50 mV)  
VLOAD(release) is the overshoot requirement (50 mV)  
(10)  
This example uses a combination of POSCAP and MLCC capacitors to meet the overshoot requirement.  
POSCAP bank #1: 2 x 330 µF, 2.5 V, 3 mΩ per capacitor  
MLCC bank #2: 3 × 100 µF, 6.3 V, 1 mΩ per capacitor  
9.2.2.8.2 Ramp Selection Design to Ensure Stability  
Certain criteria is recommended for TPS543B20 to achieve optimized loop stability, bandwidth and switching jitter  
performance. As a rule of thumb, the internal ramp voltage should be 2~4 times bigger than the output capacitor  
ripple(capacitive ripple only). TPS543B20 is defined to be ease-of-use, for most applications, TI recommends  
ramp resistor to be 187 kΩ to achieve the optimized jitter and loop response. For detailed design procedure, see  
the WEBENCH® Power Designer.  
Copyright © 2017–2018, Texas Instruments Incorporated  
27  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
9.2.3 Application Curves  
VIN = 12 V  
500 kHz  
10 A to 20 A to 10 A  
VOUT = 900 mV  
10-A Step at 40 A/μs  
VIN = 12 V  
500 kHz  
10 A to 20 A to 10 A  
VOUT = 900 mV  
10-A Step at 40 A/μs  
Figure 25. Transient Response When Load Steps Up  
Figure 26. Transient Response When Load Steps Down  
VOUT = 900 mV  
Figure 27. Overcurrent Hiccup Response  
28  
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
9.3 System Example  
9.3.1 Two-Phase Stackable  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
RAMP  
MODE  
RT  
SS  
Slave  
VSEL  
SYNC  
PGD  
EN  
LOAD  
PVIN  
+
œ
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGD  
SYNC  
VSEL  
SS  
Master  
RT  
Thermal Tab  
MODE  
RAMP  
Figure 28. 2-Phase Stackable  
See Synchronization and Stackable Configuration section.  
Copyright © 2017–2018, Texas Instruments Incorporated  
29  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
System Example (continued)  
9.3.1.1 Application Curves  
Figure 30. Transient Response of 25-A to 50-A Load  
Figure 29. Transient Response of 0.9-V Output at 12 VIN  
,
Transient is 25 A to 50 A, Step is 25 A at 30 A/μs  
at 30 A/μs Rise  
Figure 31. Transient Response of 50-A to 25-A Load  
Figure 32. Output Ripple and SW Node  
of 0.9-V Output at 12 VIN, 50-A Output  
at 30 A/μs Fall  
Figure 34. Start up from Enable,  
0.9-V Output at 12 VIN, 50-A Output  
Figure 33. Output Ripple and SW Node  
of 0.9-V Output at 12 VIN, 0-A Output  
30  
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
System Example (continued)  
Figure 35. 0.6-V Pre-Bias Start Up From Enable,  
0.9-V Output at 12 VIN, 0-A Output  
Figure 36. Output Voltage Start-up and Shutdown,  
0.9-V Output at 12 VIN, 5-A Output  
Figure 37. Master-Slave 180° Synchronization  
10 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 4 V and 19 V. Ensure the supply is well  
regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is  
the quality of the PCB layout and grounding scheme. See the recommendations in Layout.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
It is absolutely critical that all GND pins, including AGND (pin 29), GND (pin 27), and PGND (pins 13, 14, 15,  
16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or plane.  
The number of thermal vias needed to support 25-A thermal operation should be as many as possible; in the  
EVM design orderable on the Web, a total of 23 thermal vias are used. The TPS543B20EVM-799 is available  
for purchase at ti.com.  
Place the power components (including input/output capacitors, output inductor, and TPS543B20 device) on  
one side of the PCB (solder side). At least one or two innner layers/planes should be inserted, connecting to  
power ground, in order to shield and isolate the small signal traces from noisy power lines.  
Place the VIN decoupling capacitors as close to the PVIN and PGND as possible to minimize the input AC  
current loop. The high frequency decoupling capacitor (1 nF to 0.1 µF) should be placed next to the PVIN pin  
and PGND pin as close as the spacing rule allows. This helps surpressing the switch node ringing.  
Place a 10-nF to 100-nF capacitor close to IC from Pin 25 VIN to Pin 27 GND.  
Place VDD and BP decoupling capacitors as close to the device pins as possible. Do not use PVIN plane  
connection for VDD. VDD needs to be tapped off from PVIN with separate trace connection. Ensure to  
provide GND vias for each decoupling capacitor and make the loop as small as possible.  
The PCB trace defined as switch node, which connects the SW pins and up-stream of the output inductor  
should be as short and wide as possible. In web orderable EVM design, the SW trace width is 400mil. Use  
separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine these  
connections.  
All sensitive analog traces and components such as RAMP, RSP, RSN, ILIM, MODE, VSEL and RT should  
be placed away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise  
coupling. In addition, MODE, VSEL, ILIM, RAMP and RT programming resistors should be placed near the  
device/pins.  
The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high  
impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion.  
Route them directly to either the load sense points (+ and –) or the output bulk capacitors. The internal circuit  
uses the VOSNS pin for on-time adjustment. It is critical to tie the VOSNS pin directly tied to VOUT (load  
sense point) for accurate output voltage result.  
Use caution when routing of the SYNC, VSHARE and ISHARE traces for 2-phase configurations. The SYNC  
trace carries a rail-to-rail signal and should be routed away from sensitive analog signals, including the  
VSHARE, ISHARE, RT, and FB signals. The VSHARE and ISHARE traces should also be kept away from  
fast switching voltages or currents formed by the PVIN, AVIN, SW, BOOT, and BP pins.  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
11.2 Layout Example  
Bypass for internal  
regulators BP, VDD.  
Use multiple vias to reduce  
parasitic inductance  
Place PVIN bypass capacitors as close  
as possible to IC, with best high  
frequency capacitor closest to PVIN/  
PGND pins  
EN  
Signal  
PVIN  
Internal AGND Plane to  
reduce the BP bypass  
parasitics .  
PGND  
Kelvin Connect to  
IC RSP and RSN pins  
EN  
PGD  
SYNC  
VSEL  
SS  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
Connect GND to  
Thermal Pad  
Connect AGND to  
Thermal Pad  
Thermal Pad  
RSN  
RT  
MODE  
RAMP  
RSNSœ  
Place best high  
frequency output  
capacitor between  
sense point  
AGND and GND are  
only connected  
together on Thermal  
Pad.  
CBOOT  
RBOOT  
RSNS+  
AGND  
RSP  
Optional RC  
Snubber  
Sense point should be  
directly at the load  
VOUT  
For best efficiency, use a heavy weight copper  
and place these planes on multiple PCB layers  
L1  
Minimize SW area  
for least noise.  
Keep sensitive  
traces away from  
SW and BOOT on  
all layers  
38. Example Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
11.3 Package Size, Efficiency and Thermal Performance  
The TPS543B20 device is available in a 5 mm x 7 mm, QFN package with 40 power and I/O pins. It employs TI  
proprietary MCM packaging technology with thermal pad. With a properly designed system layout, applications  
achieve optimized safe operating area (SOA) performance. The curves shown in 39 and 40 are based on  
the orderable evaluation module design.  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
Series1  
Series1  
100 LFM  
200 LFM  
400 LFM  
100 LFM  
200 LFM  
400 LFM  
40  
40  
30  
30  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
D007  
D008  
VIN = 12 V  
VOUT = 5 V  
500 kHz  
VIN = 12 V  
VOUT = 1 V  
500 kHz  
39. Safe Operating Area  
40. Safe Operating Area  
41. Thermal Image at 0.9-V Output at 12 VIN, 25-A Output, at 25°C Ambient  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
Package Size, Efficiency and Thermal Performance (接下页)  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
25  
42. Recommended Reflow Oven Thermal Profile  
7. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(  
up)  
Average ramp-up rate, TS(MAX) to TP  
Average ramp-down rate, TP to TS(MAX)  
3
6
°C/s  
°C/s  
rRAMP(  
down)  
PRE-HEAT  
TS  
tS  
Pre-heat temperature  
Pre-heat time, TS(min) to TS(max)  
150  
60  
200  
180  
°C  
s
REFLOW  
TL  
TP  
tL  
Liquidus temperature  
Peak temperature  
217  
°C  
°C  
s
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5°C of peak temperature, TP  
Total time from 25°C of peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
版权 © 2017–2018, Texas Instruments Incorporated  
35  
TPS543B20  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS543B20 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.1.2 文档支持  
12.1.2.1 相关文档  
请参阅如下相关文档:  
TPS543B20 25A 单相同步降压转换器》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可  
每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
NexFET, PowerStack, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS543B20  
www.ti.com.cn  
ZHCSGJ0B MAY 2017REVISED MARCH 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS543B20RVFR  
TPS543B20RVFT  
ACTIVE  
LQFN-CLIP  
LQFN-CLIP  
RVF  
40  
40  
RoHS-Exempt  
& Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS543B20  
TPS543B20  
ACTIVE  
RVF  
RoHS-Exempt  
& Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS543B20RVFR  
TPS543B20RVFT  
LQFN-  
CLIP  
RVF  
RVF  
40  
40  
2500  
250  
330.0  
16.4  
5.35  
7.35  
1.7  
8.0  
16.0  
Q1  
LQFN-  
CLIP  
180.0  
16.4  
5.35  
7.35  
1.7  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Apr-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS543B20RVFR  
TPS543B20RVFT  
LQFN-CLIP  
LQFN-CLIP  
RVF  
RVF  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS543B20RVFT

具有自适应内部补偿功能的 4V 至 19V、25A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS543B22

具有 4V 至 18V 输入和高级电流模式的 20A 同步 SWIFT™ 降压转换器
TI

TPS543B22RYSR

具有 4V 至 18V 输入和高级电流模式的 20A 同步 SWIFT™ 降压转换器 | RYS | 17 | -40 to 150
TI

TPS543C20A

具有自适应内部补偿功能的 4V 至 16V、40A 同步 SWIFT™ 降压转换器
TI

TPS543C20ARVFR

具有自适应内部补偿功能的 4V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS54418

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418A

2.95V 至 6V 输入 4A SWIFT™ 同步降压转换器
TI

TPS54418ARTER

2.95V 至 6V 输入 4A SWIFT™ 同步降压转换器 | RTE | 16 | -40 to 150
TI

TPS54418ARTET

暂无描述
TI

TPS54418RTE

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418RTER

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI

TPS54418RTET

2.95 V to 6 V Input, 4 A Output, 2MHz, Synchronous Step Down Switcher With Integrated FETs ( SWIFT™)
TI