TPS548D21RVFR [TI]

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125;
TPS548D21RVFR
型号: TPS548D21RVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

转换器
文件: 总45页 (文件大小:8157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
TPS548D21 1.5V 16V VIN4.5V 22V VDD40A 且支持 AVSO 和全  
差分感应功能的  
SWIFT™ 同步降压转换器  
1 特性  
2 应用  
1
转换输入电压范围 (PVIN)1.5V 16V  
企业级存储、SSDNAS  
输入偏置电压 (VDD) 范围:4.5V 22V  
输出电压范围:0.6V 5.5V  
无线和有线通信基础设施  
工业 PC、自动化、ATEPLC、视频监控  
企业服务器、交换机、路由器  
集成式 2.9mΩ 1.2mΩ 功率 MOSFET,持续输  
出电流为 40A  
ASICSoCFPGADSP 内核和 I/O 电源轨  
电压基准 0.6V 1.2V(阶跃为 50mV),采用  
VSEL 引脚  
3 说明  
±0.5%0.9VREF 公差范围:–40°C +125°C 结  
TPS548D21 器件是一款紧凑型单通道降压转换器,具  
有自适应导通时间 D-CAP3 模式控制。该器件专为高  
精度、高效率、快速瞬态响应、易于使用、外部组件较  
少且空间受限的电源系统而设计。  
真正的差分遥感放大器  
D-CAP3™控制环路,  
通过 REFIN_TRK 引脚 进行模拟 AVS 优化  
该器件 采用 全差分感应和 TI 集成 FET,高侧导通电  
阻为 2.9mΩ,低侧导通电阻为 1.2mΩ。此外,该器件  
还 具有 0.5% 的精度和 0.9V 基准电压,环境温度范围  
介于 –40°C +125°C 之间。其竞争 优势 包括:极少  
的外部组件数、精确的负载调节和线路调节、 FCCM  
工作模式以及内部软启动控制。  
自适应导通时间控制,具有 4 种频率设置可供选  
择:425kHz650kHz875kHz 1.05MHz  
温度补偿和可编程电流限值,具有 RILIM OC 钳  
可选断续或闭锁 OVP UVP  
通过精确的 EN 迟滞实现的 VDD UVLO 外部调整  
预偏置启动支持  
TPS548D21 器件采用 7mm × 5mm40 引脚、  
LQFN-CLIP (RVF) 封装(RoHs 豁免)。  
所有操作期间的 FCCM 模式  
全套故障保护和 PGOOD  
使用 TPS548D21 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件信息(1)  
器件型号  
TPS548D21  
封装  
封装尺寸(标称值)  
LQFN-CLIP (40)  
7.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化应用  
PVIN  
VSEL  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
MODE  
PGOOD  
PGOOD  
ILIM  
TPS548D21  
RSN  
Load  
REFIN_TRK  
RSP  
+
œ
EXT. SOURCE  
ENABLE  
VOSNS  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCI8  
 
 
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 15  
Applications and Implementation ...................... 22  
8.1 Application Information............................................ 22  
8.2 Typical Applications ................................................ 23  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 15  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 37  
11.1 器件支持 ............................................................... 37  
11.2 使用 WEBENCH® 工具创建定制设计 ................... 37  
11.3 接收文档更新通知 ................................................. 37  
11.4 社区资源................................................................ 37  
11.5 ....................................................................... 37  
11.6 静电放电警告......................................................... 37  
11.7 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 38  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (July 2016) to Revision A  
Page  
已更改 将封装名称纠正为“LQFN-CLIP.................................................................................................................................. 1  
添加了 WEBENCH 的链接...................................................................................................................................................... 1  
Added MIN and MAX values for VDD UVLO rising threshold................................................................................................ 5  
Added MIN and MAX for all Soft Start settings and table notes 3 and 4 in Electrical Characteristics................................... 7  
Added last sentence of Overview to replace incomplete phrase from previous paragraph................................................. 11  
Changed VOUT = 5 V to VOUT = 5.5 V for Figure 12 ............................................................................................................. 12  
Added Application Workaround to Support 4-ms and 8-ms SS Settings subsection........................................................... 18  
Added Figure 15 and Figure 16............................................................................................................................................ 18  
Deleted "programmable" between "8 ms" and "delay" ........................................................................................................ 21  
Added new sentence before last sentence of Application Information ................................................................................ 22  
Changed "286 µF" to "28.6 µF" ........................................................................................................................................... 27  
Changed "150 ns" to "300 ns" in definition of tOFF(min), Equation 9....................................................................................... 28  
Changed "963 µF" to "969 µF" ............................................................................................................................................ 28  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
5 Pin Configuration and Functions  
RVF Package  
40-Pin LQFN-CLIP With Thermal Pad  
Top View  
32  
26  
27  
21  
31 30 29 28  
25 24 23 22  
PGND  
PGND  
20  
19  
18  
17  
16  
15  
33  
34  
35  
36  
37  
38  
VSEL  
MODE  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
ILIM  
REFIN_TRK  
RSN  
Thermal Pad  
14  
13  
39  
40  
RSP  
VOSNS  
6
7
8
9
10 11 12  
1
2
3
4
5
Pin Functions  
PIN  
I/O/P(1)  
DESCRIPTION  
NAME  
AGND  
NO.  
30  
G
P
Ground pin for internal analog circuits.  
Supply rail for high-side gate driver (boot terminal). Connect boot capacitor from this pin to SW  
node. Internally connected to BP via bootstrap PMOS switch.  
BOOT  
5
BP  
31  
29  
O
P
LDO output  
DRGND  
Internal gate driver return.  
Enable pin that can turn on the DC/DC switching converter. Use also to program the required  
PVIN UVLO when PVIN and VDD are connected together.  
EN_UVLO  
4
I
FSEL  
ILIM  
32  
36  
I
Program switching frequency, internal ramp amplitude and FCCM mode.  
Program overcurrent limit by connecting a resistor to ground.  
I/O  
Mode selection pin. Select the control mode (DCAP3 or DCAP), internal VREF operation, and  
soft-start timing selection.  
MODE  
34  
I
NC  
NU  
27  
No connect.  
1, 2, 3  
O
P
Not used pins.  
13, 14, 15,  
16, 17, 18,  
19, 20  
PGND  
Power ground of internal FETs.  
PGOOD  
PVIN  
35  
O
P
Open drain power good status signal.  
21, 22, 23,  
24, 25, 26  
Power supply input for integrated power MOSFET pair.  
RSN  
RSP  
38  
39  
I
I
Inverting input of the differential remote sense amplifier.  
Non-inverting input of the differential remote sense amplifier.  
System reference voltage that can be overridden by the external voltage source for tracking  
and sequencing application.  
REFIN_TRK  
SW  
37  
I
6 , 7, 8, 9,  
10, 11, 12  
I/O  
Output switching terminal of power converter. Connect the pins to the output inductor.  
VDD  
28  
40  
P
I
Controller power supply input.  
Output voltage monitor input pin.  
VOSNS  
Program the initial start-up and or reference voltage without feedback resistor dividers (from  
0.6 V to 1.2 V in 50-mV increments).  
VSEL  
33  
I
(1) I = input, O = output, G = GND  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
MAX  
25  
UNIT  
PVIN  
VDD  
25  
BOOT  
34  
DC  
BOOT to SW  
7.7  
9.0  
6
< 10 ns  
NU  
Input voltage  
V
EN_UVLO, VOSNS, MODE, FSEL, ILIM  
7.7  
3.6  
0.3  
0.3  
25  
RSP, REFIN_TRK, VSEL  
RSN  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.3  
–55  
7.7  
150  
150  
V
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
16  
UNIT  
PVIN  
VDD  
1.5  
4.5  
22  
BOOT  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–5  
24.5  
6.5  
7
DC  
BOOT to SW  
NU  
< 10 ns  
5.5  
5.5  
3.3  
0.1  
0.1  
18  
Input voltage  
V
EN_UVLO, VOSNS, MODE, FSEL, ILIM  
RSP, REFIN_TRK, VSEL  
RSN  
PGND, AGND, DRGND  
DC  
SW  
< 10 ns  
27  
Output voltage  
PGOOD, BP  
–0.1  
–40  
7
V
Junction temperature, TJ  
125  
°C  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
6.4 Thermal Information  
TPS548D21  
THERMAL METRIC(1)  
RVF (LQFN-CLIP)  
UNIT  
(40 PINS)  
28.5  
18.3  
3.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.96  
3.6  
ψJB  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
MOSFET ON-RESISTANCE (RDS(on)  
)
High-side FET  
RDS(on)  
(VBOOT – VSW) = 5 V, ID = 25 A, TJ = 25°C  
VVDD = 5 V, ID = 25 A, TJ = 25°C  
2.9  
1.2  
mΩ  
mΩ  
Low-side FET  
INPUT SUPPLY AND CURRENT  
VVDD  
VDD supply voltage  
Nominal VDD voltage range  
4.5  
22  
V
No load, power conversion enabled (no switching),  
TA = 25°C,  
IVDD  
VDD bias current  
2
mA  
µA  
IVDDSTBY  
VDD standby current  
No load, power conversion disabled, TA = 25°C  
700  
UNDERVOLTAGE LOCKOUT  
VVDD_UVLO  
VDD UVLO rising threshold  
4.23  
4.25  
0.2  
4.34  
V
V
VVDD_UVLO(HYS) VDD UVLO hysteresis  
VEN_ON_TH  
VEN_HYS  
EN_UVLO on threshold  
EN_UVLO hysteresis  
1.45  
270  
1.6  
1.75  
340  
V
300  
mV  
EN_UVLO input leakage  
current  
IEN_LKG  
VEN_UVLO = 5 V  
–1  
0
1
µA  
INTERNAL REFERENCE VOLTAGE AND EXTERNAL REFIN TRACKING RANGE  
VINTREF  
Internal REF voltage  
900.4  
mV  
Internal REF voltage  
tolerance  
VINTREFTOL  
–40°C TJ 125°C  
–0.5%  
0.5%  
VINTREF  
Internal REF voltage range  
External REFIN voltage range  
External REFIN margin range  
REFIN_TRK voltage range  
0.6  
0
1.2  
1.25  
1.25  
3.3  
V
V
V
V
VTRKIN_CM  
VTRKIN_MAG  
VSEQIN_CM  
0.5  
0
OUTPUT VOLTAGE  
Loop comparator input offset  
VIOS_LPCMP  
–2.5  
2.5  
1
mV  
voltage(1)  
IRSP  
RSP input current  
VO discharge current  
VRSP = 600 mV  
–1  
8
µA  
IVO(dis)  
VVO = 0.5 V, power conversion disabled  
12  
7
mA  
DIFFERENTIAL REMOTE SENSE AMPLIFIER  
fUGBW  
A0  
Unity gain bandwidth(1)  
Open loop gain(1)  
Slew rate(1)  
Input range(1)  
Input offset voltage(1)  
5
MHz  
dB  
75  
SR  
±4.7  
V/µsec  
V
VIRNG  
VOFFSET  
–0.2  
–3.5  
1.8  
3.5  
mV  
INTERNAL BOOT STRAP SWITCH  
VF  
Forward voltage  
VBP-BOOT, IF = 10 mA, TA = 25°C  
0.1  
0.2  
1.5  
V
IBOOT  
VBST leakage current  
VBOOT = 30 V, VSW = 25 V, TA = 25°C  
0.01  
µA  
(1) Specified by design. Not production tested.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SWITCHING FREQUENCY  
380  
585  
790  
950  
425  
650  
875  
1050  
60  
475  
740  
fSW  
VO switching frequency(2)  
VIN = 12 V, VVO = 1 V, TA = 25°C  
kHz  
995  
1250  
tON(min)  
Minimum on time(1)  
Minimum off time(1)  
ns  
ns  
tOFF(min)  
DRVH falling to rising  
300  
MODE, VSEL, FSEL DETECTION  
Open  
RLOW = 187 kΩ  
VBP  
1.9091  
1.8243  
1.7438  
1.6725  
1.6042  
1.5348  
1.465  
RLOW = 165 kΩ  
RLOW = 147 kΩ  
RLOW = 133 kΩ  
RLOW = 121 kΩ  
RLOW = 110 kΩ  
RLOW = 100 kΩ  
RLOW = 90.9 kΩ  
RLOW = 82.5 kΩ  
RLOW = 75 kΩ  
1.3952  
1.3245  
1.2557  
1.187  
RLOW = 68.1 kΩ  
RLOW = 60.4 kΩ  
RLOW = 53.6 kΩ  
RLOW = 47.5 kΩ  
RLOW = 42.2 kΩ  
RLOW = 37.4 kΩ  
RLOW = 33.2 kΩ  
RLOW = 29.4 kΩ  
RLOW = 25.5 kΩ  
RLOW = 22.1 kΩ  
RLOW = 19.1 kΩ  
RLOW = 16.5 kΩ  
RLOW = 14.3 kΩ  
RLOW = 12.1 kΩ  
RLOW = 10 kΩ  
1.1033  
1.0224  
0.9436  
0.8695  
0.7975  
0.7303  
0.6657  
0.5953  
0.5303  
0.4699  
0.415  
VBP = 2.93 V,  
RHIGH = 100 kΩ  
MODE, VSEL, and FSEL  
detection voltage  
VDETECT_TH  
V
0.3666  
0.3163  
0.2664  
0.2138  
0.1708  
0.1299  
0.0898  
0.0512  
GND  
RLOW = 7.87 kΩ  
RLOW = 6.19 kΩ  
RLOW = 4.64 kΩ  
RLOW = 3.16 kΩ  
RLOW = 1.78 kΩ  
RLOW = 0 Ω  
(2) Correlated with close loop EVM measurement at load current of 30 A.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
RMODE_LOW = 60.4 kΩ  
7
3.6  
1.6  
0.8  
8(3)  
4(4)  
2
10  
5.2  
2.8  
1.6  
VOUT rising from 0 V to  
95% of final set point,  
RMODE_HIGH = 100 kΩ  
RMODE_LOW = 53.6 kΩ  
RMODE_LOW = 47.5 kΩ  
RMODE_LOW = 42.2 kΩ  
tSS  
Soft-start time  
ms  
1
POWER-ON DELAY  
tPODLY  
Power-on delay time  
256  
µs  
PGOOD COMPARATOR  
105  
105  
89  
108  
108  
92  
111  
%VREF  
PGOOD in from higher  
PGOOD in from lower  
PGOOD out to higher  
PGOOD out to lower  
111 %VREFIN_TRK  
95 %VREF  
89  
92  
95 %VREFIN_TRK  
%VREF  
VPGTH  
PGOOD threshold  
120  
120  
68  
%VREFIN_TRK  
%VREF  
68  
%VREFIN_TRK  
mA  
IPG  
PGOOD sink current  
VPGOOD = 0.5 V  
6.9  
0
IPGLK  
PGOOD leakage current  
VPGOOD = 5 V  
–1  
1
2
μA  
ms  
µs  
Delay for PGOOD going in  
8.192  
tPGDLY  
PGOOD delay time  
Delay for PGOOD coming out  
CURRENT DETECTION  
VILM  
VILIM voltage range  
On-resistance (RDS(on)) sensing  
RLIM = 130 kΩ  
0.1  
1.2  
V
A
40  
±10%(5)  
30  
OC tolerance  
RLIM = 97.6 kΩ  
OC tolerance  
A
A
IOCL_VA  
Valley current limit threshold  
±15%(5)  
RLIM = 64.9 kΩ  
OC tolerance  
20  
±20%  
–40  
RLIM = 130 kΩ  
Negative valley current limit  
threshold  
IOCL_VA_N  
A
RLIM = 97.6 kΩ  
RLIM = 64.9 kΩ  
–30  
–20  
Clamp current at VLIM clamp  
at lowest  
ICLMP_LO  
ICLMP_HI  
VZC  
VILIM_CLMP = 0.1 V, TA = 25°C  
VILIM_CLMP = 1.2 V, TA = 25°C  
6.25  
A
Clamp current at VLIM clamp  
at highest  
75  
0
A
Zero cross detection offset  
mV  
(3) In order to use the 8-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
(4) In order to use the 4-ms SS setting, follow the steps outlined in Application Workaround to Support 4-ms and 8-ms SS Settings.  
(5) Calculated from 20-A test data. Not production tested.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VVDD = 12 V, VEN_UVLO = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
V
PROTECTIONS AND OOB  
Wake-up  
3.32  
3.11  
VBPUVLO  
BP UVLO threshold voltage  
Shutdown  
117%  
117%  
120%  
120%  
123%  
VREF  
VOVP  
OVP threshold voltage  
OVP detect voltage  
123% VREFIN_TRK  
V
Default OVMAX threshold  
voltage  
VOV_MAX_DEF  
tOVPDLY  
Default OV_MAX detect threshold voltage  
100-mV over drive  
1.50  
OVP response time  
1
µs  
65%  
65%  
68%  
68%  
1
71%  
VREF  
VUVP  
UVP threshold voltage  
UVP delay filter delay time  
OOB threshold voltage  
UVP detect voltage  
71% VREFIN_TRK  
tUVPDLY  
VOOB  
ms  
VREF  
VREFIN_TRK  
ms  
8%  
8%  
16  
tSS = 1 ms  
tSS = 2 ms  
tSS = 4 ms  
tSS = 8 ms  
24  
ms  
tHICDLY  
Hiccup blanking time  
38  
ms  
67  
ms  
BP VOLTAGE  
VBP  
BP LDO output voltage  
BP LDO dropout voltage  
BP LDO overcurrent limit  
VIN = 12 V, 0 A ILOAD 10 mA,  
VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C  
VIN = 12 V, TA = 25°C  
5.07  
100  
165  
V
VBPDO  
365  
30  
mV  
mA  
IBPMAX  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
155  
Built-In thermal shutdown  
TSDN  
°C  
threshold(1)  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
6.6 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 1.5 V  
VIN = 12 V  
VIN = 16 V  
VIN = 8 V  
VIN = 12 V  
VIN = 16 V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Load Current (A)  
Load Current (A)  
D001  
D001  
VOUT = 1 V  
VDD = 5 V  
FCCM  
fSW = 650 kHz  
VOUT = 5.5 V  
VDD = 5 V  
FCCM  
fSW = 425 kHz  
Figure 1. Efficiency vs Output Current  
Figure 2. Efficiency vs Output Current  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
IOUT = 40 A  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
IOUT = 40 A  
Natural convection  
Airflow = 200 LFM  
Figure 3. Thermal Image  
Figure 4. Thermal Image  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
IOUT = 40 A  
VIN = 12 V  
fSW = 425 kHz  
IOUT = 30 A  
Airflow = 400 LFM  
VOUT = 5.5 V  
Natural convection  
Figure 5. Thermal Image  
Figure 6. Thermal Image  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V  
fSW = 425 kHz  
IOUT = 30 A  
VIN = 12 V  
fSW = 425 kHz  
IOUT = 30 A  
VOUT = 5.5 V  
Airflow = 200 LFM  
VOUT = 5.5 V  
Airflow = 400 LFM  
Figure 7. Thermal Image  
Figure 8. Thermal Image  
VOUT = 1 V  
VIN = 12 V  
2.5 A/µs  
VOUT = 5.5 V  
VIN = 12 V  
2.5 A/µs  
IOUT from 8 A to 32 A  
IOUT from 6 A to 24 A  
Figure 9. Transient Response Peak-to-Peak  
Figure 10. Transient Response Peak-to-Peak  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
7 Detailed Description  
7.1 Overview  
TPS548D21 device is a high-efficiency, single channel, FET-integrated, synchronous buck converter. It is  
suitable for point-of-load applications with 40 A or lower output current in storage, telecom, and similar digital  
applications. The device features proprietary D-CAP3 mode control combined with adaptive on-time architecture.  
This combination is ideal for building modern high/low duty ratio, ultra-fast load step response DC-DC converters.  
TPS548D21 device has integrated MOSFETs rated at 40-A TDC.  
The converter input voltage range is from 1.5 V up to 16 V, and the VDD input voltage range is from 4.5 V to  
22 V. The output voltage ranges from 0.6 V to 5.5 V.  
Stable operation with all ceramic output capacitors is supported, since the D-CAP3 mode uses emulated current  
information to control the modulation. An advantage of this control scheme is that it does not require phase  
compensation network outside which makes it easy to use and also enables low external component count.  
Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltage  
while increasing switching frequency as needed during load-step transient.  
The default preset switching frequency for this device is 650 kHz. Switching frequency is also programmable  
from 4 preset values via resistor setting by FSEL pin.  
7.2 Functional Block Diagram  
External  
soft-start  
REFIN_TRK  
VREF + 8/16 %  
PGOOD  
VREF œ 32%  
+
UV  
+
MUX  
Internal  
soft-start  
EN_UVLO  
Delay  
Control  
+
+
OV  
BOOT  
PVIN  
VREF + 20%  
RSN  
RSP  
VREF œ 8/16 %  
+
PWM  
+
+
+
XCON  
D-CAP3TM  
Ramp Generator  
VOUT  
VOSNS  
VREF  
tON  
One-Shot  
SW  
Reference  
Generator  
Control  
Logic  
VSEL  
FSEL  
Switching  
Frequency  
Programmer  
BP  
+
ZC  
x
(1/16)  
PGND  
ILIM  
x
+
OCP  
LDO  
Regulator  
(œ1/16)  
AGND  
VDD  
DRGND  
MODE  
MODE Logic  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 40-A FET  
The TPS548D21 device is a high-performance, integrated FET converter supporting current rating up to 40 A  
thermally. It integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB  
layout area. The drain-to-source breakdown voltage for these FETs is 25 V DC and 27 V transient for 10 ns.  
Avalanche breakdown occurs if the absolute maximum voltage rating exceeds 27 V. In order to limit the switch  
node ringing of the device, it is recommended to add a R-C snubber from the SW node to the PGND pins. Refer  
to the Layout Guidelines section for the detailed recommendations.  
7.3.2 On-Resistance  
The typical on-resistance (RDS(on)) for the high-side MOSFET is 2.9 mΩ and typical on-resistance for the low-side  
MOSFET is 1.2 mΩ with a nominal gate voltage (VGS) of 5 V.  
7.3.3 Package Size, Efficiency and Thermal Performance  
The TPS548D21 device is available in a 7 mm × 5 mm, LQFN-CLIP package with 40 power and I/O pins. It  
employs TI proprietary MCM packaging technology with thermal pad. With a properly designed system layout,  
applications achieve optimized safe operating area (SOA) performance. The curves shown in Figure 11 and  
Figure 12 are based on the orderable evaluation module design. (See SLUUBG3 to order the EVM).  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
100 LFM  
100 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
40  
40  
Natural convection  
Natural convection  
30  
30  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
Output Current (A)  
D001  
D001  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
VIN = 12 V  
VOUT = 5.5 V  
fSW = 425 kHz  
Figure 11. Safe Operating Area  
Figure 12. Safe Operating Area  
7.3.4 Soft-Start Operation  
In the TPS548D21 device the soft-start time controls the inrush current required to charge the output capacitor  
bank during startup. The device offers selectable soft-start options of 1 ms, 2 ms, 4 ms and 8 ms. When the  
device is enabled (either by EN or VDD UVLO), the reference voltage ramps from 0 V to the final level defined by  
VSEL pin strap configuration, in a given soft-start time. The TPS548D21 device supports several soft-start times  
between 1msec and 8msec selected by MODE pin configuration. Refer to MODE definition table for details.  
7.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection  
The TPS548D21 device provides fixed VDD undervoltage lockout threshold and hysteresis. The typical VDD  
turn-on threshold is 4.25 V and hysteresis is 0.2 V. The VDD UVLO can be used in conjunction with the  
EN_UVLO signal to provide proper power sequence to the converter design. UVLO is a non-latched protection.  
7.3.6 EN_UVLO Pin Functionality  
The EN_UVLO pin drives an input buffer with accurate threshold and can be used to program the exact required  
turn-on and turn-off thresholds for switcher enable, VDD UVLO or VIN UVLO (if VIN and VDD are tied together).  
If desired, an external resistor divider can be used to set and program the turn-on threshold for VDD or VIN  
UVLO.  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Feature Description (continued)  
Figure 13 shows how to program the input voltage UVLO using the EN_UVLO pin.  
PVIN  
29  
28  
26 25 24 23 22 21  
PGND 20  
PGND 19  
PGND 18  
PGND 17  
PGND 16  
PGND 15  
PGND 14  
PGND 13  
TPS548D21  
4
PVIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. Programming the UVLO Voltage  
7.3.7 Fault Protections  
This section describes positive and negative overcurrent limits, overvoltage protections, undervoltage protections  
and over temperature protections.  
7.3.7.1 Current Limit (ILIM) Functionality  
240  
210  
180  
150  
120  
90  
60  
30  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
OCP Valley Current (A)  
D001  
Figure 14. Current Limit Resistance vs OCP Valley Overcurrent Limit  
The ILIM pin sets the OCP level. Connect the ILIM pin to GND through the voltage setting resistor, RILIM. In order  
to provide both good accuracy and cost effective solution, TPS548D21 device supports temperature  
compensated internal MOSFET RDS(on) sensing.  
Also, the TPS548D21 device performs both positive and negative inductor current limiting with the same  
magnitudes. The positive current limit normally protects the inductor from saturation that causes damage to the  
high-side FET and low-side FET. The negative current limit protects the low-side FET during OVP discharge.  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
The voltage between GND pin and SW pin during the OFF time monitors the inductor current. The current limit  
has 3000 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance (RDS(on)).  
The GND pin is used as the positive current sensing node.  
TPS548D21 device uses cycle-by-cycle over-current limiting control. The inductor current is monitored during the  
OFF state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. VILIM sets the valley level of the inductor current.  
7.3.7.2 VDD Undervoltage Lockout (UVLO)  
The TPS548D21 device has an UVLO protection function for the VDD supply input. The on-threshold voltage is  
4.25 V with 200 mV of hysteresis. During a UVLO condition, the device is disabled regardless of the EN_UVLO  
pin voltage. The supply voltage (VVDD) must be above the on-threshold to begin the pin strap detection.  
7.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)  
The device monitors a feedback voltage to detect overvoltage and undervoltage. When the feedback voltage  
becomes lower than 68% of the target voltage, the UVP comparator output goes high and an internal UVP delay  
counter begins counting. After 1 ms, the device latches OFF both high-side and low-side MOSFETs drivers. The  
UVP function enables after soft-start is complete.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching  
a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side  
FET is turned on again for a minimum on-time. The TPS548D21 device operates in this cycle until the output  
voltage is pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side  
FET is latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by retoggling the  
EN pin.  
During the AVSO operation with the MODE[3] = '1' and MODE[2] = 2 = ”don't care”, the device is programmed to  
regulate to the externally applied reference voltage source and use the internal soft-start ramp. The above  
descriptions of the OVP and UVP functionality apply based on the external applied reference voltage. With the  
MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage and use  
the externally applied soft-start ramp voltage. The above descriptions of the OVP and UVP functionality apply  
based on the internal reference voltage."  
Table 1. Overvoltage Protection Details  
REFERENCE  
VOLTAGE  
OPERATING  
OVP  
THRESHOLD  
OVP DELAY  
100 mV OD  
(µs)  
SOFT-START STARTUP OVP  
OVP RESET  
RAMP  
Internal  
External  
THRESHOLD  
(VREF  
)
1.2 × Internal  
VREF  
1.2 × Internal  
VREF  
Internal  
Internal  
1
1
UVP  
1.2 × Internal  
VREF  
1.2 × Internal  
VREF  
UVP and  
VSEL <0>  
Fixed 1.5 V  
during initial  
startup  
1.2 × Final  
external  
reference  
UVP and  
VSEL <0>  
External  
Internal  
1
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
7.3.7.4 Overtemperature Protection  
TPS548D21 device has overtemperature protection (OTP) by monitoring the die temperature. If the temperature  
exceeds the threshold value (default value 165°C), TPS548D21 device is shut off. When the temperature falls  
about 25°C below the threshold value, the device turns on again. The OTP is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 DCAP3 Control Topology  
The TPS548D21 employs an artificial ramp generator that stabilizes the loop. The ramp amplitude is  
automatically adjusted as a function of selected switching frequency (fSW) The ramp amplitude is a function of  
duty cycle (VOUT-to-VIN ratio). Consequently, two additional pin-strap bits (FSEL[2:1]) are provided for fine tuning  
the internal ramp amplitude. The device uses an improved DCAP3 control loop architecture that incorporates a  
steady-state error integrator. The slow integrator improves the output voltage DC accuracy greatly and presents  
minimal impact to small signal transient response. To further enhance the small signal stability of the control  
loop, the device uses a modified ramp generator that supports a wider range of output LC stage.  
7.4.2 DCAP Control Topology  
For advanced users of this device, the internal DCAP3 ramp can be disabled using the MODE[4] pin strap bit.  
This situation requires an external RCC network to ensure control loop stability. Place this RCC network across  
the output inductor. Use a range between 10 mV and 15 mV of injected RSP pin ripple. If no feedback resistor  
divider network is used, insert a 10-kΩ resistor between the VOUT pin and the RSP pin.  
7.5 Programming  
7.5.1 AVSO  
See Progammable Analog Configurations  
7.5.2 Programmable Pin-Strap Settings  
FSEL, VSEL and MODE. Description: a 1% or better 100-kΩ resistor is needed from BP to each of the three  
pins. The bottom resistor from each pin to ground (see Table 2) in conjunction with the top resistor defines each  
pin strap selection. The pin detection checks for external resistor divider ratio during initial power up (VDD is  
brought down below approximately 3 V) when BP LDO output is at approximately 2.9 V.  
7.5.2.1 Frequency Selection (FSEL) Pin  
The TPS548D21 device allows users to select the switching frequency, light load and internal ramp amplitude by  
using FSEL pin. Table 2 lists the divider resistor values for the selection. The 1% tolerance resistors with typical  
temperature coefficient of ±100ppm/°C are recommended. Higher performance resistors can be used if tighter  
noise margin is required for more reliable frequency selection detection.  
FSEL pin strap configuration programs the switching frequency, internal ramp compensation and light load  
conduction mode.  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Programming (continued)  
Table 2. FSEL Pin Strap Configurations  
FSEL[4]  
FSEL[3]  
FSEL[2]  
FSEL[1]  
FSEL[0]  
CM  
(1)  
RFSEL (kΩ)  
FSEL[1:0]  
RCSP_FSEL[1:0]  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
1: FCCM  
Open  
165  
11: 1.05 MHz  
133  
110  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
90.9  
75  
10: 875 kHz  
01: 650 kHz  
00: 425 kHz  
60.4  
47.5  
37.4  
29.4  
22.1  
16.5  
12.1  
7.87  
4.64  
1.78  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
11: R × 3  
10: R × 2  
01: R × 1  
00: R/2  
(1) 1% or better and connect to ground  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
7.5.2.2 VSEL Pin  
VSEL pin strap configuration is used to program initial boot voltage value, hiccup mode and latch off mode. The  
initial boot voltage is used to program the main loop voltage reference point. VSEL voltage settings provide TI  
designated discrete internal reference voltages. Table 3 lists internal reference voltage selections.  
Table 3. Internal Reference Voltage Selections  
(1)  
VSEL[4]  
VSEL[3]  
VSEL[2]  
VSEL[1]  
VSEL[0]  
1: Latch-Off  
0: Hiccup  
RVSEL (kΩ)  
Open  
187  
1111: 0.975 V  
1: Latch-Off  
0: Hiccup  
165  
1110: 1.1992 V  
1101: 1.1504 V  
1100: 1.0996 V  
1011: 1.0508 V  
1010: 1.0000 V  
1001: 0.9492 V  
1000: 0.9023 V  
0111: 0.9004 V  
0110: 0.8496 V  
0101: 0.8008 V  
0100: 0.7500 V  
0011: 0.6992 V  
0010: 0.6504 V  
0001: 0.5996 V  
0000: 0.975 V  
147  
1: Latch-Off  
0: Hiccup  
133  
121  
1: Latch-Off  
0: Hiccup  
110  
100  
1: Latch-Off  
0: Hiccup  
90.9  
82.5  
75  
1: Latch-Off  
0: Hiccup  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
7.87  
6.19  
4.64  
3.16  
1.78  
0
1: Latch-Off  
0: Hiccup  
1: Latch-Off  
0: Hiccup  
(1) 1% or better and connect to ground  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5.2.3 DCAP3 Control and Mode Selection  
The MODE pinstrap configuration programs the control topology REFIN_TRK pin functionality, and internal soft  
start timing selections. The TPS548D21 device supports both DCAP3 and DCAP operation.  
a. MODE[4] selection bit is used to set the control topology. If MODE[4] bit is “0”, it selects DCAP operation. If  
MODE[4] bit is “1”, it selects DCAP3 operation.  
b. MODE[3] and MODE[2] selection bits are used to set the REFIN_TRK pin functionality.  
c. MODE[1] and MODE[0] selection bits are used to set the internal soft start timing.  
Table 4. MODE Pin Selection  
(1)  
MODE[4]  
MODE[3]  
MODE[2]  
MODE[1]  
MODE[0]  
RMODE (kΩ)  
133  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
00: 1 ms  
11: 8 ms  
10: 4 ms  
01: 2 ms  
00: 1 ms  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
00: 1 ms  
11: 8 ms(2)  
10: 4 ms(2)  
01: 2 ms  
00: 1 ms  
11: 8 ms  
10: 4 ms  
01: 2 ms  
00: 1 ms  
11: 8 ms  
10: 4 ms  
01: 2 ms  
00: 1 ms  
121  
1: External  
Reference  
0: Internal SS  
110  
100  
90.9  
82.5  
75  
1: DCAP3  
1: External SS  
0: Internal SS  
0: Internal SS  
1: External SS  
0: Internal SS  
68.1  
60.4  
53.6  
47.5  
42.2  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
0: Internal  
Reference  
1: External  
Reference  
0: DCAP  
7.87  
6.19  
4.64  
3.16  
1.78  
0
0: Internal  
Reference  
(1) 1% or better and connect to ground  
(2) See Application Workaround to Support 4-ms and 8-ms SS Settings.  
7.5.2.4 Application Workaround to Support 4-ms and 8-ms SS Settings  
In order to properly design for 4-ms and 8-ms SS settings, additional application consideration is needed. The  
recommended application workaround to support the 4-ms and 8-ms soft-start settings is to ensure sufficient time  
delay between the VDD and EN_UVLO signals. The minimum delay between the rising maximum VDD_UVLO  
level and the minimum turnon threshold of EN_UVLO is at least TDELAY_MIN  
.
TDELAY_MIN = K × VREF  
where  
K = 9 ms/V for SS setting of 4 ms  
K = 18 ms/V for SS setting of 8 ms  
VREF is the internal reference voltage programmed by VSEL pin strap  
(1)  
For example, if SS setting is 4 ms and VREF = 1 V, program the minimum delay at least 9 ms; if SS setting is 8  
ms, the minimum delay should be programmed at least 18 ms. See Figure 15 and Figure 16 for detailed timing  
requirement.  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Figure 15. Proper Sequencing of VDD and EN_UVLO to Support the Use of 4-ms SS Setting  
VDD  
VDD_UVLO  
Maximum Threshold  
4.34 V  
EN_UVLO  
EN_UVLO  
Minimum ON Threshold 1.45 V  
Minimum  
TDELAY_MIN  
Figure 16. Minimum Delay Between VDD and EN_UVLO to Support the Use of 4-ms and 8-ms SS settings  
The workaround/consideration described previously is not required for SS settings of 1 ms and 2 ms.  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
7.5.3 Programmable Analog Configurations  
REFIN_TRK functionality:  
REFIN_TRK functionality is configured by MODE[3] and MODE[2] pin strap bits. See table for detailed  
information regarding MODE bits.  
If MODE[3] = '0' and MODE[2] = '0', the device is programmed to regulate to the internal reference voltage  
and use the internal soft start ramp. Therefore, one should not apply any external voltage source on the  
REFIN_TRK pin.  
In MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage  
and use the externally applied soft start ramp voltage. Therefore, one must apply a voltage ramp that meets  
the following requirements:  
1. Must start from 0V.  
2. The external applied ramp must begin to ramp up after the POD is complete.  
3. Controlled rise time of at least 1 ms minimum duration.  
4. The magnitude of the ramp voltage has to be at least 300 mV above the pre-selected internal reference  
voltage as determined by the VSEL pin strap setting.  
5. It is expected for the externally applied ramp voltage to rise to at least 1 V above the internal reference  
voltage after it crosses over the threshold mentioned in #3.  
If MODE[3] = '1' and MODE[2] = 2 = ”don’t care”, the device is programmed to regulate to the externally  
applied reference voltage source and use the internal soft start ramp. Therefore, one must supply a voltage  
source on the REFIN_TRK pin that is between 0.5 V and 1.25 V. In addition, the output impedance of the  
external voltage source must be much less than 100 kΩ. If the external voltage source must transition up and  
down between any two voltage levels, the slew rate must be no more than 1 mV/µs. If the external voltage  
source is between 0 V and 0.5 V, the control loop would remain functional but the regulation accuracy is not  
specified. The external voltage source is not allowed to drive the REFIN_TRK pin above 1.25 V in order to  
prevent the overvoltage fault event from happening at 1.5 V.  
7.5.3.1 RSP/RSN Remote Sensing Functionality  
RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for  
output voltage programming, the RSP pin should be connected to the mid-point of the resistor divider and the  
RSN pin should always be connected to the load return. In the case where feedback resistors are not required as  
when the VSEL programs the output voltage set point, the RSP pin should be connected to the positive sensing  
point of the load and the RSN pin should always be connected to the load return.  
RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier.  
The feedback resistor divider should use resistor values much less than 100 kΩ.  
7.5.3.1.1 Output Differential Remote Sensing Amplifier  
The examples in this section show simplified remote sensing circuitry where each example uses an internal  
reference of 1.0 V. Figure 17 shows remote sensing without feedback resistors, with an output voltage set point  
of 1 V. Figure 18 shows remote sensing using feedback resistors, with an output voltage set point of 5 V.  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
TPS548D21  
TPS548D21  
38 RSN  
38 RSN  
39 RSP  
39 RSP  
40 VOSNS  
40 VOSNS  
BOOT  
BOOT  
5
5
Load  
Load  
+
œ
+
œ
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Remote Sensing Without Feedback  
Resistors  
Figure 18. Remote Sensing With Feedback  
Resistors  
7.5.3.2 Power Good (PGOOD Pin) Functionality  
The TPS548D21 device has power-good output that registers high when switcher output is within the target. The  
power-good function is activated after soft-start has finished. When the soft-start ramp reaches 300 mV above  
the internal reference voltage, SSend signal goes high to enable the PGOOD detection function. If the output  
voltage becomes within ±8% of the target value, internal comparators detect power-good state and the power  
good signal becomes high after an 8 ms delay. If the output voltage goes outside of ±16% of the target value, the  
power good signal becomes low after two microsecond (2-µs) internal delay. The open-drain power-good output  
must be pulled up externally. The internal N-channel MOSFET does not pull down until the VDD supply is above  
1.2 V.  
During the AVSO operation with the MODE[3] = '1' and MODE[2] = 2 = ”don't care”, the device is programmed to  
regulate to the externally applied reference voltage source and use the internal soft start ramp. All of the above  
descriptions of the PGOOD functionality apply except the SSend signal goes high to enable the PGOOD  
detection function when the external applied voltage source rise to 425 mV threshold.  
In MODE[3] = '0' and MODE[2] = '0', the device is programmed to regulate to the internal reference voltage and  
use the internal soft start ramp. All of the above descriptions of PGOOD functionality apply.  
In MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage and  
use the externally applied soft start ramp voltage. All of the above descriptions of PGOOD functionality apply.  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS548D21 device is a highly-integrated synchronous step-down DC-DC converters. These devices are  
used to convert a higher DC input voltage to a lower DC output voltage, with a maximum output current of 40 A.  
One of the key features for the TPS548D21 device is the ability to allow user to control the reference voltage with  
the external source on the REFIN_TRK pin when the external tracking option is chosen by the pin strap resistor  
value set by the MODE pin. The TPS548D21 device starts tracking from 0 V. The TPS548D21 operates in  
FCCM in all operation. Note: If DCM at start-up is needed, please use the TPS549D22 device. Use the following  
design procedure to select key component values for this family of devices.  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
8.2 Typical Applications  
8.2.1 TPS548D21 1.5-V to 16-V Input, 1-V Output, 40-A Converter  
J1  
VIN  
=
6V  
-
16V  
C1  
DNP330uF  
C2  
22µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
C8  
22µF  
C9  
22µF  
C10  
2200pF  
C11  
100µF  
C12  
330uF  
C13  
22µF  
C14  
DNP  
22uF  
C15  
DNP  
22uF  
C16  
DNP  
22uF  
C17  
DNP  
22uF  
C18  
22uF  
C19  
22uF  
C20  
22µF  
DNP  
J2  
PGND  
R1  
1.00  
VDD  
TP1  
VOUT  
I_OUT  
=
=
1V  
TP2  
TP3  
J3  
R2  
DNP  
0
Remote Sense pos/neg should run as balanced pair  
R3  
DNP  
0
40A MAX  
TP5  
SW  
L1  
21  
6
TP4  
PVIN  
SW  
22  
23  
24  
25  
26  
7
250nH  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
SW  
SW  
SW  
SW  
SW  
SW  
8
TP6  
CHB  
R4  
0
C21  
DNP  
470pF  
R6  
200k  
9
R5  
DNP  
1.50k  
C22  
0.1µF  
10  
11  
12  
C23  
470µF  
C24  
470µF  
R11  
0
C25  
100µF  
C26  
100µF  
C27  
100µF  
C28  
100µF  
C29  
100µF  
C30  
DNP  
100uF  
R7  
0
TP19  
CNTL/EN_UVLO  
J4  
TP7  
CHA  
C32  
R8  
DNP  
1.10k  
6800pF  
R9  
DNP  
3.01  
VDD  
28  
4
PGOOD  
TP8 BP  
VDD  
5
R10  
0
C31  
DNP  
0.1uF  
BOOT  
PGOOD  
RSP  
EN_UVLO  
CNTL  
R13  
LOW  
C33  
100µF  
R12  
100k  
35  
39  
38  
27  
C34  
1uF  
C35  
1µF  
DNP  
100k  
C36  
DNP  
1000pF  
R14  
DNP  
0
3
2
1
C37  
DNP  
470uF  
C38  
470µF  
NU  
NU  
NU  
CLK  
DATA  
ALERT  
C39  
100µF  
C40  
100µF  
C41  
100µF  
C42  
100µF  
C43  
DNP  
100uF  
PGND  
R15  
10.0k  
RSN  
BP  
DRGND  
34  
31  
32  
33  
36  
37  
40  
MODE  
MODE  
BP  
NC  
R16  
TP9  
BP  
13  
14  
15  
16  
17  
18  
19  
20  
29  
30  
41  
J5  
0
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
DRGND  
AGND  
PAD  
FSEL  
C44  
1uF  
FSEL  
VSEL  
C45  
4.7µF  
DNP  
TP10  
TP11  
R17  
DNP  
0
R18  
DNP  
0
VSEL  
TP12  
ILIM  
TP13  
PGND  
TP18  
PGND  
ILIM  
TP14  
REFIN_TRK  
VOSNS  
DRGND  
NT1  
NT2  
PGND  
R19  
137k  
Net-Tie  
Net-Tie  
U1  
C46  
1000pF  
TPS548D21RVF  
AGND DRGND PGND AGND  
PGND  
DRGND  
----- GND NET TIES -----  
AGND  
TP15  
VSEL  
TP16  
MODE  
TP17  
ADDR  
J6  
TP20  
CLK  
TP21  
DNP  
TP22  
DNP  
ALERT  
DNP  
BP  
1
3
5
7
9
2
DATA  
4
6
DNP  
8
10  
R20  
100k  
R21  
100k  
R22  
100k  
PMBus  
VSEL  
MODE  
FSEL  
R23  
37.4k  
R24  
100k  
R25  
22.1k  
AGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Typical Application Schematic  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
8.2.2 Design Requirements  
For this design example, use the input parameters shown in Table 5.  
Table 5. Design Example Specifications  
PARAMETER  
Input voltage  
VIN(ripple) Input ripple voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN  
5
12  
16  
V
V
V
IOUT = 40 A  
0.4  
VOUT  
Output voltage  
1
Line regulation  
5 V VIN 16 V  
0 V IOUT 40 A  
IOUT = 40 A  
0.5%  
0.5%  
Load regulation  
VPP  
VOVER  
VUNDER  
IOUT  
tSS  
Output ripple voltage  
Transient response overshoot  
Transient response undershoot  
Output current  
20  
90  
90  
mV  
mV  
mV  
A
ISTEP = 24 A  
ISTEP = 24 A  
5 V VIN 16 V  
VIN = 12 V  
40  
Soft-start time  
Overcurrent trip point(1)  
1
46  
ms  
A
IOC  
η
Peak Efficiency  
IOUT = 20 A, VIN = 12 V, VDD = 5 V  
90%  
650  
fSW  
Switching frequency  
kHz  
(1) DC overcurrent level  
8.2.3 Design Procedure  
8.2.3.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS548D21 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.3.2 Switching Frequency Selection  
Select a switching frequency for the regulator. There is a trade off between higher and lower switching  
frequencies. Higher switching frequencies may produce smaller a solution size using lower valued inductors and  
smaller output capacitors compared to a power supply that switches at a lower frequency. However, the higher  
switching frequency causes extra switching losses, which decrease efficiency and impact thermal performance.  
In this design, a moderate switching frequency of 650 kHz achieves both a small solution size and a high-  
efficiency operation with the frequency selected.  
Select one of four switching frequencies and FSEL resistor values from Table 6. The recommended high-side  
RFSEL value is 100 kΩ (1%). Choose a low-side resistor value from Table 6 based on the choice of switching  
frequency. For each switching frequency selection, there are multiple values of RFSEL(LS) to choose from. In order  
to select the correct value, additional considerations (internal ramp compensation and light load operation) other  
than switching frequency need to be included.  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Table 6. FSEL Pin Selection  
FSEL VOLTAGE  
VFSEL (V)  
SWITCHING  
FREQUENCY  
fSW (kHz)  
HIGH-SIDE RESISTOR  
RFSEL(HS)  
(kΩ) 1% or better  
LOW-SIDE RESISTOR  
RFSEL(LS) (kΩ)  
1% or better  
MAXIMUM  
MINIMUM  
Open  
187  
165  
147  
133  
121  
110  
100  
90.9  
82.5  
75  
1050  
875  
650  
425  
2.93  
1.465  
100  
100  
100  
100  
68.1  
60.4  
53.6  
47.5  
42.2  
37.4  
33.2  
29.4  
25.5  
22.1  
19.1  
16.5  
14.3  
12.1  
10  
1.396  
0.798  
0.317  
0.869  
0.366  
0
7.87  
6.19  
4.64  
3.16  
1.78  
0
There is some limited freedom to choose FSEL resistors that have other than the recommended values. The  
criteria is to ensure that for particular selection of switching frequency, the FSEL voltage is within the maximum  
and minimum FSEL voltage levels listed in Table 6. Use Equation 2 to calculate the FSEL voltage. Select FSEL  
resistors that include tolerances of 1% or better.  
RFSEL(LS)  
VFSEL = VBP(det)  
´
RFSEL(HS) + RFSEL(LS)  
where  
VBP(det) is the voltage used by the device to program the level of valid FSEL pin voltage during initial device  
start-up (2.9 V typ)  
(2)  
In addition to serving the frequency select purpose, the FSEL pin can also be used to program internal ramp  
compensation (DCAP3) and light-load conduction mode. When DCAP3 mode is selected (see section 8.2.3.9),  
internal ramp compensation is used for stabilizing the converter design. The internal ramp compensation is a  
function of the switching frequency (fSW) and the duty cycle range (the output voltage-to-input voltage ratio).  
Table 7 summarizes the ramp choices using these functions.  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
 
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Table 7. Switching Frequency Selection  
VOUT RANGE  
(FIXED VIN = 12 V)  
DUTY CYCLE RANGE  
SWITCHING FREQUENCY  
SETTING  
RAMP  
SELECT  
OPTION  
TIME  
CONSTANT  
t (µs)  
(VOUT/VIN) (%)  
(fSW) (kHz)  
MIN  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
0.6  
0.9  
1.5  
2.5  
MAX  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
0.9  
1.5  
2.5  
5.5  
MIN  
5
MAX  
7.5  
R/2  
9
R × 1  
R × 2  
R × 3  
R/2  
16.8  
32.3  
55.6  
7
7.5  
12.5  
>21  
5
12.5  
21  
425  
650  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
13.5  
25.9  
44.5  
5.6  
7.5  
12.5  
>21  
5
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
R/2  
10.4  
20  
7.5  
12.5  
>21  
5
875  
34.4  
3.8  
7.5  
12.5  
21  
R × 1  
R × 2  
R × 3  
7.1  
7.5  
12.5  
>21  
1050  
13.6  
23.3  
The FSEL pin programs the light-load selection. TPS548D21 device supports FCCM operations. For better load  
regulation from no load to full load, it is recommended to program the device to operate in FCCM mode.  
RFSEL(LS) can be determined after determining the switching frequency, ramp and light-load operation. Table 2  
lists the full range of choices.  
8.2.3.3 Inductor Selection  
To calculate the value of the output inductor, use Equation 3. The coefficient KIND represents the amount of  
inductor ripple current relative to the maximum output current. The output capacitor filters the inductor ripple  
current. Therefore, choosing a high inductor ripple current impacts the selection of the output capacitor since the  
output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general,  
maintain a KIND coefficient between 0 and 15 for balanced performance. Using this target ripple current, the  
required inductor size can be calculated as shown in Equation 3  
6/54  
6
F 6/54  
1 6 × (1ꢀ 6 F 1 6ꢁ  
).  
,1 =  
×
=
= 0ꢅ2ꢄ Jꢃ  
:
;
1ꢀ 6 × ꢀꢂ0 ´ꢃ∫ × ꢄ0 ! × 0ꢅ1ꢂ  
k6  
× ¶37 o k)/54 ≠°∏ × +).$ o  
:
;
:
;
). ≠°∏  
(3)  
Selecting a KIND of 0.15, the target inductance L1 = 250 nH. Using the next standard value, the 250 nH is chosen  
in this application for its high current rating, low DCR, and small size. The inductor ripple current, RMS current,  
and peak current can be calculated using Equation 4, Equation 5 and Equation 6. These values should be used  
to select an inductor with approximately the target inductance value, and current ratings that allow normal  
operation with some margin.  
6
; F 6/54  
6/54  
× ¶37 o  
1 6 × (1ꢀ 6 F 1 6ꢁ  
:
). ≠°∏  
)
=
×
=
= ꢂꢆꢀꢇ !  
2)00,%  
,1  
1ꢀ 6 × ꢀꢂꢃ ´ꢄ∫ × ꢅꢂꢃ Æꢄ  
k6  
:
;
). ≠°∏  
(4)  
1
¨
)
=
()/54 ꢀ² +  
× ()ꢁ)00,% ꢀ² = ꢂꢃ !  
,(≤≠≥ ꢀ  
12  
(5)  
(6)  
1
)
= ()/54 ꢀ + × ()ꢁ)00,% ꢀ = ꢂ3 !  
,(∞•°´ ꢀ  
2
The Wurth ferrite 744309025 inductor is rated for 50 ARMS current, and 48-A saturation. Using this inductor, the  
ripple current IRIPPLE= 5.64 A, the RMS inductor current IL(rms)= 40 A, and peak inductor current IL(peak)= 43 A.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
8.2.3.4 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
affects three criteria:  
Stability  
Regulator response to a change in load current or load transient  
Output voltage ripple  
These three considerations are important when designing regulators that must operate where the electrical  
conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these  
three criteria.  
8.2.3.4.1 Minimum Output Capacitance to Ensure Stability  
To prevent sub-harmonic multiple pulsing behavior, TPS548D21 application designs must strictly follow the small  
signal stability considerations described in Equation 7.  
¥
zR  
6ꢀ%&  
6/54  
/.  
#
>
×
×
/54 (≠©Æ )  
2
,
/54  
where  
COUT(min) is the minimum output capacitance needed to meet the stability requirement of the design  
tON is the on-time information based on the switching frequency and duty cycle (in this design, 133 ns)  
τ is the ramp compensation time constant of the design based on the switching frequency and duty cycle, (in  
this design, 13.45 µs, refer to Table 7)  
LOUT is the output inductance (in the design, 0.25 µH)  
VREF is the user-selected reference voltage level (in this design, 1 V)  
VOUT is the output voltage (in this design, 1 V)  
(7)  
The minimum output capacitance calculated from Equation 7 is 28.6 µF. The stability is ensured when the  
amount of the output capacitance is 28.6 µF or greater. And when all MLCCs (multi-layer ceramic capacitors) are  
used, both DC and AC derating effects must be considered to ensure that the minimum output capacitance  
requirement is met with sufficient margin.  
8.2.3.4.2 Response to a Load Transient  
The output capacitance must supply the load with the required current when current is not immediately provided  
by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects  
the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.  
Use Equation 8 and Equation 9 to estimate the amount of capacitance needed for a given dynamic load step and  
release.  
NOTE  
There are other factors that can impact the amount of output capacitance for a specific  
design, such as ripple and stability.  
2
6/54 × ¥37  
,
/54  
× k¿),/!$ ≠°∏ ;o × l  
+ ¥/&& ≠©Æ ;p  
:
:
6
:
;
). ≠©Æ  
#
=
;
:
/54 ≠©Æ _µÆ§•≤  
6
;6  
:
6
). ≠©Æ  
2 × ¿6,/!$ ©Æ≥•≤¥ ; × Fl  
/54 p × ¥37 ¥/&& ≠©Æ ;G × 6  
:
/54  
:
:
;
). ≠©Æ  
(8)  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
,
× k¿),/!$ ≠°∏ ;o2  
:
/54  
#
=
;
:
/54 ≠©Æ _Ø∂•≤  
2 × ¿6,/!$ ≤•¨•°≥• × 6  
:
;
/54  
where  
COUT(min_under) is the minimum output capacitance to meet the undershoot requirement  
COUT(min_over)is the minimum output capacitance to meet the overshoot requirement  
L is the output inductance value (0.25 µH)  
ILOAD(max) is the maximum transient step (24 A)  
VOUT is the output voltage value (1 V)  
tSW is the switching period (1.538 µs)  
VIN(min) is the minimum input voltage for the design (10.8 V)  
tOFF(min) is the minimum off time of the device (300 ns)  
VLOAD(insert) is the undershoot requirement (30 mV)  
VLOAD(release) is the overshoot requirement (30 mV)  
(9)  
Most of the above parameters can be found in Table 5.  
The minimum output capacitance to meet the undershoot requirement is 969 µF. The minimum output  
capacitance to meet the overshoot requirement is 2400 µF. This example uses a combination of POSCAP and  
MLCC capacitors to meet the overshoot requirement.  
POSCAP bank #1: 4 × 470 µF, 2.5 V, 6 mΩ per capacitor  
MLCC bank #2: 10 × 100 µF, 2.5 V, 1 mΩ per capacitor with DC+AC derating factor of 60%  
Recalculating the worst-case overshoot using the described capacitor bank design, the overshoot is 29 mV,  
which meets the 30 mV overshoot specification requirement.  
8.2.3.4.3 Output Voltage Ripple  
The output voltage ripple is another important design consideration. Equation 10 calculates the minimum output  
capacitance required to meet the output voltage ripple specification. This criterion is the requirement when the  
impedance of the output capacitance is dominated by ESR.  
RIPPLE  
#
=
= 1ꢁ8 J&  
/54 (≠©Æ )2ꢀ00,%  
8 × ¶37 × 6/54 ≤©∞∞¨•  
:
;
(10)  
In this case, the maximum output voltage ripple is 10 mV. For this requirement, the minimum capacitance for  
ripple requirement yields 108 µF. Because this capacitance value is significantly lower compared to that of  
transient requirement, determine the capacitance bank from step 8.2.3.3.2. Because the output capacitor bank  
consists of both POSCAP and MLCC type capacitors, it is important to consider the ripple effect at the switching  
frequency due to effective ESR. Use Equation 11 to determine the maximum ESR of the output capacitor bank  
for the switching frequency.  
)
2)00,%  
6/54 ≤©∞∞¨•; F  
:
ꢀ × ¶37 × #/54  
%32-!8  
=
= 1.ꢁ ≠3  
)
2)00,%  
(11)  
Estimate the effective ESR at the switching frequency by obtaining the impedance vs. frequency characteristics  
of the output capacitors. The parallel impedance of capacitor bank #1 and capacitor bank #2 at the switching  
frequency of the design example is estimated to be 1.2 m, which is less than that of the maximum ESR value.  
Therefore, the output voltage ripple requirement (7 mV) can be met. For detailed calculation on the effective ESR  
please contact the factory to obtain a user-friendly Excel based design tool.  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
8.2.3.5 Input Capacitor Selection  
The TPS548D21 devices require a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a  
value of at least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input  
decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high  
switching currents demanded when the high-side MOSFET switches on, while providing minimal input voltage  
ripple as a result. This effective capacitance includes any DC bias effects. The voltage rating of the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple to the device during full load. The input ripple current can be  
calculated using Equation 12.  
(6  
; F 6/54 ꢀ  
6/54  
:
). ≠©Æ  
)
= )/54 (≠°∏ ꢀ  
×
×
= 1ꢁ !≤≠≥  
¨
#). (≤≠≥ ꢀ  
6
6
:
;
:
;
). ≠©Æ  
). ≠©Æ  
(12)  
The minimum input capacitance and ESR values for a given input voltage ripple specification, VIN(ripple), are  
shown in Equation 13 and Equation 14. The input ripple is composed of a capacitive portion, VRIPPLE(cap), and a  
resistive portion, VRIPPLE(esr)  
.
)
/54 (≠°∏ ꢀ × 6/54  
× 6  
;
). ≠°∏  
#
=
= ꢁ8ꢂꢃ J&  
).(≠©Æ ꢀ  
62)00,%  
× ¶  
37  
:
;
:
£°∞  
(13)  
(14)  
VRIPPLE(ESR)  
%32#). (≠°∏ ꢀ  
=
= 7 ≠3  
)
2)00,%  
)
+ @  
;
A
:
/54 ≠°∏  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor  
must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input  
ripple for VRIPPLE(cap), and 0.3-V input ripple for VRIPPLE(esr). Using Equation 13 and Equation 14, the minimum  
input capacitance for this design is 38.5 µF, and the maximum ESR is 9.4 mΩ. For this example, four 22-μF, 25-  
V ceramic capacitors and one additional 100-μF, 25-V low-ESR polymer capacitors in parallel were selected for  
the power stage.  
8.2.3.6 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with  
a voltage rating of 25 V or higher.  
8.2.3.7 BP Pin  
Bypass the BP pin to DRGND with 4.7-µF of capacitance. In order for the regulator to function properly, it is  
important that these capacitors be localized to the TPS548D21 , with low-impedance return paths. See Layout  
Guidelines section for more information.  
8.2.3.8 R-C Snubber and VIN Pin High-Frequency Bypass  
Though it is possible to operate the TPS548D21 within absolute maximum ratings without ringing reduction  
techniques, some designs may require external components to further reduce ringing levels. This example uses  
two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between  
the SW area and GND.  
The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the  
outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and  
discharge once the high-side MOSFET is turned on. For this example twoone 2.2-nF, 25-V, 0603-sized high-  
frequency capacitors are used. The placement of these capacitors is critical to its effectiveness. Its ideal  
placement is shown in Figure 19.  
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
 
 
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF  
capacitor and a 1-Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125  
W, nearly twice the estimated power dissipation. See SLUP100 for more information about snubber circuits.  
8.2.3.9 Optimize Reference Voltage (VSEL)  
Optimize the reference voltage by choosing a value for RVSEL. The TPS548D21 device is designed with a wide  
range of precision reference voltage support from 0.6 V to 1.2 V with an available step change of 50 mV.  
Program these reference voltages using the VSEL pin strap configurations. Please refer to Table 3 for internal  
reference voltage selections. In addition to providing initial boot voltage value, use the VSEL pin to program  
hiccup and latch-off mode.  
There are two ways to program the output voltage set point. If the output voltage set point is one of the 16  
available reference and boot voltage options, no feedback resistors are required for output voltage programming.  
In the case where feedback resistors are not needed, connect the RSP pin to the positive sensing point of the  
load. Always connect the RSN pin to the load return sensing point.  
In this design example, since the output voltage set point is 1V, selecting RVSEL(LS) of either 75 kΩ (latch off) or  
68.1 kΩ (hiccup) as shown in . If the output voltage set point is NOT one of the 16 available reference or boot  
voltage options, feedback resistors are required for output voltage programming. Connect the RSP pin to the  
mid-point of the resistor divider. Always connect the RSN pin to the load return sensing point as shown in  
Figure 17 and Figure 18.  
The general guideline to select boot and internal reference voltage is to select the reference voltage closest to  
the output voltage set point. In addition, because the RSP and RSN pins are extremely high-impedance input  
terminals of the true differential remote sense amplifier, use a feedback resistor divider with values much less  
than 100 kΩ.  
8.2.3.10 MODE Pin Selection  
MODE pin strap configuration is used to program control internal/external reference, and internal/external soft  
start timing selections. TPS548D21 supports both DCAP3 and DCAP operation. For general POL applications, it  
is strongly recommended to configure the control topology to be DCAP3 due to its simple to use and no external  
compensation features. In the rare instance where DCAP is needed, an RCC network across the output inductor  
is needed to generate sufficient ripple voltage on the RSP pin. In this design example, RMODE(LS) of 42.2 kΩ is  
selected for DCAP3 and soft start time of 1 ms.  
8.2.3.11 Overcurrent Limit Design.  
The TPS548D21 device uses the ILIM pin to set the OCP level. Connect the ILIM pin to GND through the voltage  
setting resistor, RILIM. In order to provide both good accuracy and cost effective solution, this device supports  
temperature compensated MOSFET on-resistance (RDS(on)) sensing. Also, this device performs both positive and  
negative inductor current limiting with the same magnitudes. Positive current limit is normally used to protect the  
inductor from saturation therefore causing damage to the high-side and low-side FETs. Negative current limit is  
used to protect the low-side FET during OVP discharge.  
The inductor current is monitored by the voltage between PGND pin and SW pin during the OFF time. The ILIM  
pin has 3000 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance. The  
PGND pin is used as the positive current sensing node.  
TPS548D21 has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent ILIM level. The voltage on the ILIM pin (VILIM) sets the valley level of the inductor current. The range  
of value of the RILIM resistor is between 21 kΩ and 237 kΩ. The range of valley OCL is between 6.25 A and 75 A  
(typical). If the RILIM resistance is outside of the recommended range, OCL accuracy and function cannot be  
ensured. (see Table 8)  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Table 8. Closed Loop EVM Measurement of OCP Settings  
OVERCURRENT PROTECTION VALLEY (A)  
RILIM  
(kΩ)  
MIN  
NOM  
75  
MAX  
237  
127  
95.3  
63.4  
32.4  
21  
36  
27  
18  
9
40  
44  
30  
33  
20  
22  
10  
11  
6.25  
Use Equation 15 to relate the valley OCL to the RILIM resistance.  
/#,6!,,%9 = 0.3178 × 2),)- F 0.304  
where  
RILIM is in kΩ  
OCLVALLEY is in A  
(15)  
In this design example, the desired valley OCL is 43 A, the calculated RILIM is 137 kΩ. Use Equation 16 to  
calculate the DC OCL to be 46 A.  
/#,$# = /#,6!,,%9 + 0.5 × )2)ꢀꢀ,%  
where  
RILIM is in kΩ  
OCLDC is in A  
(16)  
In an overcurrent condition, the current to the load exceeds the inductor current and the output voltage falls.  
When the output voltage crosses the under-voltage fault threshold for at least 1msec, the behavior of the device  
depends on the VSEL pin strap setting. If hiccup mode is selected, the device will restart after 16-ms delay (1-ms  
soft-start option). If the overcurrent condition persists, the OC hiccup behavior repeats. During latch-off mode  
operation the device shuts down until the EN pin is toggled or VDD pin is power cycled.  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
 
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
8.2.4 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Load Current (A)  
D001  
FCCM  
fSW = 625 kHz  
VOUT = 1 V  
VIN = 12 V  
VDD = 5 V  
Figure 21. Transient Response Peak-to-Peak  
Figure 20. Efficiency vs. Load Current  
Figure 22. REAL Tracking 0 V to 1.2 V  
Figure 23. Sequencing From 0 V to 3.3 V  
VIN = 12 V  
VOUT = 1 V  
fSW = 650 kHz  
IOUT = 40 A  
Airflow = 200 LFM  
Figure 24. Thermal Image  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply between 1.5 V and 16 V. Ensure the supply is  
well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance,  
as is the quality of the PCB layout and grounding scheme. See the recommendations in the Layout section.  
10 Layout  
10.1 Layout Guidelines  
Consider these layout guidelines before starting a layout work using TPS548D21.  
It is absolutely critical that all GND pins, including AGND (pin 30), DRGND (pin 29), and PGND (pins 13, 14,  
15, 16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or  
plane.  
Include as many thermal vias as possible to support a 40-A thermal operation. For example, a total of 35  
thermal vias are used (outer diameter of 20 mil) in the TPS548D21EVM-784 available for purchase at ti.com.  
(SLUUBG3)  
Placed the power components (including input/output capacitors, output inductor and TPS548D21device) on  
one side of the PCB (solder side). Insert at least two inner layers (or planes) connected to the power ground,  
in order to shield and isolate the small signal traces from noisy power lines.  
Place the VIN pin decoupling capacitors as close as possible to the PVIN and PGND pins to minimize the  
input AC current loop. Place a high-frequency decoupling capacitor (with a value between 1 nF and 0.1 µF)  
as close to the PVIN pin and PGND pin as the spacing rule allows. This placement helps suppress the switch  
node ringing.  
Place VDD and BP decoupling capacitors as close to the device pins as possible. Do not use PVIN plane  
connection for the VDD pin. Separate the VDD signal from the PVIN signal by using separate trace  
connections. Provide GND vias for each decoupling capacitor and make the loop as small as possible.  
Ensure that the PCB trace defined as switch node (which connects the SW pins and up-stream of the output  
inductor) are as short and wide as possible. In the TPS548D21EVM-784 EVM design, the SW trace width is  
200 mil. Use a separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine  
these connections.  
Place all sensitive analog traces and components (including VOSNS, RSP, RSN, ILIM, MODE, VSEL and  
FSEL) far away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise  
coupling. In addition, place MODE, VSEL and FSEL programming resistors near the device pins.  
The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high  
impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion.  
Route them directly to either the load sense points (+ and –) or the output bulk capacitors. The internal circuit  
uses the VOSNS pin for on-time adjustment. It is critical to tie the VOSNS pin directly tied to VOUT (load  
sense point) for accurate output voltage result.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
 
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
10.2 Layout Example  
25. EVM Top View  
26. EVM Top Layer  
27. EVM Inner Layer 1  
28. EVM Inner Layer 2  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
Layout Example (接下页)  
29. EVM Inner Layer 3  
30. EVM Inner Layer 4  
31. EVM Bottom Layer  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
Layout Example (接下页)  
10.2.1 Mounting and Thermal Profile Recommendation  
Proper mounting technique adequately covers the exposed thermal tab with solder. Excessive heat during the  
reflow process can affect electrical performance. 32 shows the recommended reflow oven thermal profile.  
Proper post-assembly cleaning is also critical to device performance. See the Application Report, QFN/SON PCB  
Attachment, (SLUA271) for more information.  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
25  
32. Recommended Reflow Oven Thermal Profile  
9. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(up)  
Average ramp-up rate, TS(max) to TP  
Average ramp-down rate, TP to TS(max)  
3
6
°C/s  
°C/s  
rRAMP(down)  
PRE-HEAT  
TS  
Pre-heat temperature  
150  
60  
200  
180  
°C  
s
tS  
Pre-heat time, TS(min) to TS(max)  
REFLOW  
TL  
TP  
tL  
Liquidus temperature  
217  
°C  
°C  
s
Peak temperature  
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5°C of peak temperature, TP  
Total time from 25°C to peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
36  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TPS548D21  
www.ti.com.cn  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS548D21 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
D-CAP3, NexFET, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
TPS548D21  
ZHCSFB1A JULY 2016REVISED AUGUST 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS548D21RVFR  
TPS548D21RVFT  
ACTIVE  
LQFN-CLIP  
LQFN-CLIP  
RVF  
40  
40  
RoHS-Exempt  
& Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS548D21  
TPS548D21  
ACTIVE  
RVF  
RoHS-Exempt  
& Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS548D21RVFT

具有 AVSO 和差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS548D22

具有差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS548D22RVFR

具有差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS548D22RVFT

具有差分遥感功能的 1.5V 至 16V、40A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54900

PROGRAMMABLE FOUR-CHANNEL STEP-DOWN DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54900PW

PROGRAMMABLE FOUR-CHANNEL STEP-DOWN DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54900PWR

PROGRAMMABLE FOUR-CHANNEL STEP-DOWN DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54900PWRG4

SPECIALTY ANALOG CIRCUIT, PDSO16, GREEN, PLASTIC, TSSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54910

3-V TO 4-V INPUT, 9-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54910PWP

3-V TO 4-V INPUT, 9-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54910PWPG4

输入电压为 3V 至 4V 的 9A 同步降压转换器 | PWP | 28 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54910PWPR

输入电压为 3V 至 4V 的 9A 同步降压转换器 | PWP | 28 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI