TPS56628DDA [TI]

具有 Eco-Mode 的 4.5V 至 18V、6A 同步降压转换器 | DDA | 8 | -40 to 85;
TPS56628DDA
型号: TPS56628DDA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-Mode 的 4.5V 至 18V、6A 同步降压转换器 | DDA | 8 | -40 to 85

转换器
文件: 总26页 (文件大小:1891K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
具有 Eco-mode™ 4.5V 18V 输入,6A 同步降压转换器  
查询样片: TPS56628  
1
特性  
说明  
23  
D-CAP2™ 模式支持快速瞬态响应  
低输出纹波,支持陶瓷输出电容器  
VIN 输入电压范围:4.5V 18V  
输出电压范围:0.76V 5.5V  
TPS56628 是一款自适应接通时间 D-CAP2™ 模式同  
步降压转换器。 TPS56628 可帮助系统设计人员通过  
一个成本有效、低组件数量、低待机电流解决方案来完  
成多种终端设备的电源总线调节器集。 TPS56628 的  
主控制环路使用 D-CAP2™ 模式控制,此控制方式在  
无需外部补偿组件的情况下提供快速瞬态响应。 自适  
应接通时间控制支持较高负载状态下的脉宽调制  
(PWM) 模式与轻负载下的 Eco-mode™ 工作模式之间  
的无缝转换。 Eco-mode™ 使 TPS56628 能够在较轻  
负载条件下保持高效率。 TPS56628 的专有电路还使  
该器件可采用诸如高分子有机半导体固体电容器  
(POSCAP) 或高分子聚合物电容器 (SP-CAP) 等低等  
效串联电阻 (ESR) 输出电容器,以及超低 ESR 陶瓷电  
容器。 该器件的工作输入电压介于 4.5V 18V VIN  
之间。 输出电压可在 0.76V 5.5V 的范围内设  
定。TPS56628 采用 8 引脚 DDA 封装,并且设计运行  
温度范围在 -40°C 85°C 之间。  
高效率集成型场效应晶体管 (FET)  
针对较低占空比应用进行了优化  
- 36m(高侧)与 28m(低侧)  
高效率,关断时流耗少于 10μA  
高初始带隙基准精度  
预偏置软启动  
650kHz 开关频率 (fSW  
)
逐周期过流限制  
在轻负载情况下实现高效率的自动跳跃 Eco-  
mode™ 模式  
电源正常输出  
固定软启动时间:1.0ms  
应用范围  
低电压系统的广泛应用  
数字电视电源  
高清 Blu-ray Disc™ 播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
VIN  
Vout (50mV/div)  
TPS56628DDA  
EN  
1
2
3
4
8
7
6
5
EN  
VIN  
VBST  
SW  
VOUT  
VFB  
VREG5  
PG  
VOUT  
Iout (2A/div)  
100 μs/div  
GND  
PwPd  
9
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
D-CAP2, Eco-mode are trademarks of Texas Instruments.  
Blu-ray Disc is a trademark of Blu-ray Disc Association.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC94  
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)(2)(3)  
TRANSPORT  
TA  
PACKAGE  
ORDERABLE PART NUMBER  
PIN  
MEDIA  
TPS56628DDA  
Tube  
–40°C to 85°C  
DDA  
8
TPS56628DDAR  
Tape and Reel  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) All package options have Cu NIPDAU lead/ball finish.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
20  
VIN, EN  
VBST  
26  
VBST (10 ns transient)  
VBST (vs SW)  
VFB, PG  
28  
Input voltage range  
Output voltage range  
6.5  
6.5  
20  
V
SW  
SW (10 ns transient)  
VREG5  
–3  
22  
–0.3  
–0.2  
6.5  
0.2  
2
V
V
Voltage from GND to thermal pad, Vdiff  
Human Body Model (HBM)  
Charged Device Model (CDM)  
kV  
V
Electrostatic discharge  
500  
150  
150  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
THERMAL INFORMATION  
TPS56628  
THERMAL METRIC  
UNITS  
DDA (8 PINS)  
θJA  
Junction-to-ambient thermal resistance  
43.5  
49.4  
25.6  
7.4  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
25.5  
5.2  
θJCbot  
2
Copyright © 2013, Texas Instruments Incorporated  
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range, (unless otherwise noted)  
MIN  
4.5  
MAX  
18  
UNIT  
VIN  
Supply input voltage range  
V
VBST  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3  
24  
VBST (10 ns transient)  
27  
VBST(vs SW)  
6.0  
5.7  
18  
PG  
VI  
Input voltage range  
V
EN  
VFB  
5.5  
18  
SW  
SW (10 ns transient)  
VREG5  
22  
VO  
IO  
Output voltage range  
–0.1  
0
5.7  
5
V
Output Current range  
IVREG5  
mA  
°C  
TA  
Operating free-air temperature  
–40  
85  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN current, TA = 25°C, EN = 5 V,  
VFB = 0.8 V  
IVIN  
Operating - non-switching supply current  
Shutdown supply current  
950  
3
1400  
10  
μA  
μA  
IVINSDN  
VIN current, TA = 25°C, EN = 0 V  
LOGIC THRESHOLD  
EN high-level input voltage  
EN  
1.6  
V
V
VEN  
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.6  
REN  
VEN = 12 V  
200  
400  
800  
kΩ  
VFB VOLTAGE  
TA = 25°C, VO = 1.05 V, IO = 10 mA, Eco-  
mode™ operation  
772  
765  
mV  
mV  
TA = 25°C, VO = 1.05 V, continuous mode  
operation  
VFBTH  
VFB threshold voltage  
VFB input current  
757  
751  
773  
TA = -40 to 85°C, VO = 1.05 V, continuous  
mode operation(1)  
779  
mV  
IVFB  
VFB = 0.8 V, TA = 25°C  
0
±0.15  
μA  
VREG5 OUTPUT  
TA = 25°C, 6 V < VIN < 18 V,  
0 < IVREG5 < 5 mA  
VVREG5  
IVREG5  
VREG5 output voltage  
Output current  
5.2  
20  
5.5  
5.7  
V
VIN = 6 V, VREG5 = 4.0 V, TA = 25°C  
mA  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
RDISCHG  
VOUT discharge resistance  
EN = 0 V, SW = 0.5 V, TA = 25°C  
500  
800  
Ω
MOSFET  
High side switch resistance  
Low side switch resistance  
25°C, VBST - SW = 5.5 V  
25°C  
36  
28  
mΩ  
mΩ  
RDS(on)  
CURRENT LIMIT  
IOCL  
Current limit  
L out = 1.5 μH(1)  
6.6  
7.3  
8.9  
A
(1) Not production tested.  
Copyright © 2013, Texas Instruments Incorporated  
3
 
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, VIN = 12 V (unless otherwise noted)  
PARAMETER  
THERMAL SHUTDOWN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(2)  
Shutdown temperature  
165  
35  
TSDN  
Thermal shutdown threshold  
°C  
(2)  
Hysteresis  
ON-TIME TIMER CONTROL  
tON  
On time  
VIN = 12 V, VO = 1.05 V  
TA = 25°C, VFB = 0.7 V  
150  
260  
ns  
ns  
tOFF(MIN)  
Minimum off time  
310  
1.3  
SOFT START  
TSS  
Soft-start time  
Internal soft-start time  
0.7  
85%  
2
1.0  
ms  
POWER GOOD  
VFB rising (Good)  
VFB falling (Fault)  
PG = 5 V  
90%  
85%  
4
95%  
VTHPG  
IPG  
PG threshold  
PG sink current  
mA  
HICCUP AND OVER-VOLTAGE PROTECTION  
VOVP  
Output OVP threshold  
Output Hiccup threshold  
Output Hiccup delay  
OVP Detect (L > H)  
Hiccup detect (H > L)  
To hiccup state  
125%  
65%  
250  
VHICCUP  
THICCUPDELAY  
µs  
V
THICCUPENDELAY Output Hiccup Enable delay  
Relative to soft-start time  
x1.7  
UVLO  
Wake up VREG5 voltage  
Hysteresis VREG5 voltage  
3.45  
0.13  
3.75  
0.32  
4.05  
0.48  
UVLO  
UVLO threshold  
(2) Not production tested.  
4
Copyright © 2013, Texas Instruments Incorporated  
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
DEVICE INFORMATION  
DDA PACKAGE  
(TOP VIEW)  
1
2
3
4
8
EN  
VIN  
EXPOSED  
THERMAL PAD  
7
VFB  
VBST  
TPS56628  
DDA  
HSOP8  
6
VREG5  
SW  
5
PG  
GND  
PIN FUNCTIONS  
PIN  
DESCRIPTION  
NAME  
EN  
NO.  
1
Enable input control. EN is active high and must be pulled up to enable the device.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
VFB  
2
5.5 V power supply output. A capacitor (typical 1 µF) should be connected to GND. VREG5 is not active  
when EN is low.  
VREG5  
PG  
3
4
Open drain power good output  
Ground pin. Power ground return for switching circuit. Connect sensitive VFB returns to GND at a single  
point.  
GND  
SW  
5
6
Switch node connection between high-side NFET and low-side NFET.  
Supply input for the high-side FET gate drive circuit. Connect 0.1 µF capacitor between VBST and SW  
pins. An internal diode is connected between VREG5 and VBST.  
VBST  
VIN  
7
8
Input voltage supply pin.  
Exposed Thermal  
Pad  
Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be connected to  
GND.  
Back side  
Copyright © 2013, Texas Instruments Incorporated  
5
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
FUNCTIONAL BLOCK DIAGRAM  
EN  
EN  
EN  
1
Logic  
VIN  
VIN  
OV  
8
+25%  
VBST  
SW  
7
Ref  
SS  
VO  
6
2
VFB  
Ceramic  
Capacitor  
-35%  
UVP_Hiccup  
SGND  
5
SW  
GND  
VREG5  
ZC  
3
GND  
SW  
Softstart  
Hiccup  
PGND  
GND  
SS  
VIN  
OV  
EN  
VREG5  
Protection  
Logic  
UVLO  
Ref  
4
UVLO  
TSD  
PG  
-10%  
Hiccup  
REF  
Ref  
6
Copyright © 2013, Texas Instruments Incorporated  
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
OVERVIEW  
The TPS56628 is a 6-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs with  
Auto-Skip mode to improve light load efficiency. It operates using D-CAP2™ mode control. The fast transient  
response of D-CAP2™ control reduces the output capacitance required to meet a specific level of performance.  
Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and special polymer  
types. The PG output can be used for sequence operation.  
DETAILED DESCRIPTION  
PWM Operation  
The main control loop of the TPS56628 is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot is set by the converter input voltage, VIN, and the output voltage, VO, to  
maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The  
one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the  
reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need  
for ESR induced output ripple from D-CAP2™ mode control.  
PWM Frequency and Adaptive On-Time Control  
TPS56628 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The  
TPS56628 runs with a pseudo-constant frequency of 650 kHz by using the input voltage and output voltage to  
set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the  
output voltage; therefore, when the duty ratio is VOUT/VIN, the frequency is constant.  
Auto-Skip Eco-mode™ Control  
The TPS56628 is designed with Auto-Skip Eco-mode™ to increase light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to a point where  
its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load  
current further decreases the converters runs in discontinuous conduction mode. The on-time is kept almost the  
same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. The transition point to the light load operation  
IOUT(LL) current can be calculated in Equation 1  
V
(
-VOUT ×V  
)
1
IN  
OUT  
IOUT (LL)  
=
×
2× L× fsw  
VIN  
(1)  
Soft Start and Pre-Biased Soft Start  
The TPS56628 has an internal 1.0 ms soft-start. When the EN pin becomes high, internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
The TPS56628 contains a unique circuit to prevent current from being pulled from the output during startup if the  
output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft start  
becomes greater than feedback voltage VFB), the controller slowly activates synchronous rectification by starting  
the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by-  
cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This  
scheme prevents the initial sinking of the pre-bias output, and ensure that the out voltage (VO) starts and ramps  
up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal  
mode operation.  
Copyright © 2013, Texas Instruments Incorporated  
7
 
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Power Good  
The power-good function is activated after soft start has finished. The power good function becomes active after  
1.7 times soft-start time. When the output voltage becomes within -10% of the target value, internal comparators  
detect power good state and the power good signal becomes high. The power good output, PG is an open drain  
output. If the feedback voltage goes under 15% of the target value, the power good signal becomes low. Rpg  
resistor value, which is connected between PG and VREG5, is required from 25kΩ to 150kΩ.  
Current Protection  
The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The  
switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This  
voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. The TPS56628 constantly  
monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side on-time.  
If the measured voltage is above the voltage proportional to the current limit, an internal counter is incremented  
per each SW cycle and the converter maintains the low-side switch on until the measured voltage is below the  
voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching  
cycle begins. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in  
the same manner. If the over current condition exists for 7 consecutive switching cycles, the internal OCL  
threshold is set to a lower level, reducing the available output current. When a switching cycle occurs where the  
switch current is not above the lower OCL threshold, the counter is reset and the OCL limit is returned to the  
higher value.  
There are some important considerations for this type of over-current protection. The load current one half of the  
peak-to-peak inductor current is higher than the over-current threshold also when the current is being limited, the  
output voltage tends to fall as the demanded load current may be higher than the current available from the  
converter. This may cause the output voltage to fall. When the VFB voltage becomes lower than 65% of the  
target voltage, the UVP comparator detects it. After 250 µs detecting the UVP voltage, device will shut down and  
re-start after approximately 12ms hiccup time  
When the over-current condition is removed, the output voltage returns to the regulated value.  
Overvoltage Protection  
TPS56628 detects overvoltage conditions by monitoring the feedback voltage (VFB). This function is enabled  
after approximately 1.7 x times the soft start time. When the feedback voltage becomes higher than 125% of the  
target voltage, the OVP comparator output goes high and both the high-side MOSFET driver and the low-side  
MOSFET driver turn off. This function is non-latch operation.  
UVLO Protection  
Undervoltage lock out protection (UVLO) monitors the voltage of the VREG5 pin. When the VREG5 voltage is  
lower than UVLO threshold voltage, the TPS56628 is shut off. This protection is non-latching.  
Thermal Shutdown  
TPS56628 monitors the temperature of itself. If the temperature exceeds the threshold value (typically 165°C),  
the device is shut off. This is non-latch protection.  
8
Copyright © 2013, Texas Instruments Incorporated  
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
TYPICAL CHARACTERISTICS  
VIN = 12 V, VO = 1.05V, TA = 25°C (unless otherwise noted).  
1,400  
1,200  
1,000  
800  
10  
9
8
7
6
5
4
3
2
1
0
600  
400  
200  
0
±50  
0
50  
100  
150  
±50  
0
50  
100  
150  
C001  
C002  
TJ Junction Temperature (ƒC)  
TJ Junction Temperature (ƒC)  
Figure 1. SUPPLY CURRENT vs JUNCTION TEMPERATURE  
Figure 2. VIN SHUTDOWN CURRENT vs  
JUNCTION TEMPERATURE  
50  
1.100  
1.075  
1.050  
1.025  
1.000  
VIN = 18 V  
40  
30  
20  
10  
0
V
= 5 V  
IN  
V
= 12 V  
IN  
V
= 18 V  
IN  
0
5
10  
15  
20  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
C003  
C004  
EN Input Voltage (V)  
IOUT - Output Current (A)  
Figure 3. EN CURRENT vs EN VOLTAGE  
Figure 4. 1.05-V OUTPUT VOLTAGE vs OUTPUT CURRENT  
1.080  
1.070  
1.060  
1.050  
1.040  
1.030  
1.020  
Vout( 50mV/div )  
Iout( 2A/div )  
I
= 10 mA  
OUT  
I
IOUT = 1 A  
0
5
10  
15  
20  
100 μs/div )  
C005  
VIN - Input Voltage (V)  
Figure 5. 1.05-V OUTPUT VOLTAGE vs INPUT VOLTAGE  
Figure 6. 1.05-V, LOAD TRANSIENT RESPONSE  
Copyright © 2013, Texas Instruments Incorporated  
9
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, VO = 1.05V, TA = 25°C (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
VIN = 12 V  
EN (10V/div)  
VREG5 (5V/div)  
Vout (0.5V/div)  
Vo=1.8V  
Vo=3.3V  
Vo=5V  
PG (5V/div)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
C008  
IOUT - Output Current (A)  
400 μs/div  
Figure 7. START-UP WAVE FORM  
Figure 8. EFFICIENCY vs OUTPUT CURRENT  
100  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
VIN = 12 V  
IOUT = 1 A  
90  
80  
70  
60  
50  
40  
VO = 1.05 V  
VO=1.2V  
VO=1.5V  
30  
Vo=1.8V  
V
= 1.8 V  
O
20  
V
= 2.5 V  
O
Vo=3.3V  
V
= 3.3 V  
O
10  
Vo=5V  
V
= 5 V  
O
0
0.001  
0.01  
0.1  
0
5
10  
15  
20  
C009  
C010  
IOUT - Output Current (A)  
VIN - Input Voltage (V)  
Figure 9. LIGHT LOAD EFFICIENCY vs OUTPUT CURRENT  
Figure 10. SWITCHING FREQUENCY vs INPUT VOLTAGE  
0.780  
0.775  
0.770  
0.765  
0.760  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 1.05 V  
O
0.755  
0.750  
I
= 10 mA  
O
V
= 1.8 V  
O
I
IO = 1 A  
V=3.3V  
O
±50  
0
50  
100  
150  
0.0  
0.1  
1.0  
10.0  
C012  
TJ Junction Temperature (ƒC)  
C011  
IO - Output Current (A)  
Figure 11. SWITCHING FREQUENCY vs OUTPUT CURRENT  
Figure 12. VFB VOLTAGE vs JUNCTION TEMPERATURE  
10  
Copyright © 2013, Texas Instruments Incorporated  
 
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, VO = 1.05V, TA = 25°C (unless otherwise noted).  
VO = 50 mV / div  
Vo=1.05V  
Vo(10mV/div)  
SW = 5 V / div  
SW( 5V/div)  
400ns/div  
Time = 1 µsec / div  
Figure 13. VOLTAGE RIPPLE AT OUTPUT (IO = 6 A)  
Figure 14. DCM VOLTAGE RIPPLE AT  
OUTPUT (IO = 30 mA)  
7.00  
6.00  
Vo=1.05V  
VIN(50mV/div)  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
SW( 5V/div)  
V
V
= 1.05V  
= 1.8V  
O
O
O
V
V
= 3.3V  
= 5.0V  
400ns/div  
O
0
20  
40  
60  
80  
100  
TA - Ambient Temperature (ºC)  
Figure 15. VOLTAGE RIPPLE AT INPUT (IO = 6 A)  
Figure 16. OUTPUT CURRENT vs AMBIENT TEMPERATURE  
Copyright © 2013, Texas Instruments Incorporated  
11  
 
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
DESIGN GUIDE  
Step-By-Step Design Procedure  
To begin the design process, the user must know a few application parameters:  
Input voltage range  
Output voltage  
Output current  
Output voltage ripple  
Input voltage ripple  
VIN  
4.5 to 18V  
VIN  
C1  
C2  
C3  
10uF  
10uF  
0.1uF  
1
2
U1  
TPS56628 DDA  
R3 10.0k  
1
2
8
7
6
5
EN  
EN  
VIN  
VBST  
SW  
C7 0.1uF  
VOUT  
VOUT  
VFB  
VREG5  
PG  
1.05V 6A  
L1  
R1 8.25k  
3
VOUT  
R2  
22 .1k  
R4  
1.5uH  
4
100 k  
C4  
C5  
1uF  
1
C8  
C9  
GND  
PwPd  
22uF 22uF  
9
Not Installed  
1
Figure 17. Shows the Schematic Diagram for This Design Example.  
Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using Equation 2 to calculate VOUT  
.
To improve efficiency at light loads consider using larger value resistors, high resistance is more susceptible to  
noise, and the voltage errors from the VFB input current are more noticeable.  
æ
ö
÷
÷
R1  
ç
= 0.765 x 1 +  
V
OUT  
ç
÷
÷
ø
ç
è
R2  
(2)  
(3)  
Output Filter Selection  
The output filter used with the TPS56628 is an LC circuit. This LC filter has double pole at:  
1
F
P
=
2p L  
x C  
OUT  
OUT  
12  
Copyright © 2013, Texas Instruments Incorporated  
 
 
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS56628. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls  
off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of  
Equation 3 is located below the high frequency zero but close enough that the phase boost provided be the high  
frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values  
recommended in Table 1  
Table 1. Recommended Component Values  
Output  
Voltage  
(V)  
C4 (pF)(1)  
L1 (µH)  
TYP  
C8 + C9 (µF)  
R1 (kΩ)  
R2 (kΩ)  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
1
6.81  
8.25  
12.7  
21.5  
30.1  
49.9  
73.2  
124  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
5
5
5
5
5
5
2
2
150  
150  
220  
220  
100  
68  
1.0  
1.0  
1.0  
1.0  
1.2  
1.5  
1.8  
2.2  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
22  
22  
22  
22  
22  
22  
22  
22  
68  
68  
68  
68  
68  
68  
68  
68  
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
22  
22  
22  
22  
(1) Optional  
For higher output voltages, additional phase boost can be achieved by adding a feed forward capacitor (C4) in  
parallel with R1  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4,  
Equation 5 and Equation 6. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
Use 650 kHz for fSW. Make sure the chosen inductor is rated for the peak current of Equation 5 and the RMS  
current of Equation 6.  
V
- V  
V
IN(max)  
OUT  
OUT  
I
=
x
IPP  
x fSW  
V
L
IN(max)  
O
(4)  
(5)  
(6)  
I
lpp  
I
= I  
+
Ipeak  
O
2
1
2
2
I
=
I
+
I
Lo(RMS)  
O
IPP  
12  
For this design example, the calculated peak current is 6.51 A and the calculated RMS current is 6.01 A. The  
inductor used is a TDK SPM6530-1R5M100 with a peak current rating of 11.5 A and an RMS current rating of 11  
A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS56628 is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 22µF to 68µF. Use Equation 7 to  
determine the required RMS current rating for the output capacitor.  
V
x (V - V  
)
OUT  
IN  
OUT  
I
=
Co(RMS)  
12 x V x L  
IN  
x
fSW  
O
(7)  
For this design two TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A and each output capacitor is rated for 4A.  
Copyright © 2013, Texas Instruments Incorporated  
13  
 
 
 
 
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
Input Capacitor Selection  
The TPS56628 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. A ceramic capacitor over 10 μF is recommended for the decoupling capacitor. An additional 0.1 µF  
capacitor (C3) from pin 8 to ground is optional to provide additional high frequency filtering. The capacitor voltage  
rating needs to be greater than the maximum input voltage.  
Bootstrap Capacitor Selection  
A 0.1 µF. ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is  
recommended to use a ceramic capacitor.  
VREG5 Capacitor Selection  
A 1-µF ceramic capacitor must be connected between the VREG5 to GND pin for proper operation. It is  
recommended to use a ceramic capacitor.  
THERMAL INFORMATION  
This 8-pin DDA package incorporates an exposed thermal pad that is designed to be directly attached to an  
external heatsink. The thermal pad must be soldered to the printed circuit board (PCB). After soldering, the PCB  
can be used as a heartsick. In addition, through the use of thermal vias, the thermal pad can be attached directly  
to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached  
to a special heartsick structure designed into the PCB. This design optimizes the heat transfer from the  
integrated circuit (IC).  
For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating  
abilities, see the Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No.  
SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004.  
The exposed thermal pad dimensions for this package are shown in the following illustration.  
Figure 18. Thermal Pad Dimensions  
14  
Copyright © 2013, Texas Instruments Incorporated  
TPS56628  
www.ti.com.cn  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
LAYOUT CONSIDERATIONS  
1. The TPS56628 can supply large load currents up to 6 A, so heat dissipation may be a concern. The top side  
area of PCB adjacent to the TPS56628 should be filled with ground as much as possible to dissipate heat.  
2. The bottom side area directly below the IC should a dedicated ground area. It should be directly connected  
to the thermal pad of the device using vias as shown. The ground area should be as large as practical.  
Additional internal layers can be dedicated as ground planes and connected to the vias as well.  
3. Keep the input switching current loop as small as possible.  
4. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and  
inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the  
feedback pin of the device.  
5. Keep analog and non-switching components away from switching components.  
6. Make a single point connection from the signal ground to power ground.  
7. Do not allow switching current to flow under the device.  
8. Keep the pattern lines for VIN, SW, and PGND (POWERGROUND) broad.  
9. Exposed pad of device must be connected to PGND with solder.  
10. VREG5 capacitor should be placed near the device, and connected PGND.  
11. Output capacitor should be connected to a broad pattern of the PGND.  
12. Voltage feedback loop should be as short as possible, and preferably with ground shield.  
13. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to ANALOG  
GROUND.  
14. Providing sufficient via is preferable for VIN, SW and PGND connection.  
15. VFB node should be as short as possible.  
16. VIN Capacitor should be placed as near as possible to the device.  
Additional  
Thermal  
Vias  
VIN INPUT  
BYPASS  
CAPACITOR  
TO ENABLE  
CONTROL  
VIN INPUT  
BYPASS  
CAPACITOR  
VIN  
FEEDBACK  
RESISTORS  
EN  
VIN  
BOOST  
CAPACITOR  
VFB  
VBST  
VOUT  
VREG5  
PG  
SW  
OUTPUT  
INDUCTOR  
EXPOSED  
POWERPAD  
AREA  
BIAS  
CAP  
GND  
Connection to  
POWER GROUND  
on internal or  
OUTPUT  
FILTER  
CAPACITOR  
bottom layer  
Additional  
Thermal  
Vias  
POWER GROUND  
ANALOG  
GROUND  
TRACE  
Figure 19. PCB Layout  
Copyright © 2013, Texas Instruments Incorporated  
15  
 
TPS56628  
ZHCSBZ7A OCTOBER 2013REVISED DECEMBER 2013  
www.ti.com.cn  
修订历史记录  
谨记:当前版本的页码也许与之前的版本不同。  
Changes from Original (October 2013) to Revision A  
Page  
Deleted 说明中的此器件还特有一个可调软启动时间。................................................................................................... 1  
Deleted "GND" spec from Output Voltage Range in the Absolute Maximum Ratings table. ............................................... 2  
Deleted "GND" spec from Input Voltage Range in the Recommended Operating Conditions table.. .................................. 3  
Deleted "TJ" spec from the Recommended Operating Conditions table. ............................................................................. 3  
Changed VTHPG spec for VFB falling (Fault) condition from "65%" to "85%" in Electrical Characteristics table ................... 4  
Changed GND pin description from "SS and VFB" to "VFB" in the Pin Functions table. ..................................................... 5  
Changed input names from "PGND" to "GND" at the ZC and OCP comparators in the Functional Block Diagram  
graphic .................................................................................................................................................................................. 6  
Changed text string from "constant on-time" to "adaptive on-time" in the 1st paragraph of PWM Operation. ..................... 7  
Changed text string from "detects over and under voltage" to "detects overvoltage" in the Overvoltage Protection  
section. .................................................................................................................................................................................. 8  
Added VO = 1.05V to Conditions statement for the Typical Characteristics graphs. ............................................................ 9  
Changed time scale callout from "100 µs/div" to "400 µs/div" on Figure 7 ........................................................................ 10  
Added VO = 1.05V to Conditions statement for the Typical Characteristics graphs. .......................................................... 10  
Added VO = 1.05V to Conditions statement for the Typical Characteristics graphs. .......................................................... 11  
Deleted "-950 mv dc offset" text string from signal trace label; and changed SW label from "10 V/div" to "5 V/div" on  
Figure 14 ............................................................................................................................................................................. 11  
Changed some itemized notes in the Layout Considerations section for clarification. ...................................................... 15  
16  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56628DDA  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
75  
RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
56628  
56628  
TPS56628DDAR  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56628DDAR  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO PowerPAD DDA  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TPS56628DDAR  
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS56628DDA  
TPS56628DDA  
DDA  
DDA  
HSOIC  
HSOIC  
8
8
75  
75  
517  
508  
7.87  
7.77  
635  
4.25  
NA  
2540  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS56628DDAR

具有 Eco-Mode 的 4.5V 至 18V、6A 同步降压转换器 | DDA | 8 | -40 to 85
TI

TPS56637

具有 ULQ-Mode 的 4.5V 至 28V、6A 同步降压转换器
TI

TPS56637RPAR

具有 ULQ-Mode 的 4.5V 至 28V、6A 同步降压转换器 | RPA | 10 | -40 to 150
TI

TPS568215

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器
TI

TPS568215OA

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器
TI

TPS568215OARNNR

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215OARNNT

具有 D-CAP3 控制功能和 Out-of-Audio™ 模式的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215RNNR

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568215RNNT

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568230

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器
TI

TPS568230RJER

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS568230RJET

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI