TPS62422-Q1 [TI]

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 1000mA/600mA 降压转换器;
TPS62422-Q1
型号: TPS62422-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 1000mA/600mA 降压转换器

转换器
文件: 总41页 (文件大小:2364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
TPS624xx-Q1 2.25 MHz 固定输出电压双路降压转换器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
TPS624xx-Q1 器件系列是适用于汽车应用例如高级  
驾驶辅助系统 (ADAS)的双路同步降压直流/直流转换  
器。该系列可提供两组由标准 3.3 V 5 V 电压轨供电  
的独立输出电压轨以及经过优化的固定输出电压为  
ADAS 摄像头模块中的 CMOS 成像仪或串行器-解串器  
供电。  
– 器件温度等140°C 125°C 的工作结温  
范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
• 高效- 95%  
VIN 范围2.5 V 6 V  
EasyScale串行接口支持在运行过程中对输出电压进  
行修改。固定输出电压版本 TPS624xx-Q1 支持对低功  
耗处理器进行单引脚控制的简单动态电压调节。  
2.25 MHz 固定频率运行  
• 输出电TPS62406-Q1 1000mA/400mA  
• 输出电TPS62407-Q1 400mA/600mA  
• 输出电TPS62422-Q1 1000mA/600mA  
• 输出电TPS62423-Q1 800mA/800mA  
• 输出电TPS62424-Q1 800mA/800mA  
• 固定输出电压  
EasyScale可选单引脚串行接口  
• 轻负载电流状态下进入节能模式  
180° 异相运行  
TPS624xx-Q1 器件系列可在 2.25 MHz 固定开关频率  
下运行在轻负载电流情况下会进入省电模式以便在  
整个负载电流范围内保持高效率。对于低噪声应用可  
通过拉高 MODE/DATA 引脚来强制器件进入固定频率  
PWM 模式。关断模式可以将电流消耗降低至 1.2 μA  
的典型值。此器件允许使用小型电感器和电容器可实  
现一个小型解决方案尺寸。  
器件信息(1)  
PWM 模式下的输出电压精±1%  
• 适用于两个转换器的典32 μA 静态电流  
• 可实现最低压降100% 占空比  
封装尺寸标称值)  
器件型号  
TPS62406-Q1  
TPS62407-Q1  
TPS62422-Q1  
TPS62423-Q1  
TPS62424-Q1  
封装  
2 应用  
VSON (10)  
3.00mm × 3.00mm  
• 汽车负载点稳压器  
ADAS 摄像头模块  
后视镜更(CMS)  
信息娱乐系统与仪表组  
TPS62406-Q1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 2.5 to 6 V  
VIN  
FB1  
2.2 µH  
VOUT1 = 1.125 V  
1000 mA  
10 µF  
SW1  
DEF_1  
SW2  
10 µF  
EN1  
EN2  
2.2 µH  
VOUT2 = 1.2 V  
400 mA  
MODE/  
DATA  
10 µF  
ADJ2  
GND  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
VOUT2 = 1.2 V  
MODE/DATA = low  
0
0.1  
1
10  
Output Current (mA)  
100  
400  
简化版原理图  
D002  
TPS62406-Q1 效率与输出电流间的关系VOUT2  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCH9  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................13  
8.5 Programming............................................................ 15  
9 Application and Implementation..................................21  
9.1 Application Information............................................. 21  
9.2 Typical Application.................................................... 21  
9.3 System Examples..................................................... 27  
10 Power Supply Recommendations..............................29  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 支持资源..................................................................31  
12.2 接收文档更新通知................................................... 31  
12.3 Trademarks.............................................................31  
12.4 Electrostatic Discharge Caution..............................31  
12.5 术语表..................................................................... 31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Timing Requirements..................................................8  
7.7 Switching Characteristics............................................8  
7.8 Typical Characteristics................................................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................12  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (August 2018) to Revision E (March 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Removed manual package option addendum, tape and reel information, and package drawings.................. 32  
Changes from Revision * (December 2014) to Revision A (October 2015)  
Page  
Changed the IOUT1 and IOUT2 current for the TPS62406-Q1 device in the Device Comparison Table .............. 3  
Changed forward current limit PMOS and NMOS for the TPS62406-Q1...........................................................5  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
5 Device Comparison Table  
PART NUMBER  
DEFAULT OUTPUT VOLTAGE  
OUTPUT CURRENT  
IOUT1  
DEF_1 = High 1.125 V  
DEF_1 = Low 1.125 V  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
Fixed default  
1000 mA  
400 mA  
400 mA  
600 mA  
1000 mA  
600 mA  
800 mA  
800 mA  
800 mA  
800 mA  
TPS62406-Q1  
TPS62407-Q1  
TPS62422-Q1  
TPS62423-Q1  
TPS62424-Q1  
Fixed default 1.2 V  
IOUT2  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
DEF_1 = High 1.225 V  
DEF_1 = Low 1.225 V  
Fixed default  
Fixed default  
Fixed default  
Fixed default  
Fixed default 1.85 V  
DEF_1 = High 1.8 V  
DEF_1 = Low 1.15 V  
Fixed default 1.2V  
DEF_1 = High 1.5 V  
DEF_1 = Low 1.2 V  
Fixed default 1.8V  
DEF_1 = High 1.3 V  
DEF_1 = Low 1.1 V  
Fixed default 1.8V  
6 Pin Configuration and Functions  
ADJ2  
1
2
3
4
5
10  
9
SW2  
EN2  
GND  
EN1  
SW1  
MODE/DATA  
VIN  
Thermal Pad  
8
FB1  
7
DEF_1  
6
6-1. DRC Package 10-Pin VSON With Thermal Pad Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Output voltage sense pin for the internal feedback divider. This pin must connect directly to the output. If  
using the EasyScale interface-on converter 2, this pin must also connect directly to the output.  
ADJ2  
1
I
This pin defines the output voltage of converter 1 and is a digital input, that selects between two fixed  
default output voltages. See 5 for output voltage setting of the different device options. For TPS62406-  
Q1 and TPS62407-Q1 the output voltage is same independent of DEF_1 pin level. This pin must be  
terminated.  
DEF_1  
5
I
EN1  
EN2  
FB1  
GND  
7
9
4
8
I
I
Enable input for converter 1, active-high. This pin must be terminated.  
Enable input for converter 2, active-high. This pin must be terminated.  
Output voltage sense pin for the internal feedback divider. This pin is connected to the output.  
GND for both converters; connect this pin to the thermal pad.  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This pin has two functions:  
1. Operation-mode selection: With low level, enables power-save mode where the device operates in  
PFM mode at light loads and automatically enters PWM mode at heavy loads. Pulling this PIN to  
high forces the device to operate in PWM mode over the whole load range.  
MODE/DATA  
2
I/O  
2. EasyScale interface function: One-wire serial interface to change the output voltage of both  
converters. The pin has an open-drain output to provide an acknowledge condition if requested.  
The current into the open-drain output stage may not exceed 500 μA. The EasyScale interface is  
active if either EN1 or EN2 is high.  
SW1  
SW2  
6
I/O Switch pin of converter 1. Connect to inductor  
I/O Switch pin of converter 2. Connect to inductor  
10  
Input pin, connect to supply or battery voltage, 2.5 V to 6 V. Connect the input capacitor CIN as close as  
possible between VIN pin and GND pin.  
VIN  
3
I
Thermal pad  
Connect to GND  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Input voltage(2)  
Voltage(2)  
VIN  
7
0.3  
0.3  
0.3  
0.3  
EN, MODE/DATA, DEF_1  
SW1, SW2  
V
VIN + 0.3, 7  
7
V
ADJ2, FB1  
V
VIN + 0.3, 7  
0.5  
Current  
MODE/DATA  
mA  
°C  
°C  
Maximum operating junction temperature, TJmax  
Storage temperature, Tstg  
150  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V
Electrostatic  
discharge  
V(ESD)  
All pins  
Charged device model (CDM), per AEC  
Q100-011  
V
Corner pins (1, 5, 6, and 10)  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
VIN  
TJ  
Supply voltage  
2.5  
6
V
Operating junction temperature  
125  
°C  
40  
7.4 Thermal Information  
TPS624xx-Q1  
DRC (VSON)  
10 PINS  
42.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
46.9  
18.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
18.3  
ψJB  
RθJC(bot)  
3.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
VIN = 3.6 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = 40°C to 125°C, typical  
values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN Input voltage range  
2.5  
6
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
 
 
 
 
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
VIN = 3.6 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = 40°C to 125°C, typical  
values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
One converter, no load on the output. PFM mode  
enabled (MODE/DATA = GND) device not switching,  
EN1 = 1 or EN2 = 1  
19  
35  
Two converters, no load on the output. PFM mode  
enabled (MODE/DATA = GND) device not switching,  
EN1 = EN2 = 1  
μA  
32  
50  
IQ  
Operating quiescent current  
No load on the output, MODE/DATA = GND, for one  
converter(1)  
23  
No load on the output, MODE/DATA = VIN, for one  
converter(1)  
3.6  
mA  
EN1, EN2 = GND, VIN = 3.6 V(2)  
1.2  
0.1  
1.5  
3
1.5  
ISD  
Shutdown current  
μA  
EN1, EN2 = GND, VIN ramped from 0 V to 3.6 V(3)  
Falling  
Rising  
2.35  
2.4  
VUVLO  
Undervoltage lockout threshold  
V
ENABLE EN1, EN2  
VIH  
VIL  
IIN  
High-level input voltage range, EN1, EN2  
1.2  
0
VIN  
0.4  
1
V
V
Low-level input voltage range, EN1, EN2  
Input bias current, EN1, EN2  
EN1, EN2 = GND or VIN  
0.05  
0.01  
0.01  
μA  
DEF_1 INPUT  
VDEF_1H  
DEF_1 high-level digital input voltage range  
0.9  
0
VIN  
0.4  
1
V
V
VDEF_1L  
DEF_1 low-level digital input voltage range  
Input bias current DEF_1  
IIN  
DEF_1 = GND or VIN  
μA  
MODE/DATA  
VIH  
VIL  
High-level input voltage range, MODE/DATA  
Low-level input voltage range, MODE/DATA  
Input bias current, MODE/DATA  
1.2  
0
VIN  
0.4  
1
V
V
IIN  
MODE/DATA = GND or VIN  
μA  
V
VOH  
VOL  
Acknowledge output voltage high  
Open drain, through external pullup resistor  
Open drain, sink current 500 μA  
VIN  
0.4  
Acknowledge output voltage low  
0
V
POWER SWITCH  
P-channel MOSFET on-resistance, converter  
1 and 2  
rDS(on)  
VIN = VGS = 3.6 V  
VDS = 6 V  
280  
620  
1
m  
μA  
mΩ  
ILK_PMOS  
rDS(on)  
P-channel leakage current  
N-channel MOSFET on-resistance converter  
1 and 2  
VIN = VGS = 3.6 V  
200  
6
450  
Includes N-channel leakage current,  
VIN = open, VSW = 6 V, EN = GND(4)  
ILK_SW1/SW2 Leakage current into SW1 or SW2 pin  
7.5  
μA  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
VIN = 3.6 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = 40°C to 125°C, typical  
values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TPS62406-Q1  
VOUT1  
1.18  
1.4  
1.61  
2.5 V VIN 6 V  
TPS62406-Q1  
VOUT2  
0.68  
0.68  
0.75  
1.18  
0.75  
1
0.8  
0.8  
1
0.92  
0.92  
1.15  
1.61  
1.15  
1.38  
1.38  
1.38  
1.38  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
2.5 V VIN 6 V  
TPS62407-Q1  
VOUT1  
TPS62407-Q1  
VOUT2  
TPS62422-Q1  
VOUT1  
1.4  
1
Forward current limit  
PMOS and NMOS  
ILIMF  
A
TPS62422-Q1  
VOUT2  
TPS62423-Q1  
VOUT1  
1.2  
1.2  
1.2  
1.2  
TPS62423-Q1  
VOUT2  
1
TPS62424-Q1  
VOUT1  
1
TPS62424-Q1  
VOUT2  
1
TSD  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
OUTPUT  
Vref  
Internal Reference voltage  
600  
1%  
mV  
Voltage positioning active,  
MODE/DATA = GND,  
VOUTx(PFM)  
2.5%  
1%  
1.5%  
device operating in PFM mode,  
VIN = 2.5 V to 5 V(5) (6)  
MODE/DATA = GND;  
DC output voltage accuracy  
device operating in PWM mode,  
0%  
0%  
1%  
1%  
VIN = 2.5 V to 6 V(6)  
VOUTx(PWM)  
VIN = 2.5 V to 6 V, MODE/DATA = VIN  
,
Fixed PWM operation,  
1%  
0.5  
0 mA < IOUT1 < 400 mA ; 0 mA < IOUT2 < 600 mA(7)  
PWM operation mode  
DC output voltage load regulation  
%/A  
(1) Device is switching with no load on the output, L1 = L2 = 3.3 μH, value includes losses of the coil.  
(2) These values are valid after enabling the device one time (EN1 or EN2 = high) and maintaining supply voltage VIN.  
(3) These values are valid when the device is disabled (EN1 and EN2 low) and supply voltage VIN is powered up. The values remain valid  
until enabling the device the first time (EN1 or EN2 = high). After the first enable, Note 3 becomes valid.  
(4) An internal resistor of 1 Mconnects pins SW1 and SW2 to GND.  
(5) Configuration L1 or L2 typ. 2.2 μH, COUTx typ 20 μF. See parameter measurement information, the output voltage ripple in PFM  
mode depends on the effective capacitance of the output capacitor; larger output capacitors lead to tighter output voltage tolerance.  
(6) In power-save mode, the device typically enters PWM operation at IPSM = VIN / 32 .  
(7) For VOUTx > 2 V, VIN min = VOUTx + 0.5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
 
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
INTERFACE TIMING  
tStart  
Start time  
2
μs  
μs  
μs  
μs  
μs  
μs  
tH_LB  
tL_LB  
tL_HB  
tH_HB  
tEOS  
High-time low bit, logic 0 detection  
Low-time low bit, logic 0 detection  
Low-time high bit, logic 1 detection  
High-time high bit, logic 1 detection  
End of stream  
Signal level on MODE/DATA pin is > 1.2 V  
Signal level on MODE/DATA pin < 0.4 V  
Signal level on MODE/DATA pin < 0.4 V  
Signal level on MODE/DATA pin is > 1.2 V  
2
2 x tH_LB  
2
200  
400  
200  
400  
2 x tL_HB  
2
Duration of acknowledge condition  
(MODE/DATE line pulled low by the  
device)  
tACKN  
VIN 2.5 V to 6 V  
400  
520  
μs  
tvalACK  
ttimeout  
Acknowledge valid time  
2
μs  
μs  
Time-out for entering power-save mode MODE/DATA pin changes from high to low  
520  
7.7 Switching Characteristics  
VIN = 3.6 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = 40°C to 125°C, typical  
values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OSCILLATOR  
3 V VIN 6 V(1)  
2
2.25  
2.7  
fSW  
Oscillator frequency  
MHz  
OUTPUT  
tStart up  
Start-up time  
Activation time to start switching(2)  
170  
750  
μs  
μs  
Time to ramp from 5% to 95% of  
VOUTx  
tRamp  
VOUTx ramp-up time  
(1) For VOUTx > 2 V, VIN min = VOUTx + 0.5 V  
(2) This time is valid if one converter turns from shutdown mode (EN2 = 0) to active mode (EN2 = 1) with the other converter already  
enabled (for example, EN1 = 1). In case both converters are turned from shutdown mode (EN1 and EN2 = 0) to active mode (EN1  
and/or EN2 = 1), a typical value of typ 80 μs for ramp up of internal circuits must be added. After tStart, the converter starts switching  
and ramps VOUTx  
.
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
7.8 Typical Characteristics  
2.6  
2.4  
2.2  
2
30  
28  
26  
24  
22  
20  
18  
16  
1.8  
1.6  
1.4  
1.2  
1
-40èC  
25èC  
-40èC  
25èC  
85èC  
125èC  
14  
12  
10  
85èC  
125èC  
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
5
5.5  
6
D011  
D012  
IOUT = 400 mA  
MODE/DATA = high  
EN1 = high  
EN2 = low MODE/DATA = low  
7-1. TPS62407-Q1 Switching Frequency  
7-2. TPS26407-Q1 Quiescent Current, One  
Converter On  
0.55  
50  
45  
40  
35  
–40°C  
25°C  
85°C  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
-40èC  
25èC  
30  
25  
85èC  
0.2  
125èC  
0.15  
2
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
5
5.5  
6
6.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
D001  
Input Voltage (V)  
EN1 = EN2 = High  
MODE/DATA = low  
7-4. rDS(on) PMOS vs VIN  
7-3. TPS26407-Q1 Quiescent Current, Both  
Converters On  
0.3  
40°C  
25°C  
85°C  
0.25  
0.2  
0.15  
0.1  
0.05  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage (V)  
7-5. rDS(on) NMOS vs VIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS624xx-Q1 device includes two synchronous step-down converters. The converters operate with typically  
2.25-MHz fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. With the power-  
save mode enabled, the converters automatically enter power-save mode at light load currents and operate in  
PFM (pulse frequency modulation).  
During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input-  
voltage feed-forward to achieve good line and load regulation, allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch  
turns on and the inductor current ramps up until the comparator trips and the control logic turns off the switch.  
Each converter integrates two current limits, one in the P-channel MOSFET and another one in the N-channel  
MOSFET. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET turns off  
and the N-channel MOSFET turns on. If the current in the N-channel MOSFET is above the N-MOS current limit  
threshold, the N-channel MOSFET remains on until the current drops below its current limit.  
The two DC-DC converters operate synchronized to each other. A 180° phase shift between converter 1 and  
converter 2 decreases the input rms current.  
8.1.1 Converter 1  
It is possible to change the output voltage of converter 1 with the EasyScale serial Interface. This makes the  
device very flexible for output-voltage adjustment. In this case, the device uses an internal resistor network.  
The output voltage can also be selected using the DEF_1 pin configuration as a digital input. For these voltage  
version the DEF_1 pin select the same output voltage for DEF_1=high or DEF_1=low.  
8.1.2 Converter 2  
It is also possible to change the output voltage of converter 2 via the EasyScale interface.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
8.2 Functional Block Diagram  
VIN  
PMOS Current  
Limit Comparator  
VIN  
Converter 1  
FB_VOUT  
VREF +1%  
Thermal  
Softstart  
Shutdown  
Skip Comp.  
FB_VOUT  
VREF- 1%  
EN1  
Skip Comp. Low  
VREF  
Gate Driver  
Control  
Stage  
Ext. res. network  
Error Amp.  
Internal  
compensated  
FB  
VOUT1  
DEF1  
Int. Resistor  
Network  
PWM  
Comp.  
SW1  
Cff 25pF  
MODE  
Register  
RI 1  
Sawtooth  
Generator  
DEF1_High  
DEF1_Low  
GND  
RI..N  
FB1  
Average  
Current Detector  
Skip Mode Entry  
NMOS Current  
Limit Comparator  
Note 1  
CLK 0°  
Reference  
Load Comparator  
2.25MHz  
Oscillator  
Easy Scale  
Interface  
ACK  
Mode/  
DATA  
Undervoltage  
Lockout  
PMOS Current  
Limit Comparator  
CLK 180°  
MOSFET  
Open drain  
VIN  
FB_VOUT  
Converter 2  
Int. Resistor  
Network  
VREF +1%  
Skip Comp.  
Register  
FB_VOUT  
VREF- 1%  
DEF2  
Note 2  
Skip Comp. Low  
VREF  
Gate Driver  
Control  
Stage  
Cff 25pF  
Error Amp.  
RI 1  
Internal  
compensated  
PWM  
Comp.  
RI..N  
SW2  
MODE  
FB_VOUT2  
ADJ2  
EN2  
Sawtooth  
Generator  
GND  
Thermal  
Shutdown  
Average  
Current Detector  
Skip Mode Entry  
NMOS Current  
Limit Comparator  
CLK 180°  
Softstart  
Load Comparator  
GND  
A. In the fixed output-voltage version, the DEF_1 pin connects to an internal digital input and disconnects from the error amplifier.  
B. To set the output voltage of converter 2 through the EasyScaleinterface, the ADJ2 pin must directly connect to VOUT2  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Enable  
The device has a separate EN pin for each converter to start up each converter independently. If EN1 or EN2 is  
set to high, the corresponding converter starts up with soft start.  
Pulling EN1 and EN2 pin low forces the device into shutdown, with a shutdown quiescent current of typically 1.2  
μA. In this mode, the P- and N-channel MOSFETs turn off and the entire internal control circuitry switches off.  
For proper operation, terminate the EN1 and EN2 pins, do not leave them floating.  
8.3.2 DEF_1 Pin Function  
The DEF_1 pin, dedicated to converter 1, makes the output voltage selection very flexible to support dynamic  
voltage management. Having this pin tied to a low level sets the output voltage according to the value in register  
REG_DEF_1_Low. The default voltage is 1.125 V for TPS62406-Q1. Having the pin tied to a high level sets the  
output voltage according to the value in register REG_DEF_1_High. The default value in this case is 1.125 V as  
well. The level of the DEF_1 pin selects between the two registers, REG_DEF_1_Low and REG_DEF_1_High,  
for the output-voltage setting. One can change the content of each register (and therefore output voltage)  
individually through the EasyScale interface. This makes the device very flexible in terms of output voltage  
setting; see 8-3  
8.3.3 180° Out-of-Phase Operation  
In PWM mode, the converters operate with a 180° turn-on phase shift of the PMOS (high side) transistors. This  
prevents the high-side switches of both converters from turning on simultaneously, reducing the input current  
ripple. This feature reduces the surge current drawn from the supply.  
8.3.4 Short-Circuit Protection  
Both outputs are short-circuit protected with maximum output current = ILIMF(P-MOS and N-MOS). Once the  
PMOS switch reaches its current limit, it turns off and the NMOS switch turns on. The PMOS only turns on again  
once the current in the NMOS decreases below the NMOS current limit.  
8.3.5 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typical) the device goes into thermal shutdown. In this  
mode, the P- and N-channel MOSFETs turn off. The device continues its operation when the junction  
temperature falls below the thermal-shutdown hysteresis.  
8.3.6 EasyScale Interface: One-Pin Serial Interface for Dynamic Output-Voltage Adjustment  
8.3.6.1 General  
The EasyScale interface is a simple but very flexible one-pin interface to configure the output voltage of both  
DC-DC converters. A master-slave structure is the basis of the interface, where the master is typically a  
microcontroller or application processor. 8-3 and 8-2 give an overview of the protocol. The protocol  
consists of a device-specific address byte and a data byte. The device-specific address byte is fixed to 4E hex.  
The data byte consists of five bits for information, two address bits, and the RFA bit. The RFA bit set to high  
indicates the request-for-acknowledge condition. The acknowledge condition only applies after correct reception  
of the protocol.  
The advantage of the EasyScale interface compared to other one-pin interfaces is that its bit detection is to a  
large extent independent from the bit transmission rate. It can automatically detect bit rates between 1.7 kb/s  
and up to 160 kb/s. Furthermore, the interface shares the MODE/DATA pin and requires no additional pin.  
8.3.6.2 Protocol  
Transmission of all bits is MSB first and LSB last. 8-4 shows the protocol without the acknowledge request (bit  
RFA = 0), 8-5 with the acknowledge request (bit RFA = 1).  
Prior to both bytes, device address byte and data byte, one must apply a start condition. For this, pull the MODE/  
DATA pin high for at least tStart before the bit transmission starts with the falling edge. In case the MODE/DATA  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
line was already at a high level (forced PWM mode selection), the device requires no start condition prior to the  
device address byte.  
Close the transmission of each byte with an end-of-stream condition for at least tEOS  
.
8.4 Device Functional Modes  
8.4.1 Power-Save Mode  
Setting the MODE/DATA pin to low for both converters enables power-save mode. If the load current of a  
converter decreases, this converter enters power-save-mode operation automatically. The transition of a  
converter to power-save mode is independent from the operating condition of the other converter. During power-  
save mode, the converter operates with reduced switching frequency in PFM mode and with a minimum  
quiescent current to maintain high efficiency. The converter positions the output voltage in PFM mode to typically  
1% above nominal VOUTx. This voltage positioning feature minimizes voltage drops caused by a sudden load  
step.  
In order to optimize the converter efficiency at light load, the device monitors average inductor current. The  
device changes from PWM mode to power-save mode if in PWM mode the inductor current falls below a certain  
threshold. The typical output current threshold, which one can calculate using 方程式 1 for each converter,  
depends on VIN.  
方程1: Average output current threshold to enter PFM mode  
VIN  
DCDC  
I
+
OUT_PFM_enter  
32 W  
(1)  
方程2: Average output current threshold to leave PFM mode  
VIN  
DCDC  
I
+
OUT_PFM_leave  
24 W  
(2)  
To keep the output-voltage ripple in power-save mode low, a single threshold comparator (skip comparator)  
monitors the output voltage. As the output voltage falls below the skip-comparator threshold (skip comp) of 1%  
above nominal VOUTx, the corresponding converter starts switching for a minimum time period of typically 1 μs  
and provides current to the load and the output capacitor. Therefore, the output voltage increases and the device  
maintains switching until the output voltage trips the skip comparator threshold (skip comp) again. At this  
moment, all switching activity stops and the quiescent current reduces to minimum. The output capacitor  
supplies the load until the output voltage has dropped below the threshold again. Hereupon, the device starts  
switching again.  
The converter leaves power-save mode and enters PWM mode if the output current exceeds the IOUT_PFM_leave  
current or if the output voltage falls below a second comparator threshold, called the skip-comparator-low (Skip  
Comp Low) threshold. This skip-comparator-low threshold is 2% below nominal VOUTx and enables a fast  
transition from power-save mode to PWM mode during a load step.  
Power-save mode typically reduces the quiescent current to 19 μA for one converter and 32 μA for both  
converters active. This single-skip comparator threshold method in power-save mode results in a very low  
output-voltage ripple. The ripple depends on the comparator delay and the size of the output capacitor.  
Increasing output capacitor values minimizes the output ripple. One can disable the power-save mode by setting  
the MODE/DATA pin to high. Both converters then operate in fixed PWM mode. Power-save mode enable or  
disable applies to both converters.  
8.4.1.1 Dynamic Voltage Positioning  
This feature reduces the voltage under- and overshoots at load steps from light to heavy load and from heavy to  
light load. Power-save-mode operation activates dynamic voltage positioning and provides more headroom for  
both the voltage drop at a load step and the voltage increase when a load is switched off, which improves load-  
transient behavior.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
At light loads, in which the converter operates in PFM mode, the output voltage regulation is typically 1% higher  
than the nominal value. In case of a load transient from light load to heavy load, the output voltage drops until it  
reaches the skip comparator low threshold set to 2% below the nominal value and enters PWM mode. During a  
load transition from heavy load to light load, the device also minimizes voltage overshoot because of active  
regulation turning on the N-channel switch.  
Smooth  
Fast load transient  
increased load  
+1%  
PFM Mode  
light load  
PFM Mode  
light load  
V
OUT_NOM  
PWM Mode  
medium/heavy load  
PWM Mode  
medium/heavy load  
PWM Mode  
medium/heavy load  
COMP_LOW threshold -2%  
8-1. Dynamic Voltage Positioning  
8.4.1.2 Soft Start  
The two converters have an internal soft-start circuit that limits the inrush current during startup. 8-2 shows  
control of the output-voltage ramp-up during soft start.  
EN  
95%  
5%  
V
OUT  
t
t
Startup  
RAMP  
8-2. Soft Start  
8.4.1.3 100% Duty-Cycle Low-Dropout Operation  
The converters offer a low input-to-output voltage difference while still maintaining operation with the use of the  
100% duty-cycle mode. In this mode, the P-channel switch is constantly on. This is particularly useful in battery-  
powered applications to achieve longest operation time by taking full advantage of the whole battery-voltage  
range. The minimum input voltage to maintain regulation depends on the load current and output voltage, which  
one can calculate as:  
  ǒRDSon  
Ǔ
Vin  
+ Vout  
) Iout  
) R  
max  
L
max  
max  
min  
(3)  
with  
IOUTxmax = maximum output current plus inductor ripple current  
rDS(on)max = maximum P-channel switch rDS(on)  
RL = dc resistance of the inductor  
VOUTxmax = nominal output voltage plus maximum output-voltage tolerance  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
With decreasing load current, the device automatically switches into pulse-skipping operation, in which the  
power stage operates intermittently based on load demand. Running cycles periodically minimizes the switching  
losses, and the device runs with a minimum quiescent current, maintaining high efficiency.  
8.4.1.4 Undervoltage Lockout  
The undervoltage lockout circuit prevents the device from malfunction at low input voltages and from excessive  
discharge of the battery, and disables the converters. The undervoltage lockout threshold is typically 1.5 V;  
maximum of 2.35 V. In case the interface overwrites the default register values, the new values in the registers  
REG_DEF_1_High, REG_DEF_1_Low and REG_DEF_2 remain valid as long the supply voltage does not fall  
below the undervoltage lockout threshold, independent of disabling of the converters.  
8.4.2 Mode Selection  
The MODE/DATA pin allows mode selection between forced PWM mode and power-save mode for both  
converters. Furthermore, this pin is a multipurpose pin and provides (besides mode selection) a one-pin interface  
to receive serial data from a host to set the output voltage, as described in the EasyScale Interface section.  
Connecting this pin to GND enables the automatic PWM and power-save-mode operation. The converters  
operate in fixed-frequency PWM mode at moderate-to-heavy loads, and in the PFM mode during light loads,  
maintaining high efficiency over a wide load-current range.  
Pulling the MODE/DATA pin high forces both converters to operate constantly in the PWM mode, even at light  
load currents. The advantage is that the converters operate with a fixed frequency, allowing simple filtering of the  
switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-  
save mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced  
PWM mode during operation. This allows efficient power management by adjusting the operation of the  
converter to the specific system requirements.  
In the case of changing the operation mode from forced PWM mode (MODE/DATA = high) to power-save mode  
(MODE/DATA = 0), enabling the power-save mode occurs after a delay time of ttimeout, which is 520 μs  
maximum.  
Setting the MODE/DATA to 1 enables forced-PWM-mode operation immediately.  
8.5 Programming  
8.5.1 Addressable Registers  
Three registers with a data content of 5 bits are addressable. With 5-bit data content, 32 different values for each  
register are available. 8-1 shows the addressable registers to set the output voltage when the DEF_1 pin  
works as a digital input. In this case, converter 1 has a related register for each DEF_1 pin condition, and one  
register for converter 2. A high or low condition on pin DEF_1 selects either the content of register  
REG_DEF_1_High or REG_DEF_1_Low, thus setting the output voltage of converter 1 according to the values  
in Selectable Output Voltage Converter 1, With Pin DEF_1 as Digital Input. Use of a precise internal resistor  
divider network to generate these output voltages makes external resistors unnecessary (less board space) and  
provides higher output-voltage accuracy. Enabling at least one of the converters (EN1 or EN2 is high) activates  
the interface. After the startup time tStart (170 μs), the interface is ready for data reception.  
8-1. Addressable Registers for Default Fixed-Output Voltage Options (PIN DEF_1 = Digital Input)  
DEVICE  
REGISTER  
DESCRIPTION  
DEF_1  
PIN  
A1  
A0  
D4  
D3  
D2  
D1  
D0  
REG_DEF_1_High  
Converter 1 output voltage setting for  
DEF_1 = High condition. The content of the  
register is active with the DEF_1 pin high.  
High  
0
1
Output voltage setting, see 8-3  
REG_DEF_1_Low  
REG_DEF_2  
Converter 1 output voltage setting for  
DEF_1 = Low condition.  
Low  
0
1
1
0
0
1
Output voltage setting, see 8-3  
Output voltage setting, see 8-4  
TPS624xx-Q1 ,  
Converter 2 output voltage  
Not  
applicable  
Do not use  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
8.5.1.1 Bit Decoding  
The bit detection is based on a PWM scheme, where the criterion is the relation between the low time and high  
time of the low or high bit (tL_xB and tH_xB). Bit detection can be simplified to:  
High bit: tH_HB > tL_HB, but with tH_HB at least 2× tL_HB, see 8-3.  
Low bit: tL_LB > tH_LB, but with tL_LB at least 2× tH_LB, see 8-3.  
The bit detection starts with a falling edge on the MODE/DATA pin and ends with the next falling edge. Detection  
of a 0 or 1 depends on the relation between tL_xB and tH_xB  
.
8.5.1.2 Acknowledge  
The device only applies the acknowledge condition if all of the following occurs:  
A set RFA bit requests an acknowledge  
The transmitted device address matches with the device address of the device  
Correct reception of 16 bits occurred  
In this case, the device turns on the internal ACKN-MOSFET and pulls the MODE/DATA pin low for the time  
t
ACKN, which is 520 μs maximum. The acknowledge condition is valid after an internal delay time tvalACK. This  
means the internal ACKN-MOSFET turns on after tvalACK, on detection of the last falling edge of the protocol.  
The master controller keeps the line low during this time.  
The master device can detect the acknowledge condition with its input by releasing the MODE/DATA pin after  
tvalACK and reading back a 0.  
In case of an invalid device address, or not-correctly-received protocol, application of a no-acknowledge  
condition does not occur; thus, the internal MOSFET does not turn on, and the external pullup resistor pulls the  
MODE/DATA pin high after tvalACK. One can use the MODE/DATA pin again after the acknowledge condition  
ends.  
备注  
The master device must have an open-drain output in order to request the acknowledge condition.  
In case of a push-pull output stage, TI recommends using a series resistor in the MODE/DATA line to limit the  
current to 500 μA in case of an accidentally requested acknowledge, to protect the internal ACKN-MOSFET.  
8.5.1.3 Mode Selection  
Use of the MODE/DATA pin for two functions, interface and mode selection, necessitates a determination of  
when to decode the bit stream or to change the operation mode.  
The device enters forced PWM mode operation immediately whenever the MODE/DATA pin turns to high level.  
The device also stays in forced PWM mode during the entire protocol reception time.  
With a falling edge on the MODE/DATA pin, the device starts bit decoding. If the MODE/DATA pin stays low for  
at least ttimeout, the device gets an internal time-out and enables power-save-mode operation.  
The device ignores a protocol sent within this time because the first interpretation of a falling edge for the mode  
change is at the start of the first bit. In this case, TI recommends sending the protocol first, and then changing to  
power-save mode at the end of the protocol.  
DATA IN  
Device Address  
DATABYTE  
D4 D3 D2  
Start DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0  
RFA A1  
A0  
D1 D0  
EOS Start  
EOS  
0
1
0
0
1
1
1
0
DATA OUT ACK  
8-3. EasyScale Protocol Overview  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
BYTE  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
8-2. EasyScale Bit Description  
BIT  
NAME TRANSMISSION  
DESCRIPTION  
NUMBER  
DIRECTION  
Device  
address  
byte  
7
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
RFA  
A1  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0 MSB device address  
6
1
5
0
4
0
4E hex  
3
1
2
1
1
1
0
0 LSB device address  
Data byte  
7 (MSB)  
Request for acknowledge; if high, the device applies an acknowledge condition.  
6
Address bit 1  
Address bit 0  
Data bit 4  
5
A0  
4
D4  
3
D3  
Data bit 3  
2
1
D2  
Data bit 2  
D1  
Data bit 1  
0 (LSB)  
D0  
Data bit 0  
ACK  
OUT  
Acknowledge condition active 0, the device applies this condition only in the case of  
a set RFA bit. Open-drain output, the host must pull the line high with a pullup  
resistor.  
One can only use this feature if the master has an open-drain output stage. In case  
of a push-pull output stage, do not request an acknowledge condition.  
tStart  
tStart  
Address Byte  
DATA Byte  
DATA IN  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DA7  
0
DA0  
0
RFA  
D0  
1
TEOS  
TEOS  
0
8-4. EasyScale Protocol Without Acknowledge  
tStart  
tStart  
Address Byte  
DATA Byte  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DATA IN  
DA7  
DA0  
0
D0  
1
RFA  
1
0
TEOS  
tvalACK  
Acknowledge  
true, Data Line  
pulled down by  
device  
ACKN  
tACKN  
Controller needs to  
Pullup Data Line via a  
resistor to detect ACKN  
DATA OUT  
Acknowledge  
false, no pull  
down  
8-5. EasyScale Protocol Including Acknowledge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
t
t
t
t
Low  
Low  
High  
High  
Low Bit  
High Bit  
(Logic 1)  
(Logic 0)  
8-6. EasyScale Bit Coding  
MODE/DATA  
t
timeout  
Power Save Mode  
Forced PWM MODE  
Power Save Mode  
8-7. MODE/DATA PIN: Mode Selection  
t
t
Address Byte  
Start DATA Byte  
Start  
MODE/DATA  
T
EOS  
t
T
EOS  
timeout  
Power Save Mode  
Forced PWM MODE  
Power Save Mode  
8-8. MODE/DATA Pin: Power-Save-Mode and Interface Communication  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
8-3. Selectable Output Voltages for Converter 1,  
With Pin DEF_1 as Digital Input  
TPS624xx-Q1 OUTPUT  
TPS624xx-Q1  
VOLTAGE [V]  
D4 D3 D2 D1 D0  
VOLTAGE [V]  
REGISTER REG_DEF_1_LOW  
REGISTER REG_DEF_1_HIGH  
0
0.8  
0.9  
0.925  
0.95  
0.975  
1.0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0.825  
0.85  
2
3
0.875  
0.9  
4
5
0.925  
0.95  
1.025  
1.050  
1.075  
1.1  
6
7
0.975  
1.0  
8
9
1.025  
1.050  
1.075  
1.1  
1.125  
1.150  
1.175  
1.2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1.125  
1.150  
1.175  
1.2  
1.225  
1.25  
1.275  
1.3  
1.225  
1.25  
1.325  
1.350  
1.375  
1.4  
1.275  
1.3  
1.325  
1.350  
1.375  
1.4  
1.425  
1.450  
1.475  
1.5  
1.425  
1.450  
1.475  
1.5  
1.525  
1.55  
1.575  
1.6  
1.525  
1.55  
1.7  
1.8  
1.575  
1.9  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
8-4. Selectable Output Voltages for Converter 2,  
(ADJ2 Connected to VOUT2  
)
OUTPUT VOLTAGE [V]  
D4 D3 D2 D1 D0  
FOR REGISTER REG_DEF_2  
0
0.6  
0.85  
0.9  
0.95  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
1.05  
1.1  
1.15  
1.2  
1.25  
1.3  
1.35  
1.4  
1.45  
1.5  
1.55  
1.6  
1.7  
1.8  
1.85  
2
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.85  
3
3.3  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 Application Information  
The TPS624xx-Q1 family of devices are synchronous dual step-down DC-DC converters. The devices provide  
two independent output voltage rails. The following information provides guidance on selecting external  
components to complete the application design.  
9.2 Typical Application  
TPS62406-Q1  
VIN = 2.5 to 6 V  
VIN  
FB1  
2.2 µH  
VOUT1 = 1.125 V  
1000 mA  
10 µF  
SW1  
DEF_1  
SW2  
10 µF  
EN1  
EN2  
2.2 µH  
VOUT2 = 1.2 V  
400 mA  
MODE/  
DATA  
10 µF  
ADJ2  
GND  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
The step-down converter design can be adapted to different output voltage and load current needs. The  
following design procedure is adequate for whole VIN, VOUTx and load current range of the TPS624xx-Q1 family  
of devices.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Voltage Setting  
9.2.2.1.1 Converter 1 Fixed Default Output-Voltage Setting  
The DEF_1 pin selects output voltage VOUT1  
.
Pin DEF_1 = low:  
TPS62406-Q1, TPS62407-Q1 = 1.125 V  
TPS62422-Q1 = 1.15V  
TPS62423-Q1 = 1.2V  
TPS62424-Q1 = 1.1V  
Pin DEF_1 = high:  
TPS62406-Q1 = 1.125 V  
TPS62407-Q1 = 1.225 V  
TPS62422-Q1 = 1.8V  
TPS62423-Q1 = 1.5V  
TPS62424-Q1 = 1.3V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
9.2.2.1.2 Converter 2 Fixed Default Output-Voltage Setting  
ADJ2 pin must be directly connected with VOUT2  
:
TPS62406-Q1, VOUT2 default = 1.2 V  
TPS62407-Q1, VOUT2 default = 1.85 V  
TPS62422-Q1, VOUT2 default = 1.2 V  
TPS62423-Q1, VOUT2 default = 1.8 V  
TPS62424-Q1, VOUT2 default = 1.8 V  
9.2.2.2 Output Filter Design (Inductor and Output Capacitor)  
The converters operate with a minimum inductance of 1.75 μH and minimum capacitance of 6 μF. The device  
operation is optimum with inductors of 2.2 μH to 4.7 μH and output capacitors of 10 μF to 22 μF.  
9.2.2.2.1 Inductor Selection  
Select the inductor based on its ratings for dc resistance and saturation current. The dc resistance of the  
inductor directly influences the efficiency of the converter. Therefore, select an inductor with lowest dc resistance  
for highest efficiency.  
方程式 4 calculates the maximum inductor current under static load conditions. The saturation-current rating of  
the inductor should be higher than the maximum inductor current as calculated with 方程式 5. TI makes this  
recommendation because during heavy load transients the inductor current rises above the calculated value.  
Vout  
1 *  
Vin  
DI + Vout   
L
L   ƒ  
(4)  
where  
• ΔIL = Peak-to-peak inductor ripple current  
L = Inductor value  
f = Switching frequency (2.25 MHz typical)  
DI  
L
I
+ I  
)
outmax  
Lmax  
2
(5)  
where  
ILmax = Maximum inductor current  
and the highest inductor current occurs at maximum VIN.  
Open-core inductors have a soft saturation characteristic and they can usually handle higher inductor currents  
versus a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Take into consideration that the core material from inductor to inductor differs, and this  
difference has an impact on the efficiency.  
See 9-1 and the typical application circuit examples for possible inductors.  
9-1. List of Inductors  
DIMENSIONS [mm]  
3.2 × 2.6 × 1  
3 × 3 × 0.9  
INDUCTOR TYPE  
MIPW3226  
LPS3010  
SUPPLIER  
FDK  
Coilcraft  
TDK  
2.8 × 2.6 × 1  
2.8 x 2.6 × 1.4  
3 × 3 × 1.4  
VLF3010  
VLF3014  
TDK  
LPS3015  
Coilcraft  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
9-1. List of Inductors (continued)  
DIMENSIONS [mm]  
INDUCTOR TYPE  
SUPPLIER  
3.9 × 3.9 × 1.7  
LPS4018  
Coilcraft  
9.2.2.2.2 Output-Capacitor Selection  
The advanced fast-response voltage-mode control scheme of the converters allows the use of tiny ceramic  
capacitors with a typical value of 10 μF to 22 μF, without having large output-voltage under- and overshoots  
during heavy load transients. Ceramic capacitors with low ESR values result in lowest output-voltage ripple, and  
TI therefore recommends them. The output capacitor requires either X7R or X5R dielectric. TI does not  
recommend Y5V and Z5U dielectric capacitors because of their wide variation in capacitance.  
If using ceramic output capacitors, the capacitor rms ripple-current rating always meets the application  
requirements. The rms ripple current calculation is:  
Vout  
1 *  
Vin  
1
I
+ Vout   
 
RMSCout  
Ǹ
L   ƒ  
2
 
 
3  
(6)  
At nominal load current, the inductive converters operate in PWM mode and the overall output voltage ripple is  
the sum of the voltage spike caused by the output capacitor ESR, plus the voltage ripple caused by charging  
and discharging the output capacitor:  
Vout  
1 *  
Vin  
1
ǒ
) ESRǓ  
DVout + Vout   
 
L   ƒ  
8   Cout   ƒ  
(7)  
where  
The highest output-voltage ripple occurs at the highest input voltage, VIN.  
At light load currents, the converters operate in power-save mode and the output-voltage ripple depends on the  
output-capacitor value. The internal comparator delay and the external capacitor set the output-voltage ripple.  
Higher output capacitors like 22 μF values minimize the voltage ripple in PFM mode and tighten dc output  
accuracy in PFM mode.  
9.2.2.2.3 Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, the device requires a low-ESR  
input capacitor to prevent large voltage transients that can cause misbehavior of the device or interference with  
other circuits in the system. An input capacitor of 10 μF is sufficient.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
0.01  
0.1  
1
10  
Output Current (mA)  
100  
1000  
0
50  
100 150 200 250 300 350 400 450  
Output Current (mA)  
D004  
D009  
VOUT1 = 1.225 V  
MODE/DATA = low  
VOUT1 = 1.225 V  
MODE/DATA = high  
9-2. TPS62407-Q1 Efficiency, VOUT1  
9-3. TPS62407-Q1 Efficiency, VOUT1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
0.01  
0.1  
1 10  
Output Current (mA)  
100  
1000  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D005  
D0010  
VOUT2 = 1.85 V  
MODE/DATA = low  
VOUT2 = 1.85 V  
MODE/DATA = high  
9-4. TPS62407-Q1 Efficiency, VOUT2  
9-5. TPS62407-Q1 Efficiency, VOUT2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
0.1  
1
10  
Output Current (mA)  
100  
1000  
0.1  
1
10  
Output Current (mA)  
100  
1000  
D003  
D007  
VOUT1 = 1.125 V  
MODE/DATA = low  
VOUT1 = 1.125 V  
MODE/DATA = high  
9-6. TPS62406-Q1 Efficiency, VOUT1  
9-7. TPS62406-Q1 Efficiency, VOUT2  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 3.5 V  
VIN = 5 V  
10  
0
0
0.1  
1
10  
Output Current (mA)  
100  
400  
0.1  
1
10  
Output Current (mA)  
100  
400  
D006  
D008  
VOUT2 = 1.2 V  
MODE/DATA = low  
VOUT2 = 1.2 V  
MODE/DATA = high  
9-8. TPS62406-Q1 Efficiency, VOUT2  
9-9. TPS62406-Q1 Efficiency, VOUT2  
1.175  
1.836  
Conditions:  
VOUT1=1.15V, VOUT2=1.2V @ 1000mA  
TA=85OC  
Conditions:  
VOUT1=1.8V, VOUT2=1.2V @ 600mA  
TA=85OC  
VIN=2.7V  
VIN=3.3V  
VIN=3.9V  
VIN=4.5V  
VIN=5V  
VIN=2.7V  
VIN=3.3V  
VIN=3.9V  
VIN=4.5V  
VIN=5V  
1.171  
1.167  
1.163  
1.159  
1.155  
1.151  
1.147  
1.143  
1.139  
1.135  
1.131  
1.127  
1.828  
1.82  
1.812  
1.804  
1.796  
1.788  
1.78  
VIN=5.5V  
VIN=6V  
VIN=5.5V  
VIN=6V  
1.772  
1.764  
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  
Output 1 Current [A]  
1
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  
Output 1 Current [A]  
1
VOUT1 = 1.15 V, VOUT2 = 1.2 V  
MODE/DATA = high  
VOUT1 = 1.8 V, VOUT2 = 1.2 V  
MODE/DATA = high  
9-10. TPS62422-Q1 VOUT1 vs. IOUT1  
9-11. TPS62422-Q1 VOUT1 vs. IOUT1  
1.224  
Conditions:  
VOUT2=1.2V, VOUT1=1.8V @ 1000mA  
TA=85OC  
VIN=2.7V  
VIN=3.3V  
VIN=3.9V  
VIN=4.5V  
VIN=5V  
1.22  
1.216  
1.212  
1.208  
1.204  
1.2  
VO = 1.8 V 20 mV/div  
VIN=5.5V  
VIN=6V  
1.196  
1.192  
1.188  
1.184  
1.18  
Inductor current = 100 mA/div  
1.176  
0.3  
0.35  
0.4  
0.45  
Output 2 Current [A]  
0.5  
0.55  
0.6  
VOUT1 = 1.8 V, VOUT2 = 1.2 V  
MODE/DATA = high  
Time base - 10 µs/div  
Power save mode MODE/DATA = low  
IOUT = 10 mA  
9-12. TPS62422-Q1 VOUT2 vs. IOUT2  
9-13. Light-Load Output-Voltage Ripple in  
Power-Save Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
VO ripple 20 mV/div  
VO = 1.8 V 20 mV/div  
Inductor current 100 mA/div  
Inductor current 200 mA/div  
Time base - 400 ns/div  
Time base - 200 ns/div  
Forced PWM mode MODE/DATA = high  
IOUT = 10 mA  
PWM mode  
VOUT = 1.8 V  
IOUT = 400 mA  
9-14. Output-Voltage Ripple in Forced-PWM  
9-15. Output-Voltage Ripple in PWM Mode  
Mode  
VO = 1.575 V  
50 mV/div  
MODE/DATA 1 V/div  
Forced PWM  
Mode  
Enable Power Save Mode  
Entering PFM Mode  
Voltage positioning in PFM  
PWM Mode operation  
Voltage positioning active  
Mode reduces voltage drop  
during load step  
VO 20 mV/div  
IO = 200 mA/div  
IO(1) = 360 mA  
IO = 40 mA  
Time base - 200 µs/div  
Time base - 50 µs/div  
VOUT = 1.8 V  
IOUT = 20 mA  
MODE/DATA = low  
9-16. Forced PWM-to-PFM Mode Transition  
9-17. Load-Transient Response, PFM-to-PWM  
VO = 1.575 V  
VDD = 1 V/div  
50 mV/div  
PWM Mode operation  
IO = 200 mA/div  
IO(1) = 360 mA  
VO = 50 mV/div  
IO = 40 mA  
Time base - 400 µs/div  
Time base - 50 µs/div  
MODE/DATA = low  
IOUT1 = 200 mA  
VIN = 3.6 to 4.6 V  
VOUT1 = 1.575 V  
PWM mode  
MODE/DATA = high  
9-18. Load-Transient Response, PWM Operation  
9-19. Line-Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
EN1 and EN2 5 V/div  
VO(1)  
500 mV/div  
SW1 1 V/div  
I(coil) 500 mA/div  
Time base - 200 µs/div  
VIN = 3.8 V  
IOUT1max = 400 mA  
9-20. Startup Timing, One Converter  
9.3 System Examples  
TPS62406-Q1  
VIN = 2.5 to 6 V  
FB1  
VIN  
2.2 µH  
V
= 1.125 V  
OUT1  
1000 mA  
10 µF  
SW1  
22 µF  
DEF_1  
EN1  
EN2  
2.2 µH  
V
= 1.2 V  
OUT2  
400 mA  
SW2  
MODE/  
DATA  
22 µF  
ADJ2  
GND  
9-21. TPS62406-Q1 Fixed 1.125-V and 1.2-V Outputs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
TPS62407-Q1  
VIN = 2.5 to 6 V  
VIN  
FB1  
2.2 µH  
V
= 1.225 V  
OUT1  
400 mA  
10 µF  
SW1  
10 µF  
DEF_1  
EN1  
EN2  
2.2 µH  
V
= 1.85 V  
OUT2  
600 mA  
SW2  
MODE/  
DATA  
10 µF  
ADJ2  
GND  
9-22. TPS62407-Q1 Fixed 1.225-V and 1.85-V Outputs  
TPS62422-Q1  
VIN = 2.5 to 6 V  
VIN  
FB1  
2.2 µH  
VOUT1 = 1.15 V  
up to 1000 mA  
10 µF  
SW1  
DEF_1  
SW2  
22 µF  
EN1  
EN2  
2.2 µH  
VOUT2 = 1.2 V  
up to 600 mA  
MODE/  
DATA  
22 µF  
ADJ2  
GND  
9-23. TPS62422-Q1 Fixed 1.15-V and 1.2-V Outputs  
VOUT1 = 1.8V  
up to 1000mA  
22 µF  
VOUT2 = 1.2V  
up to 600mA  
22 µF  
9-24. TPS62422-Q1 Fixed 1.8-V and 1.2-V Outputs  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
10 Power Supply Recommendations  
This device has no special recommendation for the power supply. TI recommends to use the values listed in the  
7.3 table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Proper function of the device  
demands careful attention to PCB layout.  
It is critical to provide a low-inductance, low-impedance ground path. Therefore, use wide and short traces for  
the main current paths as indicated in bold in 11-1.  
Place the input capacitor as close as possible to the IC pins VIN and GND, the inductor and output capacitor  
as close as possible to the pins SW1 and GND.  
Connect the GND pin of the device to the PowerPAD of the PCB and use this pad as a star point. For each  
converter, use a common power GND node and a different node for the signal GND to minimize the effects of  
ground noise.  
Connect these ground nodes together to the PowerPAD (star point) underneath the IC. Keep the common  
path to the GND PIN, which returns the small signal components and the high current of the output  
capacitors, as short as possible to avoid ground noise.  
Connect the output voltage-sense lines (FB 1, DEF_1, ADJ2) right to the output capacitor and route them  
away from noisy components and traces (for example, the SW1 and SW2 lines).  
If operating the EasyScale interface with high transmission rates, route the MODE/DATA trace away from the  
ADJ2 line to avoid capacitive coupling into the ADJ2 pin.  
A GND guard ring between the MODE/DATA pin and ADJ2 pin avoids potential noise coupling.  
11.2 Layout Example  
COUT  
VIN  
COUT  
GND  
11-1. Layout Diagram  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
www.ti.com.cn  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
12 Device and Documentation Support  
12.1 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 Trademarks  
EasyScale, the EasyScale, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
 
 
 
 
TPS62406-Q1, TPS62407-Q1, TPS62422-Q1, TPS62423-Q1, TPS62424-Q1  
ZHCSHZ2E DECEMBER 2014 REVISED MARCH 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62406-Q1 TPS62407-Q1 TPS62422-Q1 TPS62423-Q1 TPS62424-Q1  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62406QDRCRQ1  
TPS62407QDRCRQ1  
TPS62422QDRCRQ1  
TPS62423QDRCRQ1  
TPS62424QDRCRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2406Q  
NIPDAU  
SHU  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
2422Q  
2423Q  
2424Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62406QDRCRQ1  
TPS62407QDRCRQ1  
TPS62422QDRCRQ1  
TPS62423QDRCRQ1  
TPS62424QDRCRQ1  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62406QDRCRQ1  
TPS62407QDRCRQ1  
TPS62422QDRCRQ1  
TPS62423QDRCRQ1  
TPS62424QDRCRQ1  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
3000  
346.0  
346.0  
338.0  
338.0  
338.0  
346.0  
346.0  
355.0  
355.0  
355.0  
33.0  
33.0  
50.0  
50.0  
50.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62422QDRCRQ1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 1000mA/600mA 降压转换器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62423-Q1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 800mA 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62423QDRCRQ1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 800mA 降压转换器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62424-Q1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 800mA 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62424QDRCRQ1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 800mA 降压转换器 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62441-Q1

具有可调频率的汽车类 2.75V 至 6V 双路 1A 输出降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62441QWRQRRQ1

具有可调频率的汽车类 2.75V 至 6V 双路 1A 输出降压转换器 | RQR | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62442

采用 QFN 封装的 2.75V 至 6V 双路 2A 或 3A/1A 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62442-Q1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62442QWRQRRQ1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器 | RQR | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62480

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62480RNCR

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选 | RNC | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI