TPS5625 [TI]

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER; 同步降压迟滞DC控制器
TPS5625
型号: TPS5625
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
同步降压迟滞DC控制器

控制器
文件: 总25页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
PWP PACKAGE  
(TOP VIEW)  
±1% Reference Over Full Operating  
Temperature Range  
Synchronous Rectifier Driver for >90%  
Efficiency  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IOUT  
AGND2  
OCP  
VHYST  
VREFB  
VSENSE  
ANAGND  
SLOWST  
BIAS  
LODRV  
LOHIB  
DRVGND  
LOWDR  
DRV  
PWRGD  
NC  
NC  
NC  
NC  
2
3
Fixed Output Voltage Options of 1.5 V,  
1.8 V, 2.5 V, and 3.3 V  
4
5
User-Selectable Hysteretic-Type Control  
Low Supply Current . . . 3 mA Typ  
6
NC  
7
INHIBIT  
IOUTLO  
LOSENSE  
HISENSE  
BOOTLO  
HIGHDR  
BOOT  
8
11.4-V to 13-V Input Voltage Range, V  
Power Good Output  
CC  
9
10  
11  
12  
13  
14  
Programmable Soft-Start  
Overvoltage/Overcurrent Protection  
Active Deadtime Control  
V
CC  
description  
NC – No internal connection  
The TPS5615 family of synchronous-buck regulator controllers provides an accurate supply voltage to DSPs.  
The output voltage is internally set by a resistive divider with an accuracy of 1% over the full operating  
temperature range. A hysteretic controller with user-selectable hysteresis is used to dramatically reduce  
overshoot and undershoot caused by load transients. Propagation delay from the comparator inputs to the  
output drivers is less than 250 ns. Overcurrent shutdown and crossover protection for the output drivers  
combine to eliminate destructive faults in the output FETs. PWRGD monitors the output voltage and pulls the  
open-collectoroutputlowwhentheoutputdropsbelow93%ofthenominaloutputvoltage. Anovervoltagecircuit  
disables the output drivers if the output voltage rises 15% above the nominal value. The inhibit pin can be used  
to control power sequencing. Inhibit and undervoltage lockout assures that the 12-V supply voltage and system  
supply voltage (5 V or 3.3 V) are within proper operating limits before the controller starts. The output driver  
circuits include 2-A drivers with internal 8-V gate-voltage regulators that can easily provide sufficient power for  
today’s high-powered DSPs. The high-side driver can be configured either as a ground-referenced driver or as  
afloatingbootstrapdriver. TheTPS5615familyisavailableina28-pinTSSOPPowerPad package. Itoperates  
over a junction temperature range of 0°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGE  
T
J
OUTPUT VOLTAGE  
TSSOP  
(PWP)  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
TPS5615PWP  
TPS5618PWP  
TPS5625PWP  
TPS5633PWP  
0°C to 125°C  
The PWP package is availble taped and reeled. Add R suffix to  
device type (e.g., TPS5615PWPR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments Incorporated.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
functional block diagram  
15  
7
28  
20  
19  
21  
IOUTLO HISENSE  
ANAGND  
PWRGD LOSENSE  
V
CC  
V
CC  
2 V  
+
2X  
22  
INHIBIT  
1
_
IOUT  
UVLO  
Shutdown  
10 V  
Q
S
R
V
CC  
Fault  
Rising  
Edge  
Delay  
3
OCP  
_
Deglitch  
Deglitch  
+
HIGHDR  
100mV  
HIGHIN  
VPGD  
0.93 VREF  
V
CC  
Analog  
Bias  
VOVP  
1.15 VREF  
VSENSE  
I
PREREG  
Analog  
Bias  
VREFB  
9
BIAS  
Slowstart  
Comparator  
8
14  
DRV  
DRV REG  
SLOWST  
5
+
_
Shutdown  
16  
BOOT  
17  
HIGHDR  
_
Shutdown  
CM Filters  
18  
BOOTLO  
+
Bandgap  
VREF  
_
+
_
Hysteresis  
Comparator  
13  
LOWDR  
+
12  
DRVGND  
Hysteresis  
Setting  
I
VREFB  
2
5
4
6
11  
LOHIB  
10  
LODRV  
AGND2  
VREFB  
VHYST  
VSENSE  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
Terminal Functions  
TERMINAL  
NAME  
AGND2  
I/O  
DESCRIPTION  
NO.  
2
Analog ground (must be connected).  
ANAGND  
BIAS  
7
Analog ground  
9
Analog bias pin. A 1-µF capacitor should be connected from BIAS to ANAGND.  
Bootstrap. A 1-µF capacitor should be connected from BOOT to BOOTLO.  
BOOT  
16  
18  
BOOTLO  
Bootstrap low. Connect to the junction of the high-side and low-side FETs for floating drive configuration.  
Connect to PGND for ground-reference drive configuration.  
DRV  
14  
12  
17  
19  
Drive regulator for the FET drivers. A 1-µF capacitor should be connected from DRV to DRVGND.  
Drive ground. Ground for FET drivers. Connect to FET PWRGND.  
DRVGND  
HIGHDR  
HISENSE  
High drive. Output drive to high-side power switching FETs.  
High current sense. For current sensing across high-side FETs, connect to the drain of the high-side FETs;  
for optional current sensing scheme, connect to power supply side of current-sense resistor placed in series  
with high-side FET drain.  
INHIBIT  
IOUT  
22  
1
Disables the drive signals to the MOSFET drivers. Also serves as UVLO for system logic supply (3.3 V or  
5 V). An external pull-up resistor should be connected to system-logic supply.  
Current out. Output voltage on this terminal is proportional to the load current as measured across the  
R
ofthehighsideFET. Thevoltageonthisterminalequals2×R  
×IOUT. Inapplicationswhere  
DS(ON)  
ds(on)  
very accurate current-sensing is required, a sense resistor should be connected between the input supply  
and the drain of the high-side FETs.  
IOUTLO  
21  
Current sense low output. This is the voltage on the LOSENSE terminal when the high-side FETs are on.  
A ceramic capacitor (between 0.033 µF and 0.1 µF) should be connected from IOUTLO to HISENSE to hold  
the sensed voltage.  
LODRV  
LOHIB  
10  
11  
Low drive enable. Normally tied to 5 V. To configure the low-side FET as a crowbar, pull LODRV low.  
Low side inhibit. Connect to the junction of the high- and low-side FETs to control the anti-cross-  
conduction and eliminate shoot-through current. Disabled when configured in crowbar mode.  
LOSENSE  
20  
Low current sense. For current sensing across high-side FETs, connect to the source of the high-side FETs;  
for optional current sensing scheme, connect to high-side FET drain side of current-sense resistor placed  
in series with high-side FET drain.  
LOWDR  
NC  
13  
23–27  
3
Low drive. Output drive to synchronous rectifier FETs.  
No connect  
OCP  
Over current protection. Current limit trip point is set with a resistor divider between IOUT and ANAGND.  
PWRGD  
28  
Power good. PWRGD signal goes high when output voltage is within 7% of voltage setpoint. Open-drain  
output.  
SLOWST  
VHYST  
8
4
Slow Start (soft start). A capacitor form SLOWST to ANAGND sets the slowstart time.  
Slowstart current = I  
/5  
VREFB  
Hysteresis set input. The hysteresis is set with a resistor divider from VREFB to ANAGND.  
Hysteresis = 2 × (VREFB – VHYST)  
V
15  
5
12-V supply. A 1-µF capacitor should be connected from V  
to DRVGND.  
CC  
CC  
VREFB  
Buffered reference voltage  
VSENSE  
6
VoltagesenseInput. Tobeconnectedfromconverteroutputvoltagebustosenseandcontroloutputvoltage.  
It is recommended that a RC low-pass filter be connected at this pin to filter noise.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
detailed description  
Vref  
The reference voltage section consists of a temperature-compensated bandgap reference and a resistive  
divider that sets the output voltage option. The output voltage, VREF, is within 1% of the nominal setting over  
the full junction temperature range of 0°C to 125°C, and a V  
supply voltage range of 11.4 V to 12.6 V. The  
CC  
output of the reference network is indirectly brought out through a buffer to the VREFB pin. The voltage on this  
pin will be within 2% of VREF. It is not recommended to drive loads with VREFB, other than setting the hysteresis  
of the hysteretic comparator, because the current drawn from VREFB sets the charging current for the slowstart  
capacitor. Refer to the slowstart section for additional information.  
hysteretic comparator  
The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is  
set by 2 external resistors and is centered on VREF. The 2 external resistors form a resistor divider from VREFB  
to ANAGND, with the output voltage connecting to the VHYST pin. The hysteresis of the propagation delay from  
the comparator inputs to the driver outputs is 250 ns (maximum). The maximum hysteresis setting is 60 mV.  
I
= 0.5 µA  
O(MAX)  
VREFB  
R2  
V
H
R1  
R1  
2
VREFB–V  
H
VHYST  
Where  
V
2
H = desired hysteresis voltage  
VREFB  
TPS56xx  
R2  
V
H
Figure 1. Setting the Hysteresis Voltage  
low-side driver  
The low-side driver is designed to drive low-R  
n-channel MOSFETs. The current rating of the driver is 2  
ds(on)  
A, source or sink. The bias to the low-side driver is internally connected to the DRV regulator.  
high-side driver  
The high-side driver is designed to drive low-R  
n-channel MOSFETs. The current rating of the driver is 2  
ds(on)  
A, source or sink. The high-side driver can be configured either as a ground-referenced driver or as a floating  
bootstrap driver. When configured as a floating driver, the bias voltage to the driver is developed from the DRV  
regulator. The internal bootstrap diode, connected between the DRV and BOOT pins, is a Schottky for improved  
drive efficiency. The maximum voltage that can be applied between BOOT and DRVGND is 30 V. The driver  
can be referenced to ground by connecting BOOTLO to DRVGND, and connecting BOOT to eitherDRV or V  
.
CC  
deadtime control  
Deadtime control prevents shoot-through current from flowing through the main power FETs during switching  
transitions by actively controlling the turn-on times of the MOSFET drivers. The high-side driver is not allowed  
to turn on until the gate-drive voltage to the low-side FET is below 2 V; the low-side driver is not allowed to turn  
on until the voltage at the junction of the 2 FETs (Vphase) is below 2 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
detailed description (continued)  
current sensing  
Current sensing is achieved by sampling and holding the voltage across the high-side power FET while the  
high-side FET is on. The sampling network consists of an internal 60-switch and an external ceramic hold  
capacitor. Recommended value of the hold capacitor is between 0.033 µF and 0.1 µF. The actual value should  
give a time constant (60 × C ) greater than the FET on time. Internal logic controls the turn-on and turn-off  
H
of the sample/hold switch such that the switch does not turn on until the Vphase voltage transitions high, and  
the switch turns off when the input to the high-side driver goes low. Thus sampling will occur only when the high  
side FET is conducting current. The voltage on the IOUT pin equals 2 times the sensed high-side voltage. In  
applications where a higher accuracy in current-sensing is required, a sense resistor can be placed in series  
with the high-side FET and the voltage across the sense resistor can be sampled by the current sensing circuit.  
See Figures 2 and 3.  
overcurrent protection  
The overcurrent protection (OCP) circuit monitors the current through the high-side FET. The overcurrent  
threshold is adjustable with an external resistor divider between IOUT and ANAGND, with the divider voltage  
connected to OCP. If the voltage on OCP (V ) exceeds 100 mV, then a fault latch is set and the output drivers  
S
are turned off. The latch will remain set until V  
goes below the undervoltage lockout value. A 3-µs deglitch  
CC  
timer is included for noise immunity. The OCP circuit is also designed to protect the high-side power FET against  
a short-to-ground fault on the terminal common to both power FETs (Vphase).  
R
S
V
CC  
V
P
V
CC  
V
P
C
C
H
H
V
S
V
S
2 * V  
2 * V  
S
S
IOUT  
OCP  
IOUT  
OCP  
R1  
R2  
R1  
R2  
TPS56xx  
TPS56xx  
R2  
V –0.05  
S
0.05  
R2  
V –0.05  
S
0.05  
R1  
R1  
Figure 3. Precision OCP Using External Resistor  
Figure 2. OCP Using FET ON-Resistance  
inhibit  
INHIBIT is a TTL-compatible digital input used to enable the controller. When INHIBIT is low, the output drivers  
are low and the slowstart capacitor is discharged. When INHIBIT goes high, the short across the slowstart  
capacitor is released and normal converter operation begins. When the system-logic supply is connected to  
INHIBIT, it also controls power sequencing by locking out controller operation until the system-logic supply  
exceeds the input threshold voltage of the inhibit circuit. Thus the 12-V supply and the system-logic supply  
(either 5 V or 3.3 V) must be above UVLO thresholds before the controller is allowed to start up. The INHIBIT  
comparator start threshold is 2.1 V and the hysteresis is 100 mV.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
detailed description (continued)  
V
CC  
To Power Stage  
R1  
SHUTDOWN  
INHIBIT  
R2  
R2  
TPS56xx  
2.1 R1  
–2.1  
V
TRIP  
Where  
V
TRIP  
=desired V  
trip voltage  
SUPPLY  
Figure 4. Input Undervoltage Lockout Circuit Using INHIBIT  
undervoltage lockout (UVLO)  
V
CC  
The undervoltage lockout circuit disables the controller while the V  
supply is below the 10-V start threshold  
CC  
during power-up. While the controller is disabled, the output drivers will be low and the slowstart capacitor will  
be shorted. When V exceeds the start threshold, the short across the slowstart capacitor is released and  
CC  
normal converter operation begins. There is a 2-V hysteresis in the undervoltage lockout circuit for noise  
immunity.  
slowstart  
The slowstart circuit controls the rate at which V powers up. A capacitor is connected between SLOWSST and  
O
ANAGND and is charged by an internal current source. The slowstart charging current is determined by the  
following equation:  
I(VREFB)  
I
SLOWSTART  
5
where I(VREFB) is the current flowing out of VREFB. It is recommended that no additional loads be connected  
to VREFB, other than the resistor divider for setting the hysteresis voltage. The maximum current that can be  
sourced by the VREFB circuit is 500 µA. The slowstart time is set by:  
t
5
C
R
SLOWSTART  
SLOWST  
VREFB  
where R  
is the total external resistance from VREFB to ANAGND.  
VREFB  
power good  
The power good circuit monitors for an undervoltage condition on V . If V is 7% below V , then PWRGD  
REF  
O
O
is pulled low. PWRGD is an open-drain output.  
overvoltage protection  
The overvoltage protection (OVP) circuit monitors V for an overvoltage condition. If V is 15% above V ,  
REF  
O
O
then a fault latch is set and both output drivers are turned off. The latch will remain set until V goes below the  
CC  
undervoltage lockout value. A 3-µs deglitch timer is included for noise immunity. Refer to the LODRV section  
for information on how to protect the load against overvoltages due to a shorted fault across the high-side power  
FET.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
detailed description (continued)  
drive regulator  
The drive regulator provides drive voltage to the output drivers. The minimum drive voltage is 7 V. The minimum  
short circuit current is 100 mA. Connect a 1-µF ceramic capacitor from DRV to DRVGND.  
LODRV  
The LODRV circuit is designed to protect the load against overvoltages that occur if the high-side FETs become  
shorted. External components to sense an overvoltage condition are required to use this feature. When an  
overvoltage fault occurs, LODRV is pulled low and the low-side FET will be turned on, overriding all control  
signals inside the TPS56xx controller. The crowbar action will short the system-logic supply to ground through  
the faulted high-side FETs and the low-side FETs. A fuse, in series with V , should be added to disconnect the  
IN  
short circuit.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 14 V  
CC  
Input voltage range: BOOT to DRVGND (high-side driver ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 30 V  
BOOT to HIGHDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 15 V  
BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 15 V  
INHIBIT, LODRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 7.3 V  
PWRGD, OCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 7 V  
LOHIB, LOSENSE, IOUTLO, HISENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 14 V  
VSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 to 5 V  
Voltage difference between ANAGND and DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V  
Output current, VREFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 mA  
Short circuit duration, DRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Unless otherwise specified, all voltages are with respect to ANAGND.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
PWP  
1150 mW  
11.5 mW/°C  
630 mW 460 mW  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
recommended operating conditions  
MIN  
11.4  
0
MAX  
13  
UNIT  
Supply voltage, V  
V
CC  
BOOT to DRVGND  
28  
BOOT to BOOTLO  
0
13  
Input voltage  
INHIBIT, LODRV, PWRGD, OCP  
LOHIB, LOSENSE, IOUTLO, HISENSE  
VSENSE  
0
6
V
0
13  
0
4.5  
±0.2  
0.4  
Voltage difference between ANAGND and DRVGND  
0
V
Output current, VREFB  
0
mA  
Not recommended to load VREFB other than to set hysteresis since I  
VREFB  
sets slowstart time.  
electrical characteristics over recommended operating virtual junction temperature range,  
= 12 V, I = 0 A (unless otherwise noted)  
V
CC  
DRV  
reference  
PARAMETER  
TPS5615  
TEST CONDITIONS  
MIN  
1.485  
1.782  
2.475  
3.267  
TYP  
MAX  
1.515  
1.818  
2.525  
3.333  
UNIT  
TPS5618  
TPS5625  
TPS5633  
Reference  
voltage  
VREF  
V
CC  
= 11.4 V to 12.6 V  
V
VREFB Output voltage  
I
= 50 µA  
VREF–2% VREF VREF+2%  
2
V
REFB  
VREFB Output regulation  
10 µA I 500 µA  
mV  
O
power good  
PARAMETER  
Undervoltage trip threshold  
TEST CONDITIONS  
MIN  
TYP  
93  
0.5  
1
MAX  
UNIT  
90  
95 %VREF  
Low-level output voltage, PWRGD  
High-level input current, PWRGD  
Hysteresis  
I
O
= 5 mA  
0.75  
V
V
= 6 V  
µA  
mV  
PWRGD  
10  
overvoltage protection  
PARAMETER  
Overvoltage trip threshold  
TEST CONDITIONS  
MIN  
TYP  
115  
10  
MAX  
UNIT  
112  
120 %VREF  
mV  
Hysteresis  
See Note 2  
NOTE 2: Ensured by design, not tested.  
slowstart  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
3
MAX  
UNIT  
µA  
Charge current  
V
V
= 0.5 V,  
I
= 65 µA  
10.4  
15.6  
SLOWST  
VREFB  
Discharge current  
= 1 V  
mA  
mV  
nA  
SOFTST  
Comparator input offset voltage  
Comparator input bias current  
Hysteresis  
10  
100  
7.5  
See Note 2  
10  
–7.5  
mV  
NOTE 2: Ensured by design, not tested.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
inhibit  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
1.9  
TYP  
2.1  
MAX  
2.35  
0.12  
UNIT  
Startup threshold  
Hysteresis  
V
V
V
0.08  
1.85  
0.1  
Stop threshold  
input undervoltage lockout  
PARAMETER  
MIN  
9.25  
1.9  
TYP  
MAX  
UNIT  
Startup threshold  
Hysteresis  
10 10.75  
V
V
V
2
2.2  
Stop threshold  
7.5  
hysteretic comparator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.5  
UNIT  
mV  
nA  
Input offset voltage  
–2.5  
Input bias current  
See Note 2  
500  
3.5  
Hysteresis accuracy  
V
– V  
– V  
= 15 mV, (hysteresis window = 30 mV)  
= 30 mV  
3.5  
mV  
mV  
REFB  
REFB  
HYST  
HYST  
Maximum hysteresis setting  
NOTE 2: Ensured by design, not tested.  
V
60  
overcurrent protection  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
110  
UNIT  
mV  
OCP trip threshold  
Input bias current  
90  
100  
100  
nA  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
high-side VDS sensing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gain  
2
V/V  
V
= 12 V,  
V
= 11.9 V  
HISENSE  
Differential input to Vds sensing amp = 100 mV  
LOSENSE  
Initial accuracy  
IOUTLO sink current  
IOUT source current  
194  
206  
250  
mV  
nA  
µA  
5 V V  
13 V  
IOUTLO  
= 0.5 V,  
V
V
V
V
= 12 V,  
= 12 V,  
IOUT  
IOUTLO  
HISENSE  
500  
50  
= 11.5 V  
V
V
= 0.05 V,  
IOUT  
IOUTLO  
HISENSE  
IOUT sink current  
µA  
= 12 V  
V
V
V
V
V
= 11 V  
= 4.5 V  
= 3 V  
0
0
2
1.5  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
HISENSE  
Output voltage swing  
R
= 10 kΩ  
V
IOUT  
0
0.75  
LOSENSE high-level input voltage  
LOSENSE low-level input voltage  
= 4.5 V,  
= 4.5 V,  
See Note 2  
See Note 2  
2.85  
V
V
2.4  
80  
11.4 V V  
LOSENSE connected to HISENSE,  
12.6 V,  
HISENSE  
50  
62  
60  
85  
V
– V  
= 0.15 V  
HISENSE  
4.5 V V  
IOUTLO  
5.5 V,  
HISENSE  
LOSENSE connected to HISENSE,  
Sample/hold resistance  
123  
144  
V
– V  
= 0.15 V  
HISENSE  
IOUTLO  
3 V V  
3.6 V,  
HISENSE  
LOSENSE connected to HISENSE,  
67  
69  
95  
75  
V
– V  
= 0.15 V  
HISENSE  
IOUTLO  
V
V
= 12.6 V to 3 V,  
HISENSE  
HISENSE  
CMRR  
dB  
– V  
= 100 mV  
OUTLO  
NOTE 2: Ensured by design, not tested.  
deadtime  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
3
TYP  
MAX  
UNIT  
LOHIB  
See Note 2  
See Note 2  
See Note 2  
See Note 2  
High-level input voltage  
LODR  
V
LOHIB  
1.4  
1.7  
Low-level input voltage  
LODR  
V
NOTE 2: Ensured by design, not tested.  
LODRV  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
High-level input voltage  
LODRV  
1.85  
Low-level input voltage  
0.95  
V
drive regulator  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
Output voltage  
11.4 V VCC 12.6 V,  
1 mA I 500 mA  
I
= 50 mA  
7
9
DRV  
Output regulation  
Short-circuit current  
100  
mV  
mA  
DRV  
100  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
bias regulator  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
11.4 V VCC 12.6 V, See Note 3  
6
V
NOTE 3: The bias regulator is designed to provide a quiet bias supply for the TPS56xx controller. External loads should not be driven by the bias  
regulator.  
output drivers  
PARAMETER (see Note 4)  
TEST CONDITIONS  
Duty cycle < 2%, < 100 µs, T = 125°C,  
MIN  
TYP  
MAX  
UNIT  
t
High-side sink  
2
pw  
= 6.5 V,  
J
V
V
– V  
BOOT  
BOOTLO  
= 1.5 V (SRC) or 5 V (sink), See Note 2  
High-side source  
Low-side sink  
2
2
2
HIGHDR  
Peak output current  
Output resistance  
A
Duty cycle < 2%,  
= 6.5 V,  
t
< 100 µs, T = 125°C,  
pw J  
V
V
= 1.5 V (SRC) or 5 V  
LOWDR  
DRV  
(sink), See Note 2  
Low-side source  
High-side sink  
High-side source  
Low-side sink  
3
45  
T = 125°C, V  
– V  
= 6.5 V,  
BOOTLO  
J
BOOT  
= 1.5 V (SRC) or 5 V (sink)  
V
HIGHDR  
5.7  
45  
T = 125°C, V  
= 6.5 V,  
J
DRV  
= 1.5 V (SRC) or 5 V (sink)  
V
LOWDR  
Low-side source  
NOTES: 2. Ensured by design, not tested.  
4. The pull up/down circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the R of the MOSFET transistor when  
DS(ON)  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
supply current  
PARAMETER  
supply voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
11.4  
12  
13  
V
CC  
CC  
V
V
= 5 V,  
= 0 V,  
V
> 10.75 V at startup,  
INHIBIT  
BOOTLO  
CC  
See Note 2  
3
10  
V
quiescent current  
mA  
V
V
C
= 5 V,  
= 0 V,  
= 50 pF,  
V
C
> 10.75 V at startup,  
INHIBIT  
BOOTLO  
CC  
= 50 pF,  
5
HIGHDR  
f = 200 kHz  
LOWDR  
swx  
< 9.25 V at startup,  
V
V
= 0 V or V  
INHIBIT  
BOOT  
CC  
10  
µA  
= 13 V,  
V
= 0 V  
BOOTLO  
High-side drive regulator quiescent current  
NOTE 2: Ensured by design, not tested.  
V
V
C
= 5 V,  
= 13 V,  
V
> 10.75 V at startup,  
CC  
INHIBIT  
BOOT  
V
f
= 0 V,  
2
mA  
BOOTLO  
= 50 pF,  
= 200 kHz  
HIGHDR  
swx  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
switching characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 V (unless otherwise noted)  
CC  
DRV  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSENSE to HIGHDR or  
LOWDR (excluding deadtime)  
Overdrive = 10 mV (see Note 2)  
150  
250  
ns  
OCP comparator  
See Note 2  
1
1
Propagation delay  
OVP comparator  
See Note 2  
µs  
PWRGD comparator  
SLOWST comparator  
See Note 2  
1
Overdrive = 10 mV (see Note 2)  
560  
900  
60  
ns  
C
= 9 nF,  
V
= 6.5 V,  
L
BOOT  
= 0 V, T = 125°C  
HIGHDR output  
LOWDR output  
HIGHDR output  
LOWDR output  
V
BOOTLO  
= 9 nF,  
J
Rise time  
Fall time  
ns  
C
V = 6.5 V,  
DRV  
L
60  
60  
60  
T = 125°C  
J
C
= 9 nF,  
V
= 6.5 V,  
BOOT  
L
V
= 0 V, T = 125°C  
BOOTLO  
= 9 nF,  
J
ns  
C
V
DRV  
= 6.5 V,  
L
T = 125°C  
J
Deglitch time (includes  
comparator propagation  
delay)  
OCP  
OVP  
See Note 2  
See Note 2  
2
2
5
5
µs  
V
V
= 12 V,  
HISENSE  
pulsed from 12 V to 11.9 V,  
2
3
IOUTLO  
100 ns rise/fall times, See Note 2  
V
V
= 4.5 V,  
HISENSE  
pulsed from 4.5 V to 4.4 V,  
Response time  
High-side VDS sensing  
µs  
IOUTLO  
100 ns rise/fall times, See Note 2  
V
V
= 3 V,  
HISENSE  
pulsed from 3 V to 2.9 V,  
3
500  
100  
100  
IOUTLO  
100 ns rise/fall times, See Note 2  
Short-circuit protection rising-  
edge delay  
SCP  
LOSENSE = 0 V, (see Note 2)  
300  
30  
ns  
ns  
ns  
3 V V  
V
(see Note 2)  
11 V,  
HISENSE  
V
sensing sample/hold  
DS  
Turn-on/turn-off delay  
= V  
LOSENSE HISENSE  
switch  
LOWDR to HIGHDRV, and  
LOHIB to LOWDR  
Crossover delay time  
See Note 2  
30  
Prefilter pole frequency  
Propagation delay  
Hysteretic comparator  
LODRV  
See Note 2  
See Note 2  
5
MHz  
ns  
400  
NOTE 2: Ensured by design, not tested.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
SLOWSTART TIMING  
SLOWSTART TIMING  
vs  
VREFB CURRENT  
vs  
CAPACITANCE  
100  
10  
1000  
100  
10  
V
= 2 V  
= 100µA  
REFB  
V
= 2 V  
I
C
T
REFB  
(VREFB)  
C
T
= 0.1µF  
= 0.1 µF  
(SLOWST)  
J
(SLOWST)  
= 25°C  
= 25°C  
J
1
0.1  
0
1
0.0001  
0.001  
0.01  
0.1  
1
1
10  
100  
– VREFB Current – µA  
1000  
Capacitance – µF  
I
(VREFB)  
Figure 5  
Figure 6  
OUTPUT DRIVER RISE TIME  
vs  
OUTPUT DRIVER FALL TIME  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
100  
1000  
100  
10  
High Side Driver  
High Side Driver  
10  
Low Side Driver  
Low Side Driver  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
C
– Load Capacitance – nF  
C
– Load Capacitance – nF  
L
L
Figure 7  
Figure 8  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
OCP THRESHOLD VOLTAGE  
OVP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
105  
118  
117  
116  
103  
101  
115  
114  
99  
97  
95  
113  
112  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 9  
Figure 10  
INHIBIT HYSTERESIS VOLTAGE  
vs  
INHIBIT START THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
150  
125  
2.1  
2.05  
100  
2
75  
50  
1.95  
1.90  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 11  
Figure 12  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
UVLO HYSTERESIS VOLTAGE (V  
vs  
)
CC  
UVLO START THRESHOLD VOLTAGE V  
CC  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.5  
10.5  
2.3  
2.1  
10  
1.9  
9.5  
1.7  
1.5  
9
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 13  
Figure 14  
PWRGD THRESHOLD VOLTAGE  
vs  
QUIESCENT CURRENT V  
vs  
JUNCTION TEMPERATURE  
CC  
JUNCTION TEMPERATURE  
95  
6
4
94  
93  
92  
2
0
91  
90  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 15  
Figure 16  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
VDS SAMPLE/HOLD RESISTANCE  
SLOWSTART CHARGE CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
100  
75  
15  
14  
13  
50  
12  
25  
0
11  
10  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 17  
Figure 18  
DRIVE REGULATOR LOAD REGULATION  
DRIVE REGULATOR OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
175  
150  
8.5  
8.25  
8
125  
100  
7.75  
7.5  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 19  
Figure 20  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
TYPICAL CHARACTERISTICS  
HIGH–SIDE DRIVER OUTPUT RESISTANCE  
DRIVE REGULATOR LINE REGULATION  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
5
175  
150  
4
3
2
125  
100  
1
0
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 21  
Figure 22  
LOW–SIDE DRIVER OUTPUT RESISTANCE  
vs  
JUNCTION TEMPERATURE  
6
5
4
3
2
1
0
100  
125  
0
25  
50  
75  
T
J
– Junction Temperature – °C  
Figure 23  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
Synchronous rectifier buck regulator circuits are used where high efficiency and low dropout voltages are required.  
The TPS56xx controller is useful in applications with very high transient loads and wide dc load ranges, such as  
multiple-DSP applications.  
The circuit below will meet a wide variety of applications with maximum continuous-rated output currents of up to 8 A.  
Design tradeoffs, such as cost, size, or efficiency may need to be addressed for specific applications. Care should  
be taken in the proper layout (see last section of this data sheet for specific layout guidelines), especially in the  
higher-current configurations, to ensure that noise and ripple are kept to a minimum. Basic layout considerations are  
discussed in the 1996 Power Supply Circuits Databook (Literature no. SLVD002). Design guidelines and equations  
are discussed in Synchronous Buck Converter Design Using TPS56xx Controllers in SLVP10x EVMs User’s Guide  
(Literature no. SLVU007).  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
R7  
11.0 k1%  
R11  
750 Ω  
R6  
1.3 kΩ  
C1  
22 µF  
10 V  
C14  
0.01 µF  
C12 0.1 µF  
U1  
R9  
100 1%  
R12  
20.0 k1%  
TPS5625  
R1  
1.0 kΩ  
1
2
3
4
IOUT  
PWRGD 28  
NC 27  
AGND2  
OCP  
NC 26  
C15 1000 pF  
VHYST  
NC 25  
5
6
7
VREFB  
NC 24  
NC 23  
R2  
10 kΩ  
R13  
VSENSE  
ANAGND  
INHIBIT 22  
8
9
SLOWST  
BIAS  
IOUTLO 21  
LOSENSE 20  
HISENSE 19  
BOOTLO 18  
HIGHDR 17  
BOOT 16  
C3 0.1 µF  
C16 0.1 µF  
C17 1 µF  
10 LODRV  
11 LOHIB  
12 DRVGND  
13 LOWDR  
14 DRV  
C2  
0.1 µF  
C4  
1 µF  
C11  
1 µF  
VCC 15  
R17  
1 MΩ  
R8  
100 Ω  
1%  
C7 1 µF  
R4  
10 Ω  
R3  
10 Ω  
L1  
2.2 µH  
C18  
0.1 µF  
Q2  
Si4410  
Q1  
Si4410  
R16  
4.7 Ω  
C5 2.2 µF  
C6 680 µF 6.3 V  
See Note A  
C8 0.01 µF  
R5  
L2  
2.7 Ω  
2.6 µH  
L1 = 10T #22 on T30–18 Core  
L2 = 12T #20 on T44–8Core  
C9 820 µF 4V  
C10 10 µF  
Not Used:  
R10, R13, R14  
C13  
R15  
4.7 Ω  
NOTE A: Theses two traces should be physically close to each other for good noise immunity.  
Figure 24. Typical Design Schematic  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
Table 1. Test Results for 2.5-V, 8-A Converter  
TEST  
Output voltage  
Load regulation  
Line regulation  
Ripple  
CONDITIONS  
QTY  
2.50  
UNITS  
V
V
= 5.25 V,  
= 5.25 V,  
I
I
= 8 A  
V
%
%
IN  
O
= 0.8 to 8 A  
0.4  
0.2  
IN  
O
I
O
=6 A,  
V
CC  
= 4.5 V to 6 V  
V
= 5.25 V,  
= 5.25 V,  
I
I
= 8 A  
50 mVpp  
89  
IN  
IN  
O
Efficiency  
V
= 8 A  
%
O
Table 2. 2.5-V, 8-A Converter Bill of Materials  
REF DES  
C1  
QTY  
PART NUMBER  
DESCRIPTION  
Capacitor, Os-Con, 22 µF, 10 V, 20%  
MFG  
Sanyo  
1
4
10SS22M  
C2  
GRM39X7R104K016A  
GRM39X7R104K016A  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
muRata  
muRata  
muRata  
muRata  
Sanyo  
C3  
C4  
4
1
1
GRM42-6Y5V105Z016A Capacitor, Ceramic, 1 µF, 16 V, +80%–20%  
GRM42-6Y5V225Z016A Capacitor, Os-Con, 2.2 µF, 16 V, Y5U  
C5  
C6  
6SP680M  
Capacitor, Os-Con, 680 µF, 6.3 V, 20%  
C7  
GRM42-6Y5V105Z016A Capacitor, Ceramic, 1 µF, 16 V, +80%–20%  
muRata  
muRata  
Sanyo  
C8  
2
1
1
GRM39X7R103K025A  
4SP820M  
Capacitor, Ceramic, 0.01 µF, 25 V, 10%, X7R  
Capacitor, Os-Con, 820 µF, 4 V, 20%  
C9  
C10  
C11  
C12  
C14  
C15  
C16  
C17  
C18  
J1  
GRM235Y5V106Z016A Capacitor, Ceramic, 10 µF, 16 V, Y5V  
GRM42-6Y5V105Z016A Capacitor, Ceramic, 1 µF, 16 V, +80%–20%  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
muRata  
Sullins  
GRM39X7R104K016A  
GRM39X7R103K025A  
GRM39X7R102K050A  
GRM39X7R104K016A  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 0.01 µF, 25 V, 10%, X7R  
Capacitor, Ceramic, 1000 pF, 50 V, 10%, X7R  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
1
GRM42-6Y5V105Z016A Capacitor, Ceramic, 1 µF, 16 V, +80%–20%  
GRM39X7R104K016A  
S1122-18-ND  
Capacitor, Ceramic, 0.1 µF, 16 V, 10%, X7R  
Header, RA, 18-pin, 0.23 Posts × 0.20 Tails  
Inductor, Filter, 2.2 µH, 8.5 A (10T #22 on T30-18 Core)  
Inductor, Filter, 2.6 µH, 8.5 A (12T #20 on T44-8 Core)  
FET, N-ch, 30-V, 10-A, 13-mΩ  
1
1
1
2
L1  
L2  
Q1  
Si4410DY  
Si4410DY  
Std  
Siliconix  
Siliconix  
Q2  
FET, N-ch, 30-V, 10-A, 13-mΩ  
R1  
3
1
2
Resistor, Chip, 1.0 k, 1/16W, 5%  
Resistor, Chip, 10 k, 1/16W, 5%  
R2  
Std  
R3  
Std  
Resistor, Chip, 10 , 1/10W, 5%  
R4  
Std  
Resistor, Chip, 10 , 1/10W, 5%  
R5  
1
Std  
Resistor, Chip, 2.7 , 1/4W, 5%  
R6  
Std  
Resistor, Chip, 1.3 k, 1/16W, 5%  
Resistor, Chip, 11.0 k, 1/16W, 1%  
Resistor, Chip, 100 , 1/16W, 1%  
R7  
1
2
Std  
R8  
Std  
R9  
Std  
Resistor, Chip, 100 , 1/16W, 1%  
Resistor, Chip, 750 , 1/16W, 5%  
Resistor, Chip, 20.0 k, 1/16W, 1%  
Resistor, Chip, 4.7 , 1/16W, 5%  
Resistor, Chip, 4.7 , 1/16W, 5%  
Resistor, Chip, 1 M, 1/16W, 5%  
IC, PWM Ripple Controller, FIxed 2.5 V  
R11  
R12  
R15  
R16  
R17  
U1  
Std  
1
2
Std  
Std  
Std  
1
1
Std  
TPS5625PWP  
TI  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
EFFICIENCY  
vs  
OUTPUT CURRENT  
100  
95  
90  
85  
80  
4
7
8
0
1
2
3
5
6
Output Current – A  
Figure 25  
Top: Vo 10 mV/div  
Bottom: V  
2 µs/div  
Q2 5 V/div  
DS  
Figure 26. Output Voltage Ripple at 8 A  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
20 µs/div  
I
O
2.5 A/div  
V
O
20 mV/div  
Figure 27. Rising Load Transient Response  
20 µs/div  
I
O
2.5 A/div  
V
O
20 mV/div  
Figure 28. Falling Load Transient Response  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
APPLICATION INFORMATION  
layout guidelines  
Good power supply results will only occur when care is given to proper design and layout. Layout will affectnoise  
pickup and generation and can cause a good design to perform with less than expected results. With a range  
of currents from milliamps to tens or even hundreds of amps, good power supply layout is much more difficult  
than most general PCB design. The general design should proceed from the switching node to the output, then  
back to the driver section and, finally, place the low-level components. Below are several specific points to  
consider before layout of a TPS56xx design begins.  
1. All sensitive analog components should be referenced to ANAGND. These include components connected  
to SLOWST, IOUT, OCP, VSENSE, VREFB, VHYST, BIAS, and LOHIB.  
2. Analogground and drive ground should be isolated as much as possible. Ideally, analog ground will connect  
to the ground side of the bulk storage capacitors, on V , and drive ground will connect to the main ground  
O
plane close to the source of the low-side FET.  
3. Connections from the drivers to the gate of the power FETs should be as short and wide as possible to  
reduce stray inductance. This becomes more critical if external gate resistors are not being used.  
4. The bypass capacitor for the DRV regulator should be placed close to the TPS56xx and be connected to  
DRVGND.  
5. The bypass capacitor for V  
should be placed close to the TPS56xx and be connected to DRVGND.  
CC  
6. When configuring the high-side driver as a floating driver, the connection from BOOTLO to the power FETs  
should be as short and as wide as possible. The other pins that also connect to the power FETs, LOHIB  
and LOSENSE, should have a separate connection to the FETs, since BOOTLO will have large peak  
currents flowing through it.  
7. When configuring the high-side driver as a floating driver, the bootstrap capacitor (connected from BOOT  
to BOOTLO) should be placed close to the TPS56xx.  
8. When configuring the high-side driver as a ground referenced driver, BOOTLO should be connected to  
DRVGND.  
9. The bulk storage capacitors across V should be placed close to the power FETs. High-frequency bypass  
I
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and close to the source of the low-side FET.  
10. High-frequency bypass capacitors should be placed across the bulk storage capacitors on V .  
O
11. HISENSE and LOSENSE should be connected very close to the drain and source, respectively, of the  
high-side FET. HISENSE and LOSENSE should be routed very close to each other to minimize  
differential-mode noise coupling to these traces.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5615, TPS5618, TPS5625, TPS5633  
SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER  
SLVS177A – SEPTEMBER 1998 – REVISED NOVEMBER 1998  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
20-PIN SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/E 03/97  
NOTES: B. All linear dimensions are in millimeters.  
C. This drawing is subject to change without notice.  
D. Body dimensions do not include mold flash or protrusions.  
E. Thepackagethermalperformancemaybeenhancedbybondingthethermalpadtoanexternalthermalplane.Thispadiselectrically  
and thermally connected to the backside of the die and possibly selected leads.  
F. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments Incorporated.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TPS5625CPWP

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5625CPWPR

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5625PWP

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5625PWPR

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5625PWPRG4

2A SWITCHING CONTROLLER, 200kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300EVM-139

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300PWPG4

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300PWPR

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300PWPRG4

DUAL SWITCHING CONTROLLER, 400kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56300_16

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI