TPS568215RNNR [TI]

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125;
TPS568215RNNR
型号: TPS568215RNNR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125

开关 输出元件 转换器
文件: 总36页 (文件大小:1408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
TPS568215 4.5V 17V 输入、8A 同步降压 SWIFT™ 转换器  
1 特性  
IPC 和工厂自动化  
1
集成 19mΩ 9.4mΩ 金属氧化物半导体场效应晶  
3 说明  
体管 (MOSFET)  
TPS568215 TI 旗下最小的一款单片 8A 同步降压转  
换器,具有自适应导通时间 D-CAP3™ 控制模式。该  
器件集成了 RDS(on) 较低的功率 MOSFET,简单易用  
并且高效运行,所需外部组件最少,适用于空间受限的  
电源系统。主要 特性 包括非常精确的基准电压、快速  
负载瞬时响应、提升轻载效率的自动跳跃工作模式、可  
调节电流限值并且无需外部补偿。强制持续传导模式有  
助于满足高性能 DSP FPGA 应用的严格电压调节精  
度要求。TPS568215 采用耐热增强型 18 引脚  
可选 FSW400kHz800kHz 1.2MHz  
可调节电流限制设置,具有断续重启功能  
整个温度范围内的基准电压为 0.6V ±1%  
支持 5V 外部可选偏置功能,以提升效率  
D-CAP3™针对快速瞬态响应的控制模式  
实现精密输出电压纹波的可选强制连续导通模式  
(FCCM) 或实现高轻载效率的自动跳跃 Eco-  
mode™  
0.6V 5.5V 输出电压范围  
支持陶瓷输出电容  
HotRod™ 四方扁平无引线 (QFN) 封装,经设计在 -  
40°C 150°C 的结温范围内额定运行。TPS568215  
TPS56C215 引脚兼容,因此用户可以在 6A 12A  
范围内灵活选择采用同一封装的解决方案。  
针对预偏置输出的单调性启动  
可调节软启动,默认软启动时间为 1ms  
-40°C 150°C 运行结温  
小型 3.5mm x 3.5mm HotRod™四方扁平无引线  
(QFN) 封装  
WEBENCH®设计中心提供支持  
器件信息(1)  
器件型号  
TPS568215  
封装  
VQFN (18)  
封装尺寸(标称值)  
3.5mm x 3.5mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
服务器和存储  
空白  
空白  
机顶盒和高端数字电视 (DTV)  
网络互联和电信、负载点 (POL)  
典型应用电路原理图  
效率与输出电流间的关系  
100  
95  
Çt{568215  
ëw9Dꢀ  
90  
wa_I  
wa_[  
hÜÇ  
85  
ëLb  
ah59  
ëw9Dꢀ  
80  
75  
70  
65  
60  
55  
50  
ëLb  
/
tDhh5  
.hhÇ  
{í  
Lb  
tíwD5  
[
ëhÜÇ  
hÜÇ  
9b  
{{  
VLb =4.5V, VÇ= 1.2V, F{í= 400kHz  
VLb=12V, VÇ=1.2V, F= 400kHz  
/
hÜÇ  
wÜtt9w  
VLb=17V, V =1.2V, F= 400kHz  
hÜÇ  
C.  
/
{{  
0
1
2
3
4
5
6
7
8
!Db5 tDb5  
Output Current (A)  
C011  
w[hí9w  
/opyrigꢁꢂ © 2016, Çexꢃs Lnsꢂrumenꢂs Lncorporꢃꢂed  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDI8  
 
 
 
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持 ............................................................... 28  
11.2 接收文档更新通知 ................................................. 28  
11.3 社区资源................................................................ 28  
11.4 ....................................................................... 28  
11.5 静电放电警告......................................................... 28  
11.6 Glossary................................................................ 28  
12 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
Changes from Original (October 2016) to Revision A  
Page  
已更改 产品预览至量产数据发布 ............................................................................................................................................ 1  
Added Specifications ............................................................................................................................................................. 4  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
5 Pin Configuration and Functions  
RNN Package  
18-Pin VQFN  
BOTTOM VIEW  
TOP VIEW  
AGND 12  
VIN 11  
1 BOOT  
BOOT 1  
VIN 2  
12 AGND  
11 VIN  
2 VIN  
PGND 10  
PGND 9  
PGND 8  
3 PGND  
4 PGND  
5 PGND  
PGND 3  
PGND 4  
PGND 5  
10 PGND  
9 PGND  
8 PGND  
7
6
6
7
SW  
SW  
Pin Functions  
PIN  
NAME  
I/O DESCRIPTION  
NO.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect a 0.1uF bootstrap capacitor  
between BOOT and SW.  
1
BOOT  
VIN  
I
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN and  
PGND.  
2,11  
P
G
3, 4, 5,  
8, 9, 10  
PGND  
Power GND terminal for the controller circuit and the internal circuitry.  
6, 7  
12  
SW  
O
G
I
Switch node terminal. Connect the output inductor to this pin.  
AGND  
FB  
Ground of internal analog circuitry. Connect AGND to PGND plane.  
Converter feedback input. Connect to the resistor divider between output voltage and AGND.  
13  
Soft-Start time selection pin. Connecting an external capacitor sets the soft-start time and if no external  
capacitor is connected, the soft-start time in 1ms.  
14  
SS  
O
Enable input control, leaving this pin floating enables the converter. It can also be used to adjust the input  
UVLO by connecting to the resistor divider between VIN and EN.  
15  
16  
17  
18  
EN  
I
O
I/O  
I
Open Drain Power Good Indicator, it is asserted low if output voltage is out of PGOOD threshold,  
Overvoltage or if the device is under thermal shutdown, EN shutdown or during soft start.  
PGOOD  
VREG5  
MODE  
4.7-V internal LDO output which can also be driven externally with a 5V input. This pin supplies voltage to  
the internal circuitry and gate driver. Bypass this pin with a 4.7-μF capacitor.  
Switching Frequency, Current Limit selection and Light load operation mode selection pin. Connect this pin  
to a resistor divider from VREG5 and AGND for different MODE options shown in table 4.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–2  
MAX  
20  
UNIT  
VIN  
SW  
19  
SW(10 ns transient)  
–3  
20  
EN  
Input Voltage  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
6.5  
6.5  
25.5  
6.5  
6
V
BOOT –SW  
BOOT  
SS, MODE, FB  
VREG5  
Output Voltage PGOOD  
6.5  
V
A
Output  
IOUT  
10  
Current(2)  
TJ  
Operating junction temperature  
Storage temperature  
–40  
–55  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) In order to be consistent with the TI reliability requirement of 100k Power-On-Hours at 105°C junction temperature, the output current  
should not exceed 10A continuously under 100% duty operation as to prevent electromigration failure in the solder. Higher junction  
temperature or longer power-on hours are achievable at lower than 10A continuos output current.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
17  
UNIT  
VIN  
SW  
–1.8  
–0.1  
–0.1  
17  
Input Voltage  
V
BOOT  
VREG5  
23.5  
5.2  
Output  
Current  
ILOAD  
0
8
A
Operating  
junction  
TJ  
-40  
150  
°C  
temperature  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
6.4 Thermal Information  
RNN PACKAGE  
UNIT  
THERMAL METRIC(1)  
18 PINS  
RθJA  
Junction-to-ambient thermal resistance  
42.3  
23.9  
10.0  
0.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
10.0  
0.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
TJ = –40°C to 150°C, VIN=12V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
SUPPLY CURRENT  
IIN  
VIN supply current  
TJ = 25°C, VEN=5 V, non switching  
TJ = 25°C, VEN=0 V  
600  
7
700  
µA  
µA  
IVINSDN  
VIN shutdown current  
LOGIC THRESHOLD  
VENH  
VENL  
EN H-level threshold voltage  
1.175  
1.025  
1.225  
1.104  
0.121  
1.91  
1.3  
V
V
EN L-level threshold voltage  
1.15  
VENHYS  
IENp1  
V
VEN = 1.0 V  
VEN = 1.3 V  
0.35  
3
2.95  
5.5  
µA  
µA  
EN pull-up current  
IENp2  
4.197  
FEEDBACK VOLTAGE  
TJ = 25°C  
598  
597.5  
594  
600  
600  
600  
600  
602  
602.5  
602.5  
606  
mV  
mV  
mV  
mV  
TJ = 0°C to 85°C  
TJ = –40°C to 85°C  
TJ = –40°C to 150°C  
VFB  
FB voltage  
594  
LDO VOLTAGE  
VREG5  
LDO Output voltage  
TJ = –40°C to 150°C  
TJ = –40°C to 150°C  
4.58  
100  
4.7  
4.83  
200  
V
ILIM5  
LDO Output Current limit  
150  
mA  
MOSFET  
RDS(on)H  
RDS(on)L  
High side switch resistance  
Low side switch resistance  
TJ = 25°C, VVREG5 = 4.7 V  
TJ = 25°C, VVREG5 = 4.7 V  
19  
mΩ  
mΩ  
9.4  
SOFT START  
Iss  
Soft start charge current  
TJ = -40°C to 150°C  
4.9  
6
7.1  
µA  
CURRENT LIMIT  
ILIM-1 option, Valley Current  
ILIM option, Valley Current  
Valley Current  
6
8
7.1  
9.4  
3
8.15  
10.8  
A
A
A
Current Limit (Low side sourcing)  
IOCL  
Current Limit (Low side negative)  
PGOOD threshold  
POWER GOOD  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
84%  
93%  
VPGOODTH  
116%  
107%  
OUTPUT UNDERVOLTAGE PROTECTION  
VUVP Output UVP threshold  
THERMAL SHUTDOWN  
68% x  
VFB  
Hiccup detect  
Shutdown temperature  
Hysteresis  
160  
15  
°C  
°C  
°C  
°C  
TSDN  
Thermal shutdown threshold  
Shutdown temperature  
Hysteresis  
171  
18  
TSDN VREG5  
VREG5 thermal shutdown threshold  
UVLO  
VREG5 rising voltage  
VREG5 falling voltage  
VREG5 hysteresis  
4.1  
4.3  
3.57  
730  
4.5  
V
V
UVLO  
UVLO threshold  
3.34  
mV  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
6.6 Timing Requirements  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
ON-TIME TIMER CONTROL  
tON  
SW On Time  
VIN = 12 V, VOUT=3.3 V, FSW = 800 kHz  
VIN = 17 V, VOUT=0.6 V, FSW= 1200 kHz  
25°C, VFB=0.5 V  
310  
340  
54  
380  
310  
ns  
ns  
ns  
tON min  
tOFF  
SW Minimum on time  
SW Minimum off time  
SOFT START  
tSS Soft start time  
Internal soft start time  
1.045  
ms  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
tUVPDEL  
Output Hiccup delay relative to SS time  
UVP detect  
1
7
cycle  
cycle  
Output Hiccup enable delay relative to  
SS time  
tUVPEN  
UVP detect  
版权 © 2016, Texas Instruments Incorporated  
7
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
20  
18  
16  
14  
12  
10  
8
6
4
2
VLb = 12V  
150  
V
Lb =12V  
0
0
50  
100  
0
50  
100  
150  
œ50  
œ50  
œ50  
œ50  
œ50  
œ50  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
C001  
C002  
1. Quiescent Current vs Temperature  
2. Shutdown Current vs Temperature  
0.603  
0.602  
0.601  
0.6  
30  
25  
20  
15  
10  
0.599  
0.598  
0.597  
VLb =12V  
VLb =12V  
0
50  
100  
150  
0
50  
100  
150  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
C003  
C004  
3. Feedback Voltage vs Temperature  
4. High-side Rdson vs Temperature  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
8
7
6
VLb =12V  
V
Lb =12V  
5
0
50  
100  
150  
0
50  
100  
150  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
C005  
C006  
5. Low-side Rdson vs Temperature  
6. Soft-Start Charge Current vs Temperature  
8
版权 © 2016, Texas Instruments Incorporated  
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
Typical Characteristics (接下页)  
3
6
5.5  
5
2.5  
2
4.5  
4
1.5  
1
3.5  
3
VLb =12V  
V =12V  
Lb  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
C007  
C008  
7. Enable Pull-Up Current, VEN =1.0V  
8. Enable Pull-Up Current, VEN =1.3V  
120  
115  
110  
105  
100  
95  
12  
11  
10  
9
ILIM option  
ILIM-1 Option  
VC. rising  
VC. falling  
VC. rising  
VC. falling  
8
90  
7
85  
80  
6
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
œ50  
TJ - Junction Temperature (°C)  
TJ - Junction Temperature (°C)  
C009  
C010  
9. PGOOD Threshold vs Temperature  
10. Valley Current Limit vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
hÜÇ= 1.2V, F= 400kHz  
hÜÇ= 1.2V, F= 800kHz  
hÜÇ= 1.2V, F= 1200kHz  
V
Lb = 12V, VhÜÇ= 1.2V  
= 12V, VhÜÇ= 3.3V  
V
V
Lb  
VLb = 12V, VhÜÇ= 5.5V  
V
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
Output Current (A)  
Ouput Current(A)  
C013  
C022  
12. Efficiency, Mode = DCM, FSW = 400kHz  
11. Efficiency with Internal VREG5 = 4.7 V, VIN = 12 V  
版权 © 2016, Texas Instruments Incorporated  
9
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 12V, VÇ= 1.2V  
V
V
V
Lb = 12V, VhÜÇ= 1.2V  
Lb = 12V, VhÜÇ= 3.3V  
Lb = 12V, VhÜÇ= 5.5V  
Lb  
VLb = 12V, VhÜÇ= 3.3V  
10  
0
VLb = 12V, VhÜÇ= 5.5V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
C014  
C015  
13. Efficiency, Mode = FCCM, FSW = 400kHz  
14. Efficiency, Mode = DCM, FSW = 1200kHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.198  
1.197  
1.196  
1.195  
1.194  
VLb = 4.5V, VÇ= 1.2V  
VLb = 12V, VhÜÇ= 1.2V  
VLb = 12V, VhÜÇ= 1.2V  
VLb = 12V, VhÜÇ= 3.3V  
VLb = 17V,VhÜÇ= 1.2V  
VLb = 12V, VhÜÇ= 5.5V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
C016  
C017  
15. Efficiency, Mode = FCCM, FSW = 1200kHz  
16. Load Regulation, FSW = 400kHz  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
V
= 12V, VhÜÇ= 1.2V  
= 12V, VhÜÇ= 3.3V  
Lb  
V
Lb  
VLb = 12V, VhÜÇ= 5.5V  
V
= 12V,VhÜÇ= 1.2V  
Lb  
VLb = 12V,VhÜÇ= 3.3V  
VLb = 12V,VhÜÇ= 5.5V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
C018  
C019  
17. FSW Load Regulation, Mode = FCCM, FSW = 400kHz  
18. FSW Load Regulation, Mode = FCCM, FSW = 800kHz  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
Typical Characteristics (接下页)  
1400  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
= 12V, VhÜÇ= 1.2V  
Lb  
VLb = 12V, VÇ= 3.3V  
VLb = 12V, VhÜÇ= 5.5V  
1300  
1200  
1100  
1000  
F{í= 400kHz  
F{í= 800kHz  
F{í= 1200kHz  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Load Current (A)  
C020  
C021  
19. FSW Load Regulation, Mode = FCCM, FSW = 1200kHz  
20. FSW Load Regulation, Mode = DCM, VIN = 12V,  
VOUT=1.2V  
版权 © 2016, Texas Instruments Incorporated  
11  
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS568215 is a high density synchronous step down buck converter which can operate from 4.5-V to 17-V  
input voltage (VIN). It has 19-mΩ and 9-mΩ integrated MOSFETs that enable high efficiency up to 8 A. The  
device employs D-CAP3™ mode control that provides fast transient response with no external compensation  
components and an accurate feedback voltage. The control topology provides seamless transition between  
FCCM operating mode at higher load condition and DCM/Eco-mode™ operation at lighter load condition.  
DCM/Eco-mode™ allows the TPS568215 to maintain high efficiency at light load. The TPS568215 is able to  
adapt to both low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and  
ultralow ESR ceramic capacitors.  
The TPS568215 has three selectable switching frequencies (FSW) 400kHz, 800kHz and 1200kHz which gives the  
flexibility to optimize the design for higher efficiency or smaller size. There are two selectable current limits. All  
these options are configured by choosing the right voltage on the MODE pin.  
The TPS568215 has a 4.7 V internal LDO that creates bias for all internal circuitry. There is a feature to  
overdrive this internal LDO with an external voltage on the VREG5 pin which improves the converter’s efficiency.  
The undervoltage lockout (UVLO) circuit monitors the VREG5 pin voltage to protect the internal circuitry from low  
input voltages. The device has an internal pull-up current source on the EN pin which can enable the device  
even with the pin floating.  
Soft-start time can be selected by connecting a capacitor to the SS pin. The device is protected from output  
short, undervoltage and over temperature conditions.  
12  
版权 © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
7.2 Functional Block Diagram  
PG rising threshold  
TPS568215  
+
PGOOD  
PGOOD Logic  
UV  
UV threshold  
+
+
Delay  
UVP / OVP  
Logic  
VREG5  
PG falling threshold  
+
OV threshold  
LDO  
OV  
VIN  
UVLO  
Internal Ramp  
+
BOOT  
BOOT  
-
VREF  
-
+
+
Error Amp  
Control Logic  
+
FB  
-
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On Time  
Min On Time/Off Time  
FCCM/SKIP  
Soft-Start  
Power Good  
SW  
SW  
ó/hb  
Internal SS  
One shot  
VREG5  
Internal/External VREG5  
UVP/TSD  
SS  
PGND  
Light Load Operation/  
Current Limit/  
Switching Frequency  
MODE  
TSD 160C/171C  
SW  
OCL  
+
Ip1 Ip2  
EN  
+
ZC  
+
Enable Threshold  
NOCL  
+
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3™ Control  
The TPS568215 operates using the adaptive on-time PWM control with a proprietary D-CAP3™ control which  
enables low external component count with a fast load transient response while maintaining a good output  
voltage accuracy. At the beginning of each switching cycle the high side MOSFET is turned on for an on-time set  
by an internal one shot timer. This on-time is set based on the converter’s input voltage, output voltage and the  
pseudo-fixed frequency hence this type of control topology is called an adaptive on-time control. The one shot  
timer resets and turns on again once the feedback voltage (VFB) falls below the internal reference voltage (VREF).  
An internal ramp is generated which is fed to the FB pin to simulate the output voltage ripple. This enables the  
use of very low-ESR output capacitors such as multi-layered ceramic caps (MLCC). No external current sense  
network or loop compensation is required for DCAP3™ control topology.  
The TPS568215 includes an error amplifier that makes the output voltage very accurate. This error amplifier is  
absent in other flavors of DCAP3™. For any control topology that is compensated internally, there is a range of  
the output filter it can support. The output filter used with the TPS568215 is a low pass L-C circuit. This L-C filter  
has double pole that is described in  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS568215. The low frequency L-C double pole has a 180 degree in phase. At the output filter  
frequency, the gain rolls off at a –40dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from –40dB to –20dB per  
decade and increases the phase to 90 degree one decade above the zero frequency. The internal ripple injection  
high frequency zero is changed according to the switching frequency selected as shown in table below. The  
inductor and capacitor selected for the output filter must be such that the double pole is located close enough to  
the high-frequency zero so that the phase boost provided by this high-frequency zero provides adequate phase  
margin for the stability requirement. The crossover frequency of the overall system should usually be targeted to  
be less than one-fifth of the switching frequency (FSW).  
1. Ripple Injection Zero  
Switching Frequency (kHz)  
Zero Location (kHz)  
400  
800  
7.1  
14.3  
21.4  
1200  
2 lists the inductor values and part numbers that are used to plot the efficiency curves in the Typical  
Characteristics section.  
2. Inductor Values  
Würth Part  
VOUT(V)  
FSW(kHz)  
LOUT(uH)  
Number(1)  
744325120  
744311068  
744314047  
744325240  
744314150  
744314110  
744325330  
744325240  
744325120  
400  
800  
1.2  
0.68  
0.47  
2.4  
1.2  
1200  
400  
3.3  
5.5  
800  
1.5  
1200  
400  
1.1  
3.3  
800  
2.4  
1200  
1.2  
(1) See Third-Party Products disclaimer  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
7.3.2 Eco-mode™ Control  
The TPS568215 is designed with Eco-mode™ control to increase efficiency at light loads. This option can be  
chosen using the MODE pin as shown in table 3. As the output current decreases from heavy load condition, the  
inductor current is also reduced. If the output current is reduced enough, the valley of the inductor current  
reaches the zero level, which is the boundary between continuous conduction and discontinuous conduction  
modes. The low-side MOSFET is turned off when a zero inductor current is detected. As the load current further  
decreases the converter runs into discontinuous conduction mode. The on-time is kept approximately the same  
as it is in continuous conduction mode. The off-time increases as it takes more time to discharge the output with  
a smaller load current. The light load current where the transition to Eco-mode™ operation happens ( IOUT(LL)  
)
can be calculated from 公式 2.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(2)  
After identifying the application requirements, design the output inductance so that the inductor peak-to-peak  
ripple current is approximately between 20% and 30% of the ICC(ma×) (peak current in the application). it is also  
important to size the inductor properly so that the valley current doesn't hit the negative low side current limit.  
7.3.3 4.7 V LDO and External Bias  
The VREG5 pin is the output of the internal 4.7-V linear regulator that creates the bias for all the internal circuitry  
and MOSFET gate drivers. The VREG5 pin needs to be bypassed with a 4.7-µF capacitor. An external voltage  
that is above the LDO's internal output voltage can override the internal LDO, switching it to the external rail once  
a higher voltage is detected. This enhances the efficiency of the converter because the quiescent current now  
runs off this external rail instead of the input power supply. The UVLO circuit monitors the VREG5 pin voltage  
and disables the output when VREG5 falls below the UVLO threshold. When using an external bias on the  
VREG5 rail, any power-up and power-down sequencing can be applied but it is important to understand that if  
there is a discharge path on the VREG5 rail that can pull a current higher than the internal LDO's current limit  
(ILIM5) from the VREG5, then the VREG5 LDO turns off thereby shutting down the output of TPS568215. If such  
condition does not exist and if the external VREG5 rail is turned off, the VREG5 voltage switches over to the  
internal LDO voltage which is 4.7 V typically in a few nanoseconds. Figure 26 below shows this transition of the  
VREG5 voltage from an external bias of 5.5 V to the internal LDO output of 4.7 V when the external bias to  
VREG5 is disabled while the output of TPS568215 remains unchanged.  
7.3.4 MODE Selection  
TPS568215 has a MODE pin that can offer 12 different states of operation as a combination of Current Limit,  
Switching Frequency and Light Load operation. The device can operate at two different current limits ILIM-1 and  
ILIM to support an output continuous current of 6 A, 8 A respectively. The TPS568215 is designed to compare  
the valley current of the inductor against the current limit thresholds so it is important to understand that the  
output current will be half the ripple current above the valley current. TPS568215 can operate at three different  
frequencies of 400 kHz, 800 kHz and 1200 kHz and also can choose between Eco-mode™ and FCCM mode.  
The device reads the voltage on the MODE pin during start-up and latches onto one of the MODE options listed  
below in table 3. The voltage on the MODE pin can be set by connecting this pin to the center tap of a resistor  
divider connected between VREG5 and AGND. A guideline for the top resistor (RM_H) and the bottom resistor  
(RM_L) as 5% resistors is shown in Table 3. It is important that the voltage for the MODE pin is derived from the  
VREG5 rail only since internally this voltage is referenced to detect the MODE option. The MODE pin setting can  
be reset only by a VIN power cycling.  
3. Mode Pin Resistor Settings  
RM_L (kΩ)  
RM_H (kΩ)  
Light Load  
Operation  
Current Limit  
Frequency (kHz)  
5.1  
10  
20  
20  
51  
51  
51  
300  
200  
160  
120  
200  
180  
150  
FCCM  
FCCM  
FCCM  
FCCM  
FCCM  
FCCM  
DCM  
ILIM-1  
ILIM  
400  
400  
ILIM-1  
ILIM  
800  
800  
ILIM-1  
ILIM  
1200  
1200  
400  
ILIM-1  
版权 © 2016, Texas Instruments Incorporated  
15  
 
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
3. Mode Pin Resistor Settings (接下页)  
51  
51  
51  
51  
51  
120  
91  
82  
62  
51  
DCM  
DCM  
DCM  
DCM  
DCM  
ILIM  
ILIM-1  
ILIM  
400  
800  
800  
ILIM-1  
ILIM  
1200  
1200  
21 below shows the typical start-up sequence of the device once the enable signal crosses the EN turn-on  
threshold. After the voltage on VREG5 crosses the rising UVLO threshold it takes about 500us to read the first  
mode setting and approximately 100us from there to finish the last mode setting. The output voltage starts  
ramping after the mode reading is done.  
9b tꢁresꢁold  
1.2ë  
9b  
ëw9D5 Üë[h  
4.3ë  
ëw9D5  
ahꢀ916  
ahꢀ91  
ahꢀ9  
500us  
100us  
tss(1ms)  
ëhÜÇ  
21. Power-Up Sequence  
7.3.5 Soft Start and Pre-biased Soft Start  
The TPS568215 has an adjustable soft-start time that can be set by connecting a capacitor on SS pin. When the  
EN pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor (CSS) connected  
between SS and AGND. The devices tracks the lower of the internal soft-start voltage or the external soft-start  
voltage as the reference. The equation for the soft-start time (TSS) is shown in 公式 3:  
CSS × VREF  
TSS(S)  
=
ISS  
where  
VREF is 0.6 V and ISS is 6 µA  
(3)  
If the output capacitor is pre-biased at startup, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
16  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
7.3.6 Enable and Adjustable UVLO  
The EN pin controls the turn-on and turn-off of the device. When EN pin voltage is above the turn-on threshold  
which is around 1.2 V, the device starts switching and when the EN pin voltage falls below the turn-off threshold  
which is around 1.1V it stops switching. If the user application requires a different turn-on (VSTART) and turn-off  
thresholds (VSTOP) respectively, the EN pin can be configured as shown in 22 by connecting a resistor divider  
between VIN and EN. The EN pin has a pull-up current Ip1 that sets the default state of the pin when it is floating.  
This current increases to Ip2 when the EN pin voltage crosses the turn-on threshold. The UVLO thresholds can  
be set by using 公式 4 and 公式 5.  
TPS568215  
VIN  
Ip1  
Ih  
R 1  
R 2  
EN  
Copyright © 2016, Texas Instruments Incorporated  
22. Adjustable VIN Under Voltage Lock Out  
æ
ç
è
ö
VENFALLING  
VSTART  
- VSTOP  
÷
VENRISING  
ø
R1 =  
æ
ö
÷
ø
VENFALLING  
I
1-  
+ I  
p1 ç  
h
VENRISING  
è
(4)  
R1´ VENFALLING  
R2 =  
V
STOP - VENFALLING +R1 Ip2  
where  
Ip2 = 4.197 μA  
Ip1 = 1.91 μA  
Ih = 2.287 μA  
VENRISING = 1.225 V  
VENFALLING = 1.104 V  
(5)  
7.3.7 Power Good  
The Power Good (PGOOD) pin is an open drain output. Once the FB pin voltage is between 93% and 107% of  
the internal reference voltage (VREF) the PGOOD is de-asserted and floats after a 200 μs de-glitch time. A pull-up  
resistor of 10 kΩ is recommended to pull it up to VREG5. The PGOOD pin is pulled low when the FB pin voltage  
is lower than VUVP or greater than VOVP threshold; or, in an event of thermal shutdown or during the soft-start  
period.  
7.3.8 Over Current Protection and Under Voltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. During the on time of the high-side FET switch, the switch current increases at  
a linear rate determined by input voltage , output voltage, the on-time and the output inductor value. During the  
on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the  
load current IOUT. If the measured drain to source voltage of the low-side FET is above the voltage proportional to  
current limit, the low side FET stays on until the current level becomes lower than the OCL level which reduces  
the output current available. When the current is limited the output voltage tends to drop because the load  
demand is higher than what the converter can support. When the output voltage falls below 68% of the target  
版权 © 2016, Texas Instruments Incorporated  
17  
 
 
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
voltage, the UVP comparator detects it and shuts down the device after a wait time of 1ms, the device re-starts  
after a hiccup time of 7ms. In this type of valley detect control the load current is higher than the OCL threshold  
by one half of the peak to peak inductor ripple current. When the overcurrent condition is removed, the output  
voltage returns to the regulated value. If an OCL condition happens during start-up then the device enters  
hiccup-mode immediately without a wait time of 1ms.  
7.3.9 Out-of-Bounds Operation  
The device has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower  
overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault, OOB  
protection operates as an early no-fault overvoltage protection mechanism. During the OOB operation, the  
controller operates in forced PWM mode only by turning on the low-side FET. Turning on the low-side FET  
beyond the zero inductor current quickly discharges the output capacitor thus causing the output voltage to fall  
quickly toward the setpoint. During the operation, the cycle-by cycle negative current limit is also activated to  
ensure the safe operation of the internal FETs.  
7.3.10 UVLO Protection  
Under voltage lock out protection (UVLO) monitors the internal VREG5 regulator voltage. When the VREG5  
voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching.  
7.3.11 Thermal Shutdown  
The device monitors the internal die temperature. If this temperature exceeds the thermal shutdown threshold  
value (TSDN typically 160°C) the device shuts off. This is a non-latch protection. During start up, if the device  
temperature is higher than 160°C the device does not start switching and does not load the MODE settings. If the  
device temp goes higher than TSDN threshold after startup, it stops switching with SS reset to ground and an  
internal discharge switch turns on to quickly discharge the output voltage. The device re-starts switching when  
the temperature goes below the thermal shutdown threshold but the MODE settings are not re-loaded again.  
There is a second higher thermal protection on the device TSDN VREG5 which protects it from over temperature  
conditions not caused by the switching of the device itself. This threshold is at typically 170°C. Even under  
nonswitching condition of the device after exceeding TSDN threshold, if it still continues to heat up the VREG5  
output shuts off once temperature goes beyond TSDN VREG5, thereby shutting down the device completely.  
7.3.12 Output Voltage Discharge  
The device has a 500ohm discharge switch that discharges the output VOUT through SW node during any event  
of fault like output overvoltage, output undervoltage , TSD , if VREG5 voltage below the UVLO and when the EN  
pin voltage (VEN) is below the turn-on threshold.  
7.4 Device Functional Modes  
7.4.1 Light Load Operation  
When the MODE pin is selected to operate in FCCM mode, the converter operates in continuous conduction  
mode (FCCM) during light-load conditions. During FCCM, the switching frequency (FSW) is maintained at an  
almost constant level over the entire load range which is suitable for applications requiring tight control of the  
switching frequency and output voltage ripple at the cost of lower efficiency under light load. If the MODE pin is  
selected to operate in DCM/Eco-mode™, the device enters pulse skip mode after the valley of the inductor ripple  
current crosses zero. The Eco-mode™ maintains higher efficiency at light load with a lower switching frequency.  
7.4.2 Standby Operation  
The TPS568215 can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 7uA when in standby condition.  
18  
版权 © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 23 shows a typical application for TPS568215. This design converts an input voltage range  
of 4.5 V to 17 V down to 1.2 V with a maximum output current of 8 A.  
8.2 Typical Application  
VIN = 4.5 V - 17 V  
VIN  
U1  
TPS568215RNNR  
BOOT  
C1  
0.1µF  
C2  
0.1µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
L1  
C9  
VOUT = 1.2 V, 8 A  
2
1
VIN  
VOUT  
11  
470nH  
R4  
VIN  
0.1µF  
6
SW  
SW  
FB  
C11  
47µF  
C12  
47µF  
C13  
47µF  
C14  
47µF  
7
14  
15  
16  
18  
17  
13  
SS  
10.0k  
C7  
0.047µF  
V5  
3
EN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
EN  
4
5
PGOOD  
MODE  
VREG5  
C10 56pF  
8
R1 10.0k  
9
R5  
10.0k  
10  
R2  
52.3k  
V5  
12  
AGND  
R3  
49.9k  
C8  
4.7µF  
Copyright © 2016, Texas Instruments Incorporated  
23. Application Schematic  
8.2.1 Design Requirements  
4. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.2  
8
MAX  
UNIT  
VOUT  
Output voltage  
V
A
IOUT  
Output current  
ΔVOUT  
VIN  
Transient response  
Input voltage  
4-A load step  
±30  
12  
mV  
V
4.5  
17  
VOUT(ripple)  
Output voltage ripple  
<10  
mV(P-P)  
Internal  
UVLO  
Start input voltage  
Input voltage rising  
Input voltage falling  
V
Internal  
UVLO  
Stop input voltage  
V
fSW  
Switching frequency  
1.2  
DCM  
25  
MHz  
Operating Mode  
TA  
Ambient temperature  
°C  
版权 © 2016, Texas Instruments Incorporated  
19  
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Output Voltage Set Point  
To change the output voltage of the application, it is necessary to change the value of the upper feedback  
resistor. By changing this resistor the user can change the output voltage above 0.6 V. See 公式 6  
æ
ö
RUPPER  
VOUT = 0.6´ 1+  
ç
÷
RLOWER ø  
è
(6)  
8.2.2.1.2 Switching Frequency and Mode Selection  
Switching Frequency, current limit and switching mode (DCM or FCCM) are set by a voltage divider from VREG5  
to GND connected to the MODE pin. See 3 for possible MODE pin configurations. Switching frequency  
selection is a tradeoff between higher efficiency and smaller system solution size. Lower switching frequency  
yields higher overall efficiency but relatively bigger external components. Higher switching frequencies cause  
additional switching losses which impact efficiency and thermal performance. For this design 1.2 MHz is chosen  
as the switching frequency, the switching mode is DCM and the output current is 8 A.  
8.2.2.1.3 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 5 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 公式 7 and 公式 8. It is important that  
the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(7)  
(8)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient/short circuit conditions the inductor current can increase up to the current limit of the device so it  
is safe to choose an inductor with a saturation current higher than the peak current under current limit condition.  
8.2.2.1.4 Output Capacitor Selection  
After selecting the inductor the output capacitor needs to be optimized. In DCAP3, the regulator reacts within one  
cycle to the change in the duty cycle so the good transient performance can be achieved without needing large  
amounts of output capacitance. The recommended output capacitance range is given in 5  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
5. Recommended Component Values  
VOUT (V)  
RLOWER (kΩ)  
RUPPER (kΩ)  
FSW (kHz)  
400  
LOUT (µH)  
0.68  
0.47  
0.33  
1.2  
COUT(min) (µF)  
COUT(max) (µF)  
CFF (pF)  
300  
100  
88  
500  
500  
500  
500  
500  
500  
500  
500  
500  
0.6  
10  
0
800  
1200  
400  
100  
88  
1.2  
3.3  
10  
800  
0.68  
0.47  
2.4  
1200  
400  
88  
88  
100–220  
100–220  
100–220  
45.3  
800  
1.5  
88  
1200  
1.1  
88  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
5. Recommended Component Values (接下页)  
VOUT (V)  
RLOWER (kΩ)  
RUPPER (kΩ)  
FSW (kHz)  
400  
LOUT (µH)  
3.3  
COUT(min) (µF)  
COUT(max) (µF)  
CFF (pF)  
100–220  
100–220  
100–220  
88  
88  
88  
500  
500  
700  
5.5  
82.5  
800  
2.4  
1200  
1.2  
8.2.2.1.5 Input Capacitor Selection  
The minimum input capacitance required is given in 公式 9.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(9)  
TI recommends using a high quality X5R or X7R input decoupling capacitors of 40 µF on the input voltage pin.  
The voltage rating on the input capacitor must be greater than the maximum input voltage. The capacitor must  
also have a ripple current rating greater than the maximum input current ripple of the application. The input ripple  
current is calculated by 公式 10 below:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(10)  
8.2.3 Application Curves  
24 through 40 apply to the circuit of 23. VIN = 12 V. Ta = 25 °C unless otherwise specified.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
1
2
3
4
5
6
7
8
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
2 3 45 7 10  
Output Current (A)  
D101  
D102  
24. Efficiency  
25. Light Load Efficiency  
版权 © 2016, Texas Instruments Incorporated  
21  
 
 
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Output Current (A)  
Output Current (A)  
D103  
D104  
26. Load Regulation, VIN = 5 V  
27. Load Regulation, VIN = 12 V  
0.25  
60  
180  
50  
40  
150  
120  
90  
0.20  
0.15  
30  
0.10  
20  
60  
0.05  
10  
30  
0.00  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-60  
-90  
-120  
-150  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
Gain (dB)  
Phase (Deg)  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
100 200 500 1000  
10000  
100000  
500000  
Input Voltage (V)  
Frequency (Hz)  
D105  
D106  
28. Line Regulation, IOUT = 6 A  
29. Loop Response, IOUT = 6 A  
VIN = 20 mV / div (ac coupled)  
VIN = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 10 µsec / div  
Time = 500 nsec / div  
31. Input Voltage Ripple, IOUT = 700 mA  
30. Input Voltage Ripple, IOUT = 10 mA  
22  
版权 © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
VIN = 50 mV / div (ac coupled)  
VOUT = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 50 µsec / div  
Time = 500 nsec / div  
32. Input Voltage Ripple, IOUT = 8 A  
33. Output Voltage Ripple, IOUT = 10 mA  
VOUT = 20 mV / div (ac coupled)  
VOUT = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 500 nsec / div  
Time = 500 nsec / div  
34. Output Voltage Ripple, IOUT = 700 mA  
35. Output Voltage Ripple, IOUT = 8 A  
VIN = 10 V / div  
VIN = 10 V / div  
EN = 5 V / div  
EN = 5 V / div  
VO = 500 mV / div  
PG = 5 V / div  
VO = 500 mV / div  
PG = 5 V / div  
Time = 2 msec / div  
Time = 2 msec / div  
36. Start Up Relative to VIN Rising  
37. Start Up Relative to EN Rising  
版权 © 2016, Texas Instruments Incorporated  
23  
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
VIN = 10 V / div  
VIN = 10 V / div  
EN = 5 V / div  
VO = 500 mV / div  
EN = 5 V / div  
VO = 500 mV / div  
PG = 5 V / div  
PG = 5 V / div  
Time = 2 msec / div  
Time = 2 msec / div  
38. Shut Down Relative to VIN Falling  
39. Shut Down Relative to EN Falling  
VO = 50 mV / div (ac coupled)  
IO = 2 A / div  
Load step = 2 A - 6 A, slew rate = 500 mA / µsec  
Time = 200 µsec / div  
40. Transient Response  
9 Power Supply Recommendations  
The TPS568215 is intended to be powered by a well regulated dc voltage. The input voltage range is 4.5 to 17 V.  
TPS568215 is a buck converter. The input supply voltage must be greater than the desired output voltage for  
proper operation. Input supply current must be appropriate for the desired output current. If the input voltage  
supply is located far from the TPS568215 circuit, some additional input bulk capacitance is recommended.  
Typical values are 100 µF to 470 µF.  
24  
版权 © 2016, Texas Instruments Incorporated  
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
10 Layout  
10.1 Layout Guidelines  
Recommend a four-layer or six-layer PCB for good thermal performance and with maximum ground plane. 3"  
x 3", four-layer PCB with 2-oz. copper used as example.  
Recommend having equal caps on each side of the IC. Place them right across VIN as close as possible.  
Inner layer 1 will be ground with the PGND to AGND net tie  
Inner layer2 has VIN copper pour that has vias to the top layer VIN. Place multiple vias under the device  
near VIN and GND and near input capacitors to reduce parasitic inductance and improve thermal  
performance  
Bottom later is GND with the BOOT trace routing.  
Feedback should be referenced to the quite AGND and routed away from the switch node.  
VIN trace must be wide to reduce the trace impedance.  
10.2 Layout Example  
41 shows the recommended top side layout. Component reference designators are the same as the circuit  
shown in 23. Resistor divider for EN is not used in the circuit of 23, but are shown in the layout for  
reference.  
PGOOD  
OUTPUT  
R1  
BOOT  
VIN  
AGND  
VIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C1  
C2  
C3  
C4  
C5  
C6  
L1  
C11  
C12  
C13  
C14  
41. Top Side Layout  
版权 © 2016, Texas Instruments Incorporated  
25  
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Layout Example (接下页)  
42 shows the recommended layout for the first internal layer. It is comprised of a large PGND plane and a  
smaller ANGD island. AGND and PGND are connected at a single point to reduce circulating currents.  
AGND  
SINGLE POINT  
AGND TO PGND  
CONNECTION  
PGND PLANE  
42. Mid Layer 1 Layout  
43 shows the recommended layout for the second internal layer. It is comprised of a large PGND plane, a  
smaller copper fill area to connect the two top side VIN copper areas and a second VOUT copper fill area.  
VIN  
PGND PLANE  
VOUT  
43. Mid Layer 2 Layout  
26  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS568215  
www.ti.com.cn  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
Layout Example (接下页)  
44 shows the recommended layout for the bottom layer. It is comprised of a large PGND plane and a trace to  
connect the BOOT capacitor to the SW node.  
PGND PLANE  
44. Bottom Layer Layout  
版权 © 2016, Texas Instruments Incorporated  
27  
 
TPS568215  
ZHCSFM7A OCTOBER 2016REVISED OCTOBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
TPS568215EVM-762 8A SWIFT™ 稳压器评估模块用户指南》  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
D-CAP3, HotRod, Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
28  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS568215RNNR  
TPS568215RNNT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNN  
RNN  
18  
18  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
568215  
568215  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS568215RNNR  
TPS568215RNNT  
VQFN-  
HR  
RNN  
RNN  
18  
18  
3000  
250  
330.0  
12.4  
3.75  
3.75  
1.15  
8.0  
12.0  
Q2  
VQFN-  
HR  
180.0  
12.4  
3.75  
3.75  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS568215RNNR  
TPS568215RNNT  
VQFN-HR  
VQFN-HR  
RNN  
RNN  
18  
18  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNN0018A  
VQFN-HR - 1 mm max height  
SCALE 3.200  
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
3.6  
3.4  
30.000  
ALTERNATE PIN 1 ID SHAPE  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.6  
1.0  
0.9  
8X  
0.35  
0.25  
2X  
(0.2) TYP  
7
6
8
5
4X 0.55  
0.3  
0.2  
6X  
2.5  
2X  
2X 0.65  
2.3  
PKG  
2X  
0.925  
0.45  
0.35  
12  
8X  
2X  
1
2X 0.575  
SEE ALTERNATE  
PIN 1 ID DETAIL  
18  
13  
0.3  
0.2  
SYMM  
0.45  
0.35  
7X  
0.1  
0.05  
C B A  
5X 0.5  
2.5  
0.45  
0.35  
C
ALL PADS  
4222688/E 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNN0018A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
2X (1.65)  
5X (0.5)  
SYMM  
18  
13  
8X (0.6)  
(1.65)  
8X (0.25)  
(R0.05) TYP  
1
EXPOSED METAL  
TYP  
12  
2X (0.925)  
2X (0.4)  
11  
2X (0.35)  
2
PKG  
0.000  
2X  
(2.6)  
2X (0.3)  
(0.65)  
2X (0.85)  
8
2X (1.4)  
5
6X (0.25)  
8X (1.15)  
6
7
2X (0.3)  
2X (0.3)  
8X (1.375)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
(PREFERRED)  
4222688/E 03/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNN0018A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
(1.65)  
5X (0.5)  
SYMM  
13  
18  
8X (0.6)  
(1.65)  
8X (0.25)  
1
EXPOSED  
METAL, TYP  
2X (0.925)  
2X (0.36)  
12  
6X (0.3)  
2
11  
2X (0.35)  
(0.2825)  
PKG  
0.000  
6X  
(0.733)  
2X (0.3)  
(0.651)  
2X (0.85)  
2X (1.4)  
8
5
(1.585)  
6X (0.25)  
8X (1.15)  
EXPOSED METAL  
TYP  
EXPOSED METAL  
TYP  
7
6
8X (1.375)  
(R0.05) TYP  
(0.3) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 6 & 7: 83% - PADS 2 & 11: 90%  
SCALE:30X  
4222688/E 03/2021  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS568215RNNT

具有 D-CAP3 控制功能的 4.5V 至 17V、8A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125
TI

TPS568230

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器
TI

TPS568230RJER

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS568230RJET

针对解决方案成本进行了优化的 4.5V 至 18V、8A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125
TI

TPS568231

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器
TI

TPS568231RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、8A 同步降压转换器 | RNN | 18 | -40 to 125
TI

TPS56837

4.5V 至 28V 输入、8A 同步降压转换器
TI

TPS56921

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control
TI

TPS56921PWP

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control
TI

TPS56921PWPR

4.5V to 17V Input, 9A Synchronous Step Down SWIFT Converter With VID Control
TI

TPS56C20

具有电压调节的 4.5V 至 17V、12A 同步降压转换器
TI

TPS56C20PWP

具有电压调节的 4.5V 至 17V、12A 同步降压转换器 | PWP | 24 | -40 to 85
TI