TPS62770 [TI]

采用 WCSP 封装且具有 360nA Iq 降压和高达 15V 升压功能的微型单芯片双重解决方案;
TPS62770
型号: TPS62770
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装且具有 360nA Iq 降压和高达 15V 升压功能的微型单芯片双重解决方案

文件: 总37页 (文件大小:2740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
TPS62770 面向可穿戴应用的多轨 DC/DC 转换器  
1 特性  
3 说明  
1
VIN 范围为 2.5V 5.5V  
370nA Iq 降压转换器  
TPS62770 是一套面向可穿戴 应用 的超小型电源解决  
方案,其包括一个 370nA 超低 Iq 降压转换器、一个受  
转换率控制的负载开关以及一个双模式降压转换器。该  
降压转换器的输出电压可通过三个 VSEL 引脚在  
1.0V1.05V1.1V1.2V1.8V1.9V2.0V 和  
3.0V 之间选择。可以在运行期间更改输出电压。在关  
断模式下,该降压转换器的输出拉至 GND。集成的负  
载开关从内部连接至降压转换器的输出, 并且 接通阶  
段可控制转换率。关闭后,其输出连接到 GND。  
8 个可选输出电压(1.0V 3.0V)  
300mA 输出电流  
输出放电功能  
受转换率控制的负载开关,具有放电功能  
双模式降压转换器  
负载断开  
恒定输出电压,最高可调节至 15V (VFB 0.8 V)  
/12V(固定值)  
双模式降压转换器既可以生成最高达 15V 的恒定输出  
电压(例如 PMOLED 电源),也可以提供恒定输出电  
流(例如 LED 背光电源)。输出电压可通过外部电阻  
最高调节至 15V,也可以通过将 FB 引脚连接至 VIN  
设为 12V 固定电压。该器件 具有 17.7V 内部过压保  
护,用于 FB 节点悬空或接地情况。该器件包含内部整  
流器和负载断开功能。用作恒定输出电流驱动器时,该  
器件可为模拟转换器提供 PWM,以便其根据 PWM 信  
号的占空比按比例减小基准电压。  
发光二极管 (LED) 电流驱动器,提供脉宽调制  
(PWM) 用于电流转换(D = 100% 时的最大  
VFB 电压为 200mV)  
超小型 16 引脚 1.58mm x 1.58mm WCSP 封  
装,0.4mm 间距  
2 应用  
可穿戴和个人电子产品  
健身配件  
健康状况监控和医疗配件  
该器件采用小型 16 引脚 0.4mm 间距的 WCSP 封装。  
器件信息(1)  
器件型号  
TPS62770  
封装  
封装尺寸(标称值)  
DSBGA (16)  
1.58mm x 1.58mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路原理图  
TPS62770  
VOUT1 = 1.8V/300mA  
MCU / BLE  
L1 = 2.2mH  
VIN  
SW1  
VO1  
DC/DC 1  
Step Down Converter  
EN1  
CIN  
10mF  
COUT1  
VSEL3  
VSEL2  
VSEL1  
10mF  
Load Output = 1.8V  
Sensors  
LOAD  
VO2  
ON/OFF  
CTRL  
Load Switch  
L2 = 10mH  
VOUT2 = 12V / 30mA  
PMOLED  
SW2  
EN2/PWM  
DC/DC 2  
Step up converter  
COUT2  
FB  
10mF  
BM  
GND1  
GND2  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCX0  
 
 
 
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application ................................................. 18  
Power Supply Recommendations...................... 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information ................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 33  
11.1 器件支持 ............................................................... 33  
11.2 文档支持 ............................................................... 33  
11.3 ....................................................................... 33  
11.4 静电放电警告......................................................... 33  
11.5 Glossary................................................................ 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
Changes from Original (February 2016) to Revision A  
Page  
已更改 器件状态至量产数据且已发布完整数据表。 ............................................................................................................. 1  
2
版权 © 2016, Texas Instruments Incorporated  
 
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
5 Pin Configuration and Functions  
YFP Package  
16-Pin DSBGA  
Top View  
1
2
3
4
GND2  
SW2  
VO2  
VSEL3  
A
B
C
D
EN2/  
PWM  
BM  
SW1  
VIN  
VSEL2  
FB  
EN1  
VSEL1  
CTRL  
LOAD  
GND1  
VO1  
Pin Functions  
PIN  
I/O  
IN  
DESCRIPTION  
NAME  
NO  
EN2/PWM  
B3  
Enable pin for the step-up converter. High level enables the devices, low level turns the device into  
shutdown mode. A PWM signal can be applied to this pin when used as a constant current driver (BM pin  
connected to VIN). The pin must be terminated.  
GND2  
SW2  
A1  
A2  
PWR GND supply pin for the step-up converter. Connect this pin close to the GND terminals of the input and  
output capacitors.  
IN  
The switch pin of the step-up converter. It is connected to the drain of the internal power MOSFET.  
Connect the inductor L2 between this pin and the input capacitor CIN  
VO2  
BM  
A3  
B1  
OUT  
IN  
Output of the step-up converter.  
This pin controls the operation mode of the step-up converter. With BM = high, the device features a low  
feedback voltage of 200mV, which can be scaled down by the integrated PWM to analog converter. With  
BM = low, the device operates with a 0.8V feedback voltage and operates as a step-up converter with  
voltage regulation. This pin must be terminated and set before the device is enabled.  
FB  
B4  
C2  
IN  
IN  
Feedback pin for the step-up converter to set the output voltage / current. Connect the pin to the center tap  
of a resistor divider to program the output voltage. When it is connected to the VIN pin, the output voltage  
is set to 12 V by an internal feedback divider network. When used as a LED current driver connect the  
sense resistor between this pin and GND. The LED string is connected between FB pin and VO2.  
EN1  
Enable pin for the step-down converter. High level enables the devices, low level turns the device into  
shutdown mode. The pin must be terminated.  
VSEL1  
VSEL2  
VSEL3  
CTRL  
C3  
B2  
A4  
C4  
IN  
IN  
IN  
IN  
Output voltage selection pins. See Table 1 for VOUT selection. These pins must be terminated. The pins  
can be dynamically changed during operation.  
This pin controls the load switch between VO1 and LOAD. With CTRL = low, the LOAD switch is disabled.  
The pin must be terminated.  
VIN  
D1  
D2  
C1  
D3  
PWR VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage spike  
suppression. A ceramic capacitor of 10μF is required.  
GND1  
SW1  
VO1  
PWR GND supply pin for the step-down converter. Connect this pin close to both, the GND terminal of the input  
and output capacitor.  
OUT  
This is the switch pin of the step-down converter and is connected to the internal MOSFET switches.  
Connect the inductor L1 between this terminal and the output capacitor.  
OUT  
Output of the step-down converter. The output voltage is sensed via this pin to the internal feedback divider  
network for the regulation loop. In addition the internal load switch is connected between VO1 pin and  
LOAD pin. Connect this pin directly to the output capacitor with a short trace. The pin is connected to  
GND1 and discharges the output capacitor when the converter is disabled.  
LOAD  
D4  
OUT  
Output terminal of the internal load switch. With CTRL = high, the internal load switch connects VO1 to the  
LOAD pin. The switch features a slew rate control. This pin is pulled to GND with the CTRL = low. If not  
used, leave the pin open.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Table 1. Output Voltage Setting Step-Down Converter  
VO1 [V]  
1.0  
VSEL3  
VSEL2  
VSEL1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.05  
1.1  
1.2  
1.8  
1.9  
2.0  
3.0  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
-0.3  
–0.3  
–40  
MAX  
6
UNIT  
V
VIN, FB  
SW1  
VIN +0.3V  
VIN +0.3V  
32  
V
Pin voltage(2)  
EN1, EN2/PWM, CTRL, BM, VSEL1-3  
SW2, VO2  
V
V
VO1, LOAD  
3.7  
V
TJ  
Operating junction temperature range  
Storage temperature range  
125  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
6.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
VIN  
Input voltage range at VIN pin  
DC/DC 1 Step down  
converter output current  
2.5  
5.5  
V
IOUT1  
L1 = 2.2µH, COUT1 = 10 µF  
300 mA  
2.5V < VIN < 5.5V, VOUT2 = 12V, COUT2 = 10uF, L = 10µH  
2.5V < VIN < 5.5V, VOUT2 = 12V, COUT2 = 2x 10uF, L = 10µH  
3V < VIN < 5.5V, VOUT2 = 5V, COUT2 = 2x 10uF, L = 4.7µH  
30  
DC/DC 2 Step up  
converter output current  
IOUT2  
100  
mA  
°C  
200  
Load current (current  
from LOAD pin)  
ILOAD  
100  
TJ  
Operating junction temperature range  
Ambient temperature range  
-40  
-40  
125  
85  
TA  
6.4 Thermal Information  
TPS62770  
YFP  
THERMAL METRIC(1)  
UNIT  
TERMINALS  
90.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
RθJCtop  
RθJB  
0.6  
Junction-to-board thermal resistance  
13.8  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.8  
ψJB  
13.7  
RθJCbot  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY  
Shutdown current  
into VIN  
ISD  
EN1 = EN2/PWM = GND, CTRL GND, BM = GND,  
0.1 1850  
nA  
V
VTH_ UVLO+  
VTH_UVLO-  
Rising VIN  
Falling VIN  
2.1  
1.9  
2.22  
2
Undervoltage  
lockout threshold  
INPUTS EN1, EN2/PWM, BM, CTRL,VSEL 1-3  
High level input  
threshold  
VIH TH  
1.2  
V
V
Low level input  
threshold  
VIL TH  
0.4  
TJ = 25°C  
10  
25  
IIN  
Input bias Current  
nA  
TJ = –40°C to 85°C  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
STEP-DOWN CONVERTER  
EN1 = VIN, EN2/PWM = GND, CTRL = GND, IOUT = 0µA, VOUT = 1.8V,  
device not switching,  
370 1850  
500  
Operating  
quiescent current  
IQ  
nA  
EN1 = VIN, EN2/PWM = GND, IOUT = 0mA, CTRL = GND, VOUT  
1.8V , device switching  
=
Output voltage  
range  
1.0  
3.0  
V
PFM mode  
PWM mode  
-2.5  
-2  
0
0
2.5  
2
%
Output voltage  
accuracy  
VVOUT  
DC output voltage  
load regulation  
VOUT = 1.8V  
0.001  
0
%/mA  
%/V  
DC output voltage  
line regulation  
VOUT = 1.8V, IOUT = 10 mA, 2.5V VIN 5.5V  
High side  
MOSFET on-  
resistance  
0.45  
0.22  
RDS(ON)  
IOUT = 50mA  
Low Side  
MOSFET on-  
resistance  
High side  
MOSFET switch  
current limit  
480  
600  
600  
720  
65  
mA  
ILIMF  
Low side MOSFET  
switch current limit  
mA  
Discharge switch  
on-resistance  
RDSCH_VO1  
EN = GND, IVO1 = -10mA into VO1 pin  
20  
40  
TJ = 25°C  
100  
Bias current into  
VO1 pin  
IIN_VO1  
EN = VIN, VOUT = 1.8V  
nA  
TJ = –40°C to 85°C  
1010  
Auto 100% Mode  
leave detection  
threshold  
Rising VIN,100% Mode is left with VIN = VOUT + VTH_100+ , max value at  
TJ = 85°C  
VTH_100+  
150  
85  
250  
200  
370  
310  
(1)  
mV  
Auto 100% Mode  
enter detection  
Falling VIN, 100% Mode is entered with VIN = VOUT + VTH_100-, max  
value at TJ = 85°C  
VTH_100-  
(1)  
threshold  
tONmin  
Minimum ON time VOUT = 2.0V, IOUT = 0 mA  
Minimum OFF time  
225  
50  
ns  
ns  
tOFFmin  
Regulator start up  
delay time  
tStartup_delay  
From transition EN1 = low to high until device starts switching  
1
5
ms  
µs  
Softstart time with  
reduced switch  
current limit  
tSoftstart  
700 1200  
High side  
MOSFET switch  
current limit  
80  
150  
150  
200  
ILIM_softstart  
Reduced switch current limit during softstart  
ILOAD = 50mA, CTRL = VIN, VOUT = 1.8V,  
mA  
Low side MOSFET  
switch current limit  
LOAD SWITCH  
MOSFET on-  
resistance  
RLOAD  
0.6  
1.27  
800  
65  
μs  
Ω
Starting with CTRL low to high transition, time to ramp VLOAD from  
95%, VOUT = 1.8V, ILOAD = 20mA  
trise_LOAD  
RDCHRG  
VLOAD rise time  
315  
20  
MOSFET on-  
resistance  
(1) VIN is compared to the programmed output voltage (VOUT). When VIN–VOUT falls below VTH_100- the device enters 100% Mode by turning  
the high side MOSFET on. The 100% Mode is exited when VIN–VOUT exceeds VTH_100+ and the device starts switching. The hysteresis  
for the 100% Mode detection threshold VTH_100+ - VTH_100- will always be positive and will be approximately 50 mV(typ.)  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Electrical Characteristics (continued)  
VIN = 3.6V, TA = –40°C to 85°C typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
STEP-UP CONVERTER  
IQ_VIN  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Quiescent current  
into VIN pin  
EN2/PWM = VIN, BM = GND, EN1 = GND, no load, no switching, VOUT  
= 12 V  
110  
200  
15  
µA  
V
VOUT  
VOUT_12V  
VFB  
Output voltage  
range  
EN2/PWM = VIN, BM = GND  
4.5  
11.7  
12-V output  
voltage accuracy  
FB pin connected to VIN pin, EN2/PWM = VIN, BM = GND  
12  
12.3  
V
Feedback voltage  
PWM mode, BM = GND, EN2/PWM = VIN  
PFM mode, BM = GND, EN2/PWM = VIN  
EN2/PWM = VIN, BM = VIN,  
0.775  
0.795 0.814  
0.803  
V
V
Feedback  
189  
40  
200  
50  
206  
60  
mV  
mV  
regulation voltage  
under brightness  
control  
VFB =50mV, BM = VIN, D(PWM) @ EN2/PWM = 25%,  
VFB = 20mV, BM = VIN, D(PWM) @ EN2/PWM = 10%  
13  
20  
27  
tDim_Off  
tDim_On  
VOVP  
Dimming signal on  
pin EN2/PWM  
270  
160  
μs  
μs  
V
1
Output overvoltage  
protection  
threshold  
17  
17.7  
800  
18.4  
VOVP_HYS  
Over voltage  
protection  
mV  
hysteresis  
IFB_LKG  
ISW_LKG  
RDS(on)  
Leakage current  
into FB pin  
5
5
200  
500  
nA  
nA  
Leakage current  
into SW pin  
EN2/PWM = GND  
Isolation MOSFET VOUT = 12 V  
on resistance  
850  
450  
mΩ  
Low-side MOSFET VOUT = 12 V  
on resistance  
fSW  
Switching  
frequency  
VOUT = 12 V, PWM mode  
850  
730  
1050 1250  
150 250  
970 1230  
kHz  
ns  
tON_min  
ILIM_SW  
Minimal switch on  
time  
Peak switch  
current limit  
VOUT = 12 V  
mA  
ILIM_CHG  
tSoftstart  
Pre-charge current VOUT = 0 V  
30  
6
55  
mA  
ms  
Pre-charge time  
BM = GND, EN2/PWM from low to high until device starts switching,  
IOUT2 = 0mA, COUT2 = 10uF  
Startup time  
VOUT from VIN to 12 V, COUT_effective = 2.2 µF, IOUT = 0 A  
6
版权 © 2016, Texas Instruments Incorporated  
7
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
1000  
160  
140  
120  
100  
80  
TA = -40°C  
TA = 0°C  
TA = -20°C  
TA = 25°C  
TA = 85°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TA = 60°C  
60  
TA = -40°C  
TA = 0°C  
TA = -20°C  
TA = 25°C  
TA = 85°C  
40  
20  
TA = 60°C  
0
2
3
4
5
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN [V]  
VIN [V]  
EN2/PWM = low  
EN1 = high  
VOUT1 set to 1.8V  
EN2/PWM = high  
EN1 = low  
VOUT2 set to 12V  
device not  
switching  
device not  
switching  
1. Quiescent current IQStep-Down converter  
2. Quiescent current IQStep-Up converter  
500  
TA = -40°C  
450  
TA = -20°C  
TA = 25°C  
TA = 85°C  
TA = 0°C  
400  
350  
300  
250  
200  
150  
100  
50  
TA = 60°C  
0
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
EN1 = EN2/PWM = low  
3. Shutdown current ISDN  
8
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
7 Detailed Description  
7.1 Overview  
The TPS62770 is a tiny power solution for wearable applications including a 370nA ultra low Iq step-down  
converter, a slew rate controlled load switch and a dual mode step-up converter. The output voltage of the step-  
down converter can be selected with three VSEL pins between 1.0 V, 1.05 V, 1.1 V, 1.2 V, 1.8 V, 1.9 V, 2.0 V  
and 3.0 V.  
The dual mode step-up converter can generate a constant output voltage up to 15 V, such as PMOLED supply  
or, a constant output current, such as LED back light supply.  
7.2 Functional Block Diagram  
TPS62770  
VIN  
SW1  
D1  
C1  
D3  
DC/DC 1  
Step Down  
Converter  
EN1  
C2  
VO1  
VSEL1  
VSEL2  
VSEL3  
C3  
B2  
A4  
CTRL  
LOAD  
VO2  
C4  
B1  
D4  
A3  
Load Switch  
SW2  
A2  
DC/DC 2  
Step up converter  
BM  
B1  
EN2/PWM  
FB  
B3  
B4  
GND2  
A1  
GND1  
D2  
版权 © 2016, Texas Instruments Incorporated  
9
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Step-Down Converter Device  
CTRL  
VO1  
UVLO  
EN  
Ultra Low Power  
Reference VREF = 1.2V  
Softstart  
EN1  
VOUT  
Discharge  
VSEL1  
VSEL2  
VSEL3  
VOUT  
Load Switch  
UVLO  
Comp  
Auto 100% Mode  
Slew Rate  
Control  
Comp  
100%  
Mode  
Internal  
VFB feedback  
CTRL  
VIN  
VIN  
LOAD  
UVLO  
EN  
divider  
network*  
Discharge  
VTH_100  
VTH_UVLO  
UVLO  
Power Stage  
PMOS  
Current  
Limit Comparator  
VIN  
Timer  
Min. On  
UVLO  
EN  
DCS  
Control  
VIN  
Limit  
High Side  
VOUT  
Min. OFF  
VOUT  
Control  
Logic  
Direct Control  
& Compensation  
Gate Driver  
Anti  
SW1  
Shoot-Through  
VFB  
VREF  
NMOS  
Limit  
Low Side  
Error  
amplifier  
Main  
Comparator  
GND1  
Current  
Limit Comparator  
* typical 50MW  
4. Block diagram Step-Down Converter with Load Switch  
7.3.1.1 DCS-Control™  
TI's DCS-Control™ (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation  
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS-Control  
™ are excellent AC load regulation and transient response, low output ripple voltage and a seamless transition  
between PFM and PWM mode operation. DCS-Control™ includes an AC loop which senses the output voltage  
(VO1 pin) and directly feeds the information to a fast comparator stage. This comparator sets the switching  
frequency, which is constant for steady state operating conditions, and provides immediate response to dynamic  
load changes. In order to achieve accurate DC load regulation, a voltage feedback loop is used. The internally  
compensated regulation network achieves fast and stable operation with small external components and low  
ESR capacitors. The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and  
high load conditions and a Power Save Mode at light loads. Since DCS-Control™ supports both operation modes  
within one single building block, the transition from PWM to Power Save Mode is seamless with minimum output  
voltage ripple. The step-down converter offers both excellent DC voltage and superior load transient regulation,  
combined with low output voltage ripple, minimizing interference with RF circuits.  
7.3.1.2 Output Voltage Selection with pins VSEL1-VSEL3  
The step-down converter doesn't require an external resistor divider network to program the output voltage. The  
device integrates a high impedance feedback resistor divider network that is programmed by the pins VSEL1-3. It  
supports an output voltage range from 1.0 V to 3.0 V. The output voltage is programmed according to Table 1 .  
The output voltage can be changed during operation. This can be used for simple dynamic output voltage  
scaling.  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Feature Description (接下页)  
7.3.1.3 CTRL / Output Load  
With the CTRL pin set to high, the integrated loadswitch is activated and connects the LOAD pin to the VO1 pin  
to power up an additional sub-system. The load switch is slew rate controlled to support soft switching and not to  
impact the regulated output VO1. If CTRL pin is pulled to GND, the LOAD pin is disconnected from the VO1 pin  
and internally connected to GND by an internal discharge switch. The CTRL pin can be controlled by a micro  
controller.  
7.3.1.4 Output Discharge At Pins VO1 And LOAD  
Both the VO1 pin and the LOAD pin feature a discharge circuit to connect each rail to GND, once they are  
disabled. This feature prevents residual charge voltages on capacitors connected to these pins, which may  
impact proper power up of the main- and sub-system. With CTRL pin pulled to low, the discharge circuit at the  
LOAD pin becomes active. With the EN pin pulled to low, the discharge circuits at both pins VO1 and Load are  
active. The discharge circuits of both rails VO1 and LOAD are associated with the UVLO comparator as well.  
Both discharge circuits become active once the input voltage VIN has dropped below the UVLO comparator  
threshold VTH_UVLO- and the UVLO comparator triggers.  
7.3.1.5 Undervoltage Lockout UVLO  
The UVLO circuit shuts down the device if the input voltage VIN drops to typical 1.9V. The device will start up at  
an input voltage of typ. 2.1V.  
7.3.1.6 Short Circuit Protection  
The step-down converter integrates a current limit on the high side, as well on the low side MOSFETs to  
protect the device against overload or short circuit conditions. The peak current in the switches is monitored  
cycle by cycle. If the high side MOSFET current limit is reached, the high side MOSFET is turned off and the  
low side MOSFET is turned on until the switch current decreases below the low side MOSFET current limit.  
Once the low side MOSFET current limit trips, the low side MOSFET is turned off and the high side MOSFET  
turns on again.  
版权 © 2016, Texas Instruments Incorporated  
11  
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Step-Up Converter Device  
SW2  
VIN  
VO2  
Isolation  
MOSFET  
Rectifier  
VO2  
Gate Driver  
NMOS  
Switch  
Pre-charge,  
Short Circuit Protection  
Load Disconnect  
OVP  
Softstart&  
Current Limit  
Control  
Fixed VOUT  
Detector  
FB  
PFM/PWM  
Control  
Reference System  
BM  
VREF  
BM = low  
VREF = 795mV  
Mode  
Selection  
Error  
Amplifier  
FB  
PWM to  
VREF Converter  
VREF = DPWM * 200mV  
EN2/PWM  
BM = high  
GND2  
5. Block Diagram Step-Up Converter  
The step-up converter is designed for applications requiring voltages up to 15V from an Li-Ion battery and tiny  
solution size such as PMOLED displays or LED back light for small size LCD displays. The step-up converter  
operates in two different modes, either as constant output voltage step-up converter operating with 0.8V internal  
reference or as a constant output current step-up converter operating with a reduced internal reference voltage of  
200mV. The block integrates power switch, input/output isolation switch, and power diode.  
7.3.2.1 Under-Voltage Lockout  
See section Undervoltage Lockout UVLO  
7.3.2.2 Output Disconnect  
One common issue with conventional step-up regulators is the conduction path from input to output even when  
the device is disabled. It creates three problems, which are inrush current during start-up, output leakage current  
during shutdown and excessive over load current. The step-up converter has an integrated isolation (load  
disconnect) switch, which is turned off under shutdown mode and over load conditions, thereby opening the  
current path to the output VO2. Thus the device can truly disconnect the load from the input voltage and  
minimize the leakage current during shutdown mode.  
12  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Feature Description (接下页)  
7.3.2.3 12V Fixed Output Voltage  
The step-up converter features an internal default 12-V output voltage setting by connecting the FB pin to the  
VIN pin. Therefore no external resistor divider network is required minimizing the total solution size.  
7.3.2.4 Mode Selection With Pin BM  
The step-up converter can operate in two different modes. With pin BM = low the device regulates to a constant  
output voltage, with BM = high, the device can regulate a constant output current. Further details in section  
Constant-Current Step-Up Mode Operation and section Constant-Voltage Step-Up Mode Operation. The  
operation mode need to be selected before the device is enabled. The pin BM may not be changed during  
operation.  
7.3.2.5 Output Overvoltage Protection  
When the output voltage exceeds the OVP threshold of 17.7 V, the device stops switching. Once the output  
voltage falls 0.8 V below the OVP threshold, the device resumes operation again.  
7.3.2.6 Output Short Circuit Protection  
The step-up converter starts to limit the output current whenever the output voltage drops below 4 V. When the  
VOUT pin is shorted to ground, the output current is limited. This function protects the device from being  
damaged when the output is shorted to ground.  
7.3.2.7 PWM to Analog Converter AT PIN EN2/PWM  
In constant current step-up mode operation two control functions are associated with the pin EN2/PWM:  
a) Enable/ disable of the step-up converter  
b) PWM to analog conversion to scale the internal reference voltage.  
The internal reference voltage scales proportional with the duty cycle of the PWM signal applied at the pin  
EN2/PWM. More details in section Constant-Current Step-Up Mode Operation.  
7.4 Device Functional Modes  
7.4.1 Step-Down Converter  
7.4.1.1 Enable and Shutdown  
The step-down converter is turned on with EN1 = high. With EN1 = low the step-down converter is turned off.  
This pin must be terminated.  
7.4.1.2 Power Save Mode Operation  
At light loads, the device operates in Power Save Mode. The switching frequency varies linearly with the load  
current. In Power Save Mode the device operates in PFM (Pulse Frequency Modulation) that generates a single  
switching pulse to ramp up the inductor current and recharges the output capacitor, followed by a sleep period  
where most of the internal circuits are shutdown to achieve lowest operating quiescent current. During this time,  
the load current is supported by the output capacitor. The duration of the sleep period depends on the load  
current and the inductor peak current. During the sleep periods, the current consumption is reduced to 360 nA.  
This low quiescent current consumption is achieved by an ultra low power voltage reference, an integrated high  
impedance feedback divider network and an optimized Power Save Mode operation.  
7.4.1.3 PWM Mode Operation  
At moderate to heavy load currents, the device operates in PWM mode with continuos conduction. The switching  
frequency is up to 1.6 MHz with a controlled frequency variation depending on the input voltage and load current.  
If the load current decreases, the converter seamlessly enters Power Save Mode to maintain high efficiency  
down to very light loads.  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
7.4.1.4 Device Start-up and Soft Start  
The step-down converter has an internal soft start to minimize inrush current and input voltage drop during start-  
up. Once the device is enabled the device starts switching after a typical delay time of 1 ms. Then the soft start  
time of typical 700 μs begins with a reduced current limit of typical 150mA. When this time expires the device  
enters full current limit operation.  
7.4.1.5 Automatic Transition Into 100% Mode  
Once the input voltage comes close to the output voltage, the DC/DC converter stops switching and enters 100%  
duty cycle operation. It connects the output VOUT via the inductor and the internal high side MOSFET switch to  
the input VIN, once the input voltage VIN falls below the 100% mode enter threshold, VTH_100-. The DC/DC  
regulator is turned off, switching stops and therefore no output voltage ripple is generated. Because the output is  
connected to the input, the output voltage follows the input voltage minus the voltage drop across the internal  
high side switch and the inductor. Once the input voltage increases and trips the 100% mode exit threshold,  
VTH_100+ , the DC/DC regulator turns on and starts switching again.  
7.4.2 Step-Up Converter  
7.4.2.1 Enable and Shutdown  
The device is turned on with EN2/PWM = high. With EN2/PWM = low the device enters shutdown mode. In  
constant current step-up mode (BM = high) the pin EN2/PWM has to be pulled to low level for longer than tDim_Off  
max to enter shutdown mode. This pin must be terminated.  
7.4.2.2 Soft Start  
The step-up converter begins soft start when the EN2/PWM pin is pulled high. At the beginning of the soft start  
period, the isolation FET is turned on slowly to charge the output capacitor with 30-mA current for about 6 ms.  
This is called the pre-charge phase. The output is charged up to the level of the input voltage VIN. After the pre-  
charge phase, the device starts switching and the output voltage ramps up. This is called switching soft start  
phase. An internal soft start circuit limits the peak inductor current.  
7.4.2.3 Power Save Mode  
The step-up converter integrates a power save mode with pulse frequency modulation (PFM) to improve  
efficiency at light load. When the load current decreases, the inductor peak current set by the output of the error  
amplifier declines to regulate the output voltage. When the inductor peak current hits the low limit of 240 mA, the  
output voltage will exceed the set voltage as the load current decreases further. The device enters power save  
mode once the FB voltage exceeds the PFM mode threshold, which is 1% above the nominal output voltage. It  
stops switching, the load is supplied by the output capacitor and the output voltage begins to decline. When the  
FB voltage falls below the PFM mode threshold voltage, the device starts switching again to ramp up the output  
voltage.  
14  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Device Functional Modes (接下页)  
Output  
Voltage  
PFM mode at light load  
PFM mode threshold  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
6. Output Voltage in PFM and PWM Mode  
7.4.2.4 PWM Mode  
The step-up converter uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate to  
heavy load current. Based on the input voltage to output voltage ratio, a circuit predicts the required off-time. At  
the beginning of the switching cycle, the NMOS switching FET is turned on. The input voltage is applied across  
the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged by the load  
current. When the inductor current hits the current threshold that is set by the output of the error amplifier, the  
PWM switch is turned off, and the power diode is forward-biased. The inductor transfers its stored energy to  
charge the output capacitor and supply the load. When the off-time is expired, the next switching cycle starts  
again. The error amplifier compares the FB pin voltage with an internal reference voltage, and its output  
determines the inductor peak current.  
7.4.2.5 Constant-Current Step-Up Mode Operation  
With pin BM = high the converter can regulate to a constant output current. The internal reference voltage is  
therefore reduced to 200mV. In order to regulate a constant output current, a sense resistor has to be connected  
between pin FB and GND, see 7. The device features in this operation mode a PWM to analog converter at  
pin EN2/PWM. The internal reference voltage is scaled according to the duty cycle of the PWM signal applied to  
pin EN2/PWM, see 8. When the pin EN2/PWM is pulled low longer than tDim_OFF max, the step-up converter  
enters shutdown mode. The constant output current IOUT2 can be calculated according equations 公式 1 and 公式  
2.  
版权 © 2016, Texas Instruments Incorporated  
15  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
Step up Converter  
VIN  
IOUT  
VO2  
FB  
PFM/PWM  
Control  
COUT2  
L2  
SW2  
VFB  
VBAT  
BM  
VFB  
VREF  
CIN  
Error  
Amplifier  
RSense  
tDim_On  
PWM to analog converter  
VREF = DPWM * 200mV  
EN2/PWM  
tDim_Off  
PWM  
GND2  
7. Step-Up Converter in Constant-Current Operation Mode  
EN2/PWM  
PWM Dimming  
Device  
Shutdown  
tDim_On tDim_OFF  
tDim_OFF  
>
tDim_OFF max  
200  
160  
120  
80  
VFB in  
mV  
tDim_On  
D =  
tDim_On  
t
Dim_OFF  
+
40  
20  
40  
60  
80  
100  
D in %  
8. EN2/PWM Pin Function  
VFB  
IOUT 2  
=
RSense  
(1)  
(2)  
200mV  
IOUT 2 = DPWM  
´
RSense  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Device Functional Modes (接下页)  
7.4.2.6 Constant-Voltage Step-Up Mode Operation  
With pin BM = low the converter operates as a constant output voltage step-up converter. The internal reference  
voltage is set to 795 mV. A feedback resistor divider need to be connected between VOUT, FB and GND with its  
tap point connected to FB pin. The device provides a fixed set 12 V output voltage if the FB pin is connected to  
VIN. In this case no external resistor divider network is needed.  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS62770 is a tiny power solution for wearable applications including a 370nA ultra low Iq step-down  
converter, a slew rate controlled load switch and a dual mode step-up converter. The output voltage of the step-  
down converter can be selected between 1.0V and 3.0V. The output voltage can be changed during operation. In  
shutdown mode, the output of the step-down converter is pulled to GND. The integrated load switch is internally  
connected to the output of the step-down converter and features slew rate control during turn on phase. Once  
turned off, its output is connected to GND.  
The dual mode step-up converter can generate a constant output voltage up to 15V, e.g. for PMOLED supply, or  
a constant output current, e.g. for LED back light supply. The output voltage can be adjusted up to 15V with  
external resistors, or set to fixed 12V by connecting the FB pin to VIN. The device features an internal over  
voltage protection of 17V in case the FB node is left open or tight to GND. It includes an internal rectifier and  
load disconnect function. When used as constant output current driver, the device offers a PWM to analog  
converter to scale down the reference voltage according to the duty cycle of the PWM signal.  
版权 © 2016, Texas Instruments Incorporated  
17  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2 Typical Application  
8.2.1 System and PMOLED Supply  
TPS62770  
VOUT1 = 1.8V/300mA  
L1 = 2.2mH  
VIN  
SW1  
VO1  
MCU / BLE  
DC/DC 1  
Step Down Converter  
EN1  
CIN  
10mF  
COUT1  
VSEL3  
VSEL2  
VSEL1  
10mF  
Load Output = 1.8V  
LOAD  
Sensors  
ON/OFF  
CTRL  
Load Switch  
L2 = 10mH  
VOUT2 = 9.6V  
SW2  
VO2  
FB  
PMOLED  
EN2/PWM  
DC/DC 2  
Step up converter  
R1 =  
910k  
COUT2  
10mF  
R2 =  
82k  
BM  
GND1  
GND2  
9. Step-Up Converter with Adjustable Output Voltage  
spacer  
spacer  
18  
版权 © 2016, Texas Instruments Incorporated  
 
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
Typical Application (接下页)  
TPS62770  
VOUT1 = 1.8V/300mA  
L1 = 2.2mH  
VIN  
SW1  
VO1  
MCU / BLE  
DC/DC 1  
Step Down Converter  
EN1  
CIN  
10mF  
COUT1  
VSEL3  
VSEL2  
VSEL1  
10mF  
Load Output = 1.8V  
LOAD  
VO2  
Sensors  
ON/OFF  
CTRL  
Load Switch  
L2 = 10mH  
VOUT2 = 12V / 30mA  
SW2  
EN2/PWM  
PMOLED  
DC/DC 2  
Step up converter  
COUT2  
10mF  
FB  
BM  
GND1  
GND2  
10. Step-Up Converter with Fixed 12-V Output  
8.2.1.1 Design Requirements  
The device is supplied by an input voltage between 2.5V and 5.5V. In wearable personal electronics this is  
usually a rechargeable Li-Ion battery / USB port. The step-down converter supplies the system (MCU/BLE radio).  
In order to supply a PMOLED display, the step-up converter must be configured to operate in constant output  
voltage mode with BM pin tied to GND before the step-up converter is enabled. Ideally the BM pin is hardwired to  
GND. The output voltage of the step-up converter is either set by an external resistor divider network (R1/R2),  
shown in 9. The step-up converter supports an internally fixed 12V output voltage by connecting the FB pin to  
VIN, shown in 10.  
The LOAD output is internally connected to the output of the buck regulator and can supply a sensor or a sub-  
system, which are temporarily used. In order to achieve better supply voltage decoupling / noise reduction a  
capacitor can be connected on the LOAD output.  
The design guideline provides a component selection to operate the device within the recommended operating  
conditions. 2 shows the components used for the application characteristic curves.  
2. Components for Application Characteristic Curves  
PACKAGE CODE / SIZE  
REFERENCE  
CIN  
DESCRIPTION  
VALUE  
10 µF  
10 µF  
10 uF  
MANUFACTURER  
Murata  
[mm x mm x mm]  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
0402 / 1.0 x 0.5 x 0.5  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
COUT1  
COUT2  
0402 / 1.0 x 0.5 x 0.5  
0603 / 1.6 x 0.8 x 0.8  
Murata  
Ceramic capacitor X5R 25V,  
GRM188R61E106MA73  
Murata  
L1  
L2  
Inductor DFE201610C  
Inductor VLS302515  
2.2 µH  
10 µH  
2.0 x 1.6 x 1.0  
3.0 x 2.5 x 1.5  
Toko  
TDK  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2.1.2 Application Curves Step-Down Converter  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 3.6V  
20  
VIN = 4.2V  
10  
VIN = 5.0V  
0
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
IOUT [mA]  
IOUT [mA]  
12. Efficiency vs. IOUT, VOUT1 = 1.2 V  
11. Efficiency vs. IOUT, VOUT1 = 1.0 V  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
30  
VIN = 3.6V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 5V  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
IOUT [mA]  
IOUT [mA]  
14. Efficiency vs. IOUT, VOUT1 = 3.0 V  
13. Efficiency vs. IOUT, VOUT1 = 1.8 V  
1400  
1200  
1000  
800  
600  
400  
200  
0
1.890  
1.872  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
1.728  
1.710  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5V  
0
50  
100  
150  
200  
250  
300  
0.01  
0.10  
1.00  
10.00  
100.00  
IOUT1 [mA]  
IOUT1 [mA]  
15. FSW vs. IOUT1, VOUT1 = 1.1 V  
16. VOUT1 = 1.8 V vs IOUT1  
20  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
VIN = 3.6V  
VOUT = 1.2V  
IOUT = 50 µA  
VIN = 3.6V  
VOUT = 1.2V  
IOUT = 1 mA  
17. Typical Operation in Power Save Mode  
18. Typical Operation in Power Save Mode  
VIN = 3.6V  
IOUT = 50 mA  
VIN = 3.6V  
IOUT = 200 mA  
VOUT = 1.2V  
VOUT = 1.2V  
19. Typical Operation in Power Save Mode  
20. Typical Operation in PWM Mode  
VIN = 3.6V  
IOUT = 5mA to  
VIN = 3.6V  
IOUT = 5mA to  
200mA  
200mA  
VOUT = 1.2V  
1 µs rise/fall time  
VOUT = 1.2V  
sinusodial IOUT sweep  
21. Load Transient Performance  
22. AC Load Regulation Performance  
版权 © 2016, Texas Instruments Incorporated  
21  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
VIN = 3.6V  
IOUT = 0mA  
VIN = 3.6V  
IOUT = 0mA  
VOUT = 1.8V  
VOUT = 1.8V  
EN altered from low to high  
23. Startup After EN High  
24. VOUT Ramp Up  
VIN = 0 V to 3.6 V  
in 100 µs  
EN = VIN  
VIN = 3.6V  
IOUT = 0mA  
VOUT = 1.8V  
VOUT = 1.8V  
IOUT = 0 mA  
26. Output Discharge  
25. VIN Ramp Up/Down  
VIN = 3.6V  
VOUT = 1.8V  
IOUT1 = 5mA  
RLOAD = 150Ω  
27. Output Load Enable/Disable  
22  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
8.2.1.3 Application Curves Step-Up Converter Constant 12 V/15 V Output Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2V  
VIN = 3.6V  
VIN = 3V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 3.0V  
VIN = 5.0V  
1
10  
1
10  
100  
IOUT [mA]  
IOUT [mA]  
C001  
28. Efficiency vs. IOUT, VOUT = 15V  
29. Efficiency vs. IOUT, VOUT = 12V  
12.60  
12.48  
12.36  
12.24  
12.12  
12.00  
11.88  
11.76  
11.64  
11.52  
11.40  
200  
180  
160  
140  
120  
100  
80  
VIN = 4.2V  
VIN = 3.6V  
VIN = 3.0V  
60  
40  
VO2 = 12V  
VO2 = 15V  
VO2 = 9V  
20  
0
0.1  
1
10  
100  
1000  
2.5  
3
3.5  
4
4.5  
5
5.5  
IOUT2 [mA]  
VIN [V]  
TA = 25°C  
L = 10µH  
typical switch current lmit ILIM_SW  
IOUT2 max @ -3% VOUT drop  
COUT2 = 2x 10µF  
30. VOUT2 = 12V vs IOUT2  
31. Maximum Output Current vs VIN for Typical ILIMSW  
VIN = 3.6V  
VOUT = 12V  
IOUT2 = 2mA  
L = 10µH  
VIN = 3.6V  
IOUT2 = 30mA  
L = 10µH  
VOUT = 12V  
32. Typical Operation PFM Mode  
33. Typical Operation PWM Mode  
版权 © 2016, Texas Instruments Incorporated  
23  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
VIN = 3.6V  
IOUT2 = 0 mA to 20 mA  
L = 10µH  
VIN = 3.6 V  
RLOAD = 1 kΩ  
VOUT = 12V  
VOUT = 12 V  
L = 10 µH  
34. AC Load Regulation Performance  
35. Startup after EN High  
8.2.2 Step-Up Converter with 5-V Output Voltage  
TPS62770  
VOUT1 = 1.8V/300mA  
L1 = 2.2mH  
VIN  
SW1  
VO1  
MCU / BLE  
DC/DC 1  
Step Down Converter  
EN1  
CIN  
10mF  
COUT1  
VSEL3  
VSEL2  
VSEL1  
10mF  
Load Output = 1.8V  
LOAD  
Sensors  
ON/OFF  
CTRL  
Load Switch  
36. Step-Up Converter Providing 5-V VOUT2  
24  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
8.2.2.1 Design Requirements  
3. Components for Application Characteristic Curves  
PACKAGE CODE / SIZE  
[mm x mm x mm]  
REFERENCE  
DESCRIPTION  
VALUE  
MANUFACTURER  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
CIN  
10 µF  
0402 / 1.0 x 0.5 x 0.5  
Murata  
Ceramic capacitor X5R 25V,  
GRM188R61E106MA73  
COUT2 (2x)  
L2  
10 uF  
0603 / 1.6 x 0.8 x 0.8  
3.0 x 2.5 x 1.5  
Murata  
TDK  
Inductor VLS302515  
4.7 µH  
8.2.2.2 Application Curves  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
1
10  
IOUT [mA]  
100  
38. Transient Response VOUT2 = 5 V  
37. Efficiency vs. IOUT, VOUT = 5.0 V  
版权 © 2016, Texas Instruments Incorporated  
25  
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2.3 Step-Up Converter Operating with Constant Output Current  
The step-up converter device can be configured to operate as a constant current driver e.g. to power 3 to 4 white  
LED's in a string. The current through the string is set by the sense resistor RSense as shown in 39 To  
minimize the losses in the sense resistor, the device features a 200mV internal reference. This section describes  
an application delivering 10mA through an LED string with 4 LED's which is suitable for small display used in  
wearable applications.  
Step up Converter  
VIN  
IOUT  
VO2  
PFM/PWM  
Control  
COUT2  
L2 =  
10mH  
= 10mF  
SW2  
BM  
VFB  
VBAT  
VREF  
CIN  
Error  
Amplifier  
VFB  
FB  
= 10mF  
RSense  
= 20W  
tDim_On  
PWM to analog converter  
VREF = DPWM * 200mV  
EN2/PWM  
tDim_Off  
PWM  
GND2  
39. Step-Up Converter with Constant Output Current - Simplified Block Diagram  
8.2.3.1 Design Requirements  
The Sense resistor to set the maximum output current can be calculated according to 公式 3 The output current  
IOUT2 can be reduced by applying a PWM signal at pin EN2/PWM according to 公式 4  
2 0 0 m V  
R
=
S e n s e  
I O U T 2  
(3)  
(4)  
200mV  
IOUT 2 = DPWM  
´
RSense  
Where:  
RSense = sense resistor in [Ω]  
IOUT2 = output current in [mA]  
DPWM = Dutycycle of the PWM singal at pin EN2/PWM  
4. Components for Application Characteristic Curves  
PACKAGE CODE / SIZE  
[mm x mm x mm]  
REFERENCE  
CIN  
DESCRIPTION  
VALUE  
10 µF  
10 uF  
MANUFACTURER  
Murata  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
0402 / 1.0 x 0.5 x 0.5  
Ceramic capacitor X5R 25V,  
GRM188R61E106MA73  
COUT2  
0603 / 1.6 x 0.8 x 0.8  
3.0 x 2.5 x 1.5  
Murata  
L2  
Inductor VLS302515  
LED LTW-E670DS  
10 µH  
n/a  
TDK  
D1-D4  
Lite ON  
26  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
8.2.3.2 Detailed Design Procedure  
8.2.3.2.1 Setting The Output Voltage Of The Step-Down Converter  
The output voltage is set with the VSEL1-3 pins according to Table 1. No further external components are  
required.  
8.2.3.2.2 Programming the Output Voltage Of The Step-Up Converter  
There are two ways to set the output voltage of the step-up converter. When the FB pin is connected to the input  
voltage, the output voltage is fixed to 12 V. This function reduces the external components to minimize the  
solution size. The second way is to use an external resistor divider to set the desired output voltage.  
By selecting the external resistor divider R1 and R2, as shown in 公式 5, the output voltage is programmed to the  
desired value. When the output voltage is regulated, the typical voltage at the FB pin is VREF of 795 mV.  
«
VOUT  
VREF  
R1=  
Where:  
-1 ìR2  
÷
(5)  
VOUT is the desired output voltage  
VREF is the internal reference voltage at the FB pin  
8.2.3.2.3 Recommended LC Output Filter  
5. Recommended LC Output Filter Combinations for the Step-Down  
Converter  
OUTPUT CAPACITOR VALUE [µF](2)  
INDUCTOR VALUE  
[µH](1)  
10 µF  
22 µF  
(3)  
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -  
30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
6. Recommended LC Output Filter Combinations for Step-Up Converter  
INDUCTOR  
VALUE  
OUTPUT CAPACITOR VALUE [µF](2)  
VOUT  
IOUT  
[µH](1)  
10 µF  
2 x 10µF  
(3)  
(IOUT 30 mA)  
(IOUT 100 mA)  
(IOUT 200 mA)  
10  
9 V –15 V  
5 V  
(3)  
(3)  
4.7  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -  
30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
8.2.3.2.4 Inductor Selection Step-Down Converter  
The inductor value affects its peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to 公式 6.  
公式 7 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current, as calculated with 公式 7. This is  
recommended because during a heavy load transient the inductor current rises above the calculated value. A  
more conservative way is to select the inductor saturation current above the high-side MOSFET switch current  
limit, ILIMF  
.
版权 © 2016, Texas Instruments Incorporated  
27  
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Vout  
1-  
Vin  
DIL = Vout ´  
L ´ ¦  
(6)  
(7)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
With:  
f = Switching Frequency  
L = Inductor Value  
ΔIL= Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
In DC/DC converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e. quality  
factor) and by the inductor DCR value. Increasing the inductor value produces lower RMS currents, but degrades  
transient response. For a given physical inductor size, increased inductance usually results in an inductor with  
lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance (RDC) and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
8.2.3.2.5 Inductor Selection Step-Up Converter  
The step-up converter is optimized to work with an inductor values of 10 µH. Follow 公式 8 to 公式 10 to  
calculate the inductor’s peak current for the application. To calculate the current in the worst case, use the  
minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough  
design margin, choose the inductor value with -30% tolerance, and a low power-conversion efficiency for the  
calculation.  
In a step-up regulator, the inductor dc current can be calculated with 公式 8.  
VOUT ìIOUT  
IL(DC)  
=
V ì h  
IN  
(8)  
Where:  
VOUT = output voltage  
IOUT = output current  
VIN = input voltage  
η = power conversion efficiency, use 80% for most applications  
The inductor ripple current is calculated with the 公式 9 for an asynchronous step-up converter in continuous  
conduction mode (CCM).  
V
ì V  
+ 0.8V - V  
(
)
IN  
OUT IN  
DIL(P-P)  
=
L ì fSW ì V  
+ 0.8V  
(
)
OUT  
(9)  
Where:  
ΔIL(P-P) = inductor ripple current  
L = inductor value  
f SW = switching frequency  
VOUT = output voltage  
VIN = input voltage  
Therefore, the inductor peak current is calculated with 公式 10.  
28  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
(10)  
The following inductor series from different suppliers have been used:  
7. List Of Inductors  
DIMENSIONS  
INDUCTOR  
SUPPLIER(1)  
TYPE  
CONVERTER  
INDUCTANCE [µH]  
[mm3]  
Step-down  
2.2  
2.2  
2.9 x 1.6 x 1.0  
2.0 × 1.25 × 1.0  
DFE201610C  
TOKO  
FDK  
MIPSZ2012D  
2R2  
2.2  
2.0 x 1.2 x 1.0  
MDT2012CH2R  
2
TOKO  
Step-up  
10  
10  
2.0x1.6x1.2  
3.0 x 2.5 x 1.5  
3.0 x 2.5 x 1.5  
2.0 x 1.6 x 1.5  
VLS201610  
VLS302515  
VLS302515  
VLS201612  
TDK  
TDK  
TDK  
TDK  
4.7  
4.7  
(1) See Third-party Products Disclaimer  
8.2.3.2.6 DC/DC Input and Output Capacitor Selection  
Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The  
output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their  
wide variation in capacitance over temperature, become resistive at high frequencies. At light load currents, the  
converter operates in Power Save Mode and the output voltage ripple is dependent on the output capacitor value  
and the PFM peak inductor current. A 10 µF ceramic capacitor is recommended as input capacitor.  
8 shows a list of tested input/output capacitors.  
8. List Of Capacitors  
PACKAGE CODE / SIZE  
REFERENCE  
CIN  
DESCRIPTION  
VALUE  
10µF  
10µF  
10uF  
MANUFACTURER(1)  
Murata  
[mm x mm x mm]  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
0402 / 1.0 x 0.5 x 0.5  
Ceramic capacitor X5R 6.3V,  
GRM155R60J106ME11  
COUT1  
0402 / 1.0 x 0.5 x 0.5  
0603 / 1.6 x 0.8 x 0.8  
0603 / 1.6 x 0.8 x 0.8  
Murata  
Ceramic capacitor X5R 25V,  
GRM188R61E106MA73  
Murata  
COUT2  
Ceramic capacitor X5R 6.3V,  
GRM188R60J106ME84  
10uF  
Murata  
(1) See Third-party Products Disclaimer  
版权 © 2016, Texas Instruments Incorporated  
29  
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2.3.3 Application Curves  
VIN = 3.6V  
EN2/PWM = high  
RSense= 20Ω  
4 LEDs in series  
L = 10µH  
VIN = 3.6V  
RSense= 20Ω  
4 LED's in series  
L = 10µH  
tDim_On = 75 µs, tDim_Off = 75µs  
D = 50%, TDIim = 140µs, ILED = 5mA  
D = 100%, ILED = 10mA  
40. Constant Current Operation with EN2/PWM = 100%  
41. Constant Current with EN2/PWM = 50% D  
D
10  
9
8
7
6
5
4
3
2
1
0
4 LED  
3 LED  
0
20  
40  
60  
80  
100  
D [%]  
VIN = 3.6V  
TA = 25°C  
RSense= 20 Ω  
LED's in string configuration  
L = 10 µH  
TDIim = 50 µs (F = 20kHz)  
VIN = 3.6V  
RSense= 20 Ω  
4 LED's in series  
L = 10 µH  
tDim_On = 15 µs, tDim_Off = 135 µs  
D = 10%, TDIim = 140 µs, ILED = 1 mA  
43. Constant Current vs D  
42. Constant Current with EN2/PWM = 10% D  
30  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
9 Power Supply Recommendations  
The power supply must provide a current rating according to the supply voltage, output voltage and output  
current of the TPS62770.  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Care must be taken in board  
layout to get the specified performance.  
If the layout is not carefully done, the regulator could show poor line and/or load regulation, stability issues as  
well as EMI problems and interference with RF circuits.  
It is critical to provide a low inductance, impedance ground path. Therefore, use wide and short traces for the  
main current paths.  
The input capacitor should be placed as close as possible to the IC pins VIN and GND. The output capacitors  
should be placed close between VO1/2 and GND pins.  
The VO1/2 line should be connected to the output capacitor and routed away from noisy components and  
traces (e.g. SW line) or other noise sources.  
See 44 and 45 for the recommended PCB layout.  
10.2 Layout Example  
VOUT2  
(Step Up Converter)  
COUT2  
SW2  
VO2  
GND2  
VSEL3  
GND  
EN2/  
PWM  
BM VSEL2  
FB  
TPS62770  
SW1  
VIN  
EN1 VSEL1 CTRL  
L2  
LOAD  
GND1  
VO1  
VIN  
CIN  
COUT1  
VOUT1  
(Step Down Converter)  
L1  
44. Recommended PCB Layout with 12 V Fixed VOUT2  
版权 © 2016, Texas Instruments Incorporated  
31  
 
TPS62770  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Layout Example (接下页)  
VOUT2  
(Step Up Converter)  
R2  
COUT2  
R1  
VSEL3  
SW2  
VO2  
GND2  
BM  
EN2/  
PWM  
VSEL2  
FB  
GND  
SW1  
VIN  
EN1 VSEL1 CTRL  
GND1  
LOAD  
VO1  
L2  
TPS62770  
COUT1  
CIN  
VIN  
L1  
VOUT1  
(Step Down Converter)  
GND  
45. Recommended PCB Layout with Adjustable VOUT2  
32  
版权 © 2016, Texas Instruments Incorporated  
TPS62770  
www.ti.com.cn  
ZHCSEV1A FEBRUARY 2016REVISED MARCH 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档ꢀ  
另请参见TPS62770EVM-734 评估模块用户指南》(文献编号:SLVUAO2)和应用笔记《精确测量超低 IQ 器  
件的效率》(文献编号:SLYT558)。  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62770YFPR  
TPS62770YFPT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
62770  
62770  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
D: Max = 1.612 mm, Min =1.552 mm  
E: Max = 1.612 mm, Min =1.552 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62770YFPR

采用 WCSP 封装且具有 360nA Iq 降压和高达 15V 升压功能的微型单芯片双重解决方案 | YFP | 16 | -40 to 85
TI

TPS62770YFPT

采用 WCSP 封装且具有 360nA Iq 降压和高达 15V 升压功能的微型单芯片双重解决方案 | YFP | 16 | -40 to 85
TI

TPS62800

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器
TI

TPS62800YKAR

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125
TI

TPS62801

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器
TI

TPS62801YKAR

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125
TI

TPS62801YKAT

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125
TI

TPS62802

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器
TI

TPS62802YKAR

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125
TI

TPS62802YKAT

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125
TI

TPS62806

采用 0.7mm x 1.05mm WCSP 封装的 1.75V 至 5.5V 输入、600mA 超低 IQ 降压转换器
TI

TPS62806YKAR

1.75-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in 0.7-mm x 1.05-mm WCSP | YKA | 6 | -40 to 125
TI