TPS61089RNRT [TI]

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125;
TPS61089RNRT
型号: TPS61089RNRT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125

升压转换器
文件: 总34页 (文件大小:2507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
2.0mm x 2.5mm VQFN 封装TPS61089x 12.6V7A 完全集成的同步升压转  
换器  
19mΩ 主电源开关和 27mΩ 整流器开关。该器件可以  
为便携式设备提供高效率小型电源解决方案。  
1 特性  
TPS61089x 具有 2.7V 12V 的宽输入电压范围可  
支持由单节或两节锂离子/锂聚合物电池供电的应用。  
TPS61089x 具备 7A 持续开关电流能力能够提供高  
12.6V 的输出电压。  
• 输入电压范围2.7 V 12 V  
• 输出电压范围4.5 V 12.6 V  
• 效率高90%VIN = 3.3VVOUT = 9V IOUT  
2A )  
=
• 针对高脉冲电流的电阻可编程峰值电流限值高达  
TPS61089x 采用自适应恒定关断时间峰值电流控制拓  
扑结构调节输出电压。在中等到重负载条件下,  
TPS61089x PWM 式工作。在轻载条件下,  
TPS61089 以可提升效率的脉频调制 (PFM) 模式工  
TPS610891 仍以可避免因开关频率较低而引发  
应用问题的 PWM 模式工作。PWM 模式下的开关频率  
可在 200kHz 2.2MHz 之间调节。TPS61089x 还内  
4ms 软启动功能和可调节开关电流峰值限制功能。  
此外该器件还提供 13.2V 输出过压保护、逐周期过  
流保护和热关断保护。  
10A  
• 可调开关频率200kHz 2.2MHz  
4ms 内置软启动时间  
• 轻负载下采PFM 运行模(TPS61089)  
• 轻负载下采用强PWM 运行模(TPS610891)  
13.2V 时提供内部输出过压保护  
• 逐周期过流保护  
• 热关断  
2.00mm × 2.50mm VQFN HotRod封装  
• 使TPS61089x 并借WEBENCH® Power  
Designer 创建定制设计方案  
TPS61089x 采用极其紧凑的 2.0mm × 2.5mm11 引  
VQFN 封装。  
2 应用  
器件信息表  
封装(1)  
Bluetooth扬声器  
快充移动电源  
便携式刷卡(POS) 终端  
封装尺寸标称值)  
器件型号  
TPS61089x  
VQFN (11)  
2.00mm x 2.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
3 说明  
TPS61089x TPS61089 TPS610891 。  
TPS61089x 一款全集成同步升压转换器有  
L1  
VIN  
VOUT  
SW  
VOUT  
C4  
C1  
R3  
C2  
BOOT  
GND  
R1  
R2  
FSW  
VIN  
FB  
COMP  
ILIM  
ON  
EN  
OFF  
C6  
R5  
C5  
VCC  
C3  
R4  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD38  
 
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................13  
9.1 Application Information............................................. 13  
9.2 Typical Application.................................................... 13  
10 Power Supply Recommendations..............................21  
11 Layout...........................................................................22  
11.1 Layout Guidelines................................................... 22  
11.2 Layout Example...................................................... 22  
12 Device and Documentation Support..........................24  
12.1 Device Support....................................................... 24  
12.2 接收文档更新通知................................................... 24  
12.3 支持资源..................................................................24  
12.4 Trademarks.............................................................24  
12.5 Electrostatic Discharge Caution..............................24  
12.6 术语表..................................................................... 24  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................7  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description...................................................10  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2016) to Revision C (August 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
• 更正了整个文档中的语法和数值格式.................................................................................................................. 1  
• 添加WEBENCH 链接..................................................................................................................................... 1  
Changes from Revision A (April 2016) to Revision B (July 2016)  
Page  
Changed x axis in .............................................................................................................................................. 7  
Changed x axis in .............................................................................................................................................. 7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
OPERATION MODE AT LIGHT LOAD  
TPS61089RNR  
PFM  
TPS610891RNR(1)  
Forced PWM  
(1) Product Preview. Contact TI factory for more information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
FSW  
VCC  
BOOT  
VIN  
FB  
ILIM  
EN  
COMP  
6-1. 11-Pin VQFN With Thermal Pad RNR Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
FSW  
VCC  
FB  
1
I
The switching frequency is programmed by a resister between this pin and the SW pin.  
Output of the internal regulator. A ceramic capacitor of more than 1.0 µF is required between  
this pin and ground.  
2
3
4
O
I
Output voltage feedback  
Output of the internal error amplifier. The loop compensation network should be connected  
between this pin and the GND pin.  
COMP  
O
GND  
5
6
PWR  
PWR  
Ground  
VOUT  
Boost converter output  
Enable logic input. Logic high level enables the device. Logic low level disables the device  
and turns it into shutdown mode.  
EN  
7
I
Adjustable switching peak current limit. An external resister should be connected between  
this pin and the GND pin.  
ILIM  
8
9
O
I
VIN  
IC power supply input  
Power supply for high-side MOSFET gate driver. A capacitor must be connected between  
this pin and the SW pin  
BOOT  
10  
O
The switching node pin of the converter. It is connected to the drain of the internal low-side  
power MOSFET and the source of the internal high-side power MOSFET.  
SW  
11  
PWR  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
40  
65  
MAX  
SW + 7  
14.5  
7
UNIT  
BOOT  
VIN, SW, FSW, VOUT  
Voltage at terminals(2)  
V
EN, VCC, COMP  
ILIM, FB  
Operating junction temperature, TJ  
3.6  
150  
°C  
°C  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
12  
UNIT  
VIN  
VOUT  
L
Input voltage range  
V
V
Output voltage range  
4.5  
12.6  
10  
Inductance, effective value  
Input capacitance, effective value  
Output capacitance, effective value  
Operating junction temperature  
0.47  
10  
2.2  
47  
µH  
µF  
µF  
°C  
CIN  
CO  
TJ  
10  
1000  
125  
40  
7.4 Thermal Information  
TPS61089x  
RNR (VQFN)  
11 PINS  
53.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.2  
9.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
Junction-to-ambient thermal resistance on EVM  
0.5  
ψJT  
9.5  
ψJB  
RθJC(bot)  
0.7  
(2)  
RθJA(EVM)  
39.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61089 TPS610891  
 
 
 
 
 
 
 
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
(2) The EVM board is a 4-layer PCB of 76-mm x 52-mm size. The copper thickness of top layer and bottom layer is 2 oz. The copper  
thickness of inner layers is 1 oz.  
7.5 Electrical Characteristics  
VIN = 2.7 V to 5.5 V, VOUT = 9 V, TJ = 40°C to 125°C. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.7  
12  
2.7  
2.5  
V
V
VIN rising  
VIN falling  
Input voltage undervoltage lockout  
(UVLO) threshold  
VIN_UVLO  
2.4  
200  
5.8  
V
VIN_HYS  
VCC  
VIN UVLO hysteresis  
VCC regulation voltage  
VCC UVLO threshold  
mV  
V
ICC = 2 mA, VIN = 8 V  
VCC falling  
VCC_UVLO  
2.1  
V
IC enabled, No load, VIN = 2.7 V to 5.5 V, VFB = 1.3  
V, VOUT = 12 V, TJ 85°C  
Quiescent current into VIN pin  
1
3
µA  
IQ  
IC enabled, No load, VIN = 2.7 V to 5.5 V, VFB = 1.3  
V, VOUT = 12 V, TJ 85°C  
Quiescent current into VOUT pin  
Shutdown current into VIN pin  
100  
1
180  
3
µA  
µA  
ISD  
IC disabled, VIN = 2.7 V to 5.5 V, TJ 85°C  
OUTPUT  
VOUT  
Output voltage range  
4.5  
12.6  
V
V
PWM mode  
PFM mode  
VFB = 1.2 V  
1.188  
1.212  
1.224  
1.236  
VREF  
Reference voltage at FB pin  
V
IFB_LKG  
VOVP  
VOVP_HYS  
tSS  
Leakage current into FB pin  
100  
nA  
Output overvoltage protection  
threshold  
VOUT rising  
12.7  
2
13.2  
13.6  
V
Output overvoltage protection  
hysteresis  
VOUT falling below VOVP  
0.25  
4
V
Soft startup time  
COUT(effective) = 47 µF, IOUT = 0 A  
6
ms  
ERROR AMPLIFIER  
ISINK  
COMP pin sink current  
VFB = VREF + 200 mV, VCOMP = 1.9 V  
VFB = VREF 200 mV, VCOMP = 1.9 V  
VFB = 1 V, RILIM = 127 kΩ  
20  
20  
µA  
µA  
V
ISOURCE  
VCCLP_H  
VCCLP_L  
GEA  
COMP pin source current  
High clamp voltage at the COMP pin  
Low clamp voltage at the COMP pin  
Error amplifier transconductance  
2.3  
1.4  
190  
V
VFB = 1.4 V, RILIM = 127 kΩ  
VCOMP = 1.9 V  
µS  
POWER SWITCH  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
SWITCHING FREQUENCY  
VCC = 6 V  
VCC = 6 V  
27  
19  
44  
31  
m  
mΩ  
RDS(on)  
500  
2000  
90  
kHz  
kHz  
ns  
RFSW = 301 kΩ  
RFSW = 46.4 kΩ  
VCC = 6 V  
fSW  
Switching frequency  
Minimum on time  
tON_min  
180  
CURRENT LIMIT  
7.3  
9.0  
8.1  
10  
8.9  
11  
A
A
V
RILIM = 127 kΩ  
RILIM = 100 kΩ  
ILIM  
Peak switch current limit, TPS61089  
Internal reference voltage at ILIM pin  
VILIM  
1.212  
EN LOGIC INPUT  
VEN_H  
EN Logic high threshold  
1.2  
V
V
VEN_L  
EN Logic Low threshold  
EN pulldown resistor  
0.4  
REN  
800  
kΩ  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 9 V, TJ = 25°C, unless otherwise noted  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
VIN = 3 V  
VIN = 3.6 V  
VIN = 4.2 V  
VOUT = 5 V  
VOUT = 9 V  
VOUT = 12 V  
10  
0
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D001  
D001  
TPS61089  
VOUT = 9 V  
TPS61089  
VIN = 3.6 V  
7-1. Load Efficiency with Different Input Voltage  
7-2. Load Efficiency with Different Output  
Voltage  
12  
10  
8
2500  
2000  
1500  
1000  
500  
6
4
2
0
0
0
100 200 300 400 500 600 700 800 900  
Resistance (kW)  
100  
150  
200  
250  
Resistance (kW)  
300  
350  
400  
D004  
D003  
TPS61089  
7-4. Switching Frequency Setting  
7-3. Switching Peak Current Limit Setting  
1.22  
160  
140  
120  
100  
80  
1.216  
1.212  
1.208  
1.204  
1.2  
60  
40  
20  
-40  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D005  
D006  
7-5. Reference Voltage vs Temperature  
7-6. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
2
1.6  
1.2  
0.8  
0.4  
0
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D007  
7-7. Shutdown Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61089x is a synchronous boost converter, integrating a 19-mΩ main power switch and a 27-mΩ  
rectifier switch with adjustable switch current up to 10 A. It is capable to output continuous power more than 18  
W from input of a single cell Lithium-ion battery or two-cell Lithium-ion batteries in series. The TPS61089x  
operates at a quasi-constant frequency pulse-width modulation (PWM) at moderate to heavy load currents. At  
light load current, the TPS61089 operates in PFM mode and the TPS610891 operates in forced PWM (FPWM)  
mode. The PFM mode brings high efficiency over the entire load range, and the FPWM mode can avoid the  
acoustic noise and switching frequency interference at light load. The converter uses the constant off-time peak  
current mode control scheme, which provides excellent line and load transient response with minimal output  
capacitance. The external loop compensation brings flexibility to use different inductors and output capacitors.  
The TPS61089x supports adjustable switching frequency ranging from 200 kHz to 2.2 MHz. The device  
implements cycle-by-cycle current limit to protect the device from overload conditions during boost switching.  
The current limit is set by an external resistor.  
8.2 Functional Block Diagram  
L1  
VIN  
C4  
C1  
SW  
BOOT  
VIN  
VOUT  
VOUT  
dead me  
control logic  
C2  
LDO  
VCC  
R1  
GND  
C3  
Comp  
Comp  
CLIMIT  
FB  
FSW  
Gm  
R2  
R3  
Vref  
1/K  
VIN  
SW  
COMP  
EN  
R5  
Shutdown  
ON/  
OFF  
Shutdown  
Control  
Vref  
C5  
OVP  
VOUT  
VIN  
CLIMIT  
ILIM  
UVLO  
Thermal  
shutdown  
R4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61089 TPS610891  
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Undervoltage Lockout (UVLO)  
An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the typical UVLO threshold of 2.5 V. A hysteresis of 200 mV is added so that the device cannot be enabled again  
until the input voltage goes up to 2.7 V. This function is implemented to prevent the device from malfunctioning  
when the input voltage is between 2.5 V and 2.7 V.  
8.3.2 Enable and Disable  
When the input voltage is above maximal UVLO rising threshold of 2.7 V and the EN pin is pulled above the high  
threshold, the TPS61089x is enabled. When the EN pin is pulled below the low threshold, the TPS61089x goes  
into shutdown mode. The device stops switching in shutdown mode and consumes less than 3-µA current.  
Because of the body diode of the high-side rectifier FET, the input voltage goes through the body diode and  
appears at the VOUT pin at shutdown mode.  
8.3.3 Soft Start  
The TPS61089x implements the soft start function to reduce the inrush current during start-up. The TPS61089x  
begins soft start when the EN pin is pulled to logic high voltage. The soft start time is typically 4 ms.  
8.3.4 Adjustable Switching Frequency  
The TPS61089x features a wide adjustable switching frequency ranging from 200 kHz to 2.2 MHz. The switching  
frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61089x. Do not leave  
the FSW pin open. Use 方程1 to calculate the resistor value required for a desired frequency.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
(1)  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin  
CFREQ = 24 pF  
• ƒSW is the desired switching frequency  
tDELAY = 86 ns  
VIN is the input voltage  
VOUT is the output voltage  
8.3.5 Adjustable Peak Current Limit  
To avoid an accidental large peak current, an internal cycle-by-cycle current limit is adopted. The low-side switch  
turns off immediately as long as the peak switch current touches the limit. The peak inductor current can be set  
by selecting the correct external resistor value correlating with the required current limit. Use 方程式 2 to  
calculate the correct resistor value for the TPS61089.  
1030000  
I
=
LIM  
R
ILIM  
(2)  
where  
RILIM is the resistance connected between the ILIM pin and ground  
ILIM is the switch peak current limit  
For a typical current limit of 8 A, the resistor value is 127 kΩfor the TPS61089.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
8.3.6 Overvoltage Protection  
If the output voltage at the VOUT pin is detected above the overvoltage protection threshold of 13.2 V (typical  
value), the TPS61089x stops switching immediately until the voltage at the VOUT pin drops the hysteresis  
voltage lower than the output overvoltage protection threshold. This function prevents overvoltage on the output  
and secures the circuits connected to the output from excessive overvoltage.  
8.3.7 Thermal Shutdown  
A thermal shutdown is implemented to prevent damage due to excessive heat and power dissipation. Typically,  
the thermal shutdown happens at the junction temperature of 150°C. When the thermal shutdown is triggered,  
the device stops switching until the junction temperature falls below typically 130°C, then the device starts  
switching again.  
8.4 Device Functional Modes  
8.4.1 Operation  
The TPS61089x synchronous boost converter operates at a quasi-constant frequency pulse width modulation  
(PWM) in moderate to heavy load condition. Based on the VIN to VOUT ratio, a circuit predicts the required off-  
time of the switching cycle. At the beginning of each switching cycle, the low-side N-MOSFET switch, shown in  
8.2, is turned on, and the inductor current ramps up to a peak current that is determined by the output of the  
internal error amplifier. After the peak current is reached, the current comparator trips, and turns off the low-side  
N-MOSFET switch and the inductor current goes through the body diode of the high-side N-MOSFET in a dead-  
time duration. After the dead-time duration, the high-side N-MOSFET switch is turned on. Since the output  
voltage is higher than the input voltage, the inductor current decreases. The high-side switch is not turned off  
until the fixed off-time is reached. After a short dead-time duration, the low-side switch is turned on again and the  
switching cycle is repeated.  
In light load condition, the TPS61089 implements PFM mode for applications requiring high efficiency at light  
load. And the TPS610891 implements forced PWM mode for applications requiring fixed switching frequency to  
avoid unexpected switching noise interference.  
8.4.1.1 Forced PWM Mode  
In forced PWM mode, the TPS610891 keeps the switching frequency unchanged in light load condition. When  
the load current decreases, the output of the internal error amplifier decreases as well to keep the inductor peak  
current down, delivering less power from input to output. When the output current further reduces, the current  
through the inductor will decrease to zero during the off-time. The high-side N-MOSFET is not turned off even if  
the current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to zero.  
The power flow is from output side to input side. The efficiency will be low in this mode. But with the fixed  
switching frequency, there is no audible noise and other problems which might be caused by low switching  
frequency in light load condition.  
8.4.1.2 PFM Mode  
The TPS61089 improves the efficiency at light load with PFM mode. When the converter operates in light load  
condition, the output of the internal error amplifier decreases to make the inductor peak current down, delivering  
less power to the load. When the output current further reduces, the current through the inductor will decrease to  
zero during the off-time. Once the current through the high-side N-MOSFET is zero, the high-side MOSFET is  
turned off until the beginning of the next switching cycle. When the output of the error amplifier continuously  
goes down and reaches a threshold with respect to the peak current of ILIM / 10, the output of the error amplifier  
is clamped at this value and does not decrease any more. If the load current is smaller than what the TPS61089  
delivers, the output voltage increases above the nominal setting output voltage. The TPS61089 extends its off  
time of the switching period to deliver less energy to the output and regulate the output voltage to 1.0% higher  
than the nominal setting voltage. With the PFM operation mode, the TPS61089 keeps the efficiency above 70%  
even when the load current decreases to 1 mA. At light load, the output voltage ripple is much smaller due to low  
peak inductor current. Refer to 8-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
Output  
Voltage  
PFM mode at light load  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
8-1. Output Voltage in PWM Mode and PFM Mode  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS61089x is designed for outputting voltage up to 12.6 V with 7-A continuous switch current capability to  
deliver more than 18-W power. The TPS61089x operates at a quasi-constant frequency pulse-width modulation  
(PWM) in moderate to heavy load condition. In light load condition, the TPS61089 operates in PFM mode and  
the TPS610891 operates in forced PWM mode. The PFM mode brings high efficiency over entire load range,  
while PWM mode can avoid the acoustic noise as the switching frequency is fixed. In PWM mode, the  
TPS61089x converter uses the adaptive constant off-time peak current control scheme, which provides excellent  
transient line and load response with minimal output capacitance. The TPS61089x can work with a different  
inductor and output capacitor combination by external loop compensation. It also supports adjustable switching  
frequency ranging from 200 kHz to 2.2 MHz.  
9.2 Typical Application  
L1  
1.8µH  
VIN = 3.0V to 4.35V  
VOUT = 9V  
SW  
VOUT  
GND  
C1  
22µF  
C4  
0.1µF  
R3  
301k  
C2  
BOOT  
3 x 22µF  
R1  
681k  
FSW  
VIN  
FB  
COMP  
ILIM  
ON  
R2  
EN  
OFF  
107k  
R5  
C6  
VCC  
17.4k  
C3  
2.2µF  
R4  
127k  
C5  
4.7nF  
9-1. TPS61089x Single Cell Li-ion Battery to 9-V/2-A Output Converter  
9.2.1 Design Requirements  
9-1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
Input voltage range  
Output voltage  
3.0 to 4.35 V  
9 V  
Output voltage ripple  
Output current rating  
Operating frequency  
Operation mode at light load  
100 mV peak to peak  
2 A  
500 kHz  
PFM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61089 TPS610891  
 
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61089x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting Switching Frequency  
The switching frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61089x.  
The resistor value required for a desired frequency can be calculated using 方程3.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
(3)  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin  
CFREQ = 24 pF  
• ƒSW is the desired switching frequency  
tDELAY = 86 ns  
VIN is the input voltage  
VOUT is the output voltage  
9.2.2.3 Setting Peak Current Limit  
The peak input current is set by selecting the correct external resistor value correlating to the required current  
limit. Use 方程4 to calculate the correct resistor value:  
1030000  
I
=
LIM  
R
ILIM  
(4)  
where  
RILIM is the resistance connected between the ILIM pin and ground  
ILIM is the switching peak current limit  
For a typical current limit of 8 A, the resistor value is 127 kΩ. Considering the device variation and the tolerance  
over temperature, the minimum current limit at the worst case can be 0.8 A lower than the value calculated by 方  
程式 4. The minimum current limit must be higher than the required peak switch current at the lowest input  
voltage and the highest output power to make sure the TPS61089x does not hit the current limit and still can  
regulate the output voltage in these conditions.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
9.2.2.4 Setting Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in TPS61089x Single Cell Li-ion Battery to 9-V/2-  
A Output Converter). Typically, a minimum current of 10 μA flowing through the feedback divider gives good  
accuracy and noise covering. A resistor of less than 120 kΩis typically selected for low-side resistor R2.  
When the output voltage is regulated, the typical voltage at the FB pin is VREF. Thus, the value of R1 is  
calculated as:  
(VOUT - VREF )ìR2  
R1 =  
VREF  
(5)  
9.2.2.5 Inductor Selection  
Because the selection of the inductor affects the steady state operation of the power supply, transient behavior,  
loop stability, and boost converter efficiency, the inductor is the most important component in switching power  
regulator design. Three most important specifications to the performance of the inductor are the inductor value,  
DC resistance, and saturation current.  
The TPS61089x is designed to work with inductor values between 0.47 µH and 10 µH. A 0.47-µH inductor is  
typically available in a smaller or lower-profile package, while a 10-µH inductor produces lower inductor current  
ripple. If the boost output current is limited by the peak current protection of the IC, using a 10-µH inductor can  
maximize the controllers output current capability.  
Inductor values can have ±20% or even ±30% tolerance with no current bias. When the inductor current  
approaches saturation level, its inductance can decrease 20% to 35% from the value at 0-A current depending  
on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated current,  
especially the saturation current, is larger than its peak current during the operation.  
Follow 方程式 6 to 方程式 7 to calculate the peak current of the inductor. To calculate the current in the worst  
case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To  
leave enough design margin, TI recommends using the minimum switching frequency, the inductor value with –  
30% tolerance, and a low-power conversion efficiency for the calculation.  
In a boost regulator, calculate the inductor DC current as in 方程6.  
VOUT ìIOUT  
IDC  
=
V ì h  
IN  
(6)  
where  
VOUT is the output voltage of the boost regulator  
IOUT is the output current of the boost regulator  
VIN is the input voltage of the boost regulator  
ηis the power conversion efficiency  
Calculate the inductor current peak-to-peak ripple as in 方程7.  
1
IPP  
=
1
1
L ì(  
+
)ì ƒSW  
VOUT - V  
V
IN  
IN  
(7)  
where  
IPP is the inductor peak-to-peak ripple  
L is the inductor value  
• ƒSW is the switching frequency  
VOUT is the output voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
VIN is the input voltage  
Therefore, the peak current, ILpeak, seen by the inductor is calculated with 方程8.  
IPP  
ILpeak = IDC  
+
2
(8)  
Set the current limit of the TPS61089x higher than the peak current ILpeak. Then select the inductor with  
saturation current higher than the setting current limit.  
Boost converter efficiency is dependent on the resistance of its current path, the switching loss associated with  
the switching MOSFETs, and the core loss of the inductor. The TPS61089x has optimized the internal switch  
resistance. However, the overall efficiency is affected significantly by the DC resistance (DCR) of the inductor,  
equivalent series resistance (ESR) at the switching frequency, and the core loss. Core loss is related to the core  
material and different inductors have different core loss. For a certain inductor, larger current ripple generates  
higher DCR and ESR conduction losses and higher core loss. Usually, a data sheet of an inductor does not  
provide the ESR and core loss information. If needed, consult the inductor vendor for detailed information.  
Generally, TI would recommend an inductor with lower DCR and ESR. However, there is a tradeoff among the  
inductance of the inductor, DCR and ESR resistance, and its footprint. Furthermore, shielded inductors typically  
have higher DCR than unshielded inductors. 9-2 lists recommended inductors for the TPS61089x. Verify  
whether the recommended inductor can support the user's target application with the previous calculations and  
bench evaluation. In this application, the Sumida inductor CDMC8D28NP-1R8MC is selected for its small size  
and low DCR.  
9-2. Recommended Inductors  
DCR MAX  
(mΩ)  
SATURATION CURRENT /  
HEAT RATING CURRENT (A)  
SIZE MAX  
(L × W × H mm)  
PART NUMBER  
L (µH)  
VENDOR  
CDMC8D28NP-1R8MC  
744311150  
1.8  
1.5  
12.6  
7.2  
9.4 / 9.3  
9.5 x 8.7 x 3.0  
7.3 x 7.2 x 4.0  
Sumida  
14.0 / 11.0  
Wurth-  
Elektronik  
744311220  
2.2  
12.5  
13.0 / 9.0  
7.3 × 7.2 × 4.0  
Wurth-  
Elektronik  
PIMB103T-2R2MS  
PIMB065T-2R2MS  
2.2  
2.2  
9.0  
16 / 13  
11.2 × 10.3 × 3.0  
7.4 × 6.8 × 5.0  
Cyntec  
Cyntec  
12.5  
12 / 10.5  
9.2.2.6 Input Capacitor Selection  
For good input voltage filtering, TI recommends low-ESR ceramic capacitors. The VIN pin is the power supply for  
the TPS61089x. A 0.1-μF ceramic bypass capacitor is recommended as close as possible to the VIN pin of the  
TPS61089x. The VCC pin is the output of the internal LDO. A ceramic capacitor of more than 1.0 μF is required  
at the VCC pin to get a stable operation of the LDO.  
For the power stage, because of the inductor current ripple, the input voltage changes if there is parasitic  
inductance and resistance between the power supply and the inductor. It is recommended to have enough input  
capacitance to make the input voltage ripple less than 100 mV. Generally, 10-μF input capacitance is sufficient  
for most applications.  
Note  
DC bias effect: High-capacitance ceramic capacitors have a DC bias effect, which has a strong  
influence on the final effective capacitance. Therefore, the right capacitor value must be chosen  
carefully. The differences between the rated capacitor value and the effective capacitance result from  
package size and voltage rating in combination with material. A 10-V rated 0805 capacitor with 10 μF  
can have an effective capacitance of less 5 μF at an output voltage of 5 V.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
9.2.2.7 Output Capacitor Selection  
For small output voltage ripple, TI recommends a low-ESR output capacitor like a ceramic capacitor. Typically,  
three 22-μF ceramic output capacitors work for most applications. Higher capacitor values can be used to  
improve the load transient response. Take care when evaluating a capacitors derating under DC bias. The  
bias can significantly reduce capacitance. Ceramic capacitors can lose most of their capacitance at rated  
voltage. Therefore, leave margin on the voltage rating to ensure adequate effective capacitance. From the  
required output voltage ripple, use the following equations to calculate the minimum required effective  
capacitance CO:  
(VOUT - VIN_MIN)ìIOUT  
V
=
ripple _ dis  
VOUT ì ƒSW ì CO  
(9)  
V
= ILpeak ìRESR  
ripple _ESR  
(10)  
where  
Vripple_dis is output voltage ripple caused by charging and discharging of the output capacitor.  
Vripple_ESR is output voltage ripple caused by ESR of the output capacitor.  
VIN_MIN is the minimum input voltage of boost converter.  
VOUT is the output voltage.  
IOUT is the output current.  
ILpeak is the peak current of the inductor.  
• ƒSW is the converter's switching frequency.  
RESR is the ESR of the output capacitors.  
9.2.2.8 Loop Stability  
The TPS61089x requires external compensation, which allows the loop response to be optimized for each  
application. The COMP pin is the output of the internal error amplifier. An external compensation network  
comprised of resistor R5, ceramic capacitors C5 and C6 is connected to the COMP pin.  
The power stage small signal loop response of constant off time (COT) with peak current control can be modeled  
by 方程11.  
«
’≈  
÷∆  
÷
S
S
1 +  
1 -  
RO ì 1 - D  
2 ì p ì ƒESRZ «  
2 ì p ì ƒRHPZ ◊  
(
)
ì
GPS (S) =  
S
2 ì Rsense  
1 +  
2 ì p ì ƒP  
(11)  
where  
D is the switching duty cycle  
RO is the output load resistance  
Rsense is the equivalent internal current sense resistor, which is 0.08 Ω  
• ƒP is the pole's frequency  
• ƒESRZ is the zero's frequency  
• ƒRHPZ is the right-half-plane-zero's frequency  
The D, ƒP, ƒESRZ, and ƒRHPZ can be calculated by following equations:  
V
IN ì h  
D = 1-  
VOUT  
(12)  
where  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
ηis the power conversion efficiency  
2
ƒP  
=
2p ì RO ì CO  
(13)  
where  
CO is effective capacitance of the output capacitor  
1
ƒESRZ  
=
2p ì RESR ì CO  
(14)  
where  
RESR is the equivalent series resistance of the output capacitor  
2
RO ì 1 - D  
(
)
ƒRHPZ  
=
2p ì L  
(15)  
The COMP pin is the output of the internal transconductance amplifier. 方程16 shows the small signal transfer  
function of compensation network.  
«
÷
S
1 +  
2 ì p ì ƒCOMZ ◊  
GEA ì REA ì VREF  
VOUT  
Gc(S) =  
ì
«
’≈  
÷
S
S
1 +  
1 +  
÷∆  
2 ì p ì ƒCOMP1 «  
2 ì p ì ƒCOMP2 ◊  
(16)  
where  
GEA is the amplifiers transconductance  
REA is the amplifiers output resistance  
VREF is the refernce voltage at the FB pin  
VOUT is the output voltage  
• ƒCOMP1, ƒCOMP2 are the poles' frequency of the compensation network  
• ƒCOMZ is the zero's frequency of the compensation network  
The next step is to choose the loop crossover frequency, ƒC. The higher in frequency that the loop gain stays  
above zero before crossing over, the faster the loop response is. It is generally accepted that the loop gain cross  
over no higher than the lower of either 1/10 of the switching frequency, ƒSW, or 1/5 of the RHPZ frequency,  
ƒRHPZ  
.
At the crossover frequency, the loop gain is 1. Thus the value of R5 can be calculated by 方程式 17, then set the  
values of C5 and C6 (in TPS61089x Single Cell Li-ion Battery to 9-V/2-A Output Converter) by 方程式 18 and 方  
19.  
2pì VOUT ìRsense ì ƒC ìCO  
R5 =  
(1 œ D)ì VREF ìGEA  
(17)  
where  
• ƒC is the selected crossover frequency  
The value of C5 can be set by 方程18.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
RO ìCO  
2R5  
C5 =  
(18)  
(19)  
The value of C6 can be set by 方程19.  
RESR ì CO  
R5  
C6 =  
If the calculated value of C6 is less than 10 pF, it can be left open.  
Designing the loop for greater than 45° of phase margin and greater than 10-dB gain margin eliminates output  
votlage ringing during the line and load transient.  
9.2.3 Application Curves  
Vout (AC)  
20 mV/div  
Vout (AC)  
100 mV/div  
Inductor  
Current  
2 A/div  
Inductor  
Current  
1 A/div  
SW  
3 V/div  
SW  
3 V/div  
VIN = 3.6 V  
VOUT = 9 V  
IOUT = 2 A  
VIN = 3.6 V  
VOUT = 9 V  
IOUT = 200 mA  
9-2. Switching Waveforms in CCM  
9-3. Switching Waveforms in DCM  
Vout (AC)  
10 mV/div  
EN  
1 V/div  
Inductor  
Current  
600 mA/div  
Vout  
2 V/div  
SW  
3 V/div  
Inductor  
Current  
2 A/div  
VIN = 3.6 V  
VOUT = 9 V  
IOUT = 20 mA  
9-4. Switching Waveforms in PFM Mode  
9-5. Start-up Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61089 TPS610891  
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
EN  
1 V/div  
Output  
Current  
500 mA/div  
Vout  
2 V/div  
Vout (AC)  
500 mV/div  
Inductor  
Current  
2 A/div  
VIN = 3.6 V  
VOUT = 9V  
IOUT = 1 A to 2 A  
9-7. Load Transient  
9-6. Shutdown Waveforms  
Input  
Voltage  
500 mV/div  
Vout (AC)  
200 mV/div  
VIN = 3.3 V to 4.0  
VOUT = 9 V  
IOUT = 2 A  
V
9-8. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.7 V to 12 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or  
tantalum capacitor with a value of 47 μF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61089 TPS610891  
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator could suffer from instability and  
noise problems. To maximize efficiency, switching rise time and fall time are very fast. To prevent radiation of  
high-frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential.  
Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the  
switching regulator to minimize interplane coupling. The input capacitor needs to be close to the VIN pin and  
GND pin to reduce the input supply current ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
time and fall time, and should be kept as short as possible. Therefore, the output capacitor needs not only to be  
close to the VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.  
11.2 Layout Example  
trace on bottom layer  
GND  
VOUT  
EN  
VOUT  
GND  
SW  
SW  
COMP  
COUT  
GND  
L
CIN  
VIN  
11-1. Layout Example  
11.2.1 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions.  
Calculate the maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal  
to PD(max). The maximum-power-dissipation limit is determined using 方程20.  
125 - TA  
RqJA  
PD(max)  
=
(20)  
where  
TA is the maximum ambient temperature for the application  
RθJA is the junction-to-ambient thermal resistance given in the Thermal Information table  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
The TPS61089x comes in a thermally-enhanced VQFN package. The pads underneath the package improve the  
thermal capabilities of the package. The real junction-to-ambient thermal resistance of the package greatly  
depends on the PCB type, layout, and pad connection. Using thick PCB copper and soldering the SW pin, VOUT  
pin, and GND pin to large copper plate enhances the thermal performance. Using more vias connects the  
ground plate on the top layer and bottom layer around the IC without solder mask also improves the thermal  
capability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61089 TPS610891  
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61089x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61089 TPS610891  
 
 
 
 
 
 
 
TPS61089, TPS610891  
ZHCSF69C NOVEMBER 2015 REVISED AUGUST 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61089 TPS610891  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61089RNRR  
TPS61089RNRT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNR  
RNR  
11  
11  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
ZGOI  
ZGOI  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jul-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61089RNRR  
TPS61089RNRT  
VQFN-  
HR  
RNR  
RNR  
11  
11  
3000  
250  
180.0  
8.4  
2.25  
2.8  
1.1  
4.0  
8.0  
Q2  
VQFN-  
HR  
180.0  
8.4  
2.25  
2.8  
1.1  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61089RNRR  
TPS61089RNRT  
VQFN-HR  
VQFN-HR  
RNR  
RNR  
11  
11  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNR0011A  
VQFN - 1 mm max height  
SCALE 4.500  
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.7  
0.4  
0.3  
0.45  
0.25  
2X  
7X  
2X  
(0.2) TYP  
5
6
4
7
0.9  
0.7  
2X  
1.5  
PKG  
6X 0.5  
0.9  
0.7  
11  
10  
1
0.3  
SYMM  
0.45  
0.25  
8X  
(0.18)  
0.2  
0.1  
0.05  
C B  
A
2X (0.25)  
ALL PADS  
C
1.1  
0.9  
4222143/A 08/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNR0011A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
SYMM  
(
0.2) VIA  
(0.25)  
(0.38)  
11  
8X (0.55)  
8X (0.25)  
1
(1)  
10  
(1)  
(0.7)  
PKG  
(0.7)  
6X (0.5)  
2X (1)  
7
4
(R0.05) TYP  
5
6
2X  
(0.35)  
(0.7)  
(2.35)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
PADS 5,6 & 11  
NON SOLDER MASK  
DEFINED  
PADS 1-4 & 7-10  
SOLDER MASK DETAILS  
4222143/A 08/2015  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNR0011A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
(0.75)  
SYMM  
2X (0.25)  
2X (0.28)  
SOLDER MASK  
EDGE, TYP  
11  
8X (0.55)  
1
10  
2X  
(1.06)  
8X (0.25)  
(0.52)  
PKG  
(0.46)  
2X  
(0.74)  
6X (0.5)  
2X (0.92)  
7
4
(R0.05) TYP  
6
5
METAL UNDER  
SOLDER MASK  
TYP  
2X (0.35)  
(0.7)  
(2.35)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 5 & 6: 90% - PAD 11: 79%  
SCALE:30X  
4222143/A 08/2015  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61090

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090EVM-029

EVALUATION MODULE
TI

TPS61090RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61090RSARG4

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61091RSARG4

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61092

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61092RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI

TPS61092RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH
TI