TPS568230RJET [TI]

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125;
TPS568230RJET
型号: TPS568230RJET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125

开关 输出元件 转换器
文件: 总32页 (文件大小:2510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
TPS568230 4.5V 18V 输入、8A 同步降压稳压器  
1 特性  
3 说明  
1
输入电压范围:4.5V 18V  
TPS568230 是一款配备了集成 MOSFET 且具有成本  
效益、高电压输入、高效的同步降压转换器。  
D-CAP3™架构控制,可实现快速瞬态响应  
输出电压范围:0.6V 7V  
TPS568230 具有 ULQ™(超低静态电流)功能,可实  
现低偏置电流。其工作电源输入电压范围为 4.5V 至  
18V。该器件使用 DCAP3™ 控制模式提供快速瞬态响  
应、良好的线路和负载调节,无需外部补偿,并支持低  
等效串联电阻 (ESR) 输出电容器,如专用聚合物和超  
ESR 陶瓷电容器。  
0.6V ±1% 基准电压 (25°C)  
支持 8A 的连续输出电流  
集成 19.5mΩ 9.5mΩ RDS(on) 内部功率 MOSFET  
ULQ™(超低静态电流)功能,可实现较长的电池  
寿命  
可选择运行模式:  
TPS568230 具有完整的过压、欠压、过流、过热以及  
欠压锁定保护功能。它结合了电源正常信号、输出放电  
功能和大负荷运行功能。  
强制连续导通模式 (FCCM)  
Out-of-Audio™(OOA) 模式  
高级 Eco-Mode™  
可选 600kHz800kHz 1MHz 开关频率  
支持高达 90% 的负荷运行  
TPS568230 配备了 MODE 引脚,用于选择所需的运  
行模式。为了在轻负载条件下实现高效率,可选择  
OOA 模式和高级 Eco-mode™OOA 模式不允许器件  
低于可闻频率(低于 25kHz 开关频率)。FCCM 还符  
合严格的输出电压纹波要求。  
可调节软启动时间(通过 SS 引脚调节)  
电源正常状态输出  
内置输出放电功能  
逐周期过流保护  
TPS568230 同时支持内部和外部软启动时间选项。内  
部固定软启动时间为 1.3ms。更长的软启动时间可通  
过在 SS 引脚上连接外部电容器来实现。  
可提供故障保护的非锁存保护  
小型 3.0mm × 3.0mm HotRod™QFN 封装  
2 应用  
TPS568230 采用 20 引脚 3.0mm x 3.0mm HotRod™  
封装,额定结温范围为 -40oC 125oC。  
数字电视、机顶盒、游戏机  
服务器、存储和网络负载点  
器件信息(1)  
工业计算机和工厂自动化 应用  
器件型号  
TPS568230  
封装  
VQFN (20)  
封装尺寸(标称值)  
具有典型 5V12V15V 输入的分布式电源系统  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
效率与输出电流 ECO 模式  
L
100  
TPS568230  
VIN  
VOUT  
SW  
VIN  
95  
90  
85  
80  
75  
VCC  
CIN  
CBST  
R1  
R2  
COUT  
RM_H  
VBST  
FB  
EN  
RM_L  
MODE  
PGOOD  
R5  
PGOOD  
VCC  
SS  
70  
AGND  
GND  
Could be floating  
Css  
C1  
VVIN=6V, VOUT=5V,FSW=600kHz  
VVIN=8.4V,VOUT=5V,FSW=600kHz  
VVIN=12V, VOUT=5V,FSW=600kHz  
65  
60  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D034  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEY5  
 
 
 
 
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 18  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 器件支持 ............................................................... 25  
11.2 接收文档更新通知 ................................................. 25  
11.3 社区资源................................................................ 25  
11.4 ....................................................................... 25  
11.5 静电放电警告......................................................... 25  
11.6 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (March 2019) to Revision C  
Page  
Added VENH min value 1.21V.................................................................................................................................................. 6  
Changed VENH typical value from 1.2V to 1.31V .................................................................................................................... 6  
Changed VENL min value from 0.8V to 0.95V ......................................................................................................................... 6  
Changed VENLtypical value from 1.05V to 1.11V.................................................................................................................... 6  
Added VENL max value 1.19V ................................................................................................................................................ 6  
Changes from Revision A (February 2019) to Revision B  
Page  
Changed SW negative voltage for DC change from -2V to -1V............................................................................................. 4  
Changes from Original (October 2018) to Revision A  
Page  
已更改 将销售状态从预告信息更改为生产数据.............................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RJE Package  
20-Pin VQFN  
Top View  
SW  
SW  
GND  
VCC  
NC  
18  
20  
16  
19  
17  
1
15  
BST  
MODE  
3
3
2
14 FB  
VIN  
4
3
4
13  
GND  
VIN  
AGND  
VIN  
4
12  
11  
EN  
SS  
VIN  
5
8
9
6
10  
7
NC  
PGOOD  
GND  
GND  
SW  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect the bootstrap capacitor between  
BST and SW, 0.1uF is recommended.  
BST  
1
I
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN and  
GND.  
VIN  
2,3,4,5  
P
SW  
6,19,20  
O
G
Switch node terminal. Connect the output inductor to this pin.  
GND  
7,8,18,Pad  
Power GND terminal for the controller circuit and the internal circuitry.  
Open drain power good indicator. It is asserted low if output voltage is out of PGOOD threshold, over  
voltage or if the device is under thermal shutdown, EN shutdown or during soft start.  
PGOOD  
9
O
I
Soft-start time selection pin. Connecting an external capacitor sets the soft-start time and if no external  
capacitor is connected, the soft-start time is about 1.3ms.  
SS  
11  
10,16  
12  
NC  
Not connect. Can be connected to GND plane for better thermal achieved.  
Enable pin of buck converter. EN pin is a digital input pin, decides turn on or off buck converter. Internal  
pull down current to disable converter if leave this pin open.  
EN  
I
G
I
AGND  
FB  
13  
Ground of internal analog circuitry. Connect AGND to GND plane with a short trace.  
Converter feedback input. Connect to the center tap of the resistor divider between output voltage and  
AGND.  
14  
Switching frequency and light load operation mode selection pin. Connect this pin to a resistor divider from  
VCC and AGND, the different MODE options are shown in 1  
MODE  
VCC  
15  
17  
I
5.0-V internal VCC LDO output. This pin supplies voltage to the internal circuitry and gate driver. Bypass  
this pin with a 1-μF capacitor.  
O
Copyright © 2019, Texas Instruments Incorporated  
3
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
22  
27  
6
UNIT  
V
VIN  
VBST  
V
VBST-SW  
V
Input voltage  
MODE, FB, SS  
6
V
EN  
4
V
GND, AGND  
SW  
0.3  
22  
23  
6
V
V
Output voltage  
SW (10-ns transient)  
PGOOD  
–3  
V
–0.3  
–40  
–55  
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22- V C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
18  
UNIT  
V
VIN  
4.5  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
VBST  
23  
V
VBST-SW  
MODE, FB, SS  
EN  
5.5  
5.5  
3.6  
0.3  
18  
V
Input voltage  
V
V
GND, AGND  
SW  
V
V
Output voltage  
SW (10-ns transient)  
PGOOD  
–3  
19  
V
–0.3  
5.5  
8
V
IOUT  
TJ  
Output current  
A
Operating junction temperature  
–40  
125  
°C  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
6.4 Thermal Information  
TPS568230  
THERMAL METRIC(1)  
RJE (VQFN)  
20 PINS  
44.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
32.3  
13.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
13.5  
RθJC(bot)  
16.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
TJ =-40°C to 125°C, VVIN = 12 V, unless otherwise noted  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
VIN supply current  
VIN  
4.5  
18  
V
IVIN  
No load, VEN=3.3V, non-switching  
No load, VEN=0V  
105  
2
uA  
uA  
IVINSDN  
VCC OUTPUT  
Shutdown supply current  
VVIN>5.0V  
VVIN=4.5V  
4.85  
20  
5
5.15  
V
V
VCC  
VCC output voltage  
VCC current limit  
4.5  
ICC  
mA  
FEEDBACK VOLTAGE  
TJ = 25°C  
594  
592  
600  
600  
606  
611  
mV  
mV  
VFB  
FB voltage  
TJ = -40°C to 125°C  
DUTY CYCLE and FREQUENCY CONTROL  
FSW  
Switching frequency  
SW minumum on time  
SW minimum off time  
TJ = 25°C , FSW=600kHz,Vo=1V  
TJ = 25°C  
600  
60  
kHz  
ns  
TON(MIN)  
TOFF(MIN)  
VFB = 0.5 V  
190  
ns  
MOSFET and DRIVERS  
RDS(ON)H  
High side switch resistance  
TJ = 25°C  
TJ = 25°C  
19.5  
9.5  
mΩ  
mΩ  
RDS(ON)L  
Low side switch resistance  
OOA FUNCTION  
TOOA  
OOA mode operation period  
28  
us  
OUTPUT DISCHARGE and SOFT START  
RDIS  
Discharge resistance  
Soft start time  
TJ=25°C, VEN=0V  
420  
1.3  
5
Ω
TSS  
Internal soft-start time,SS floating  
ms  
uA  
ISS  
Soft start charge current  
POWER GOOD  
TPGDLY  
PG start-up delay  
PG threshold  
PG from low to high  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
IOL =4mA  
1
85  
ms  
%
%
%
%
V
90  
VPGTH  
115  
110  
VPG_L  
PG sink current capability  
PG leak current  
0.4  
1
IPGLK  
VPGOOD =5.5V  
uA  
CURRENT LIMIT  
IOCL  
Over current threshold  
Valley current set point  
8.1  
9.8  
12  
A
Copyright © 2019, Texas Instruments Incorporated  
5
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ =-40°C to 125°C, VVIN = 12 V, unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
INOCL  
Negative over current threshold  
3.9  
A
LOGIC THRESHOLD  
VENH  
VENL  
IEN  
EN high-level input voltage  
1.21  
0.95  
1.31  
1.11  
2
1.4  
V
V
EN low-level input voltage  
1.19  
Enable internal pull down current VEN=0.8V  
µA  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VOVP  
OVP trip threshold  
OVP prop deglitch  
UVP trip threshold  
UVP prop deglitch  
125  
20  
%
us  
%
tOVPDLY  
VUVP  
TJ=25°C  
60  
tUVPDLY  
256  
us  
Output hiccup delay relative to  
SS time  
TUVPDEL  
256  
7
us  
Output hiccup enable delay  
relative to SS time  
TUVPEN  
cycle  
UVLO  
Wake up  
Shutdown  
Hysteresis  
4.2  
3.8  
0.4  
4.4  
V
V
V
VUVLOVIN  
VIN UVLO threshold  
3.6  
OVER TEMPERATURE PROTECTION  
TOTP  
OTP trip threshold(1)  
OTP hysteresis(1)  
Shutdown temperature  
Hysteresis  
150  
20  
°C  
°C  
TOTPHSY  
(1) Not production tested  
6
版权 © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
6.6 Typical Characteristics  
TJ=-40oC to 125oC, VVIN=12V(unless otherwise noted)  
120  
118  
116  
114  
112  
110  
108  
106  
104  
3
2.75  
2.5  
2.25  
2
1.75  
1.5  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Junction Temperature (OC)  
D001  
D002  
VEN = 3.3 V  
1. Supply Current vs Junction Temperature  
VEN = 0 V  
2. Shutdown Current vs Temperature  
615  
610  
605  
600  
595  
590  
1.36  
1.34  
1.32  
1.3  
1.28  
1.26  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Junction Temperature (OC)  
D003  
D004  
3. Feedback Voltage vs Junction Temperature  
4. Enable On Voltage vs Junction Temperature  
1.12  
1.11  
1.1  
27.5  
25  
22.5  
20  
1.09  
1.08  
1.07  
1.06  
17.5  
15  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Junction Temperature (OC)  
D005  
D011  
5. Enable Off Voltage vs Junction Temperature  
6. High-Side RDS(on) vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VVIN=12V(unless otherwise noted)  
16  
130  
128  
126  
124  
122  
120  
14  
12  
10  
8
6
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Juncition Temperature (OC)  
D012  
D006  
7. Low-Side RDS(on) vs Junction Temperature  
8. OVP Threshold vs Junction Temperature  
64  
440  
435  
430  
425  
420  
415  
63  
62  
61  
60  
59  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Junction Temperature (OC)  
D007  
D008  
9. UVP Threshold vs Junction Temperature  
10. Discharge Resistor vs Junction Temperature  
11  
1.35  
10.6  
10.2  
9.8  
9.4  
9
1.33  
1.31  
1.29  
1.27  
1.25  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (OC)  
Junction Temperature (OC)  
D009  
D010  
11. Valley Current Limit vs Junction Temperature  
12. Soft-Start Time vs Junction Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VVIN=12V(unless otherwise noted)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
50  
45  
40  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D027  
D028  
13. Efficiency, Eco-mode, FSW = 600 kHz  
14. Efficiency, OOA-mode, FSW = 600 kHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D029  
D030  
15. Efficiency, FCCM, FSW = 600 kHz  
16. Efficiency, Eco-mode, FSW = 1 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
VVIN=12V, VOUT=1V  
VVIN=12V, VOUT=3.3V  
VVIN=12V, VOUT=5V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D031  
D032  
17. Efficiency, OOA-mode, FSW = 1 MHz  
18. Efficiency, FCCM, FSW = 1 MHz  
版权 © 2019, Texas Instruments Incorporated  
9
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VVIN=12V(unless otherwise noted)  
1
700  
600  
500  
400  
300  
200  
100  
0
VVIN=6V, VOUT=5V  
VVIN=8.4V,VOUT=5V  
VVIN=12V, VOUT=5V  
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D035  
D023  
19. Load Regulation, Eco-mode, FSW = 600 kHz  
20. FSW Load Regulation, Eco-mode, FSW = 600 kHz  
700  
600  
500  
400  
300  
200  
100  
0
800  
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
700  
600  
500  
400  
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D036  
D037  
21. FSW Load Regulation, OOA-mode, FSW = 600 kHz  
22. FSW Load Regulation, FCCM, FSW = 600 kHz  
900  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D038  
D039  
23. FSW Load Regulation, Eco-mode, FSW = 800 kHz  
24. FSW Load Regulation, OOA-mode, FSW = 800 kHz  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VVIN=12V(unless otherwise noted)  
1000  
800  
700  
600  
500  
400  
900  
800  
700  
600  
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
VVIN=12V,VOUT=1V  
VVIN=12V,VOUT=3.3V  
VVIN=12V,VOUT=5V  
500  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D040  
D044  
25. FSW Load Regulation, FCCM, FSW = 800 kHz  
26. FSW Load Regulation, FCCM, FSW = 600 kHz  
1100  
1000  
900  
800  
700  
600  
500  
1300  
1200  
1100  
1000  
900  
VVIN=12V,VOUT=1V  
VVIN=12V,VOUT=3.3V  
VVIN=12V,VOUT=5V  
VVIN=12V,VOUT=1V  
VVIN=12V,VOUT=3.3V  
VVIN=12V,VOUT=5V  
800  
700  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D045  
D046  
27. FSW Load Regulation, FCCM, FSW = 800 kHz  
28. FSW Load Regulation, FCCM, FSW = 1 MHz  
版权 © 2019, Texas Instruments Incorporated  
11  
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS568230 is 8-A integrated FET synchronous buck converter which operates from 4.5V to 18V input  
voltage (VIN), and the output is from 0.6V to 7V. The proprietary D-CAP3™ mode enables low external  
component count, ease of design, optimization of the power design for cost, size and efficiency. The key feature  
of the TPS568230 is ultra-low quiescent current (ULQ™) mode. This feature is beneficial for long battery life in  
system standby mode. The device employs D-CAP3™ mode control that provides fast transient response with no  
external compensation components and an accurate feedback voltage. The control topology provides seamless  
transition between CCM operating mode at higher load condition and DCM operation at lighter load condition.  
Eco-mode™ allows the TPS568230 to maintain high efficiency at light load. OOA (out of audio) mode makes  
switching frequency above audible frequency larger than 25 kHz, even there is no loading at output side. FCCM  
mode has the constant switching frequency at both light and heavy load. The TPS568230 is able to adapt to both  
low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR  
ceramic capacitors.  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
7.2 Functional Block Diagram  
PG high  
threshold  
PGOOD  
+
+
UV threshold  
+
UV  
Delay  
PG low  
threshold  
+
OV  
VIN  
OV threshold  
FB  
+
LDO  
VCC  
0.6 V  
VREGOK  
4.2 V /  
3.8 V  
+
+
PWM  
+
+
Control Logic  
VBST  
VIN  
SS  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
TON Extension  
OVP/UVP/TSD  
OOA/SKIP/FCCM  
Soft-Start  
Ripple injection  
SW  
SW  
XCON  
Internal SS  
PGOOD  
SS  
GND  
One shot  
+
OCL  
ZC  
EN threshold  
+
+
+
EN  
NOCL  
THOK  
+
150°C /20°C  
AGND  
Light load operation  
/Switching frequency set  
Discharge control  
MODE  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3™ Control  
The main control loop of the buck is adaptive on-time pulse width modulation (PWM) controller that supports a  
proprietary DCAP3™ mode control. The DCAP3™ mode control combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS568230 also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage for emulating the output ripple, this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for DCAP3™ control topology.  
For any control topology that is compensated internally, there is a range of the output filter it can support. The  
output filter used with the TPS568230 is a low-pass L-C circuit. This L-C filter has a double-pole frequency  
described in 公式 1.  
1
fp =  
2ìpì LOUTìCOUT  
(1)  
At low frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain  
of the TPS568230. The low-frequency L-C double pole has a 180 degree drop in phase. At the output filter  
frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB per  
decade and leads the 90 degree phase boost. The internal ripple injection high-frequency zero is related to the  
switching frequency. The crossover frequency of the overall system should usually be targeted to be less than  
one-third of the switching frequency (FSW).  
7.3.2 Soft Start  
The TPS568230 has an internal 1.3-ms soft start, and also an external SS pin is provided for setting higher soft-  
start time if needed. When the EN pin becomes high, the soft-start function begins ramping up the reference  
voltage to the PWM comparator.  
If the application needs a larger soft start time, it can be set by connecting a capacitor on SS pin. When the EN  
pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor (CSS) connected  
between SS and AGND. The devices tracks the lower of the internal soft-start voltage or the external soft-start  
voltage as the reference. The equation for the soft-start time (TSS) is shown in 公式 2:  
Css(nF)ìVREF(V)  
T =  
ss  
Iss(mA)  
(2)  
where  
VREF is 0.6 V and ISS is 5 μA  
7.3.3 Large Duty Operation  
The TPS568230 can support large duty operations by its internal TON extension function. When the VIN/VOUT  
<1.6, and the VFB is lower than internal VREF, the TON will be extended to implement the large duty operation and  
also improve the performance of the load transient performance.  
7.3.4 Power Good  
The Power Good (PGOOD) pin is an open-drain output. Once the VFB is between 90% and 110% of the target  
output voltage, the PGOOD is de-asserted and floats after a 1-ms de-glitch time. A 100 kΩ pullup resistor is  
recommended to pull the voltage up to VCC. The PGOOD pin is pulled low when:  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
Feature Description (接下页)  
the FB pin voltage is lower than 85% or greater than 115% of the target output voltage  
in an OVP, UVP, or thermal shutdown event  
during the soft-start period.  
7.3.5 Over Current Protection and Undervoltage Protection  
The TPS568230 has the over current protection and undervoltage protection. The output over current limit (OCL)  
is implemented using a cycle-by-cycle valley detect circuit. The switch current is monitored during the OFF state  
by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch current. To  
improve accuracy, the voltage sensing is temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over current protection. When the load current is higher  
than the over current threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the current is being limited, the output voltage tends to drop because the load demand is higher than what the  
converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, the device will shut off after a wait time of 256us and then re-start after the hiccup time (typically  
7*Tss). When the over current condition is removed, the output will be recovered.  
7.3.6 Over Voltage Protection  
The TPS568230 has the over voltage protection feature. When the output voltage becomes higher than 125% of  
the target voltage, the OVP comparator output goes high, the output will be discharged after a wait time of 20 µs.  
When the over voltage condition is removed, the output voltage will be recovered.  
7.3.7 UVLO Protection  
Undervoltage Lockout protection (UVLO) monitors the VIN power input. When the voltage is lower than UVLO  
threshold voltage, the device is shut off and output is discharged. This is a non-latch protection.  
7.3.8 Output Voltage Discharge  
The TPS568230 has the discharge function by using internal MOSFET about 420RDS(on), which is connected  
to the output terminal SW. The discharge is slow due to the lower current capability of the MOSFET.  
7.3.9 Thermal Shutdown  
The TPS568230 monitors the internal die temperature. If the temperature exceeds the threshold value (typically  
150°C), the device is shut off and the output will be discharged. This is a non-latched protection, the device  
restarts switching when the temperature goes below the thermal shutdown threshold.  
版权 © 2019, Texas Instruments Incorporated  
15  
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Light Load Operation  
TPS568230 has a MODE pin which can setup three different modes of operation for light load running and 600  
kHz/800 kHz/1 MHz switching frequency at heavy load .The light load running includes Out-of-Audio mode ,  
Advanced Eco-mode and Force CCM mode.  
7.4.2 Advanced Eco-mode™ Control  
The advanced Eco-mode™ control scheme to maintain high light load efficiency. As the output current decreases  
from heavy load conditions, the inductor current is also reduced and eventually comes to a point where the  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases, the converter runs into discontinuous conduction mode. The on-time is kept almost the  
same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. This makes the switching frequency lower,  
proportional to the load current, and keeps the light load efficiency high. The light load current where the  
transition to Eco-mode™ operation happens ( IOUT(LL) ) can be calculated from 公式 3.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(3)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(max) (peak current in the application). It is  
also important to size the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
7.4.3 Out of Audio Mode  
Out-of-Audio (OOA) light-load mode is a unique control feature that keeps the switching frequency above audible  
frequency towards a virtual no-load condition. During Out-of-Audio operation, the OOA control circuit monitors  
the states of both high-side and low-side MOSFETs and forces them switching if both MOSFETs are off for more  
than 28 μs. When both high-side and low-side MOSFETs are off for more than 28 μs during a light-load  
condition, the lowside FET will be on for discharge till reverse OC happens or output voltage drops to trigger the  
high-side FET on. This mode initiates one cycle of the low-side MOSFET and the high-side MOSFET turning on.  
Then, both MOSFETs stay turned off waiting for another 28 μs.  
If the MODE pin is selected to operate in OOA mode, when the device works at light load, the minimum  
switching frequency is above 25 kHz which avoids the audible noise in the system.  
7.4.4 Force CCM Mode  
Force CCM(FCCM) mode keeps the converter to operate in continuous conduction mode during light-load  
conditions and allows the inductor current to become negative. During FCCM mode, the switching frequency  
(FSW) is maintained at an almost constant level over the entire load range, which is suitable for applications  
requiring tight control of the switching frequency and output voltage ripple at the cost of lower efficiency under  
light load.  
7.4.5 Mode Selection  
The device reads the voltage on the MODE pin during start-up and latches onto one of the MODE options listed  
below in 1 . The voltage on the MODE pin can be set by connecting this pin to the center tap of a resistor  
divider connected between VCC and AGND. A guideline for the top resistor (RM_H) and the bottom resistor (RM_L  
)
is shown in 1, and 1% resistors are recommended. It is important that the voltage for the MODE pin is derived  
from the VCC rail only since internally this voltage is referenced to detect the MODE option. The MODE pin  
setting can be reset only by a VIN power cycling or EN toggle.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
Device Functional Modes (接下页)  
1. MODE Pin Resistor Settings  
RM_H(kΩ)  
330  
330  
330  
300  
150  
160  
110  
75  
RM_L (kΩ)  
LIGHT LOAD OPERATION  
Eco-mode  
Eco-mode  
Eco-mode  
OOA mode  
OOA mode  
OOA mode  
FCCM  
SWITCHING FREQUENCY (kHz)  
5.1  
15  
27  
43  
33  
51  
51  
51  
51  
600  
800  
1000  
600  
800  
1000  
600  
FCCM  
800  
51  
FCCM  
1000  
29 below shows the typical start-up sequence of the device once the enable signal crosses the EN turn on  
threshold. After the voltage on VCC crosses the rising UVLO threshold it takes about 500us to read the first  
mode setting and approximately 100us from there to finish the last mode setting. The output voltage starts  
ramping after the mode reading is done.  
EN threshold  
1.2V  
EN  
VCC UVLO  
4.2V  
VCC  
MODE9  
MODE1  
MODE  
500us  
100us  
Tss  
90% VOUT  
1ms  
VOUT  
PGOOD  
29. Power-Up Sequence  
7.4.6 Standby Operation  
The TPS568230 can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 2 µA when in standby condition. EN pin is pulled low internally, when float, the part is disabled by  
default.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 30 shows a typical application for TPS568230 with 1-V output. This design converts an input  
voltage range of 4.5 V to 18 V down to 1 V with a maximum output current of 8 A.  
8.2 Typical Application  
30. 1-V, 8-A Reference Design with Eco-mode, FSW = 600 kHz  
8.2.1 Design Requirements  
2 lists the design parameters for this example.  
2. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VOUT  
Output voltage  
1
V
A
IOUT  
Output current  
8
ΔVOUT  
VIN  
Transient response  
Input voltage  
0 A - 8 A load step,2.5A/us  
±40  
mV  
V
4.5  
12  
18  
18  
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Light load operating mode  
Ambient temperature  
mV(P-P)  
kHz  
600  
Eco-mode  
25  
TA  
°C  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Output Voltage Set Point  
To change the output voltage of the application, it is necessary to change the value of the upper feedback  
resistor. By changing this resistor the user can change the output voltage above 0.6 V. See 公式 4  
RUPPER  
VOUT = 0.6 ì (1+  
)
RLOWER  
(4)  
8.2.2.1.2 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 3 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 公式 5 and 公式 6. It is important that  
the inductor is rated to handle these currents.  
2
÷
«
÷
÷
VOUT ì(V  
- VOUT )  
1
IN(max)  
IL  
=
I2  
+
ì
OUT  
(
RMS  
)
«
÷
÷
12  
V
ìLOUT ìFSW  
IN(max)  
(5)  
(6)  
IL(ripple)  
IL(peak) = IOUT  
+
2
During transient and short-circuit conditions, the inductor current can increase up to the current limit of the device  
so it is safe to choose an inductor with a saturation current higher than the peak current under current limit  
condition.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
8.2.2.1.3 Output Capacitor Selection  
After selecting the inductor the output capacitor needs to be optimized. In DCAP3™, the regulator reacts within  
one cycle to the change in the duty cycle so the good transient performance can be achieved without needing  
large amounts of output capacitance. The recommended output capacitance range is given in 3.  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
.
3. Recommended Component Values  
RUPPER  
(kΩ)  
VOUT (V)  
RLOWER (kΩ)  
Fsw (kHz)  
LOUT (µH)  
COUT(min) (µF)  
COUT(max) (µF)  
CFF (PF)  
600  
800  
0.47  
0.33  
0.27  
0.68  
0.47  
0.33  
1.5  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
-
0.6  
10  
0
-
1000  
600  
-
-
1
30  
20  
30  
20  
800  
-
1000  
600  
-
47-330  
47-330  
47-330  
47-330  
47-330  
47-330  
3.3  
5.0  
90  
800  
1.2  
1000  
600  
1
2.2  
220  
800  
1.5  
1000  
1.2  
8.2.2.1.4 Input Capacitor Selection  
The TPS568230 requires input decoupling capacitors on power supply input VIN, and the bulk capacitors are  
needed depending on the application. The minimum input capacitance required is given in 公式 7.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(7)  
TI recommends using a high-quality X5R or X7R input decoupling capacitors of 40 µF on the input voltage pin  
VIN. The voltage rating on the input capacitor must be greater than the maximum input voltage. The capacitor  
must also have a ripple current rating greater than the maximum input current ripple of the application. The input  
ripple current is calculated by 公式 8:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(8)  
A 1-µF ceramic capacitor is needed for the decoupling capacitor on VCC pin.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
8.2.3 Application Curves  
31 through 44 apply to the circuit of 30. VIN = 12 V. TJ = 25°C unless otherwise specified.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1
0.8  
0.6  
0.4  
0.2  
0
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VVIN=5V, VOUT=1V,FSW=600kHz  
VVIN=8.4V,VOUT=1V,FSW=600kHz  
VVIN=12V, VOUT=1V,FSW=600kHz  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D033  
D019  
31. Efficiency Curve  
32. Load Regulation  
800  
700  
600  
500  
400  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
VVIN=5V, VOUT=1V  
VVIN=8.4V,VOUT=1V  
VVIN=12V, VOUT=1V  
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
0
1
2
3
4
I-Load (A)  
5
6
7
8
D025  
D047  
IOUT = 8 A  
33. Switching Frequency vs Input Voltage  
34. Switching Frequency vs Output Load  
0.1  
0.08  
0.06  
0.04  
0.02  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
D021  
D021  
35. Line Regulation,IOUT = 0.01 A  
36. Line Regulation,IOUT = 8 A  
版权 © 2019, Texas Instruments Incorporated  
21  
 
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Vout=20mV/div (AC coupled)  
Vout=20mV/div (AC coupled)  
SW=5V/div  
SW=5V/div  
200us/div  
2us/div  
37. Output Voltage Ripple, IOUT = 0.01 A  
38. Output Voltage Ripple, IOUT = 8 A  
EN=2V/div  
EN=2V/div  
Vout=1V/div  
Vout=1V/div  
IL=5A/div  
IL=5A/div  
2ms/div  
400us/div  
39. Start-Up Through EN, IOUT = 4A  
40. Shut-down Through EN, IOUT = 4A  
Vin=10V/div  
Vout=1V/div  
Vin=10V/div  
Vout=1V/div  
IL=5A/div  
IL=5A/div  
4ms/div  
4ms/div  
42. Start Up Relative to VIN Falling, IOUT = 4 A  
41. Start Up Relative to VIN Rising, IOUT = 4 A  
22  
版权 © 2019, Texas Instruments Incorporated  
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
Vout=50mV/div (AC coupled)  
Vout=50mV/div (AC coupled)  
Iout=5A/div  
Iout=5A/div  
200us/div  
200us/div  
Slew Rate=2.5A/us  
Slew Rate=2.5A/us  
43. Transient Response, 0.8 A to 7.2 A  
44. Transient Response, 0 A to 8 A  
版权 © 2019, Texas Instruments Incorporated  
23  
TPS568230  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS568230 is intended to be powered by a well regulated dc voltage. The input voltage range is 4.5 to 23 V.  
TPS568230 is a buck converter. The input supply voltage must be greater than the desired output voltage for  
proper operation. Input supply current must be appropriate for the desired output current. If the input voltage  
supply is located far from the TPS568230 circuit, additional input bulk capacitance is recommended, typical  
values are 100 μF to 470 μF.  
10 Layout  
10.1 Layout Guidelines  
Recommend a four-layer PCB for good thermal performance and with maximum ground plane. 3-inch × 3-  
inch, four-layer PCB with 2-oz copper is used as example.  
Place the decoupling capacitors right across VIN and VCC as close as possible.  
Place output inductor and capacitors with IC at the same layer, SW routing should be as short as possible to  
minimize EMI, and should be a width plane to carry big current, enough vias should be added to the GND  
connection of output capacitor and also as close to the output pin as possible.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane, >15 mil width trace  
is recommended to reduce line parasitic inductance.  
Feedback could be 20mil and must be routed away from the switching node, BST node or other high  
efficiency signal.  
VIN trace must be wide to reduce the trace impedance and provide enough current capability.  
Place multiple vias under the device near VIN and GND and near input capacitors to reduce parasitic  
inductance and improve thermal performance  
10.2 Layout Example  
45 shows the recommended top-side layout. Component reference designators are the same as the circuit  
shown in 30. Resistor divider for EN is not used in the circuit of 30, but are shown in the layout for  
reference.  
VIN  
VOUT  
SW  
GND  
GND  
AGND  
45. Top-Layer Layout  
24  
版权 © 2019, Texas Instruments Incorporated  
 
TPS568230  
www.ti.com.cn  
ZHCSIY3C MARCH 2019REVISED AUGUST 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
D-CAP3, ULQ, Out-of-Audio, Eco-Mode, HotRod, DCAP3, Eco-mode, E2E are trademarks of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS568230RJER  
TPS568230RJET  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RJE  
RJE  
20  
20  
3000 RoHS & Green Call TI | SN | NIPDAU Level-2-260C-1 YEAR  
250 RoHS & Green Call TI | SN | NIPDAU Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
568230  
568230  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RJE 20  
3 x 3, 0.45 mm pitch  
VQFN-HR - 1 mm max height  
QUAD FLATPACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224683/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020A  
3.1  
2.9  
A
B
ꢆꢇꢄƒ;ꢀꢁꢀꢈꢉꢊ7<3  
(0.25)  
DETAIL A  
CHAMFERS ARE OPTIONAL  
TYPICAL  
3.1  
2.9  
PIN 1 INDEX AREA  
0.5  
0.3  
0.25  
0.15  
DETAIL B  
OPTIONAL PIN 1  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.8  
PKG  
(0.1) TYP  
SEE TERMINAL  
DETAIL A  
10  
6
16X 0.45  
11  
5
(0.018)  
PKG  
2X  
1.8  
ꢀꢁꢃꢂ“ꢀꢁꢅ  
21  
0.25  
20X  
0.15  
0.1  
C B A  
C
1
15  
0.05  
16  
20  
(0.06)  
PIN 1 ID  
DETAIL B  
0.5  
0.3  
20X  
ꢀꢁꢂꢃꢄ“ꢀꢁꢅ  
4223546 / B 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020A  
(0.675)  
(0.06)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.018)  
16X (0.45)  
21  
PKG  
(2.8)  
(0.76)  
11  
5
(R0.05) TYP  
6
10  
PKG  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PAD 21)  
SOLDER MASK DETAILS  
4223546 / B 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020A  
(0.64)  
(0.06)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.018)  
(0.72)  
16X (0.45)  
21  
PKG  
(2.8)  
5
11  
(R0.05) TYP  
10  
6
PKG  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 21: 90%  
SCALE: 20X  
4223546 / B 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS568231

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS568231RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56837

4.5V 至 28V 输入、8A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56921

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56921PWP

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56921PWPR

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C20

具有电压调节的 4.5V 至 17V、12A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C20PWP

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C20PWPR

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C215

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C215RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C215RNNT

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI