TPS62801 [TI]

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器;
TPS62801
型号: TPS62801
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器

转换器
文件: 总40页 (文件大小:5588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
TPS6280x 6 0.35mm WCSP 封装的  
1.75V 5.5V0.6A/1A2.3µA IQ 降压转换器  
1 特性  
3 说明  
1.75V 5.5V 输入电压范围  
2.3µA 工作静态电流  
• 开关频率高4MHz  
0.6A 1A 输出电流  
1% 的输出电压精度  
• 可选择省电和强PWM 模式  
R2D 转换器可实现灵活的输出电压测试  
16 种可选输出电压1 种固定输出电压  
TPS6280x 器件系列是一款降压转换器具有 2.3µA  
的典型静态电流以及出色的效率和超小的解决方案尺  
寸。该器件利用 TI DCS-Control拓扑能够与微  
型电感器和电容器配合使用并且具有高达 4MHz 的  
开关频率。在轻负载条件下该器件会无缝进入节能模  
从而减少开关周期数并保持高效率。  
VSEL/MODE 引脚连接到 GND 可以选择固定输出  
电压。只需将一个外部电阻器连接到 VSEL/MODE 引  
就可以选择 16 种内部设置的输出电压。使用集成  
R2D电阻器到数字转换器可读取外部电阻器并设  
置输出电压。仅需通过更换单个电阻相同的器件型号  
即可用于不同的应用和电压轨。此外与传统的外部电  
阻分压器网络相比内部设置的输出电压可提供更高的  
精度。该器件启动之后直流/直流转换器将进入强制  
PWM 模式通过在 VSEL/MODE 引脚上施加高电  
在该工作模式下器件通常以 4MHz 或  
1.5MHz 的开关频率运行从而能够实现最低的输出电  
压纹波和最高的效率。TPS6280x 器件系列采用具有  
0.35mm 间距的微6 WCSP 封装。  
TPS62800 (4MHz)0.4V 0.775V  
TPS62801 (4MHz)0.8V 1.55V  
TPS62802 (4MHz)1.8V 3.3V  
TPS62806 (1.5MHz)0.4V 0.775V  
TPS62807 (1.5MHz)0.8V 1.55V  
TPS62808 (1.5MHz)1.8V 3.3V  
• 智能使能引脚  
• 经过优化的引脚排列可支0201 元件  
DCS-Control 拓扑  
• 输出放电  
100% 的占空比运行  
• 微6 0.35mm WCSP 封装  
• 支持小0.6mm 的解决方案高度  
• 支持小5mm2 的解决方案尺寸  
• 借助以下工具创建定制设计方案:  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS62800  
TPS62801  
TPS62802  
TPS62806  
TPS62807  
TPS62800 WEBENCH® Power Designer  
TPS62801 WEBENCH® Power Designer  
TPS62802 WEBENCH® Power Designer  
TPS62806 WEBENCH® Power Designer  
TPS62807 WEBENCH® Power Designer  
TPS62808 WEBENCH® Power Designer  
1.05 mm × 0.70 mm ×  
0.4 mm  
DSBGA (6)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
可穿戴电子产品、物联网应用  
2 AA 电池供电型应用  
智能手机  
TPS62801  
95  
90  
85  
80  
75  
70  
65  
16 selectable VOUT  
VIN  
1.75V – 5.5V  
L = 0.47 µH  
0.8 V – 1.55 V  
VIN  
SW  
COUT  
CIN  
4.7  
10  
F
GND  
VOS  
F
PWM  
ON  
OFF  
VSEL/  
MODE  
PFM  
EN  
RVSEL  
TPS62801  
VIN  
1.75 V–5.5 V  
1.2-V VOUT fixed  
COUT  
60  
55  
50  
45  
40  
L = 0.47 µH  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN  
SW  
CIN  
4.7  
10  
F
GND  
VOS  
F
ON  
OFF  
VSEL/  
MODE  
EN  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100  
1000  
SLVS  
典型应用  
V
OUT 1.2V 效率IOUT 间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDD1  
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
9.3 System Examples..................................................... 28  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 Device Support....................................................... 31  
12.2 接收文档更新通知................................................... 31  
12.3 支持资源..................................................................31  
12.4 Trademarks.............................................................31  
12.5 Electrostatic Discharge Caution..............................31  
12.6 术语表..................................................................... 32  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 器件比较表.........................................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
8.4 器件功能模式............................................................ 13  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (July 2018) to Revision F (June 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将最小输入电压更新1.75V............................................................................................................................. 1  
Updated max rising UVLO spec......................................................................................................................... 6  
Changes from Revision D (July 2018) to Revision E (January 2019)  
Page  
• 在整个数据表中添加TPS62807 TPS62808 器件.......................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
5 器件比较表  
借助  
RVSEL  
实现的可选择的  
输出电压  
fSW  
[MHz]  
IOUT  
[A]  
启动tSS  
功能  
VSEL/MODE  
输出  
放电  
器件  
固定输出电压  
0.4V 0.775V  
阶跃25mV)  
TPS62800  
TPS62801  
TPS62802  
TPS62806  
TPS62807  
TPS62808  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
VSEL + MODE  
0.7V (VSEL/MODE = GND)  
1.20V (VSEL/MODE = GND)  
1.8V (VSEL/MODE = GND)  
0.7V (VSEL/MODE = GND)  
1.20V (VSEL/MODE = GND)  
1.8V (VSEL/MODE = GND)  
4
4
1
1
125µs  
125µs  
400µs  
125µs  
125µs  
125µs  
0.8V 1.55V  
阶跃50mV)  
1.8V 3.3V  
阶跃100mV)  
4
1
0.4V 0.775V  
阶跃25mV)  
1.5  
1.5  
1.5  
0.6  
0.6  
0.6  
0.8V 1.55V  
阶跃50mV)  
1.8V 3.3V  
阶跃100mV)  
6 Pin Configuration and Functions  
1
2
GND  
VOS  
A
B
C
VIN  
SW  
VSEL/MODE  
EN  
Not to scale  
6-1. 6-Pin DSBGA YKA Package (Top View)  
6-1. Pin Functions  
Pin  
I/O  
Description  
Name  
NO.  
GND supply pin. Connect this pin close to the GND terminal of the input and output  
capacitor.  
GND  
A1  
PWR  
PWR  
VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage  
spike suppression. A ceramic capacitor is required.  
VIN  
B1  
C1  
Connecting a resistor to GND selects a pre-defined output voltage. Once the device has  
started up, the R2D converter is disabled and the pin operates as an input. Applying a high  
level selects forced PWM mode operation and a low level power save mode operation.  
VSEL/MODE  
IN  
Output voltage sense pin for the internal feedback divider network and regulation loop. This  
pin also discharges VOUT by an internal MOSFET when the converter is disabled. Connect  
this pin directly to the output capacitor with a short trace.  
VOS  
SW  
A2  
B2  
IN  
The switch pin is connected to the internal MOSFET switches. Connect the inductor to this  
terminal.  
OUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
Pin  
I/O  
Description  
Name  
NO.  
A high level enables the devices, and a low level turns the device off. The pin features an  
internal pulldown resistor, which is disabled once the device has started up.  
EN  
C2  
IN  
6-2. Output Voltage Setting (VSEL/MODE Pin)  
Output Voltage Setting VOUT [V]  
RVSELResistance [kΩ], E96 Resistor Series,  
VSEL  
1% Accuracy, Temperature Coefficient Better or Equal  
than ±200 ppm/°C  
TPS62800  
TPS62806  
TPS62801  
TPS62807  
TPS62802  
TPS62808  
0
1
0.700  
0.400  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
1.2  
0.8  
1.8  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
Connected to GND (no resistor needed)  
10.0  
12.1  
2
0.85  
0.9  
3
15.4  
4
0.95  
1.0  
18.7  
5
23.7  
6
1.05  
1.1  
28.7  
7
36.5  
8
1.15  
1.2  
44.2  
9
56.2  
10  
11  
12  
13  
14  
15  
16  
1.25  
1.3  
68.1  
86.6  
1.35  
1.4  
105.0  
133.0  
162.0  
205.0  
249.0 or larger  
1.45  
1.5  
1.55  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
MIN(1)  
0.3  
0.3  
2.5  
0.3  
0.3  
40  
MAX(1)  
UNIT  
V
VIN  
SW  
6
VIN + 0.3 V  
V
Pin voltage(2)  
SW (AC), less than 10 ns while switching  
9
6
V
EN, VSEL/MODE  
VOS  
V
5
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal GND.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. The human body  
model is a 100-pF capacitor discharged through a 1.5-kΩresistor into each pin.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
1
UNIT  
V
VIN  
Supply voltage, VIN  
1.75  
IOUT  
IOUT  
IOUT  
L
A
Output current, VIN 2.3 V, TPS62800, TPS62801, TPS62802  
Output current, VIN < 2.3 V, TPS62800, TPS62801, TPS62802  
Output current, TPS62806, TPS62807, TPS62808  
Effective inductance, TPS62800, TPS62801, TPS62802  
Effective output capacitance, TPS62800, TPS62801, TPS62802  
Effective inductance, TPS62806, TPS62807, TPS62808  
Effective output capacitance, TPS62806, TPS62807, TPS62808  
Effective input capacitance  
0.7  
0.6  
0.82  
26  
A
A
0.33  
2
0.47  
1.0  
µH  
µF  
µH  
µF  
µF  
pF  
COUT  
L
0.7  
3
1.2  
26  
COUT  
CIN  
0.5  
4.7  
CVSEL/MODE  
External parasitic capacitance at the VSEL/MODE pin  
30  
Resistance range for external resistor at VSEL/MODE pin (E96 1%  
resistor values)  
10  
249  
kΩ  
RVSEL  
External resistor tolerance E96 series at VSEL/MODE pin  
E96 resistor series temperature coefficient (TCR)  
Operating junction temperature range  
1%  
+200  
125  
ppm/°C  
°C  
200  
40  
TJ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
YKA (DSBGA)  
6 PINS  
147.7  
1.7  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
47.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
47.6  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VIN = 3.6 V, TJ = 40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = VIN, IOUT = 0 µA, VOUT = 1.2 V,  
device not switching, TJ = 40°C to +85°C  
2.3  
2.5  
8
4
µA  
µA  
Operating quiescent current  
(power save mode)  
IQ  
EN = VIN, IOUT = 0 µA, VOUT = 1.2 V, device switching  
Operating quiescent current EN = VIN, VSEL/MODE = VIN (after power up),  
mA  
(PWM mode)  
device switching, IOUT = 0 mA, VOUT = 1.2 V  
EN = GND, shutdown current into VIN  
VSEL/MODE = GND, TJ = 40°C to +85°C  
,
ISD  
Shutdown current  
120  
250  
nA  
VTH_ UVLO+  
VTH_UVLO–  
INPUT EN  
VIH TH  
Rising VIN  
Falling VIN  
1.65  
1.56  
1.75  
1.7  
V
V
Undervoltage lockout  
threshold  
High level input voltage  
Low level input voltage  
Input bias current  
0.8  
0.8  
V
V
VIL TH  
0.4  
25  
IIN  
10  
nA  
TJ = 40°C to +85°C, EN = high  
RPD  
Internal pulldown resistance EN = low  
500  
kΩ  
INPUT VSEL/MODE  
High level input voltage  
(digital input)  
VIH TH  
V
Low level input voltage  
(digital input)  
VIL TH  
IIN  
0.4  
25  
V
Input bias current  
EN = high  
10  
nA  
POWER  
SWITCHES  
Leakage current into the SW  
pin  
ILKG_SW  
10  
120  
80  
25  
170  
115  
1.2  
nA  
mΩ  
mΩ  
A
VSW = 1.2 V, TJ = 40°C to +85°C  
IOUT = 500 mA  
High side MOSFET  
on-resistance  
RDS(ON)  
Low side MOSFET  
on-resistance  
IOUT = 500 mA  
High-side MOSFET switch  
current limit  
ILIMF  
ILIMF  
TPS62806, TPS62807, TPS62808  
TPS62806, TPS62807, TPS62808  
0.95  
0.85  
1.1  
1
Low-side MOSFET switch  
current limit  
1.1  
A
TPS62800, TPS62801  
TPS62802  
1.3  
1.4  
1.2  
1.3  
1.45  
1.55  
1.35  
1.45  
1.55  
1.65  
1.45  
1.55  
A
A
A
A
High-side MOSFET switch  
current limit  
ILIMF  
TPS62800, TPS62801  
TPS62802  
Low-side MOSFET switch  
current limit  
ILIMF  
OUTPUT VOLTAGE DISCHARGE  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
VIN = 3.6 V, TJ = 40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN = GND, IVOS = 10 mA into the VOS pin  
TJ = 40°C to +85°C  
RDSCH_VOS  
MOSFET on-resistance  
7
11  
Ω
Bias current into the VOS  
pin  
EN = VIN, VOUT = 1.2 V (internal 12-MΩresistor  
divider), TJ = 40°C to +85°C  
IIN_VOS  
100  
400  
nA  
THERMAL PROTECTION  
Thermal shutdown  
Rising junction temperature, PWM mode  
160  
20  
°C  
°C  
temperature  
TSD  
Thermal shutdown  
hysteresis  
OUTPUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
fSW  
Output voltage range  
Output voltage range  
Output voltage range  
Output voltage accuracy  
Output voltage accuracy  
Output voltage accuracy  
Switching frequency  
TPS62800, TPS62806, 25-mV steps  
TPS62801, TPS62807, 50-mV steps  
TPS62802, TPS62808, 100-mV steps  
Power save mode  
0.4  
0.8  
1.8  
0.775  
1.55  
3.3  
V
V
V
0%  
0%  
0%  
4
PWM mode, IOUT = 0 mA, TJ = 25°C to +85°C  
1%  
1%  
2%  
1.7%  
PWM mode, IOUT = 0 mA, TJ = 40°C to +125°C  
VIN = 3.6 V, VOUT = 1.2 V, PWM operation  
MHz  
MHz  
TPS62806  
VIN = 3.6 V, VOUT = 0.7 V, PWM operation  
fSW  
Switching frequency  
Switching frequency  
Switching frequency  
1.5  
1.5  
TPS62807  
VIN = 3.6 V, VOUT = 1.2 V, PWM operation  
fSW  
MHz  
MHz  
µs  
TPS62808  
VIN = 3.6 V, VOUT = 1.8 V, PWM operation  
fSW  
1.5  
Regulator start-up delay  
time  
From transition EN = low to high until device starts  
switching, VSEL = 16  
tStartup_delay  
500  
125  
125  
400  
1100  
170  
210  
500  
TPS62801, from VOUT = 0 V to 0.95% of VOUT  
nominal  
tSS  
tSS  
tSS  
Soft-start time  
Soft-start time  
Soft-start time  
µs  
TPS62800, TPS62806, TPS62807, TPS62808  
from VOUT = 0 V to 0.95% of VOUT nominal  
µs  
TPS62802, from VOUT = 0 V to 0.95% of VOUT  
nominal  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
0.5  
5
4.5  
4
TJ = -40°C  
TJ = -10°C  
TJ = 30°C  
TJ = 85°C  
TJ = 125°C  
0.45  
0.4  
0.35  
0.3  
3.5  
3
0.25  
0.2  
2.5  
2
0.15  
0.1  
1.5  
1
TJ = -40°C  
TJ = -10°C  
TJ = 30°C  
TJ = 85°C  
TJ = 125°C  
0.05  
0
0.5  
0
1.5  
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
EN = GND  
Device not switching  
7-1. Shutdown Current, ISD  
7-2. Quiescent Current, IQ  
14  
13  
12  
11  
10  
9
1000  
100  
10  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
8
7
6
5
4
1
3
2
1
0
0.1  
0
0.5  
1
1.5  
2
2.5 3  
VIN [V]  
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5 3  
VIN [V]  
3.5  
4
4.5  
5
5.5  
VIN falling  
EN = VIN  
Device switching, no load, VOUT = 1.2 V  
VSEL/MODE = GND  
VIN rising  
EN = VIN  
Device switching, no load, VOUT = 1.2 V  
VSEL/MODE = GND  
7-3. Operating Quiescent Current, IQ  
7-4. Operating Quiescent Current, IQ  
350  
200  
175  
150  
125  
100  
75  
TJ = -40°C  
TJ = -10°C  
TJ = 30°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
TJ = -10°C  
TJ = 30°C  
TJ = 85°C  
TJ = 125°C  
50  
50  
25  
25  
0
0
1.5  
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
7-5. High-Side Switch Drain Source Resistance, 7-6. Low-Side Switch Drain Source Resistance,  
RDS(ON)  
RDS(ON)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
20  
18  
16  
14  
12  
10  
8
TJ = -40°C  
TJ = -10°C  
TJ = 30°C  
TJ = 85°C  
TJ = 125°C  
6
4
2
0
1.5  
2
2.5  
3
3.5  
VIN [V]  
4
4.5  
5
5.5  
7-7. VOS Discharge Switch Drain Source Resistance, RDSCH_VOS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS6280x is a high frequency synchronous step-down converter with ultra-low quiescent current  
consumption. Using TI's DCS-Control topology, the device extends the high efficiency operation area down to  
microamperes of load current during power save mode operation. TI's DCS-Control (Direct Control with  
Seamless Transition into power save mode) is an advanced regulation topology, which combines the  
advantages of hysteretic and voltage mode control. Characteristics of DCS-Control are excellent AC load  
regulation and transient response, low output ripple voltage, and a seamless transition between PFM and PWM  
mode operation. DCS-Control includes an AC loop, which senses the output voltage (VOS pin) and directly  
feeds the information to a fast comparator stage. This comparator sets the switching frequency, which is  
constant for steady state operating conditions, and provides immediate response to dynamic load changes. In  
order to achieve accurate DC load regulation, a voltage feedback loop is used. The internally compensated  
regulation network achieves fast and stable operation with small external components and low-ESR capacitors.  
8.2 Functional Block Diagram  
EN  
Smart Enable  
Ultra Low Power  
0.4V VREF  
UVLO  
Pulldown Control  
Input Buffer  
500kW  
VOS  
Thermal Shutdown  
Control Logic  
VOS  
R2D converter  
UVLO  
VOUT  
Discharge  
VSEL/  
MODE  
Internal  
VFB feedback  
divider  
EN  
Resistor to  
Digital  
Converter  
network  
Power Stage  
Current  
Limit Comparator  
VIN  
SW  
Power Save /  
Forced PWM  
Mode operation  
Limit  
High Side  
PMOS  
VIN  
TON  
Timer  
DCS Control  
VOS  
Ramp  
VOS  
Gate Driver  
Direct Control  
Startup Delay  
VFB  
VREF  
NMOS  
Softstart Timing  
Limit  
Low Side  
Error  
amplifier  
Main  
Comparator  
GND  
Current  
Limit Comparator  
8-1. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Smart Enable and Shutdown (EN)  
An internal 500-kΩ resistor pulls the EN pin to GND and avoids the pin to be floating, which prevents an  
uncontrolled start-up of the device in case the EN pin cannot be driven to low level safely. With EN low, the  
device is in shutdown mode. The device is turned on with EN set to a high level. The pulldown control circuit  
disconnects the pulldown resistor on the EN pin once the internal control logic and the reference have been  
powered up. With EN set to a low level, the device enters shutdown mode and the pulldown resistor is activated  
again.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
8.3.2 Soft Start  
Once the device has been enabled with EN high, it initializes and powers up its internal circuits, which occurs  
during the regulator start-up delay time, tStartup_delay. Once tStartup_delay expires, the internal soft-start circuitry  
ramps up the output voltage within the soft-start time, tss. See 8-2.  
The start-up delay time, tStartup_delay, varies depending on the selected VSEL value. tStartup_delay is shortest with  
VSEL = 0 and longest with VSEL = 16. See 9-42 to 9-46.  
EN  
Device starts switching  
and ramps VOUT  
VOUT  
tStartup_delay  
tSS  
8-2. Device Start-Up  
8.3.3 VSEL/MODE Pin  
This pin has two functions: output voltage selection during start-up of the converter and operating mode  
selection. See 5.  
8.3.3.1 Output Voltage Selection (R2D Converter)  
The output voltage is set with a single external resistor connected between the VSEL/MODE pin and GND. Once  
the device has been enabled and the control logic as well as the internal reference have been powered up, a  
R2D (resistor-to-digital) conversion is started to detect the external resistor RVSEL within the regulator start-up  
delay time, tStartup_delay. An internal current source applies current through the external resistor and an internal  
ADC reads back the resulting voltage level. Depending on the level, an internal feedback divider network is  
selected to set the correct output voltage. Once this R2D conversion is finished, the current source is turned off  
to avoid current flow through the external resistor.  
After power up, the pin is configured as an input for mode selection. Therefore, the output voltage is set only  
once. If the mode selection function is used in combination with the VSEL function, ensure that there is no  
additional current path or capacitance greater than 30 pF total to GND during R2D conversion. Otherwise, the  
additional current to GND is interpreted as a lower resistor value and a false output voltage is set. 6-2 lists the  
correct resistor values for RVSEL to set the appropriate output voltages. The R2D converter is designed to  
operate with resistor values out of the E96 table and requires 1% resistor value accuracy. The external resistor,  
RVSEL, is not a part of the regulator feedback loop and has therefore no impact on the output voltage accuracy.  
Ensure that there is no other leakage path than the RVSEL resistor at the VSEL/MODE pin during an  
undervoltage lockout event. Otherwise, a false output voltage will be set.  
Connecting VSEL/MODE to GND selects a pre-defined output voltage.  
TPS62800 = 0.7 V  
TPS62801 = 1.2 V  
TPS62802 = 1.8 V  
TPS62806 = 0.7 V  
TPS62807 = 1.2 V  
TPS62808 = 1.8 V  
In this case, no external resistor is needed, which enables a smaller solution size.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
8.3.3.2 Mode Selection Power Save Mode and Forced PWM Operation  
A low level at this pin selects power save mode operation, and a high level selects forced PWM operation. The  
mode can be changed during operation after the device has been powered up. The mode selection function is  
only available after the R2D converter has read out the external resistor.  
8.3.4 Undervoltage Lockout (UVLO)  
To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) comparator monitors  
the supply voltage. The UVLO comparator shuts down the device at an input voltage of 1.7 V (maximum) with  
falling VIN. The device starts at an input voltage of 1.75 V (maximum) rising VIN. Once the device re-enters  
operation out of an undervoltage lockout condition, it behaves like being enabled. The internal control logic is  
powered up and the external resistor at the VSEL/MODE pin is read out.  
8.3.5 Switch Current Limit and Short Circuit Protection  
The TPS6280x integrates a current limit on the high-side and low-side MOSFETs to protect the device against  
overload or short circuit conditions. The current in the switches is monitored cycle by cycle. If the high-side  
MOSFET current limit, ILIMF, trips, the high-side MOSFET is turned off and the low-side MOSFET is turned on to  
ramp down the inductor current. Once the inductor current through the low-side switch decreases below the low-  
side MOSFET current limit, ILIMF, the low-side MOSFET is turned off and the high-side MOSFET turns on again.  
8.3.6 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds the  
thermal shutdown temperature, TSD, of 160°C (typical), the device enters thermal shutdown. Both the high-side  
and low-side power FETs are turned off. When TJ decreases below the hysteresis amount of typically 20°C, the  
converter resumes operation, beginning with a soft start to the originally set VOUT (there is no R2D conversion of  
RVSEL). The thermal shutdown is not active in power save mode.  
8.3.7 Output Voltage Discharge  
The purpose of the output discharge function is to ensure a defined down-ramp of the output voltage when the  
device is disabled and to keep the output voltage close to 0 V. The output discharge feature is only active once  
the device has been enabled at least once since the supply voltage was applied. The output discharge function  
is not active if the device is disabled and the supply voltage is applied the first time.  
The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon as the  
device is disabled. The minimum supply voltage required to keep the discharge function active is VIN  
VTH_UVLO-  
>
.
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
8.4 器件功能模式  
8.4.1 Power Save Mode Operation  
The DCS-Control topology supports power save mode operation. At light loads, the device operates in PFM  
(pulse frequency modulation) mode that generates a single switching pulse to ramp up the inductor current and  
recharge the output capacitor, followed by a sleep period where most of the internal circuits are shut down to  
achieve lowest operating quiescent current. During this time, the load current is supported by the output  
capacitor. The duration of the sleep period depends on the load current and the inductor peak current. During  
the sleep periods, the current consumption is reduced to typically 2.3 µA. This low quiescent current  
consumption is achieved by an ultra-low power voltage reference, an integrated high impedance feedback  
divider network, and an optimized power save mode operation.  
In PFM mode, the switching frequency varies linearly with the load current. At medium and high load conditions,  
the device automatically enters PWM (pulse width modulation) mode and operates in continuous conduction  
mode with a nominal switch frequency, fsw, of typically 4 MHz or 1.5 MHz. The switching frequency in PWM  
mode is controlled and depends on VIN and VOUT. The boundary between PWM and PFM mode is when the  
inductor current becomes discontinuous.  
If the load current decreases, the converter seamlessly enters PFM mode to maintain high efficiency down to  
very light loads. Since DCS-Control supports both operation modes within one single building block, the  
transition from PWM to PFM ,mode is seamless with minimum output voltage ripple.  
8.4.2 Forced PWM Mode Operation  
After the device has powered up and ramped up VOUT, the VSEL/MODE pin acts as an input. With a high level  
on VSEL/MODE pin, the device enters forced PWM mode and operates with a constant switching frequency  
over the entire load range, even at very light loads. This action reduces or eliminates interference with RF and  
noise sensitive circuits, but lowers efficiency at light loads.  
8.4.3 100% Mode Operation  
The duty cycle of the buck converter operating in PWM mode is given as D = VOUT / VIN. The duty cycle  
increases as the input voltage comes close to the output voltage. In 100% duty cycle mode, the device keeps  
the high-side switch on continuously. The high-side switch stays turned on as long as the output voltage is below  
the internal set point, which allows the conversion of small input to output voltage differences.  
8.4.4 Optimized Transient Performance from PWM-to-PFM Mode Operation  
For most converters, the load transient response in PWM mode is improved compared to PFM mode, since the  
converter reacts faster on the load step and actively sinks energy on the load release. Compare 9-33 to 图  
9-32. As an additional feature, the TPS6280x automatically enters PWM mode for 16 cycles after a heavy load  
release to bring the output voltage back to the regulation level faster. After 16 cycles of PWM mode, the device  
automatically returns to PFM mode (if VSEL/MODE is driven low). See 8-3. Without this optimization, the  
output voltage overshoot would be higher and would look like the VOUT' trace. This feature is only active once the  
load is high enough and the converter operates in PWM mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
VOUT  
VOUT  
16 PWM  
Cycles  
PWM  
Mode  
PFM Mode  
8-3. Optimized Transient Performance from PWM-to-PFM Mode  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
TPS62801  
VIN  
16 selectable VOUT  
0.8 V–1.55 V  
L = 0.47 µH  
1.75 V–5.5 V  
VIN  
SW  
COUT  
CIN  
4.7  
10  
F
F
GND  
VOS  
PWM  
ON  
OFF  
VSEL/  
MODE  
PFM  
RVSEL  
EN  
9-1. TPS62801 Adjustable VOUT Application Circuit  
Additional circuits are shown in 9.3.  
9.2.1 Design Requirements  
9-1 shows the list of components for the application circuit and the characteristic application curves  
9-1. Components for Application Characteristic Curves  
Reference  
Description  
Value  
Size [L × W × T]  
Manufacturer(1)  
TPS62801 / 2  
Step down converter  
1.05 mm × 0.70 mm × 0.4 mm maximum  
Texas Instruments  
Ceramic capacitor,  
GRM155R60J475ME47D  
0402 (1 mm × 0.5 mm × 0.6 mm  
maximum)  
CIN  
COUT  
L
4.7 µF  
10 µF  
Murata  
Murata  
Murata  
Ceramic capacitor,  
GRM155R60J106ME15D  
0402 (1 mm × 0.5 mm × 0.65 mm  
maximum)  
0603 (1.6 mm × 0.8 mm × 1.0 mm  
maximum)  
Inductor DFE18SANR47MG0L  
0.47 µH  
(1) See the Third-party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62800 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62801 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62802 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62806 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62807 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62808 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Inductor Selection  
The inductor value affects the peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple, and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to 方程1.  
方程式 2 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor must be rated higher than the maximum inductor current, as calculated with 程式 2, which is  
recommended because during a heavy load transient the inductor current rises above the calculated value. A  
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch  
current limit, ILIMF  
.
Vout  
Vin  
1-  
DIL = Vout ´  
L ´ ¦  
(1)  
(2)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
where  
f = switching frequency  
L = inductor value  
• ΔIL = peak-to-peak inductor ripple current  
ILmax = maximum inductor current  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
9-2 shows a list of possible inductors.  
9-2. List of Possible Inductors  
Size Imperial  
(Metric)  
Inductance [µH]  
Inductor Series  
Dimensions L × W × T  
Supplier(1)  
0.47  
0.47  
0.47  
0.47  
1.0  
DFE18SAN_G0  
HTEB16080F  
HTET1005FE  
TFM160808ALC  
DFE201610E  
0603 (1608)  
0603 (1608)  
0402 (1005)  
0603 (1608)  
0806 (201610)  
1.6 mm × 0.8 mm × 1.0 mm maximum  
1.6 mm × 0.8 mm × 0.6 mm maximum  
1.0 mm × 0.5 mm × 0.65 mm maximum  
1.6 mm × 0.8 mm × 0.8 mm maximum  
2.0 mm × 1.6 mm × 1.0 mm maximum  
Murata  
Cyntec  
Cyntec  
TDK  
Murata  
(1) See the Third-party Products Disclaimer.  
9.2.2.3 Output Capacitor Selection  
The DCS-Control scheme of the TPS6280x allows the use of tiny ceramic capacitors. Ceramic capacitors with  
low-ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires  
either an X7R or X5R dielectric. At light load currents, the converter operates in power save mode and the output  
voltage ripple is dependent on the output capacitor value. A larger output capacitors can be used reducing the  
output voltage ripple.  
The inductor and output capacitor together provide a low-pass filter. To simplify this process, 9-3 outlines  
possible inductor and capacitor value combinations.  
9-3. Recommended LC Output Filter Combinations  
Nominal Output Capacitor Value [µF]  
Device  
Nominal Inductor Value [µH]  
4.7 µF  
10 µF  
2 × 10 µF  
22 µF  
TPS62800,  
TPS62801  
0.47(1)  
0.47(1)  
(3)  
(3)  
TPS62802  
TPS62806,  
TPS62807,  
TPS62808  
1.0(2)  
(3)  
(1) An effective inductance range of 0.33 µH to 0.82 µH is recommended. An effective capacitance range of 2 µF to 26 µF is  
recommended.  
(2) An effective inductance range of 0.7 µH to 1.2 µH is recommended. An effective capacitance range of 3 µF to 26 µF is recommended.  
(3) Typical application configuration. Other check marks indicate alternative filter combinations.  
9.2.2.4 Input Capacitor Selection  
Because the buck converter has a pulsating input current, a low-ESR ceramic input capacitor is required for best  
input voltage filtering to minimize input voltage spikes. For most applications, a 4.7-µF input capacitor is  
sufficient. When operating from a high impedance source, like a coin cell, a larger input buffer capacitor 10  
μF is recommended to avoid voltage drops during start-up and load transients. The input capacitor can be  
increased without any limit for better input voltage filtering. The leakage current of the input capacitor adds to the  
overall current consumption.  
9-4 shows a selection of input and output capacitors.  
9-4. List of Possible Capacitors  
Size Imperial  
Capacitor Part Number  
GRM155R60J475ME47D  
GRM035R60J475ME15  
Dimensions L × W × T  
Supplier(1)  
Murata  
Capacitance [μF]  
(Metric)  
1.0 mm × 0.5 mm × 0.6 mm  
maximum  
4.7  
4.7  
0402 (1005)  
0.6 mm × 0.3 mm × 0.55 mm  
maximum  
0201 (0603)  
Murata  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
9-4. List of Possible Capacitors (continued)  
Size Imperial  
(Metric)  
Capacitor Part Number  
Dimensions L × W × T  
Supplier(1)  
Capacitance [μF]  
1.0 mm × 0.5 mm × 0.65 mm  
maximum  
10  
GRM155R60J106ME15D  
0402 (1005)  
Murata  
(1) See the Third-party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
9.2.3 Application Curves  
The conditions for the below application curves are VIN = 3.6 V, VOUT = 1.2 V, and the components listed in 表  
9-1, unless otherwise noted.  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
SLVS  
SLVS  
TPS62800  
TPS62800  
VSEL/MODE = GND  
RVSEL = 10 kΩto GND  
9-3. Efficiency Power Save Mode  
9-2. Efficiency Power Save Mode  
VOUT = 0.7 V  
VOUT = 0.4 V  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN = 1.8V  
VIN = 2.6V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.3V  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.0V  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100  
1000  
0.001  
0.01  
0.1  
1
IOUT [mA]  
10  
100  
1000  
SLVS  
SLVS  
TPS62801  
TPS62801  
RVSEL = 10 kΩto GND  
RVSEL = 15.4 kΩto GND  
9-4. Efficiency Power Save Mode  
9-5. Efficiency Power Save Mode  
VOUT = 0.8 V  
VOUT = 0.9 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
80  
70  
60  
50  
40  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
30  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
20  
10  
0
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100  
1000  
IOUT [mA ]  
SLVS  
SLVS  
TPS62801  
RVSEL = 56.2 kΩ  
TPS62801  
VSEL/MODE = GND  
VSEL/MODE pin = high after start-up  
9-7. Efficiency Power Save Mode  
9-6. Efficiency Forced PWM Mode  
VOUT = 1.2 V  
VOUT = 1.2 V  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
60  
DFE18SAN_G0 R47 (1.6 x 1.6 x 1.0 mm)  
HTEB16080F R47 (1.6 x 1.6 x 0.6 mm)  
HTET1005FE R47 (1.0 x 0.5 x 0.65 mm)  
TFM160808ALC R47 (1.6 x 1.6 x 0.8 mm)  
55  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
50  
45  
40  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100  
1000  
IOUT [mA ]  
SLPVloSt  
SLVS  
TPS62801  
VSEL/MODE = GND, VOUT = 1.2 V  
TPS62802  
VSEL/MODE = GND  
9-8. Inductor Comparison  
9-9. Efficiency Power Save Mode  
VOUT = 1.8 V  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.8V  
VIN = 4.5V  
VIN = 5.0V  
VIN = 3.6V  
VIN = 3.8V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
10  
100  
600  
IOUT [mA ]  
SLVS  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100  
1000  
TPS62806  
VOUT = 0.7 V, VSEL/MODE = GND  
L = 1-µH DFE201610E  
SLVS  
TPS62802  
3.3 V VOUT, VSEL/MODE = 249 k  
9-11. Efficiency Power Save Mode  
9-10. Efficiency Power Save Mode  
VOUT = 0.7 V  
VOUT = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
VIN=1.8V  
VIN=2.1V  
VIN=2.7V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=4.8V  
60  
55  
50  
45  
40  
VIN=2.7V  
VIN=3.3V  
VIN=3.6V  
VIN=4.2V  
VIN=4.8V  
40  
10m  
100m  
1m 10m  
Load Current [A]  
100m  
1
10m  
100m  
1m 10m  
Load Current [A]  
100m  
1
Effi  
Effi  
TPS62807  
VOUT = 1.2 V, VSEL/MODE = GND  
L = 1-µH DFE201610E  
TPS62808  
VOUT = 1.8 V, VSEL/MODE = GND  
L = 1-µH DFE201610E  
9-12. Efficiency Power Save Mode  
9-13. Efficiency Power Save Mode  
VOUT = 1.2 V  
VOUT = 1.8 V  
1.248  
1.248  
TJ = 25°C  
TJ = -40°C  
1.236  
1.224  
1.212  
1.200  
1.188  
1.176  
1.164  
1.236  
1.224  
1.212  
1.200  
1.188  
1.176  
1.164  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
SLVS  
SLVS  
TPS62801  
VSEL/MODE = GND  
PFM/PWM mode TJ = 25°C  
TPS62801  
VSEL/MODE = GND  
PFM/PWM mode  
VOUT = 1.2 V  
VOUT = 1.2 V  
TJ = 40°C  
9-14. Output Voltage vs Output Current  
9-15. Output Voltage vs Output Current  
1.248  
1.212  
TJ = 85°C  
TJ = 25°C  
1.236  
1.224  
1.212  
1.200  
1.188  
1.200  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
1.176  
1.164  
1.188  
0.01  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
SLVS  
SLVS  
TPS62801  
VSEL/MODE = GND  
PFM/PWM mode TJ = 85°C  
TPS62801  
VSEL/MODE = high after start-up  
Forced PWM mode TJ = 25°C  
VOUT = 1.2 V  
VOUT = 1.2 V  
9-16. Output Voltage vs Output Current  
9-17. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
1.212  
1.200  
1.188  
1.212  
TJ = 85°C  
TJ = -40°C  
1.200  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
1.188  
0.01  
0.1  
1
10  
IOUT [mA ]  
100  
1000  
SLVS  
SLVS  
TPS62801  
VSEL/MODE = high after start-up  
Forced PWM mode TJ = 85°C  
TPS62801  
VSEL/MODE = high after start-up  
Forced PWM mode  
VOUT = 1.2 V  
VOUT = 1.2 V  
TJ = 40°C  
9-19. Output Voltage vs Output Current  
9-18. Output Voltage vs Output Current  
5000  
4500  
4000  
3500  
3000  
2500  
100  
90  
80  
70  
60  
50  
2000  
40  
VIN = 1.8V  
VIN = 1.8V  
1500  
1000  
500  
0
30  
20  
10  
0
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0
100 200 300 400 500 600 700 800 900 1000  
IOUT [mA]  
0
1
2
3
4
5
IOUT [mA]  
6
7
8
9
10  
SLVS  
SLVS  
TPS62801  
VSEL/MODE = GND  
PFM/PWM mode TJ = 25°C  
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = GND  
VOUT = 1.2 V  
PFM/PWM mode  
TJ = 25°C  
9-20. Switching Frequency vs Output Current  
9-21. Switching Frequency (Zoom In)  
5000  
4500  
4000  
3500  
3000  
2500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2000  
VIN = 1.8V  
1500  
1000  
500  
0
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0
100 200 300 400 500 600 700 800 900 1000  
IOUT [mA]  
0
SLVS  
0
100 200 300 400 500 600 700 800 900 1000  
IOUT [mA]  
TPS62801  
VSEL/MODE = high after start-up  
Forced PWM Mode TJ = 25°C  
SLVS  
VOUT = 1.2 V  
TPS62801  
VOUT = 0.8 V  
VSEL/MODE = 10 kΩto GND  
PFM/PWM mode TJ = 25°C  
9-22. Switching Frequency vs Output Current  
9-23. Switching Frequency vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VIN = 1.8V  
600  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
400  
200  
0
0
60 120 180 240 300 360 420 480 540 600  
IOUT [mA]  
SLVS  
TPS62801  
VOUT = 1.2 V  
IOUT = 25 µA  
VSEL/MODE = GND  
PFM mode  
TPS62806  
VOUT = 0.7 V  
VSEL/MODE = GND  
PFM/PWM mode  
L = 1 µH  
TJ = 25°C  
9-25. Typical Operation Power Save Mode  
9-24. Switching Frequency vs Output Current  
TPS62801  
VOUT = 1.2 V  
IOUT = 10 mA  
VSEL/MODE = GND  
PFM mode  
VOUT = 0.7 V  
VIN = 3.8 V  
IOUT = 10 mA  
VSEL/MODE = GND  
PFM Mode, L = 1-µH DFE201610E  
9-26. Typical Operation Power Save Mode  
9-27. TPS62806 Typical Operation Power Save  
Mode  
VOUT = 0.7 V  
VIN = 3.8 V  
IOUT = 0 mA  
VSEL/MODE = VIN  
(after start-up)  
PWM mode  
VOUT = 1.2 V  
VSEL/MODE = GND  
IOUT = 500 mA  
PFM Mode, L = 1-µH DFE201610E  
9-29. TPS62801 Typical Operation PWM Mode  
9-28. TPS62806 Typical Forced PWM Mode  
Operation (1.5 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
Forced PWM  
VOUT = 1.2 V  
IOUT = 0 mA  
TPS62801  
rise / fall time < 1  
µs  
VOUT = 1.2 V  
VSEL/MODE = GND  
mode  
IOUT = 0 mA to 50 mA, PFM Mode  
VSEL/MODE = VIN (after start-up)  
9-30. TPS62801 Typical Operation Forced PWM  
9-31. Load Transient Power Save Mode  
Mode  
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = GND  
PFM / PWM mode  
Forced  
VOUT = 1.2 V  
VSEL/MODE = VIN  
(after start-up)  
rise / fall time < 1 µs  
PWM mode  
IOUT = 5 mA to 500 mA  
rise / fall time < 1 µs  
IOUT = 5 mA to 500 mA  
9-32. Load Transient Power Save Mode  
9-33. TPS62801 Load Transient Forced PWM  
Mode  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = GND  
PFM/PWM mode  
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = VIN  
(after start-up)  
IOUT = 1 mA to 1 A 1 kHz  
IOUT = 1 mA to 1 A, 1 kHz  
Forced PWM mode  
9-34. AC Load Sweep Power Save Mode  
9-35. AC Load Sweep Forced PWM Mode  
TPS62801  
VOUT = 1.2 V  
VIN = 3.6 V to 4.2 V  
IOUT = 50 mA  
TPS62801  
VOUT = 1.2 V  
VIN = 3.6 V to 4.2 V  
IOUT = 500 mA  
rise / fall time = 10 µs  
rise / fall time = 10 µs  
9-36. Line Transient PFM Mode  
9-37. Line Transient PWM Mode  
VOUT = 0.8 V  
RVSEL = 10 kΩ  
VSEL/MODE = Low (through RVSEL  
)
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = GND  
RLoad = 220 Ω  
RLoad = 220 Ω  
9-38. TPS62801 Start-Up, VOUT = 0.8 V  
9-39. Start-Up, VOUT = 1.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 1.55 V  
VSEL/MODE = Low (through RVSEL  
)
TPS62801  
VOUT = 1.2 V  
VSEL/MODE = VIN  
No load  
EN = high to low  
RLoad = 220 Ω  
RVSEL = 249 kΩ  
9-41. Output Discharge  
9-40. TPS62801 Start-Up, VOUT = 1.55 V  
tStartup_delay = 290ms  
tStartup_delay = 300ms  
VSEL/MODE = GND  
RVSEL = 10 kΩ  
9-42. Start-Up Delay Time, VSEL = 0  
9-43. Start-Up Delay Time, VSEL = 1  
tStartup_delay = 427ms  
tStartup_delay = 363ms  
RVSEL = 36.5 kΩ  
RVSEL = 44.2 kΩ  
9-44. Start-Up Delay Time, VSEL = 7  
9-45. Start-Up Delay Time, VSEL = 8  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
tStartup_delay = 500ms  
RVSEL = 249 kΩ  
9-46. Start-Up Delay Time, VSEL = 16  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
9.3 System Examples  
This section shows additional circuits for various output voltages.  
TPS62801  
VIN  
L = 0.47 µH  
1.75 V–5.5 V  
1.2-V VOUT fixed  
COUT  
VIN  
SW  
CIN  
4.7  
10  
F
GND  
VOS  
F
ON  
OFF  
VSEL/  
MODE  
EN  
9-47. TPS62801 VSEL Connected to GND for 1.2-V Fixed VOUT  
TPS62801  
VIN  
16 selectable VOUT  
0.8 V–1.55 V  
L = 0.47 µH  
1.75 V–5.5 V  
VIN  
SW  
COUT  
CIN  
4.7  
10  
F
F
GND  
VOS  
PWM  
ON  
OFF  
VSEL/  
MODE  
PFM  
RVSEL  
EN  
9-48. TPS62801 Adjustable VOUT Application Circuit  
TPS62802  
L = 0.47 µH  
VIN  
1.75 V–5.5 V  
VOUT = 3.3 V  
VIN  
SW  
CIN  
4.7  
COUT  
2 × 10  
=
F
F
GND  
VOS  
PWM  
ON  
OFF  
VSEL/  
MODE  
EN  
PFM  
R
VSEL  
=
249 k  
9-49. TPS62802 Adjustable 3.3-V VOUT Application Circuit  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
TPS62802  
VIN  
1.8 V fixed  
L = 0.47 µH  
1.75 V–5.5 V  
VIN  
SW  
COUT  
10 F  
CIN  
4.7 F  
GND  
VOS  
ON  
OFF  
VSEL/  
MODE  
EN  
9-50. TPS62802 VSEL Connected to GND for 1.8-V Fixed VOUT  
16 selectable VOUT  
0.4 V0.775 V  
IOUT up to 600 mA  
TPS62806  
VIN  
L = 1 µH  
1.75 V–5.5 V  
VIN  
SW  
COUT  
CIN  
4.7  
10  
F
GND  
EN  
VOS  
F
PWM  
ON  
OFF  
VSEL/  
MODE  
PSM  
RVSEL  
9-51. TPS62806 Adjustable VOUT Application Circuit  
TPS62806  
0.7 V fixed VOUT  
IOUT up to 600 mA  
VIN  
L = 1 µH  
1.75 V–5.5 V  
VIN  
SW  
COUT  
CIN  
4.7  
10  
F
GND  
VOS  
F
ON  
OFF  
VSEL/  
MODE  
EN  
9-52. TPS62806 VSEL Connected to GND for 0.7-V Fixed VOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply must provide a current rating according to the supply voltage, output voltage, and output  
current of the TPS6280x.  
11 Layout  
11.1 Layout Guidelines  
The pinout of TPS6280x has been optimized to enable a single top layer PCB routing of the IC and its critical  
passive components such as CIN, COUT, and L. Furthermore, this pinout allows the user to connect tiny  
components such as 0201 (0603) size capacitors and a 0402 (1005) size inductor. A solution size smaller than 5  
mm2 can be achieved with a fixed output voltage.  
As for all switching power supplies, the layout is an important step in the design. Take care in board layout to  
get the specified performance.  
It is critical to provide a low inductance, low impedance ground path. Therefore, use wide and short traces for  
the main current paths.  
The input capacitor should be placed as close as possible to the VIN and GND pins of the IC. This is the  
most critical component placement.  
The VOS line is a sensitive, high impedance line and should be connected to the output capacitor and routed  
away from noisy components and traces (for example, SW line) or other noise sources.  
11.2 Layout Example  
VOUT  
GND  
COUT  
GND  
VIN  
VOS  
SW  
EN  
CIN  
L
VSEL/  
MODE  
RVSEL  
VIN  
GND  
11-1. PCB Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
www.ti.com.cn  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62800 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62801 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62802 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62806 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62807 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62808 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
DCS-Controland TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
 
 
 
 
 
TPS62800, TPS62801, TPS62802, TPS62806, TPS62807, TPS62808  
ZHCSHT6F DECEMBER 2017 REVISED JUNE 2022  
www.ti.com.cn  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62800 TPS62801 TPS62802 TPS62806 TPS62807 TPS62808  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62800YKAR  
TPS62801YKAR  
TPS62801YKAT  
TPS62802YKAR  
TPS62802YKAT  
TPS62806YKAR  
TPS62806YKAT  
TPS62807YKAR  
TPS62807YKAT  
TPS62808YKAR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
+
+
X
X
J
250  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
RoHS & Green SAC396 | SNAGCU  
J
L
L
V
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jun-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62800YKAR  
TPS62801YKAR  
TPS62801YKAR  
TPS62801YKAT  
TPS62801YKAT  
TPS62802YKAR  
TPS62802YKAR  
TPS62802YKAT  
TPS62806YKAR  
TPS62806YKAT  
TPS62806YKAT  
TPS62807YKAR  
TPS62807YKAR  
TPS62807YKAT  
TPS62807YKAT  
TPS62808YKAR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
250  
180.0  
178.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
0.46  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
250  
3000  
3000  
250  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62800YKAR  
TPS62801YKAR  
TPS62801YKAR  
TPS62801YKAT  
TPS62801YKAT  
TPS62802YKAR  
TPS62802YKAR  
TPS62802YKAT  
TPS62806YKAR  
TPS62806YKAT  
TPS62806YKAT  
TPS62807YKAR  
TPS62807YKAR  
TPS62807YKAT  
TPS62807YKAT  
TPS62808YKAR  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
250  
182.0  
220.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
220.0  
182.0  
182.0  
220.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
182.0  
182.0  
220.0  
182.0  
220.0  
182.0  
220.0  
182.0  
20.0  
35.0  
20.0  
20.0  
35.0  
20.0  
35.0  
20.0  
20.0  
20.0  
35.0  
20.0  
35.0  
20.0  
35.0  
20.0  
250  
3000  
3000  
250  
3000  
250  
250  
3000  
3000  
250  
250  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YKA0006  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
INDEX AREA  
D
0.40  
0.35  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL  
TYP  
0.35 TYP  
C
B
A
0.7  
TYP  
SYMM  
D: Max = 1.084 mm, Min =1.024 mm  
E: Max = 0.734 mm, Min =0.674 mm  
0.35  
TYP  
1
2
0.24  
6X  
0.19  
SYMM  
0.015  
C A B  
4223607/B 06/2023  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
6X ( 0.2)  
(0.35) TYP  
1
2
A
B
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
(
0.2)  
0.0325 MAX  
0.0325 MIN  
METAL  
UNDER  
METAL  
SOLDER MASK  
EXSPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
(
0.2)  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223607/B 06/2023  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
6X ( 0.21)  
(R0.05) TYP  
1
2
A
(0.35) TYP  
SYMM  
B
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:50X  
4223607/B 06/2023  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62801YKAR

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62801YKAT

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62802

采用 0.7mm x 1.05mm 芯片级封装的 1.75V 至 5.5V 输入、1A 超低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62802YKAR

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62802YKAT

1.75-V to 5.5-V input, 1-A ultra-low IQ step-down converter in 0.7-mm x 1.05-mm chip scale package | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62806

采用 0.7mm x 1.05mm WCSP 封装的 1.75V 至 5.5V 输入、600mA 超低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62806YKAR

1.75-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in 0.7-mm x 1.05-mm WCSP | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62806YKAT

1.75-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in 0.7-mm x 1.05-mm WCSP | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62807

采用 0.7mm x 1.05mm WCSP 封装的 1.75V 至 5.5V 输入、600mA 超低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62807YKAR

1.75-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in 0.7-mm x 1.05-mm WCSP | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62807YKAT

1.75-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in 0.7-mm x 1.05-mm WCSP | YKA | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62808

采用 0.7mm x 1.05mm WCSP 封装的 1.75V 至 5.5V 输入、600mA 超低 IQ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI