TPS61280DYFFT [TI]

具有直通模式和 I2C 控制接口的 2.3MHz、3A 同步升压转换器 | YFF | 16 | -40 to 85;
TPS61280DYFFT
型号: TPS61280DYFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有直通模式和 I2C 控制接口的 2.3MHz、3A 同步升压转换器 | YFF | 16 | -40 to 85

升压转换器
文件: 总63页 (文件大小:4105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
TPS6128xD/E 适用于单节锂离子、富镍、硅阳极电池应用的  
IQ、宽电压电池前端直流/直流转换器  
1 特性  
3 说明  
• 频率2.3MHz 工作效率95%  
IQ 直通模式下具3µA 静态电流  
2.3V 4.8V VIN 范围  
VOUT = 3.35V VIN 2.65V IOUT 4A峰  
)  
TPS6128xD/E 器件可以为由锂离子、富镍、硅阳极或  
磷酸铁锂电池供电的产品提供电源解决方案。电压范围  
针对诸如智能手机或平板电脑内单节电池便携式应用进  
行了优化。  
TPS6128xD/E 可用作高功率预稳压器延长电池运行  
时间并克服受电系统的输入电流和电压限制。  
• 集成直通模(35mΩ)  
• 可编程谷值电感器电流限值和输出电压  
• 关断期间进入真正的直通模式  
出色线路和负载瞬态  
在关断情况下TPS6128xD/E 运行在真正的直通模式  
静态耗电仅3µA可充分延长电池寿命。  
• 低纹波轻负PFM 模式  
运行期间当电池处于良好的充电状态中时一个低欧  
姆、高效集成直通路径将电池连接至受电系统。  
• 具有片E2PROM写保护的原样定制  
• 两个接口选项:  
如果电池进入较低的充电状态并且其电压变为低于所  
需的最小系统电压时此器件无缝转换至升压模式以利  
用整个电池容量。  
I2C 兼容I/F3.4Mbps  
(TPS61280D/E)  
– 简单I/O 逻辑控制接口  
• 热关断和过载保护  
• 总解决方案尺< 20mm2规格1mm  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPS61280D  
封装  
2 应用  
TPS61281D  
TPS61282D  
TPS61280E  
DSBGA (16)  
1.66mm x 1.66mm  
• 单节富镍、硅阳极、锂离子、磷酸铁锂电池的智能  
手机或平板电脑  
2.5G3G4G 小型模块数据卡  
• 具有高峰值功率负载的电流受限应用  
(1) 要了解所有可用封装请参见数据表末尾的可订购产品附录。  
TPS61280D  
SW  
SW  
VIN  
VIN  
VOUT  
VBAT’  
L
VOUT  
0.47μH  
CO (x2)  
10µF X5R 6.3V (0603)  
Battery  
2.5V .. 4.35V  
CI  
1.5µF X5R 6.3V (0402)  
Voltage Select  
Enable  
VSEL  
EN  
1.8V  
Forced Bypass / Auto  
BYP  
SCL  
I2 C Bus  
Interrupt  
SDA  
GPIO  
PGND  
PGND  
PGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEA0  
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
9.5 Programming............................................................ 25  
9.6 Register Maps...........................................................28  
10 Application and Implementation................................37  
10.1 Application Information........................................... 37  
10.2 Typical Application.................................................. 38  
11 Power Supply Recommendations..............................51  
12 Layout...........................................................................52  
12.1 Layout Guidelines................................................... 52  
12.2 Layout Example...................................................... 52  
12.3 Thermal Information................................................53  
13 Device and Documentation Support..........................54  
13.1 Device Support....................................................... 54  
13.2 接收文档更新通知................................................... 54  
13.3 支持资源..................................................................54  
13.4 Trademarks.............................................................54  
13.5 静电放电警告.......................................................... 54  
13.6 术语表..................................................................... 54  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................3  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings........................................ 6  
8.2 ESD Ratings............................................................... 6  
8.3 Recommended Operating Conditions.........................6  
8.4 Thermal Information....................................................7  
8.5 Electrical Characteristics.............................................7  
8.6 I2C Interface Timing Characteristics(1) ....................... 9  
8.7 I2C Timing Diagrams................................................. 11  
8.8 Typical Characteristics..............................................12  
9 Detailed Description......................................................14  
9.1 Overview...................................................................14  
9.2 Functional Block Diagram.........................................16  
9.3 Feature Description...................................................17  
9.4 Device Functional Modes..........................................18  
Information.................................................................... 55  
14.1 Package Summary..................................................55  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (August 2018) to Revision B (June 2023)  
Page  
TPS61280E 初始发行版..................................................................................................................................... 1  
Changes from Revision * (January 2018) to Revision A (August 2018)  
Page  
• 将产品预发布 添加到量产 数据...........................................................................................................................1  
• 将器TPS61281D TPS61282D 产品预发布 更改为数据.................................................................1  
Changed the TPS61280D pin configuration....................................................................................................... 4  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
5 说明)  
TPS6128xD/E 件支持超过 4A 脉冲负载电流使是深度放电的电池亦可。在这种运行模式下,  
TPS6128xD/E 可充分使用全部电池容量克服了具有最小高电平输入电压的受电元件的电池切断电压过高的问  
新的电池化学物质可完全放电该器件可对强制系统关断的高电流脉冲进行缓冲从而实现在升压和旁路模  
式之间的无缝转换。  
这会对电池导通时间产生很大影响从而在相同的电池容量前提下提供更长的使用时间和更佳的用户体验或者  
在相同的使用时间前提下降低电池成本。  
TPS6128xD/E 采用 16 引脚 Chip-Scale Package (CSP)最大限度地减少了外部元件的数量因此拥有非常小巧  
的解决方案尺(< 20mm2)支持使用小型电感器和输入电容器。  
TPS6128xD/E 2.3MHz 的同步升压模式下运行在轻负载电流情况下会进入省电模式运(PFM)以便在整个  
负载电流范围内保持高效率。  
6 Device Comparison Table  
DEVICE  
SPECIFIC FEATURES  
PART NUMBER  
DC/DC boost / bypass threshold = 3.15 V (VSEL = L)  
I2C Control Interface  
DC/DC boost / bypass threshold = 3.35 V (VSEL = H)  
Valley inductor current limit = 3 A  
TPS61280D  
TPS61281D  
TPS61282D  
User Prog. E2PROM Settings  
GPIO pin default configuration is RST/FAULT input/output  
DC/DC boost / bypass threshold = 3.15 V (VSEL = L)  
DC/DC boost / bypass threshold = 3.35 V (VSEL = H)  
Valley inductor current limit = 3 A  
Simple Logic Control Interface  
Simple Logic Control Interface  
GPIO pin default configuration is RST/FAULT input/output  
DC/DC boost / bypass threshold = 3.3 V (VSEL = L)  
DC/DC boost / bypass threshold = 3.5 V (VSEL = H)  
Valley inductor current limit = 4 A  
GPIO pin default configuration is RST/FAULT input/output  
DC/DC boost / bypass threshold = 3.4 V (VSEL = L)  
DC/DC boost / bypass threshold = 3.45 V (VSEL = H)  
Valley inductor current limit = 5 A  
I2C Control Interface  
Support 1.2 V I/O  
TPS61280E  
I/O logic Low/High: 0.36V / 0.84V  
GPIO pin default configuration is mode selection input  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
7 Pin Configuration and Functions  
1
2
3
4
1
2
3
4
A
B
C
D
EN  
GPIO  
VIN  
VIN  
D
C
B
A
AGND  
PGND  
PGND  
PGND  
VSEL  
nBYP  
AGND  
SCL  
VOUT  
VOUT  
nBYP  
VSEL  
EN  
SDA  
SW  
VOUT  
VIN  
SW  
SDA  
SW  
SW  
SCL  
VOUT  
PGND  
PGND  
PGND  
GPIO  
VIN  
Not to scale  
Not to scale  
7-1. TPS61280D/E YFF Package 16-Bump  
7-2. TPS61280D/E YFF Package 16-Bump  
DSBGA Top View  
DSBGA Bottom View  
7-1. Pin Functions, TPS61280D/E  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO.  
A3, A4  
B3, B4  
I
Power supply input.  
VOUT  
O
Boost converter output.  
This is the enable pin of the device. On the rising edge of the enable pin, all the registers are reset with their default  
values. This input must not be left floating and must be terminated.  
EN = Low: The device is forced into shutdown mode and the I2C control interface is disabled. Depending on the logic  
level applied to the nBYP input, the converter can either be forced in pass-through mode or it's output can be  
regulated to a minimum level so as to limit the input-to-output voltage difference to less than 3.6V (typ). The current  
consumption is reduced to a few µA. For more details, refer to 9-2.  
EN  
A1  
I
EN = High: The device is operating normally featuring automatic dc/dc boost, pass-through mode transition. For more  
details, refer to 9-2.  
This pin can either be configured as a input (mode selection) or as dual role input/open-drain output RST/ FAULT )  
pin. For TPS61280D, default configuration is RST/ FAULT input/output. For TPS61280E, default configuration is  
mode selection input. The input must not be left floating and must be terminated.  
Manual Reset Input: Drive RST/ FAULT low to initiate a reset of the converter's output. nRST/nFAULT controls a  
falling edge-triggered sequence consisting of a discharge phase of the capacitance located at the converter's output  
followed by a start-up phase.  
GPIO  
A2  
I/O  
Fault Output (open-drain interrupt signal to host): Indicates that a fault has occurred (e.g. thermal shutdown, output  
voltage out of limits, current limit triggered, and so on). To signal such an event, the device generates a falling edge-  
triggered interrupt by driving a negative pulse onto the GPIO line and then releases the line to its inactive state.  
Mode selection input = Low: The device is operating in regulated frequency pulse width modulation mode (PWM) at  
high-load currents and in pulse frequency modulation mode (PFM) at light load currents.  
Mode selection input = High: Low-noise mode enabled, regulated frequency PWM operation forced.  
VSEL signal is primarily used to set the output voltage dc/dc boost, pass-through threshold. This pin must not be left  
floating and must be terminated.  
VSEL  
nBYP  
B1  
C1  
I
I
A logic low level on the BYP input forces the device in pass-through mode. This pin must not be left floating and must  
be terminated.  
SCL  
B2  
C2  
I
Serial interface clock line. This pin must not be left floating and must be terminated.  
Serial interface address/data line. This pin must not be left floating and must be terminated.  
Inductor connection. Drain of the internal power MOSFET. Connect to the switched side of the inductor.  
Power ground pin.  
SDA  
I/O  
I/O  
SW  
C3, C4  
D2, D3, D4  
D1  
PGND  
AGND  
Analog ground pin. This is the signal ground reference for the IC.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
1
2
3
4
1
2
3
4
A
B
C
D
EN  
PG  
VIN  
VIN  
D
C
B
A
AGND  
PGND  
PGND  
PGND  
VSEL  
nBYP  
AGND  
MODE  
AGND  
PGND  
VOUT  
VOUT  
nBYP  
VSEL  
EN  
AGND  
MODE  
PG  
SW  
VOUT  
VIN  
SW  
SW  
SW  
VOUT  
PGND  
PGND  
VIN  
Not to scale  
Not to scale  
7-3. TPS6128xD YFF Package 16-Bump DSBGA 7-4. TPS6128xD YFF Package 16-Bump DSBGA  
Top View  
Bottom View  
7-2. Pin Functions, TPS6128xD  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO.  
A3, A4  
B3, B4  
I
Power supply input.  
Boost converter output.  
VOUT  
O
This is the enable pin of the device. On the rising edge of the enable pin, all the registers are reset with their default  
values. This input must not be left floating and must be terminated.  
EN = Low: The device is forced into shutdown mode. Depending on the logic level applied to the nBYP input, the  
converter can either be forced in pass-through mode or it's output can be regulated to a minimum level so as to limit  
the input-to-output voltage difference to less than 3.6V (typ). The current consumption is reduced to a few µA. For  
more details, refer to 9-2.  
EN  
A1  
I
EN = High: The device is operating normally featuring automatic dc/dc boost, pass-through mode transition. For more  
details, refer to 9-2.  
Power-Good Output (open-drain output to host): A logic high on the PG output indicates that the converter's output  
voltage is within its regulation limits. A logic low indicates a fault has occurred (e.g. thermal shutdown, output voltage  
out of limits, current limit triggered, and so on). The PG signal is de-asserted automatically once the IC resumes  
proper operation.  
PG  
A2  
O
VSEL signal is primarily used to set the output voltage dc/dc boost, pass-through threshold. This pin must not be left  
floating and must be terminated.  
VSEL  
nBYP  
B1  
C1  
I
I
A logic low level on the BYP input forces the device in pass-through mode. For more details, refer to 9-2. This pin  
must not be left floating and must be terminated.  
This is the mode selection pin of the device. This pin must not be left floating, must be terminated and can be  
connected to AGND. During start-up this pin must be held low. Once the output voltage settled and PG pin indicates  
that the converter's output voltage is within its regulation limits the device can be forced in PWM mode operation by  
applying a high level on this pin.  
MODE  
B2  
I
MODE = Low: The device is operating in regulated frequency pulse width modulation mode (PWM) at high-load  
currents and in pulse frequency modulation mode (PFM) at light load currents. This pin must be held low during  
device start-up.  
MODE = High: Low-noise mode enabled, regulated frequency PWM operation forced.  
Inductor connection. Drain of the internal power MOSFET. Connect to the switched side of the inductor.  
Power ground pin.  
SW  
C3, C4  
D2, D3, D4  
C2, D1  
I/O  
PGND  
AGND  
Analog ground pin. This is the signal ground reference for the IC.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
-0.3  
MAX  
4.7  
UNIT  
V
Voltage at VOUT (boost mode)(2)  
Voltage at VOUT (by pass mode)(2)  
DC  
DC  
5.2  
V
Voltage at VIN(2), EN(2), VSEL(2), BYP (2), PG(2)  
GPIO(2)  
,
DC  
5.2  
V
0.3  
Voltage at SCL(2), SDA(2)MODE(2)  
DC  
DC  
3.6  
5.2  
V
V
0.3  
0.3  
Input voltage  
Voltage at SW(2)  
Transient: 2 ns, 2.3  
MHz  
5.5  
V
0.3  
Differential voltage between VIN and VOUT  
Differential voltage between SW and VOUT  
Continuous average current into SW (4)  
Peak current into SW (5)  
DC  
DC  
4
V
V
A
A
0.3  
0.3  
4.7  
1.8  
5.5  
Input current  
Power dissipation  
Temperature range  
Internally limited  
(3)  
Operating temperature range, TA  
85  
°C  
°C  
°C  
40  
40  
65  
Operating virtual junction, TJ  
Storage temperature range  
150  
150  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature  
may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature  
(TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of  
the part/package in the application (θJA), as given by the following equation: TA(max) = TJ(max) (θJA X PD(max)). To achieve optimum  
performance, it is recommended to operate the device with a maximum junction temperature of 105°C.  
(4) Limit the junction temperature to 105°C for continuous operation at maximum output power.  
(5) Limit the junction temperature to 105°C for 15% duty cycle operation.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins (1)  
±2000  
V
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
±200  
V
V
Machine Model - (MM)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
MIN  
2.30  
3.4  
NOM  
MAX UNIT  
Input voltage range  
4.85  
3.6  
V
V
VI  
Input voltage range for in-situ customization by E2PROM write operation  
3.5  
470  
13  
L
Inductance  
200  
9
800  
100  
nH  
µF  
mA  
°C  
CO  
IL  
Output capacitance  
Maximum load current during start-up  
Ambient temperature  
250  
40  
TA  
85  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
 
 
 
 
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
MIN  
NOM  
MAX UNIT  
125 °C  
TJ  
Operating junction temperature  
40  
8.4 Thermal Information  
TPS6128xD/E  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
16 PINS  
78  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.6  
13  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.4  
13  
ψJB  
RθJCbot  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
Minimum and maximum values are at VIN = 2.3 V to 4.85 V, VOUT = 3.4 V (or VIN, whichever is higher), EN = 1.8 V, VSEL =  
1.8 V, nBYP = 1.8 V, 40°C TJ 125°C; Circuit of Parameter Measurement Information section (unless otherwise  
noted). Typical values are at VIN = 3.2 V, VOUT = 3.4 V, EN = 1.8 V, TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY CURRENT  
DC/DC boost mode. Device not  
switching  
47.4  
65.6  
µA  
IOUT = 0 mA, VIN = 3.2 V, VOUT = 3.4 V  
Operating quiescent current  
into VIN  
Pass-through mode (auto)  
EN = 1.8 V, BYP = 1.8 V, VIN = 3.6 V  
27.4  
15.4  
42.6  
25.6  
µA  
µA  
TPS6128xD/  
E
IQ  
Pass-through mode (forced)  
EN = 1.8 V, BYP = AGND, VOUT = 3.6 V  
40°C TJ  
85°C  
DC/DC boost mode. Device not  
switching  
IOUT = 0 mA, VIN = 3.2 V, VOUT = 3.4 V  
Operating quiescent current  
into VOUT  
8.9  
19.6  
µA  
EN = 0 V, BYP = 0 V, VIN = 3.6 V  
EN = 0 V, BYP = 1.8 V, VIN = 3.6 V  
Falling  
3
8.9  
2
6.6  
20.6  
2.1  
μA  
μA  
V
TPS6128xD/  
E
ISD  
Shutdown current  
TPS6128xD/  
E
VUVLO  
Under-voltage lockout threshold  
Hysteresis  
0.1  
V
EN, VSEL, nBYP, MODE, SDA, SCL, GPIO, PG  
VIL  
VIH  
VIL  
VIH  
Low-level input voltage  
0.4  
V
V
V
V
V
V
TPS6128xD  
TPS61280E  
TPS61280D  
High-level input voltage  
1.2  
Low-level input voltage  
0.36  
High-level input voltage  
0.84  
Low-level output voltage (SDA)  
Low-level output voltage (GPIO)  
IOL = 8 mA  
0.3  
0.3  
IOL = 8 mA, GPIOCFG = 0  
VOL  
TPS6128xD/  
E
Low-level output voltage (PG)  
IOL = 8 mA  
0.3  
V
EN, VSEL, BYP,  
pull-down resistance  
TPS6128xD/  
E
RPD  
300  
Input 0.4 V  
kΩ  
EN, VSEL, BYP, MODE, PG  
input capacitance  
TPS6128xD/  
E
9
9
pF  
pF  
CIN  
Input connected to AGND or VIN  
SDA, SCL, GPIO input capacitance TPS61280D  
Rising VOUT  
Falling VOUT  
0.95 x VOUT  
0.9 x VOUT  
TPS6128xD/  
VTHPG  
Power good threshold  
E
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
Minimum and maximum values are at VIN = 2.3 V to 4.85 V, VOUT = 3.4 V (or VIN, whichever is higher), EN = 1.8 V, VSEL =  
1.8 V, nBYP = 1.8 V, 40°C TJ 125°C; Circuit of Parameter Measurement Information section (unless otherwise  
noted). Typical values are at VIN = 3.2 V, VOUT = 3.4 V, EN = 1.8 V, TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Ilkg  
Input connected to AGND  
0
µA  
TPS6128xD/  
E
40°C TJ  
85°C  
Input leakage current  
Input connected VIN  
No load. Open loop  
0.5  
µA  
OUTPUT  
VOUT  
TPS6128xD/  
E
Threshold DC voltage accuracy  
Regulated DC voltage accuracy  
-1.5%  
-2%  
1.5%  
2%  
(TH)  
2.65 V VIN VOUT_TH - 150 mV  
IOUT = 0mA  
PWM operation.  
TPS6128xD/  
E
VOUT  
2.65 V VIN VOUT_TH - 150 mV  
IOUT = 0 mA  
-2%  
4%  
PFM/PWM operation  
Power-save mode  
output ripple voltage  
PFM operation, IOUT = 1 mA  
30  
15  
mVpk  
mVpk  
TPS6128xD/  
E
ΔVOUT  
PWM mode output ripple voltage  
PWM operation, IOUT = 500 mA  
POWER SWITCH  
Low-side switch MOSFET  
VIN = 3.2 V, VOUT = 3.5 V  
VIN = 3.2 V, VOUT = 3.5 V  
VIN = 3.2 V  
45  
40  
80  
70  
60  
2
m  
mΩ  
mΩ  
µA  
on resistance  
High-side rectifier MOSFET  
on resistance  
TPS6128xD/  
E
rDS(on)  
High-side pass-through MOSFET  
on resistance  
35  
EN = AGND, VIN = VOUT = SW = 3.5 V  
40°C TJ 85°C  
Reverse leakage current into SW  
Reverse leakage current into VOUT  
0.1  
TPS6128xD/  
E
Ilkg  
EN = BYP = VIN, VIN = 2.9 V, VOUT = 4.4 V, VSW = 0 V  
device not switching  
0.11  
2
µA  
40°C TJ 85°C  
TPS6128xD/  
E
ISINK  
VOUT sink capability  
0.3  
V
EN = AGND, VOUT 3.6 V,IOUT = -10 mA  
TPS61280D  
TPS61281D  
VIN = 2.9 V, VOUT = 3.5 V, 40°C TJ 125°C, auto  
PFM/PWM  
Valley inductor current limit  
Valley inductor current limit  
Valley inductor current limit  
2475  
3300  
4300  
3000 3525  
4000 4700  
5000 6200  
mA  
mA  
mA  
VIN = 2.9 V, VOUT = 3.5 V, 40°C TJ 125°C, auto  
PFM/PWM  
TPS61282D  
TPS61280E  
VIN = 2.9 V, VOUT = 3.4 V, 40°C TJ 125°C, auto  
PFM/PWM  
EN = BYP = GND, VIN = 3.2 V  
5000  
mA  
mA  
TPS6128xD/  
E
Pass through mode current limit  
EN = VIN, BYP = don't care , VIN = 3.2 V  
5600  
500  
7400 9100  
Pre-charge mode current limit  
(linear mode, phase 1)  
650  
mA  
mA  
TPS6128xD/  
E
VIN - VOUT >= 300 mV  
Pre-charge mode current limit  
(linear mode, phase 2)  
2000  
OSCILLATOR  
TPS6128xD/  
E
fOSC  
Oscillator frequency  
VIN = 2.7 V, VOUT = 3.5 V  
2.3  
MHz  
THERMAL SHUTDOWN, HOT DIE DETECTOR  
Thermal shutdown(1)  
TPS6128xD/  
E
140  
-10  
160  
°C  
°C  
Hot die detector accuracy(1)  
TPS61280D  
105  
10  
TIMING  
TPS6128xD/  
E
VIN = 3.2 V, VOUT_TH = 01011 (3.4 V), RLOAD = 50 Ω  
Time from active VIN to VOUT settled  
Start-up time  
500  
µs  
ns  
GPIO rise time(1)  
TPS61280D  
200  
(1) Specified by characterization. Not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
8.6 I2C Interface Timing Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
Standard mode  
Fast mode  
MIN  
MAX  
100  
400  
1
UNIT  
kHz  
kHz  
Fast mode plus  
MHz  
MHz  
MHz  
MHz  
MHz  
3.4  
3.4  
1.7  
1.7  
High-speed mode (write operation), CB 100 pF max  
f(SCL)  
SCL Clock Frequency  
High-speed mode (read operation), CB 100 pF max  
High-speed mode (write operation), CB 400 pF max  
High-speed mode (read operation), CB 400 pF max  
Standard mode  
Fast mode  
4.7  
1.3  
0.5  
4
μs  
μs  
μs  
μs  
ns  
Bus Free Time Between a STOP and  
START Condition  
tBUF  
Fast mode plus  
Standard mode  
Fast mode  
600  
260  
160  
4.7  
1.3  
0.5  
160  
320  
4
Hold Time (Repeated) START  
Condition  
tHD, tSTA  
Fast mode plus  
High-speed mode  
Standard mode  
Fast mode  
ns  
ns  
μs  
μs  
μs  
ns  
tLOW  
LOW Period of the SCL Clock  
Fast mode plus  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
ns  
μs  
ns  
ns  
ns  
ns  
Fast mode  
600  
260  
60  
Fast mode plus  
tHIGH  
HIGH Period of the SCL Clock  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
120  
4.7  
600  
260  
160  
250  
100  
50  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fast mode  
Setup Time for a Repeated START  
Condition  
tSU, tSTA  
Fast mode plus  
High-speed mode  
Standard mode  
Fast mode  
tSU, tDAT Data Setup Time  
Fast mode plus  
High-speed mode  
Standard mode  
10  
0
3.45  
0.9  
Fast mode  
0
tHD, tDAT Data Hold Time  
Fast mode plus  
0
0
70  
150  
1000  
300  
120  
40  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
0
Fast mode  
20 + 0.1 CB  
Fast mode plus  
tRCL  
Rise Time of SCL Signal  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
80  
20 + 0.1 CB  
20 + 0.1 CB  
1000  
300  
120  
80  
Fast mode  
Rise Time of SCL Signal After a Repeated  
START Condition and After an  
Acknowledge BIT  
Fast mode plus  
tRCL1  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
160  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
Standard mode  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20 + 0.1 CB  
300  
300  
120  
40  
Fast mode  
Fast mode plus  
tFCL  
tRDA  
tFDA  
Fall Time of SCL Signal  
Rise Time of SDA Signal  
Fall Time of SDA Signal  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
80  
1000  
300  
120  
80  
Fast mode  
20 + 0.1 CB  
Fast mode plus  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
160  
300  
300  
120  
80  
Fast mode  
20 + 0.1 CB  
Fast mode plus  
10  
20  
High-speed mode, CB 100 pF max  
High-speed mode, CB 400 pF max  
Standard mode  
160  
4
μs  
ns  
Fast mode  
600  
260  
160  
tSU, tSTO Setup Time of STOP Condition  
Fast mode plus  
ns  
High-Speed mode  
ns  
Standard mode  
400  
400  
550  
400  
pF  
pF  
pF  
pF  
Fast mode  
CB  
Capacitive Load for SDA and SCL  
Fast mode plus  
High-Speed mode  
(1) Specified by design. Not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
8.7 I2C Timing Diagrams  
SDA  
t
t
BUF  
f
t
f
t
t
LOW  
t
r
su;DAT  
t
t
r
hd;STA  
SCL  
t
t
t
hd;STA  
t
su;STA  
su;STO  
hd;DAT  
HIGH  
S
Sr  
P
S
8-1. Serial Interface Timing Diagram for Standard-, Fast-, Fast-Mode Plus  
Sr  
Sr P  
t
fDA  
t
rDA  
SDAH  
t
hd;DAT  
t
su;STO  
t
t
t
su;DAT  
su;STA  
hd;STA  
SCLH  
t
fCL  
t
t
rCL1  
rCL1  
t
rCL  
t
t
t
t
HIGH  
HIGH  
LOW  
LOW  
See Note A  
= MCS Current Source Pull-Up  
= R Resistor Pull-Up  
See Note A  
(P)  
Note A: First rising edge of the SCLH signal after Sr and after each acknowledge bit.  
8-2. Serial Interface Timing Diagram for H/S-Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
8.8 Typical Characteristics  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
C001  
C002  
Junction Temperature (°C)  
Junction Temperature (°C)  
VIN = 3.2 V  
VOUT = 3.5 V  
VIN = 3.2 V  
VOUT = 3.5 V  
TJ = 40 to 125°C  
TJ = 40 to 125°C  
8-3. High side Rds(on) vs Junction Temperature  
8-4. Low side Rds(on) vs Junction Temperature  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
60  
50  
40  
TJ = 30°C  
TJ = -40°C  
T= 85°C  
J
30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.3  
2.5  
2.7  
2.9  
3.1  
C003  
C004  
Junction Temperature (°C)  
Input Voltage (V)  
VIN = 3.2 V  
Bypass  
VIN = 2.3 - 3.4 V  
EN = High  
VOUT = 3.4 V  
Bypass = High  
IOUT = 0 mA  
TJ = 40 to 125°C  
8-5. Bypass FET Rds(on) vs Junction  
8-6. Quiescent Current at Boost Mode vs Input  
Temperature  
Voltage  
20  
18  
16  
14  
35  
33  
31  
29  
27  
25  
23  
21  
TJ=30°C  
TJ=30°C  
12  
10  
19  
TJ=-40°C  
T = 85°C  
TJ=-40°C  
17  
T = 85°C  
J
J
15  
3.5  
4.5  
3.5  
4.5  
C005  
C006  
Input Voltage (V)  
Input Voltage (V)  
VIN = 3.5 - 4.4 V  
EN = High  
VOUT = 3.4 V  
Bypass = Low  
IOUT = 0 mA  
VIN = 3.6 - 4.4 V  
EN = High  
VOUT = 3.4 V  
Bypass = High  
IOUT = 0 mA  
8-7. Quiescent Current at Forced Bypass Mode 8-8. Quiescent Current at Auto Bypass Mode vs  
vs Input Voltage  
Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
5
13  
12  
11  
10  
9
4
3
2
1
8
7
6
TJ = 30°C  
TJ = 30°C  
5
TJ = -40°C  
T= -40°C  
J
4
T = 85°C  
TJ = 85°C  
J
0
3
2.3  
3.3  
4.3  
2.3  
3.3  
4.3  
C007  
C008  
Input Voltage (V)  
Input Voltage (V)  
VIN = 2.3 - 4.4 V  
EN = Low  
VOUT = 4.4 V  
Bypass = Low  
VSW = 0 V  
VIN = 2.3 - 4.4 V  
EN = Low  
VOUT = 4.4 V  
Bypass = High  
VSW = 0 V  
8-9. Shutdown Current at Low IQ mode vs Input  
8-10. Shutdown Current vs Input Voltage  
Voltage  
4.5  
4.0  
3.5  
3.0  
2.20  
2.00  
2.5  
2.0  
TPS61281D  
TPS61282D  
110  
VIN Rising  
VFalling
IN  
1.80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
10  
Temperature ( C)  
60  
O
C009  
C010  
Junction Temperature (°C)  
A.  
VIN = 3.2 V  
EN = High  
VOUT = 3.5 V  
VIN = 3.2 V  
VOUT = 3.5 V  
TJ = 40 to 125°C  
TJ = 40 to 125°C  
Bypass = High  
8-12. VIN UVLO Threshold Rising/Falling vs  
8-11. Switch Valley Current Limit: TPS61281D,  
Junction Temperature  
TPS61282D vs Input Voltage  
1.10  
1.10  
EN Rising  
nBYP Rising  
EN Falling  
nBYP Falling  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
C011  
C012  
Junction Temperature (°C)  
Junction Temperature (°C)  
VIN = 3.2 V  
VOUT = 3.5 V  
VIN = 3.2 V  
TJ = 40 to 125°C  
TJ = 40 to 125°C  
8-13. EN Logic High Threshold Rising/Falling vs 8-14. BYP Logic High Threshold Rising/Falling  
Junction Temperature  
vs Junction Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS6128xD/E is a high-efficiency step-up converter featuring pass-through mode optimized to provide low-  
noise voltage supply for 2G RF power amplifiers (PAs) in mobile phones and/or to pre-regulate voltage for  
supplying subsystem like eMMC memory, audio codec, LCD bias, antenna switches, RF engine PMIC and so  
on. It is designed to allow the system to operate at maximum efficiency for a wide range of power consumption  
levels from a low-, wide- voltage battery cell.  
The capability of the TPS6128xD/E to step-up the voltage as well as to pass-through the input battery voltage  
when its level is high enough allow systems to operate at maximum performance over a wide range of battery  
voltages, thereby extending the battery life between charging. The device also addresses brownouts caused by  
the peak currents drawn by the APU and GPU which can cause the battery rail to droop momentarily. Using the  
TPS6128xD/E device as a pre-regulator eliminates system brownout condition while maintaining a stable supply  
rail for critical sub-system to function properly.  
The TPS6128xD/E synchronous step-up converter typically operates at a quasi-constant 2.3-MHz frequency  
pulse width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6128xD/E  
converter operates in power-save mode with pulse frequency modulation (PFM).  
In general, a dc/dc step-up converter can only operate in "true" boost mode, that is the output boostedby a  
certain amount above the input voltage. The TPS6128xD/E device operates differently as it can smoothly  
transition in and out of zero duty cycle operation. Depending upon the input voltage, output voltage threshold  
and load current, the integrated bypass switch automatically transitions the converter into pass-through mode to  
maintain low-dropout and high-efficiency. The device exits pass-through mode (0% duty cycle operation) if the  
total dropout resistance in bypass mode is insufficient to maintain the output voltage at it's nominal level. Refer  
to the typical characteristics section (DC Output Voltage vs. Input Voltage) for further details.  
During PWM operation, the converter uses a novel quasi-constant on-time valley current mode control scheme  
to achieve excellent line/load regulation and allows the use of a small ceramic inductor and capacitors. Based on  
the VIN/VOUT ratio, a simple circuit predicts the required on-time. At the beginning of the switching cycle, the low-  
side N-MOS switch is turned-on and the inductor current ramps up to a peak current that is defined by the on-  
time and the inductance. In the second phase, once the on-timer has expired, the rectifier is turned-on and the  
inductor current decays to a preset valley current threshold. Finally, the switching cycle repeats by setting the on  
timer again and activating the low-side N-MOS switch.  
The current mode architecture provides excellent transient load response, requiring minimal output filtering.  
Internal soft-start and loop compensation simplifies the design process while minimizing the number of external  
components.  
The TPS6128xD/E directly and accurately controls the average input current through intelligent adjustment of the  
valley current limit, allowing an accuracy of ±17.5%. Together with an external bulk capacitor, the TPS6128xD/E  
allows an application to be interfaced directly to its load, without overloading the input source due to appropriate  
set average input current limit. An open-drain output (PG or GPIO/nFAULT) provides a signal to issue an  
interrupt to the system if any fault is detected on the device (thermal shutdown, output voltage out-of limits, and  
so on).  
The output voltage can be dynamically adjusted between two values (floor and roof voltages) by toggling a logic  
control input (VSEL) without the need for external feedback resistors. This features can either be used to raise  
the output voltage in anticipation of a positive load transient or to dynamically change the PA supply voltage  
depending on its mode of operation and/or transmitting power.  
The TPS61280D integrates an I2C compatible interface allowing transfers up to 3.4Mbps. This communication  
interface can be used to set the output voltage threshold at which the converter transitions between boost and  
pass-through mode, for reprogramming the mode of operation (PFM/PWM or forced PWM), for settings the  
average input current limit or resetting the output voltage for instance.  
Configuration parameters can be changed by writing the desired values to the appropriate I2C register(s). The  
I2C registers are volatile and their contents are lost when power is removed from the device. By writing to the 节  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.6.10, it is possible to store the active configuration in non-volatile E2PROM; during power-up, the contents of  
the E2PROM are copied into the I2C registers and used to configure the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.3 Feature Description  
9.3.1 Voltage Scaling Management (VSEL)  
In order to maintain a certain minimum output voltage under heavy load transients, the output voltage set point  
can be dynamically increased by asserting the VSEL input. The functionality also helps to mitigate undershoot  
during severe line transients, while minimizing the output voltage during more benign operating conditions to  
save power.  
The output voltage ramps up (floor to roof transition) at pre-defined rate defined by the average input current limit  
setting. The required time to ramp down the voltage (roof to floor transition) largely depends on the amount of  
capacitance present at the converter's output as well as on the load current. 9-1 shows the ramp rate control  
when transitioning to a lower voltage.  
9-1. Ramp Down Rate vs. Target Mode  
Mode Associated with Floor Voltage  
Output Voltage Ramp Rate  
Forced PWM  
Output capacitance is being discharged at a rate of approx. 50mA (or higher) constant current  
in addition to the load current drawn  
PFM  
Output capacitance is being discharged (solely) by the load current drawn  
9.3.2 Spread Spectrum, PWM Frequency Dithering  
The goal is to spread out the emitted RF energy over a larger frequency range so that the resulting EMI is similar  
to white noise. The end result is a spectrum that is continuous and lower in peak amplitude, making it easier to  
comply with electromagnetic interference (EMI) standards and with the power supply ripple requirements in  
cellular and non-cellular wireless applications. Radio receivers are typically susceptible to narrowband noise that  
is focused on specific frequencies.  
Switching regulators can be particularly troublesome in applications where electromagnetic interference (EMI) is  
a concern. Switching regulators operate on a cycle-by-cycle basis to transfer power to an output. In most cases,  
the frequency of operation is either fixed or regulated, based on the output load. This method of conversion  
creates large components of noise at the frequency of operation (fundamental) and multiples of the operating  
frequency (harmonics).  
The spread spectrum architecture varies the switching frequency by ca. ±15% of the nominal switching  
frequency thereby significantly reducing the peak radiated and conducting noise on both the input and output  
supplies. The frequency dithering scheme is modulated with a triangle profile and a modulation frequency fm.  
0 dBV  
F
Dfc  
ENV,PEAK  
Dfc  
Non-modulated harmonic  
F
1
Side-band harmonics  
window after modulation  
0 dBVref  
B = 2×fm ×(1+ mf )= 2×(Dfc + fm )  
Bh = 2×fm ×(1+ mf ×h)  
B = 2×fm ×(1+ mf )= 2×(Dfc + fm  
)
9-1. Spectrum of a Frequency Modulated Sin.  
9-2. Spread Bands of Harmonics in Modulated  
Square Signals 1  
Wave with Sinusoidal Variation in Time  
1
Spectrum illustrations and formulae (9-1 and 9-2) copyright IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,  
VOL. 47, NO.3, AUGUST 2005.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
The above figures show that after modulation the sideband harmonic is attenuated compared to the non-  
modulated harmonic, and the harmonic energy is spread into a certain frequency band. The higher the  
modulation index (mf) the larger the attenuation.  
δ ´ ƒc  
mƒ  
=
ƒm  
(1)  
where  
fc is the carrier frequency (approx. 2.3MHz)  
fm is the modulating frequency (approx. 40kHz)  
δis the modulation ratio (approx 0.15)  
Dƒc  
d =  
ƒc  
(2)  
The maximum switching frequency fc is limited by the process and finally the parameter modulation ratio (δ),  
together with fm, which is the side-band harmonics bandwidth around the carrier frequency fc. The bandwidth of  
a frequency modulated waveform is approximately given by the Carsons rule and can be summarized as:  
B = 2 ´ ¦m ´ 1 + m = 2 ´ D¦ + ¦m  
(
)
(
)
¦
c
(3)  
fm < RBW: The receiver is not able to distinguish individual side-band harmonics, so, several harmonics are  
added in the input filter and the measured value is higher than expected in theoretical calculations.  
fm > RBW: The receiver is able to properly measure each individual side-band harmonic separately, so the  
measurements match with the theoretical calculations.  
9.4 Device Functional Modes  
9.4.1 Power-Save Mode  
The TPS6128xD/E integrates a power-save mode to improve efficiency at light load. In power save mode the  
converter only operates when the output voltage trips below a set threshold voltage. It ramps up the output  
voltage with several pulses and goes into power save mode once the output voltage exceeds the set threshold  
voltage. The PFM mode is left and PWM mode entered in case the output current can not longer be supported in  
PFM mode.  
9-3. Power-Save Mode Ripple  
9.4.2 Pass-Through Mode  
The TPS6128xD/E contains an internal switch for bypassing the dc/dc boost converter during pass-through  
mode. When the input voltage is larger than the preset output voltage, the converter seamlessly transitions into  
0% duty cycle operation and the bypass FET is fully enhanced. Entry in pass-through mode is triggered by  
condition where VOUT >(1+2%)* VOUT_NORM and no switching has occurred during past 8µs.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
In this mode of operation, the load (2G RF PA for instance) is directly supplied from the battery for maximum RF  
output power, highest efficiency and lowest possible input-to-output voltage difference. The device consumes  
only a standby current of 15µA (typ). In pass-through mode, the device is short-circuit protected by a very fast  
current limit detection scheme.  
During this operation, the output voltage follows the input voltage and will not fall below the programmed output  
voltage threshold as the input voltage decreases. The output voltage drop during pass-through mode depends  
on the load current and input voltage, the resulting output voltage is calculated as:  
VOUT = V - (RDSON(BP) x IOUT  
)
IN  
(4)  
(5)  
Conversely, the efficiency in pass-through mode is defined as:  
IOUT  
η = 1 - RDSON(BP)  
V
IN  
in which RDSON(BP) is the typical on-resistance of the bypass FET  
4.5  
4.4  
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
Vout_nom = 3.15V  
3.2  
3.1  
3
Vout_nom = 3.35V  
Vout_nom = 3.3V  
Vout_nom = 3.5V  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
Input Voltage (V)  
G000  
9-4. DC Output Voltage vs. Input Voltage  
Pass-through mode exit is triggered when the output voltage reaches the pre-defined threshold (that is, 3.4V).  
During pass-through mode, the TPS6128xD/E device is short-circuit protected by a fast current limit detection  
scheme. If the current in the pass-through FET exceeds approximately 7.3 Amps a fault is declared and the  
device cycles through a start-up procedure.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.4.3 Mode Selection  
Depending on the settings of 9.6.5 the device can be operated at a quasi-constant 2.3-MHz frequency PWM  
mode or in automatic PFM/PWM mode. In this mode, the converter operates in pseudo-fixed frequency PWM  
mode at moderate to heavy loads and in the PFM mode during light loads, which maintains high efficiency over a  
wide load current range. For more details, see the 9.6.5 description.  
The quasi-constant frequency PWM mode has the tightest regulation and the best line/load transient  
performance. In forced PWM mode, the device features a unique RDS(ON) management function to maintain high  
broadband efficiency as well as low resistance in pass-through mode.  
In the TPS61280D/E device, the GPIO pin can be configured (via the 9.6.5) to select the operating mode of  
the device. In the other TPS6128xD/E devices, the MODE pin is used to select the operating mode. Pulling this  
pin high forces the converter to operate in the PWM mode even at light load currents. The advantage is that the  
converter modulates its switching frequency according to a spread spectrum PWM modulation technique  
allowing simple filtering of the switching harmonics in noise-sensitive applications.  
For additional flexibility, it is possible to switch from power-save mode (GPIO or MODE input = L) to PWM mode  
(GPIO or MODE input = H) during operation. This allows efficient power management by adjusting the operation  
of the converter to the specific system requirements (that is, 2G RF PA Rx/Tx operation).  
Entry to forced pass-through mode (nBYP = L) initiates with a current limited transition followed by a true bypass  
state. To prevent reverse current to the battery, the devices waits until the output discharges below the input  
voltage level before entering forced pass-through mode. Care should be taken to prohibit the output voltage from  
collapsing whilst transitioning into forced pass-through mode under heavy load conditions and/or limited output  
capacitance. This can be easily done by adding capacitance to the output of the converter. In forced pass-  
through mode, the output follows the input below the preset output threshold voltage (VOUT_TH).  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.4.4 Current Limit Operation  
The TPS6128xD/E device features a valley inductor current limit scheme.  
In dc/dc boost mode, the TPS6128xD/E device employs a current limit detection scheme in which the voltage  
drop across the synchronous rectifier is sensed during the off-time. In the TPS61280D the current limit threshold  
can be set via an I2C register. TPS6128xD/E devices have a fixed current limit threshold. See 6 for detailed  
information.  
The output voltage is reduced as the power stage of the device operates in a constant current mode. The  
maximum continuous output current (IOUT(MAX)), before entering current limit (CL) operation, can be defined by  
方程6.  
V I N  
I O U T ( M A X _ D C ) = I  
´
´ h  
L I M I T  
V O U T  
(6)  
where  
ηis the efficiency  
The inductor peak-to-peak current ripple (ΔIL) is calculated by 方程7  
V
D
f
IN  
DIL =  
´
L
(7)  
The output current, IOUT(DC), is the average of the rectifier ripple current waveform. When the load current is  
increased such that the trough is above the current limit threshold, the off-time is increased to allow the current  
to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism). When  
the current limit is reached the output voltage decreases during further load increase.  
9-5 illustrates the inductor and rectifier current waveforms during current limit operation.  
I
PEAK  
I
L
Current Limit  
Threshold  
I
VALLEY  
Rectifier  
Current  
I
DI  
OUT  
L
I
OUT(DC)  
Increased  
Load Current  
I
IN(DC)  
f
Inductor  
Current  
I
IN(DC)  
DI  
L
V
D
f
IN  
×
ΔI  
=
L
L
9-5. Inductor/Rectifier Currents in Current Limit Operation (DC/DC Boost Mode)  
During pass-through mode, the TPS6128xD/E device is short-circuit protected by a very fast current limit  
detection scheme. If the current in the bypass FET exceeds approximately 7.5Amps a fault is declared and the  
device cycles through a start-up procedure.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.4.5 Start-Up and Shutdown Mode  
The TPS6128xD/E automatically powers-up as soon as the input voltage is applied. The device has an internal  
soft-start circuit that limits the inrush current during start-up. The first phase in the start-up procedure is to bias  
the output node close to the input level (so called pre-charge phase).  
In this operating mode, the device limits its output current to ca. 500mA. Should the output voltage not have  
reached the input level within a maximum duration of 750µs, the device automatically increases its pre-charge  
current to ca. 2000mA. If the output voltage still fails to reach its target after 1.5ms, a fault condition is declared.  
After waiting 1ms, a restart is attempted.  
When output voltage being close to Vout, the device enters into boost startup mode (for Auto Mode only). The  
device provides a reduced current limit of ~1.25A (I2C programable for TPS61280D to set it back to normal  
current limit) when the output voltage is below pre-set voltage to avoid the high inrush current from battery.  
During start-up, it is recommended to keep DC load current draw below 250mA.  
The TPS6128xD/E device contains a thermal regulation loop that monitors the die temperature during the pre-  
charge phase. If the die temperature rises to high values of about 110°C, the device automatically reduces the  
current to prevent the die temperature from increasing further. Once the die temperature drops about 10°C  
below the threshold, the device will automatically increase the current to the target value. This function also  
reduces the current during a short-circuit condition.  
When the EN and nBYP pins are set high, the device enters normal operation (that is, automatic dc/dc boost,  
pass-through mode) and ensures that the output voltage remains above a pre-defined threshold (that is, 3.3 V).  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
Setting the EN pin low (nBYP = 1) forces the TPS6128xD/E device in shutdown mode with a current  
consumption of <8.5 µA typical. In this mode, the output of the converter is regulated to a minimum level so as to  
limit the input-to-output voltage difference to less than 3.6 V (typical). The device is capable of sinking up to 10  
mA output current and prohibits reverse current flow from the output to the input. For proper operation, the EN  
pin must be terminated and must not be left floating.  
Changing operating mode from auto mode (EN = nBYP = 1) to low IQ Pass-through mode (EN = nBYP = 0) with  
device pins EN and nBYP can either be done controlling EN and nBYP pins from same control signal (delay  
between signal < 60ns) or first switching in forced pass-through mode (EN = 1, nBYP = 0) followed by switching  
to low IQ Pass-through mode (EN = nBYP = 0).  
The TPS6128xD/E device also features the possibility of shutting the converter output for a short period of time,  
either via the nRST/nFAULT (GPIO). Pulling this input low initiates a reset of the converter's output. The  
sequence is falling edge-triggered and consists of a discharge phase (down to ca. 600 mV or lower) of the  
capacitance located at the converter's output followed by a start-up phase.  
9-2. Mode of Operation  
EN Input  
nBYP Input  
Device State  
The device is shut down in pass-through mode featuring a shutdown current down to ca. 3µA typ.  
The load current capability is limited (up to ca. 250mA).  
0
0
The device is shut down and the output voltage is reduced to a minimum value (VIN - VOUT 3.6V).  
The device shutdown current is approximately 8.5µA typ.  
0
1
1
1
0
1
The device is active in forced pass-through mode.  
The device supply current is approximately 15µA typ. from the battery. The device is short circuit protected  
by a current limit of ca.7300mA.  
The device is active in auto mode (dc/dc boost, pass-through).  
The device supply current is approximately 50µA typ. from the battery.  
9.4.6 Undervoltage Lockout  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the battery  
from excessive discharge. The I2C control interface and the output stage of the converter are disabled once the  
falling VIN trips the under-voltage lockout threshold VUVLO (2 V typical). The device starts operation once the  
rising VIN trips VUVLO threshold plus its hysteresis of 100 mV at typ. 2.1 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.4.7 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 160°C (typ.) the device goes into thermal shutdown. In this  
mode the bypass, high-side and low-side MOSFETs are turned-off. When the junction temperature falls below  
the thermal shutdown minus its hysteresis, the device continuous the operation.  
9.4.8 Fault State and Power-Good  
The TPS6128xD/E enters the fault state under any of the followings conditions:  
The output voltage fails to achieve the required level during a start-up phase.  
The output voltage falls out of regulation (in pre-charge mode).  
The device has entered thermal shutdown.  
Once a fault is triggered, the regulator stops operating and disconnects the load. After waiting 1ms, the device  
attempts to restart. The TPS61280D device can be configured to signal a fault condition by pulling the open-  
drain GPIO pin (nFAULT) low for a short period of time. The nFAULT output provides a falling edge triggered  
interrupt signal to the host. To ensure proper operation, the GPIO port needs to be pull high quick enough, that  
is, faster than ca. 200ns. To do so, it is recommended to use a GPIO pull-up resistor in the range of 1kΩ to  
10kΩ.  
The TPS6128xD/E (simple logic I/F version) device only provide a power-good output (PG) for signaling the  
system when the regulator has successfully completed start-up and no faults have occurred. Power-good also  
functions as an early warning flag for excessive die temperature and overload conditions.  
PG is asserted high when the start-up sequence is successfully completed.  
PG is pulled low when the output voltage falls approximately 10% below its regulation level or the die  
temperature exceeds 115°C. PG is re-asserted high when the device cools below ca. 100°C.  
Any fault condition causes PG to be de-asserted.  
PG is pulled high when the device is operating in forced pass-through mode (that is, nBYP = L).  
PG is pulled high when the device is in shutdown mode.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.5 Programming  
9.5.1 Serial Interface Description (TPS61280D/E)  
I2Cis a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see I2C-Bus  
Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-  
up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices  
connect to the I2C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or  
a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device  
addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A  
slave device receives and/or transmits data on the bus under control of the master device.  
The TPS6128xD/E device works as a slave and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps) and fast mode (400 kbps), fast mode plus (1 Mbps) and high-  
speed mode (3.4 Mbps). The interface adds flexibility to the power supply solution, enabling most functions to be  
programmed to new values depending on the instantaneous application requirements. Register contents remain  
intact as long as supply voltage remains above 2.1V.  
The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-  
mode in this document. The protocol for high-speed mode is different from F/S-mode, and it is referred to as HS-  
mode. The TPS6128xD/E device supports 7-bit addressing; 10-bit addressing and general call address are not  
supported. The device 7bit address is defined as 111 0101.  
It is recommended that the I2C masters initiates a STOP condition on the I2C bus after the initial power up of  
SDA and SCL pull-up voltages to ensure reset of the TPS6128xD/E I2C engine.  
9.5.2 Standard-, Fast-, Fast-Mode Plus Protocol  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 9-6. All I2C-compatible devices should  
recognize a start condition.  
DATA  
CLK  
S
P
START Condition  
STOP Condition  
9-6. START and STOP Conditions  
The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W  
on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires  
the SDA line to be stable during the entire high period of the clock pulse (see 9-7). All devices recognize the  
address sent by the master and compare it to their internal fixed addresses. Only the slave device with a  
matching address generates an acknowledge (see 9-8) by pulling the SDA line low during the entire high  
period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with  
a slave has been established.  
DATA  
CLK  
Data line  
stable;  
data valid  
Change  
of data  
allowed  
9-7. Bit Transfer on the Serial Interface  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the  
slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an  
acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as  
necessary.  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to  
high while the SCL line is high (see 9-6). This releases the bus and stops the communication link with the  
addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop  
condition, all devices know that the bus is released, and they wait for a start condition followed by a matching  
address.  
Attempting to read data from register addresses not listed in this section will result in 00h being read out.  
9-8. Acknowledge on the I2C Bus  
9-9. Bus Protocol  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.5.3 HS-Mode Protocol  
The master generates a start condition followed by a valid serial byte containing HS master code 00001XXX.  
This transmission is made in F/S-mode at no more than 400 Kbps. No device is allowed to acknowledge the HS  
master code, but all devices must recognize it and switch their internal setting to support 3.4 Mbps operation.  
The master then generates a repeated start condition (a repeated start condition has the same timing as the  
start condition). After this repeated start condition, the protocol is the same as F/S-mode, except that  
transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS-mode and switches all the  
internal settings of the slave devices to support the F/S-mode. Instead of using a stop condition, repeated start  
conditions should be used to secure the bus in HS-mode.  
Attempting to read data from register addresses not listed in this section will result in 00h being read out.  
9.5.4 TPS6128xD/E I2C Update Sequence  
The TPS6128xD/E requires a start condition, a valid I2C address, a register address byte, and a data byte for a  
single update. After the receipt of each byte, TPS6128xD/E device acknowledges by pulling the SDA line low  
during the high period of a single clock pulse. A valid I2C address selects the TPS6128xD/E. TPS6128xD/E  
performs an update on the falling edge of the acknowledge signal that follows the LSB byte.  
7
8
8
1
1
1
1
1
1
S
Slave Address  
R/W  
A
Register Address  
A
Data  
P
A/A  
“0” Write  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
From Master to TPS6128xD  
From TPS6128xD to Master  
9-10. : WriteData Transfer Format in Standard-, Fast, Fast-Plus Modes  
7
8
7
8
1
1
1
1
1
1
1
1
1
S
Slave Address  
R/W  
A
Register Address  
A
Sr  
Slave Address  
R/W  
A
Data  
A/A  
P
“0” Write  
“1” Read  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
From Master to TPS6128xD  
From TPS6128xD to Master  
9-11. ReadData Transfer Format in Standard-, Fast, Fast-Plus Modes  
F/S Mode  
HS Mode  
F/S Mode  
8
7
8
8
1
1
1
1
1
1
1
1
HS-Master Code  
A
Sr  
Slave Address  
R/W  
A
Register Address  
A
Data  
A/A  
P
S
Data Transferred  
(n x Bytes + Acknowledge)  
HS Mode Continues  
Slave Address  
Sr  
A = Acknowledge (SDA low)  
A = Not acknowledge (SDA high)  
S = START condition  
Sr = REPEATED START condition  
P = STOP condition  
From Master to TPS6128xD  
From TPS6128xD to Master  
9-12. Data Transfer Format in H/S-Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.6 Register Maps  
9.6.1 Slave Address Byte  
MSB  
LSB  
1
1
1
0
1
A1  
A0  
The slave address byte is the first byte received following the START condition from the master device.  
9.6.2 Register Address Byte  
MSB  
LSB  
0
0
0
0
0
D2  
D1  
D0  
Following the successful acknowledgment of the slave address, the bus master will send a byte to the  
TPS6128xD, which will contain the address of the register to be accessed.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.6.3 I2C Registers, E2PROM, Write Protect  
Configuration parameters can be changed by writing the desired values to the appropriate I2C register(s). The  
I2C registers are volatile and their contents are lost when power is removed from the device. By writing to the 节  
9.6.10, it is possible to store the active configuration in non-volatile E2PROM; during power-up, the contents of  
the E2PROM are copied into the I2C registers and used to configure the device.  
备注  
An active high Write Protect (WP) bit prevents the configuration parameters from being changed by  
accident. Once the E2PROM memory has been programmed with Write Protect (WP) bit set, its  
content will be locked and can not be reprogrammed any more.  
Configuration parameters can be read from the I2C register(s) or E2PROM registers at any time (the WP bit has  
no effect on read operations).  
9.6.4 E2PROM Configuration Parameters  
9-3 shows the memory map of the configuration parameters.  
9-3. Configuration Memory Map  
Register  
Address  
Factory  
Default  
Register Name  
9.6.5  
Description  
01h  
02h  
xxh  
xxh  
Sets miscellaneous configuration bits  
Sets the floor output voltage threshold boost / pass-through mode change  
(VSEL = L)  
9.6.6  
Sets the roof output voltage threshold boost / pass-through mode change  
(VSEL = H)  
03h  
xxh  
9.6.7  
04h  
05h  
xxh  
xxh  
Sets the average input current limit in dc/dc boost mode  
Returns status flags  
9.6.8  
9.6.9  
Controls whether read and write operations access  
I2C or E2PROM registers  
FFh  
00h  
9.6.10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
The following procedure details how to save the content of all I2C registers to the E2PROM non-volatile  
configuration memory.  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (for example EAh)  
3. TPS6128xD acknowledges (SDA low)  
4. Bus master sends address of 9.6.10 (FFh)  
5. TPS6128xD acknowledges (SDA low)  
6. Bus master sends data to be written to the Control Register (C0h)  
7. TPS6128xD acknowledges (SDA low)  
8. Bus master sends STOP condition  
Control Register Address  
Control Register Data  
C0h  
P
S
7-Bit Slave Address  
0
A
A
A
EAh  
FFh  
9-13. Saving Contents of all I2C Registers to E2PROM  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.6.5 CONFIG Register [reset = 0x01]  
Memory location: 0x01  
9-14. CONFIG Register  
7
RESET  
R/W  
6
R/W  
Y
5
R/W  
Y
4
3
2
1
0
R/W  
Y
ENABLE  
RESERVED  
R/W  
GPIOCFG  
R/W  
SSFM  
R/W  
MODE_CTRL  
R/W  
Stored in E2  
N
N
Y
Y
Y
9-4. CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Device reset bit.  
0: Normal operation. or line breaks  
7
RESET  
R/W  
0
1: Default values are set to all internal registers. The device  
operation is cycled (ON-OFF-ON), that is, the converter is  
disabled for a short period of time and the output is reset.  
Device enable bits.  
00: Device operation follows hardware control signal (refer to  
9-2).  
01: Device operates in auto transition mode (dc/dc boost,  
bypass) regardless of the nBYP control signal (EN = 1).  
10: Device is forced in pass-through mode regardless of the  
nBYP control signal (EN = 1).  
11: Device is in shutdown mode. The output voltage is  
reduced to a minimum value (VIN - VOUT 3.6V) regardless  
of the nBYP control signal (EN = 1).  
6:5  
ENABLE  
R/W  
R/W  
0
0
Reserved bit.  
This bits is reserved for future use. During write operations  
data intended for this bit is ignored, and during read  
operations 0 is returned.  
4
RESERVED  
GPIO port configuration bit.  
0 for TPS61280D  
1 for TPS61280E  
0: GPIO port is configured to support manual reset input  
(nRST) and interrupt generation output (nFAULT).  
1: GPIO port is configured as a device mode selection input.  
3
2
GPIOCFG  
SSFM  
R/W  
R/W  
Spread modulation control.  
0: Spread spectrum modulation is disabled.  
1: Spread spectrum modulation is enabled in PWM mode  
0
1
Device mode of operation bits.  
00: Device operation follows hardware control signal (GPIO  
must be configured as mode selection input).  
01: PFM with automatic transition into PWM operation.  
10: Forced PWM operation.  
1:0  
MODE_CTRL  
R/W  
11: PFM with automatic transition into PWM operation (VSEL  
= L), forced PWM operation (VSEL = H).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.6.6 VOUTFLOORSET Register [reset = 0x02]  
Memory location: 0x02  
9-15. VOUTFLOORSET Register  
7
6
5
R/W  
N
4
R/W  
Y
3
R/W  
Y
2
1
R/W  
Y
0
R/W  
Y
RESERVED  
R/W  
VOUTFLOOR_TH  
R/W  
R/W  
Stored in E2  
N
N
Y
9-5. VOUTFLOORSET Register Field Descriptions  
Reset  
Reset  
Bit  
Field  
Type  
(TPS6128 (TPS612 Description  
0D)  
80E)  
Reserved bit.  
This bits is reserved for future use. During write operations  
data intended for this bit is ignored, and during read  
operations 0 is returned.  
7:5  
4
RESERVED  
R/W  
R/W  
0
0
Output voltage threshold, dc/dc boost / pass-through mode  
change.  
0
0
00000: 2.850V  
00001: 2.900V  
00010: 2.950V  
00011: 3.000V  
00100: 3.050V  
00101: 3.100V  
00110: 3.150V  
00111: 3.200V  
01000: 3.250V  
01001: 3.300V  
01010: 3.350V  
01011: 3.400V  
01100: 3.450V  
01101: 3.500V  
01110: 3.550V  
01111: 3.600V  
10000: 3.650V  
10001: 3.700V  
10010: 3.750V  
10011: 3.800V  
10100: 3.850V  
10101: 3.900V  
10110: 3.950V  
10111: 4.000V  
11000: 4.050V  
11001: 4.100V  
11010: 4.150V  
11011: 4.200V  
11100: 4.250V  
11101: 4.300V  
11110: 4.350V  
11111: 4.400V  
3
2
1
R/W  
R/W  
R/W  
0
1
1
1
0
1
VOUTFLOOR_TH  
0
R/W  
0
1
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.6.7 VOUTROOFSET Register [reset = 0x03]  
Memory location: 0x03  
9-16. VOUTROOFSET Register  
7
6
5
R/W  
N
4
R/W  
Y
3
R/W  
Y
2
1
R/W  
Y
0
R/W  
Y
RESERVED  
R/W  
VOUTROOF_TH  
R/W  
R/W  
Stored in E2  
N
N
Y
9-6. VOUTROOFSET Register Field Descriptions  
Reset  
Reset  
Bit  
Field  
Type  
(TPS6128 (TPS612 Description  
0D)  
80E)  
you can use Para elements with role attributes set for IP-  
XACT  
or line breaks  
You cannot use "morerows" in these tables, see wiki for  
more information 'Register Guidelines'  
7:5  
4
RESERVED  
R/W  
R/W  
0
0
Output voltage threshold, dc/dc boost / pass-through mode  
change.  
0
0
00000: 2.850V  
00001: 2.900V  
00010: 2.950V  
00011: 3.000V  
00100: 3.050V  
00101: 3.100V  
00110: 3.150V  
00111: 3.200V  
01000: 3.250V  
01001: 3.300V  
01010: 3.350V  
01011: 3.400V  
01100: 3.450V  
01101: 3.500V  
01110: 3.550V  
01111: 3.600V  
10000: 3.650V  
10001: 3.700V  
10010: 3.750V  
10011: 3.800V  
10100: 3.850V  
10101: 3.900V  
10110: 3.950V  
10111: 4.000V  
11000: 4.050V  
11001: 4.100V  
11010: 4.150V  
11011: 4.200V  
11100: 4.250V  
11101: 4.300V  
11110: 4.350V  
11111: 4.400V  
3
2
1
R/W  
R/W  
R/W  
1
0
1
1
1
0
VOUTROOF_TH  
0
R/W  
0
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.6.8 ILIMSET Register [reset = 0x04]  
Memory location: 0x04  
9-17. ILIMSET Register  
7
6
R/W  
N
5
4
3
R/W  
Y
2
R/W  
Y
1
R/W  
Y
0
R/W  
Y
RESERVED  
ILIM OFF  
R/W  
Soft-start  
R/W  
ILIM  
R/W  
Stored in E2  
N
N
Y
9-7. ILIMSET Register Field Descriptions  
Reset  
Reset  
Bit  
Field  
Type  
R/W  
R/W  
(TPS6128 (TPS612 Description  
0D)  
80E)  
Reserved bit.  
This bits is reserved for future use. During write operations  
data intended for this bit is ignored, and during read  
operations 0 is returned.  
7:6  
5
RESERVED  
0
0
Enable/Disable Current Limit  
0 : Current Limit Enabled  
1 : Current Limit Disabled  
ILIM OFF  
Soft-start  
0
1
0
1
Soft-start selection bit.  
0: DC/DC boost soft-start current is limited per ILIM bit  
settings  
4
R/W  
1: DC/DC boost soft-start current is limited to ca. 1250mA  
inductor valley current  
3
2
1
R/W  
R/W  
R/W  
1
0
1
1
1
1
Inductor valley current limit in dc/dc boost mode  
(COUTRNG bit = 0)(1)  
1000: 1500mA  
1001: 2000mA  
1010: 2500mA  
1011: 3000mA  
1100: 3500mA  
1101: 4000mA  
1110: 4500mA  
1111: 5000mA  
.
ILIM  
0
R/W  
1
1
(1) Refer to 9.4.5 Mode section for additional information.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
9.6.9 Status Register [reset = 0x05]  
Memory location: 0x05  
9-18. Status Register  
7
6
HOTDIE  
R
5
DCDCMODE  
R
4
OPMODE  
R
3
ILIMPT  
R
2
ILIMBST  
R
1
FAULT  
R
0
PGOOD  
R
TSD  
R
Stored in E2  
N
N
N
N
N
N
N
N
9-8. Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Thermal shutdown status bit.  
0: Normal operation.  
7
TSD  
R
0
1: Thermal shutdown tripped. This flag is reset after readout.  
Instantaneous die temperature bit.  
0: TJ < 115°C.  
1: TJ > 115°C.  
6
5
4
HOTDIE  
R
R
R
0
0
0
DC/DC mode of operation status bit.  
1: Device operates in PFM mode.  
0: Device operates in PWM mode.  
DCDCMODE  
OPMODE  
Device mode of operation status bit.  
0: Device operates in pass-through mode.  
1: Device operates in dc/dc mode.  
Current limit status bit (pass-through mode).  
0: Normal operation.  
1: Indicates that the bypass FET current limit has triggered. This  
flag is reset after readout.  
3
2
1
0
ILIMPT  
ILIMBST  
FAULT  
R
R
R
R
0
0
0
0
Current limit status bit (dc/dc boost mode).  
0: Normal operation.  
1: Indicates that the average input current limit has triggered for  
1.5ms in dc/dc boost mode. This flag is reset after readout.  
FAULT status bit.  
0: Normal operation.  
1: Indicates that a fault condition has occurred. This flag is reset  
after readout.  
Power Good status bit.  
0: Indicates the output voltage is out of regulation.  
1: Indicates the output voltage is within its nominal range. This  
bit is set if the converter is forced in pass-through mode.  
PGOOD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
9.6.10 E2PROMCTRL Register [reset = 0xFF]  
Memory location: 0xFF  
9-19. E2PROMCTRL Register  
7
WEN  
6
5
4
R/W  
N
3
R/W  
N
2
1
R/W  
N
0
R/W  
N
WP  
R/W  
ISE2PROMWP  
R
RESERVED  
R/W  
R/W  
Stored in E2  
N
Y
N
N
9-9. E2PROMCTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
E2PROM Write Enable bit.  
0: No operation.  
1: Forces the contents of selected I2C register bits to be copied  
into E2PROM, thereby making them the default values during  
power-up. When the contents of all the I2C register bits have  
been written to the E2PROM, the device automatically resets  
this bit.  
7
WEN  
R/W  
0
E2PROM Write Protect bit.  
0: Normal operation.  
1: Forces the E2PROM content to be locked following a write  
sequence (WEN = 1). This protects the E2PROM content from  
undesirable write actions making it virus safe. This process is  
non reversible.  
6
WP  
R/W  
0
E2PROM Write Protect Status bit.  
0: E2PROM content is not write protected. E2PROM content can  
still be updated.  
5
ISE2PROMWP  
RESERVED  
R
0
0
1: E2PROM content is write protected. E2PROM content is  
permanently locked.  
Reserved bit.  
This bits is reserved for future use. During write operations data  
intended for this bit is ignored, and during read operations 0 is  
returned.  
4:0  
R/W  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The devices are step up dc/dc converters with true bypass function integrated. They are typically used as  
preregulators with input voltage ranges from 2.3V to 4.8V, extend the battery run time and overcome input  
current and input voltage limitations of the system being powered.  
While the input voltage higher than boost/bypass threshold, the high-efficient integrated pass-through path  
connects the battery to the powered system directly.  
If the input voltage becomes lower than boost/bypass threshold, the device seamlessly transitions into boost  
mode operation with a maximum available output current of 3 A.  
The following design procedure can be used to select component values for the TPS61281D and TPS61282D  
(also applicable for TPS61280D/E just by I2C program).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
10.2 Typical Application  
10.2.1 TPS61281D with 2.5V-4.35 VIN, 1500 mA Output Current (TPS61280D with default I2C  
Configuration)  
LM3242  
SuPA  
BUCK / BYPASS  
CIN  
10 µF  
3
CIN  
4.7 µF  
2
WL8PM27  
SuPA  
BUCK  
CIN  
4.7 µF  
WIF  
PMIC  
Vcore1, 1.05V  
SMPS  
SMPS  
LDO  
CDECOUPLING  
10 µF  
TPS61281D  
Vcore2, 1.15V  
SW  
SW  
VIN  
VIN  
VOUT  
VOUT  
VBAT’  
L
eMMC, 2.95V  
LCD, 2.80V  
0.47 μH  
00mV  
CDECOUPLING  
10 µF  
2.7V  
CO (x2)  
10µF X5R 6.3V (0603)  
LDO  
Battery  
Antenna switche  
2.60V  
2.7V .. 4.35V  
LDO  
CI  
1.5µF X5R 6.3V (0402)  
Note: Resistive load equivalent  
for the measurement result.  
Voltage Select  
Enable  
VSEL  
EN  
1.8V  
Forced Bypass / Auto  
PFM/FPWM  
BYP  
Interrupt  
MODE  
PGND  
PGND  
PGND  
PG  
AGND  
AGND  
Copyright © 2016, Texas Instruments Incorpo  
10-1. TPS61281D Application Circuit with 1500mA Output Current  
10.2.1.1 Design Requirement  
10-1. Design Parameters  
REFERENCE  
DESCRIPTION  
SAMPLE VALUES  
VIN  
Input voltage range  
2.5V-4.35V  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
10-1. Design Parameters (continued)  
REFERENCE  
DESCRIPTION  
Output voltage range at VSEL = Low  
Output voltage range VSEL = High  
Output current  
SAMPLE VALUES  
VOUT = 3.15 V if VIN 3.15 V, VOUT = VIN if VIN > 3.15 V  
VOUT= 3.35 V if VIN 3.35 V, VOUT = VIN if VIN > 3.35 V  
1500mA  
VOUT  
VOUT  
IOUT  
10.2.1.2 Detailed Design Parameters  
10.2.1.2.1 Inductor Selection  
A boost converter normally requires two main passive components for storing energy during the conversion, an  
inductor and an output capacitor are required. It is advisable to select an inductor with a saturation current rating  
higher than the possible peak current flowing through the power switches.  
The inductor peak current varies as a function of the load, the input and output voltages and can be estimated  
using 方程8.  
V xD  
IOUT  
V
IN  
IN  
IL(PEAK)  
=
+
with D = 1-  
2 x f x L  
(1-D) x h  
VOUT  
(8)  
Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the  
converter. This could eventually harm the device and reduce it's reliability.  
When selecting the inductor, as well as the inductance, parameters of importance are: maximum current rating,  
series resistance, and operating temperature. The inductor DC current rating should be greater than the  
maximum input average current, refer to 方程9 and the 9.4.4 section for more details.  
VOUT  
1
IL(DC)  
=
x
x IOUT  
V
h
IN  
(9)  
The TPS6128xD series of step-up converters have been optimized to operate with a effective inductance in the  
range of 200 nH to 800 nH. Larger or smaller inductor values can be used to optimize the performance of the  
device for specific operating conditions. For more details, see the 10.2.1.2.4 section.  
In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (that  
is, quality factor) and to a smaller extent by the inductor DCR value. To achieve high efficiency operation, care  
should be taken in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasing  
the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor  
size, increased inductance usually results in an inductor with lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance, R(DC) , and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
For good efficiency, the inductor DC resistance should be less than 30 mΩ. The following inductor series from  
different suppliers have been used with the TPS6128xD converters.  
10-2. List of Inductors  
SERIES  
DIMENSIONS (in mm)  
2.5 x 2.0 x 1.0 max. height  
2.5 x 2.0 x 1.2 max. height  
2.5 x 2.0 x 1.0 max. height  
DC INPUT CURRENT LIMIT SETTING  
DFE252010C  
DFE252012C  
DFR252010C  
3000 mA  
3500 mA  
3000 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
10-2. List of Inductors (continued)  
SERIES  
DIMENSIONS (in mm)  
2.5 x 2.0 x 1.2 max. height  
2.5 x 2.0 x 1.2 max. height  
2.0 x 1.6 x 1.0 max. height  
2.0 x 1.6 x 1.2 max. height  
2.0 x 1.6 x 1.2 max. height  
DC INPUT CURRENT LIMIT SETTING  
DFE252012C  
DFE252012P  
DFE201610C  
DFE201612C  
DFE201612P  
3500 mA  
3500 mA  
2000 mA  
3000 mA  
3000 mA  
10.2.1.2.2 Output Capacitor  
For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the  
VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can  
not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is highly  
recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.  
To get an estimate of the recommended minimum output capacitance, 方程10 can be used.  
IOUT x (VOUT - V )  
IN  
CMIN  
=
f x DV x VOUT  
(10)  
where  
f is the switching frequency which is 2.3 MHz (typ.) and ΔV is the maximum allowed output ripple.  
With a chosen ripple voltage of 20 mV, a minimum effective capacitance of 10 μF is needed. The total ripple is  
larger due to the ESR and ESL of the output capacitor. This additional component of the ripple can be calculated  
using 方程11  
I
ΔI  
2
æ
L ö  
OUT  
ΔVOUT(ESR) = ESR x  
+
ç
÷
1 - D  
è
ø
(11)  
(12)  
(13)  
I
ΔIL  
2
1
æ
ö
OUT  
ΔVOUT(ESL) = ESL x  
+
- IOUT  
x
ç
÷
1 - D  
tSW(RISE)  
è
ø
I
ΔIL  
2
1
æ
ö
OUT  
ΔVOUT(ESL) = ESL x  
-
- IOUT  
x
ç
÷
1 - D  
tSW(FALL)  
è
ø
where  
IOUT = output current of the application  
D = duty cycle  
• ΔIL = inductor ripple current  
tSW(RISE) = switch node rise time  
tSW(FALL) = switch node fall time  
ESR = equivalent series resistance of the used output capacitor  
ESL = equivalent series inductance of the used output capacitor  
An MLCC capacitor with twice the value of the calculated minimum should be used due to DC bias effects. This  
is required to maintain control loop stability. The output capacitor requires either an X7R or X5R dielectric. Y5V  
and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive  
at high frequencies. There are no additional requirements regarding minimum ESR. Larger capacitors cause  
lower output voltage ripple as well as lower output voltage drop during load transients.  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
In applications featuring high (pulsed) load currents (e.g. 2 Amps), it is recommended to run the converter  
with a reasonable amount of effective output capacitance and low-ESL device, for instance x2 22 µF X5R 6.3V  
(0603) MLCC capacitors connected in parallel with a 1 µF X5R 6.3 V (0306-2T) MLCC LL capacitor.  
DC bias effect: high cap. ceramic capacitors exhibit DC bias effects, which have a strong influence on the  
device's effective capacitance. Therefore the right capacitor value has to be chosen very carefully. Package size  
and voltage rating in combination with material are responsible for differences between the rated capacitor value  
and it's effective capacitance. For instance, a 10 µF X5R 6.3 V (0603) MLCC capacitor would typically show an  
effective capacitance of less than 5 µF (under 3.5 V bias condition, high temperature).  
For RF Power Amplifier applications, the output capacitor loading is combined between the dc/dc converter and  
the RF Power Amplifier (x2 10 µF X5R 6.3 V (0603) + PA input cap 4.7 µF X5R 6.3 V (0402)) are recommended.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
High values of output capacitance are mainly achieved by putting capacitors in parallel. This reduces the overall  
series resistance (ESR) to very low values. This results in almost no voltage ripple at the output and therefore  
the regulation circuit has no voltage drop to react on. Nevertheless, for accurate output voltage regulation even  
with low ESR, the regulation loop can switch to a pure comparator regulation scheme.  
10.2.1.2.3 Input Capacitor  
Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they have  
extremely low ESR and are available in small footprints. Input capacitors should be located as close as possible  
to the device. While a 4.7-μF input capacitor is sufficient for most applications, larger values may be used to  
reduce input current ripple without limitations.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part. Additional "bulk" capacitance (electrolytic or tantalum) should in this circumstance be placed  
between CI and the power source lead to reduce ringing than can occur between the inductance of the power  
source leads and CI.  
10.2.1.2.4 Checking Loop Stability  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VOUT(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between  
the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply  
all of the current required by the load. VOUT immediately shifts by an amount equal to ΔI(LOAD) x ESR, where  
ESR is the effective series resistance of COUT. ΔI(LOAD) begins to charge or discharge COUT generating a  
feedback error signal used by the regulator to return VOUT to its steady-state value. The results are most easily  
interpreted when the device operates in PWM mode.  
During this recovery time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the  
converters stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the  
damping factor of the circuitry is directly related to several resistive parameters (that is, MOSFET rDS(on)) that are  
temperature dependant, the loop stability analysis has to be done over the input voltage range, load current  
range, and temperature range.  
The TPS6128xD series of step-up converters have been optimized to operate with a effective inductance in the  
range of 200 nH to 800 nH and with output capacitors in the range of 8 µF to 100 µF. The internal compensation  
is optimized for an output filter of L = 0.5 µH and CO = 15 µF.  
10-3. Component List  
DESCRIPTION  
REFERENCE  
PART NUMBER, MANUFACTURER(1)  
GRM155R60J155ME80D  
2 x GRM188R60J106ME84  
DFE252012CR470  
CIN  
COUT  
L
1.5μF, 6.3V, 0402, X5R ceramic  
2 x 10μF, 6.3V, 0603, X5R ceramic  
470nH, 47mΩ, 2.5mm x 2.0mm x 1.2mm  
(1) See Third-Party Products Disclaimer  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
10.2.1.3 Application Performance Curves  
100.0  
100.0  
90.0  
80.0  
95.0  
90.0  
70.0  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
60.0  
VIN = 3.6V  
VIN = 4.3V  
VIN = 3.6V  
VIN = 4.3V  
VIN = 3.0V  
VIN = 2.7V  
VIN = 2.5V  
85.0  
0.0001  
0.001  
0.01  
Current (A)  
0.1  
1
2
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
Current (A)  
VOUT = 3.15 V  
VSEL = Low  
Mode = Low  
VOUT = 3.15 V  
VSEL = Low  
Mode = Low  
10-2. TPS61281D Efficiency vs Output Current  
10-3. TPS61281D Efficiency vs Output Current  
100.0  
100.0  
90.0  
80.0  
70.0  
95.0  
90.0  
VIN = 3.6V  
VIN = 2.5V  
VIN = 4.3V  
VIN = 2.7V  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.3V  
VIN = 3.0V  
60.0  
0.0001  
85.0  
0.001  
0.01  
Current (A)  
0.1  
1
2
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
Current (A)  
VOUT = 3.35 V  
VSEL = High  
Mode = Low  
VOUT = 3.35 V  
VSEL = High  
Mode = Low  
10-4. TPS61281D Efficiency vs Output Current  
10-5. TPS61281D Efficiency vs Output Current  
3.276  
3.213  
3.244  
3.213  
3.181  
3.15  
3.181  
3.15  
3.118  
3.118  
VIN = 2.5V  
VIN = 2.5V  
VIN = 2.7V  
3.087  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.0V  
3.087  
VIN = 2.9V  
VIN = 3.1V  
3.055  
3.055  
1.5  
1.9  
2.3  
Current (A)  
2.7  
0.0001  
0.001  
0.01  
0.1  
1
2
Current (A)  
VOUT = 3.15 V  
Mode = Low  
VOUT = 3.15 V  
Mode = Low  
10-7. TPS61281D DC Output Voltage vs Output  
10-6. TPS61281D DC Output Voltage vs Output  
Current  
Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
3.484  
3.451  
3.417  
3.384  
3.35  
VIN = 2.5V  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.1V  
VIN = 3.2V  
3.417  
3.384  
3.35  
3.317  
3.284  
3.25  
3.317  
VIN = 2.5V  
VIN = 2.7V  
3.284  
VIN = 2.9V  
VIN = 3.1V  
3.25  
1.6  
2
2.4  
2.8  
0.0001  
0.001  
0.01  
0.1  
1
2
Current (A)  
Current (A)  
Mode = Low  
VOUT = 3.35 V  
Mode = Low  
VOUT = 3.35 V  
10-9. TPS61281D DC Output Voltage vs Output  
10-8. TPS61281D DC Output Voltage vs Output  
Current  
Current  
4.5  
4.4  
4.3  
4.2  
4.1  
4
4.5  
4.4  
4.3  
4.2  
4.1  
4
3.9  
3.9  
3.8  
3.7  
3.6  
3.5  
3.8  
3.7  
3.6  
3.5  
3.4  
3.4  
3.3  
3.2  
3.1  
IOUT = 1mA  
IOUT = 1mA  
IOUT = 100mA  
IOUT = 1000mA  
IOUT = 1500mA  
3.3  
3.2  
IOUT = 100mA  
IOUT = 1000mA  
IOUT = 1500mA  
3.1  
3
3
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.35 V  
VSEL = High  
Mode = Low  
VOUT = 3.15 V  
VSEL = Low  
10-11. TPS61281D DC Output Voltage vs Input  
10-10. TPS61281D DC Output Voltage vs Input  
Voltage  
Voltage  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.5  
2.6  
2.7  
2.8 2.9  
Input Voltage (V)  
3
3.1  
3.2  
VOUT = 3.35 V  
TA = 85°C  
Mode = Low  
10-12. TPS61281D Maximum Output Current vs  
Input Voltage  
10-13. Boost to Pass-Through Mode Exit / Entry  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
10-14. TPS61281D Dynamic Voltage  
10-15. TPS61281D Dynamic Voltage  
Management (VSEL) Load Current 50 mA  
Management (VSEL) Load Current 500 mA  
10-16. TPS61281D Forced Pass-Through to  
10-17. TPS61280D, 81A Load Transient  
Boost Mode Transition  
Response In PFM/PWM Operation  
10-18. TPS61280D, 81A Load Transient  
10-19. Start-Up at No Load  
Response In PFM/PWM Operation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
10-20. Start-Up at 30-ΩLoad  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
10.2.2 TPS61282D with 2.5V-4.35 VIN, 2000 mA Output Current (TPS61280D with I2C Programmable)  
LM3242  
SuPA  
BUCK/BYPASS  
CIN  
10 µF  
3G PA  
Note: Resistive load equivalent  
for the measurement result.  
CIN  
4.7 µF  
2G PA  
WL8PM27  
SuPA  
BUCK  
CIN  
4.7 µF  
WIFI PA  
PMIC  
Vcore1, 1.05V  
Vcore2, 1.15V  
eMMC, 2.95V  
LCD, 2.80V  
SMPS  
SMPS  
LDO  
CDECOUPLING  
10 µF  
TPS61282D  
SW  
VOUT  
VOUT  
VBAT’  
L
SW  
VIN  
VIN  
200 to 600mV  
0.47 μH  
CDECOUPLING  
10 µF  
2.7V  
CO (x4)  
10µF X5R 6.3V (0603)  
LDO  
Battery  
Antenna switches  
2.60V  
2.7V .. 4.35V  
LDO  
CI  
1.5µF X5R 6.3V (0402)  
Note: Resistive load equivalent  
for the measurement result.  
Voltage Select  
Enable  
VSEL  
EN  
1.8V  
Forced Bypass / Auto  
PFM/FPWM  
BYP  
Interrupt  
MODE  
PGND  
PGND  
PGND  
PG  
AGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
10-21. TPS61282D Application Circuit with 2000 mA Output Current  
10.2.2.1 Design Requirements  
10-4. Design Parameters  
REFERENCE  
DESCRIPTION  
PART NUMBER, MANUFACTURER  
2.5 V to 4.35 V  
VIN  
Input voltage range  
VOUT  
VOUT  
IOUT  
Output voltage range at VSEL=Low  
Output voltage range VSEL=High  
Output Current  
VOUT = 3.3 V if VIN 3.3 V, VOUT= VIN if VIN > 3.3 V  
VOUT = 3.5 V if VIN 3.5 V, VOUT= VIN if VIN > 3. 5V  
2000 mA  
10-5. Component List  
DESCRIPTION  
REFERENCE  
PART NUMBER, MANUFACTURER(1)  
GRM155R60J155ME80D  
4 x GRM188R60J106ME84  
DFE252012CR470  
CI  
CO  
L
1.5 μF, 6.3 V, 0402, X5R ceramic  
4 x 10 μF, 6.3 V, 0603, X5R ceramic  
470 nH, 47 mΩ, 2.5 mm x 2.0 mm x 1.2 mm  
(1) See Third-Party Products Disclaimer  
10.2.2.2 Detailed Design Procedures  
See 10.2.1 for all Detailed Design Procedures.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
10.2.2.3 Application Performance Curves  
100.0  
100.0  
95.0  
90.0  
80.0  
70.0  
90.0  
85.0  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.3V  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.3V  
VIN = 4.3V  
60.0  
0.0001  
0.001  
0.01  
Current (A)  
0.1  
1
2
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
Current (A)  
VOUT = 3.3 V  
VSEL = Low  
Mode = Low  
VOUT = 3.3 V  
VSEL = Low  
Mode = Low  
10-22. TPS61282D Efficiency vs Output Current  
10-23. TPS61282D Efficiency vs Output Current  
100.0  
100.0  
90.0  
80.0  
70.0  
95.0  
90.0  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.3V  
VIN = 4.3V  
VIN = 2.5V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.3V  
VIN = 4.3V  
85.0  
0.1 0.3  
60.0  
0.0001  
0.001  
0.01  
0.1  
1
2
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
Current (A)  
Current (A)  
VOUT = 3.5 V  
VSEL = High  
Mode = Low  
VOUT = 3.5 V  
VSEL = High  
Mode = Low  
10-25. TPS61282D Efficiency vs Output Current  
10-24. TPS61282D Efficiency vs Output Current  
3.432  
3.333  
3.399  
3.3  
3.366  
3.333  
3.3  
3.267  
VIN = 2.5V  
3.267  
VIN = 2.5V  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.1V  
3.234  
3.201  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.1V  
VIN = 3.2V  
3.234  
3.201  
2
2.4  
2.8  
3.2  
3.6  
4
0.0001  
0.001  
0.01  
0.1  
1
2
Current (A)  
Current (A)  
VOUT = 3.3 V  
Mode = Low  
VOUT = 3.3 V  
Mode = Low  
10-27. TPS61282D DC Output Voltage vs Output  
10-26. TPS61282D DC Output Voltage vs Output  
Current  
Current  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
3.64  
3.57  
3.605  
3.57  
3.535  
3.5  
3.535  
3.5  
3.465  
3.43  
VIN = 2.5V  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.1V  
VIN = 3.2V  
VIN = 3.4V  
3.465  
3.43  
VIN = 2.5V  
VIN = 2.7V  
VIN = 2.9V  
VIN = 3.1V  
3.395  
3.395  
1.  
8
2.2  
2.6  
3
3.4  
3.8  
0.0001  
0.001  
0.01  
0.1  
1
2
Current (A)  
Current (A)  
VOUT = 3.5 V  
Mode = Low  
VOUT = 3.5 V  
Mode = Low  
10-29. TPS61282D DC Output Voltage vs Output  
10-28. TPS61282D DC Output Voltage vs Output  
Current  
Current  
4.5  
4.4  
4.3  
4.2  
4.1  
4
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.9  
3.8  
3.7  
3.6  
3.5  
3.6  
3.5  
IOUT=1mA
I = 100mA  
OUT
3.4  
3.3  
3.2  
3.1  
3.0  
3.4  
3.3  
IOUT = 1mA  
IOUT = 100mA  
IOUT = 1000mA  
IOUT = 2000mA  
IOUT=1000mA
3.2  
3.1  
IOUT = 2000mA  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
3
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
C013  
Input Voltage(V)  
Input Voltage (V)  
VOUT = 3.5 V  
VSEL = High  
Mode = Low  
VOUT = 3.3 V  
VSEL = Low  
Mode = Low  
10-31. TPS61282D DC Output Voltage vs Input  
10-30. TPS61282D DC Output Voltage vs Input  
Voltage  
Voltage  
10-32. Boost to Pass-Through Mode Exit / Entry  
10-33. TPS61282D Dynamic Voltage  
Management (VSEL) Load Current 50mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
10-34. TPS61282D Dynamic Voltage  
10-35. TPS61282D Line Transient  
Management (VSEL) Load Current 500mA  
10-36. TPS61282D Load Transient Response In 10-37. TPS61282D Load Transient Response In  
PWM Operation  
PFM/PWM Operation  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
11 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.3 V and 4.8 V. This input  
supply should be well regulated. If the input supply is located more than a few inches from the TPS61280D,  
TPS61281D or TPS61282D converter additional bulk capacitance may be required in addition to the ceramic  
bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 μF is a typical choice.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak  
currents and high switching frequencies.  
If the layout is not carefully done, the regulator could show stability problems as well as EMI problems.  
Therefore, use wide and short traces for the main current path and for the power ground tracks.  
To minimize voltage spikes at the converter's output:  
Place the output capacitor(s) as close as possible to GND and VOUT, as shown in 12-1.  
The input capacitor and inductor should also be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the  
effects of ground noise.  
Connect these ground nodes at any place close to the ground pins of the IC.  
Junction-to-ambient thermal resistance is highly application and board-layout dependent.  
It is suggested to maximize the pour area for all planes other than SW. Especially the ground pour should  
be set to fill available PWB surface area and tied to internal layers with a cluster of thermal vias.  
12.2 Layout Example  
L
Vin  
Vout  
GND  
12-1. Suggested Layout (Top)  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
12.3 Thermal Information  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
As power demand in portable designs is more and more important, designers must figure the best trade-off  
between efficiency, power dissipation and solution size. Due to integration and miniaturization, junction  
temperature can increase significantly which could lead to bad application behaviors (that is, premature thermal  
shutdown or worst case reduce device reliability).  
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where  
high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.  
The device operating junction temperature (TJ) should be kept below 125°C.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
I2Cis a trademark of NXP Semiconductors.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
 
 
 
 
 
 
TPS61280D, TPS61281D, TPS61282D,, TPS61280E  
www.ti.com.cn  
ZHCSHC3B JANUARY 2018 REVISED JUNE 2023  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
14.1 Package Summary  
A4  
B4  
C4  
D4  
A3  
B3  
C3  
D3  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
YMLLLLS  
TPS6128xD  
D
A1  
E
14-2. Chip Scale Package (Top View)  
14-1. Chip Scale Package (Bottom View)  
Code:  
YM Year Month date code  
LLLL Lot trace code  
S Assembly site code  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS61280D TPS61281D TPS61282D, TPS61280E  
English Data Sheet: SLVSEA0  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61280DYFFR  
TPS61280DYFFT  
TPS61281DYFFR  
TPS61281DYFFT  
TPS61282DYFFR  
TPS61282DYFFT  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPS  
61280D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
YFF  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
TPS  
61280D  
YFF  
TPS  
61281D  
YFF  
TPS  
61281D  
YFF  
TPS  
61282D  
YFF  
TPS  
61282D  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61280DYFFR  
TPS61280DYFFT  
TPS61281DYFFR  
TPS61281DYFFT  
TPS61282DYFFR  
TPS61282DYFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
16  
16  
16  
16  
16  
16  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61280DYFFR  
TPS61280DYFFT  
TPS61281DYFFR  
TPS61281DYFFT  
TPS61282DYFFR  
TPS61282DYFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
16  
16  
16  
16  
16  
16  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0016  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
1.2 TYP  
D
C
B
SYMM  
1.2  
D: Max = 1.696 mm, Min =1.636 mm  
E: Max = 1.696 mm, Min =1.636 mm  
TYP  
0.4 TYP  
A
1
2
3
4
0.3  
0.2  
16X  
0.015  
SYMM  
C A B  
0.4 TYP  
4219386/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
16X ( 0.23)  
(0.4) TYP  
4
3
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219386/A 05/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0016  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
16X ( 0.25)  
1
2
3
4
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219386/A 05/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61280_15

TPS6128x Low-, Wide- Voltage Battery Front-End DC/DC Converter Single-Cell Li-Ion, Ni-Rich, Si-Anode Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61281

TPS6128x Low-, Wide- Voltage Battery Front-End DC/DC Converter Single-Cell Li-Ion, Ni-Rich, Si-Anode Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61281D

具有直通模式的 2.3MHz、3A 同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61281DYFFR

具有直通模式的 2.3MHz、3A 同步升压转换器 | YFF | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61281DYFFT

具有直通模式的 2.3MHz、3A 同步升压转换器 | YFF | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61282

TPS6128x Low-, Wide- Voltage Battery Front-End DC/DC Converter Single-Cell Li-Ion, Ni-Rich, Si-Anode Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61282D

具有直通模式的 2.3MHz、4A 同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61282DYFFR

具有直通模式的 2.3MHz、4A 同步升压转换器 | YFF | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61282DYFFT

具有直通模式的 2.3MHz、4A 同步升压转换器 | YFF | 16 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61288

TPS61288 18-V, 15-A, Fully Integrated Synchronous Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61288LRQQR

TPS61288 18-V, 15-A, Fully Integrated Synchronous Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61288RQQR

TPS61288 18-V, 15-A, Fully Integrated Synchronous Boost Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI