TPS62816-Q1 [TI]

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、6A 降压转换器;
TPS62816-Q1
型号: TPS62816-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、6A 降压转换器

转换器
文件: 总43页 (文件大小:8261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
TPS62816-Q1 3mm x 2mm 可湿性侧QFN 封装2.7V 6V6A 汽车类降  
压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS62816-Q1 是一款易于使用的引脚对引脚高效同步  
降压直流/直流转换器。它基于峰值电流模式控制拓  
专为信息娱乐系统和高级驾驶辅助系统等汽车应用  
而设计。低阻开关可支持高达 6A 的持续输出电流。用  
户可通过外部方式在 1.8MHz 4MHz 范围内调节开  
关频率亦可在该频率范围内将其同步至外部时钟。在  
PWM/PFM 模式下TPS62816-Q1 会在轻负载情况下  
自动进入省电模式从而在整个负载范围内维持高效  
率。TPS62816-Q1 可在 PWM 模式下提供 1% 的输出  
电压精度这有助于实现具有高输出电压精度的电源设  
计。通过 SS/TR 引脚可设置启动时间或跟踪向外部  
源提供的输出电压。此特性可实现不同电源轨的外部时  
序控制并限制启动期间的浪涌电流。  
– 器件温度等1:  
40°C +125°C TA  
提供功能安全型  
可帮助进行功能安全系统设计的文档  
• 输入电压范围2.7V 6V  
• 静态电流26µA典型值)  
• 输出电压范围0.6V 5.5V  
• 输出电压精度±1%PWM 操作)  
• 可调软启动  
• 强PWM PWM/PFM 操作  
• 可调开关频率为  
1.8MHz 4MHz  
• 精密使能输入可实现  
– 用户定义的欠压锁定  
– 准确排序  
TPS62816-Q1 是一个可调节版本采用了具有可湿性  
侧面3mm x 2mm VQFN 封装。  
器件信息  
封装(1)  
100% 占空比模式  
• 有源输出放电  
封装尺寸标称值)  
器件型号  
• 展频时- 可选  
TPS62816-Q1  
VQFN  
3.00mm × 2.00mm  
• 具有窗口比较器的电源正常输出  
• 封装具有可湿性侧面  
TJ = -40°C 150°C  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
ADAS 传感器融合  
ECU  
数字驾驶舱  
外部放大器  
L
100  
95  
90  
85  
80  
75  
70  
65  
V
IN  
TPS62816-Q1  
0.22mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
C
IN  
R1  
22mF  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
R2  
R3 3 * 22 mF  
COMP/FSET  
SS/TR  
CSS  
PG  
60  
GND  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
55  
50  
典型应用原理图  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
效率与输出电流间的关系  
VOUT = 3.3VPWM/PFMfS = 2.25MHz  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDM1  
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
10 Application and Implementation................................15  
10.1 Application Information........................................... 15  
10.2 Typical Application.................................................. 16  
10.3 System Examples................................................... 27  
11 Power Supply Recommendations..............................30  
12 Layout...........................................................................31  
12.1 Layout Guidelines................................................... 31  
12.2 Layout Example...................................................... 31  
13 Device and Documentation Support..........................32  
13.1 Device Support....................................................... 32  
13.2 Documentation Support.......................................... 32  
13.3 接收文档更新通知................................................... 32  
13.4 支持资源..................................................................32  
13.5 Trademarks.............................................................32  
13.6 Electrostatic Discharge Caution..............................32  
13.7 术语表..................................................................... 32  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Parameter Measurement Information............................8  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram...........................................9  
9.3 Feature Description.....................................................9  
9.4 Device Functional Modes..........................................12  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2020) to Revision A (December 2021)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE NUMBER  
FOLDBACK  
CURRENT LIMIT  
SPREAD SPECTRUM  
OUTPUT VOLTAGE  
CLOCKING (SSC)  
VOUT DISCHARGE  
ON  
TPS62816QWRWYRQ1  
OFF  
by COMP/FSET pin  
adjustable  
6 Pin Configuration and Functions  
bottom view  
top view  
7
COMP/FSET  
8
8
7
COMP/FSET  
EN  
EN  
6
9
9
6
SS/TR  
PG  
PG  
SS/TR  
GND  
GND  
SW  
SW  
VIN  
VIN  
MODE/SYNC  
1
FB  
FB  
5
3
2
4
5
4
2
3
1
6-1. 9-Pin VQFN RWY Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN  
8
I
I
FB  
5
4
Voltage feedback input. Connect the resistive output voltage divider to this pin.  
Ground pin  
GND  
The device runs in PFM/PWM mode when this pin is pulled low. When the pin is pulled high,  
the device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can  
also be used to synchronize the device to an external frequency. See the Electrical  
Characteristics for the detailed specification for the digital signal applied to this pin for  
external synchronization.  
MODE/SYNC  
1
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally  
synchronized.  
COMP/FSET  
PG  
7
9
6
I
O
I
Open-drain power-good output  
Soft-start / tracking pin. An external capacitor connected from this pin to GND defines the  
rise time for the internal reference voltage. The pin can also be used as an input for tracking  
and sequencing. See 10.  
SS/TR  
SW  
VIN  
3
2
O
This is the switch pin of the converter and is connected to the internal power MOSFETs.  
Power supply input. Make sure the input capacitor is connected as close as possible  
between the VIN pin and PGND.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62816-Q1  
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
VIN  
SW (DC)  
VIN + 0.3  
10  
SW (AC, less than 10 ns)(3)  
Pin voltage(2)  
V
FB  
4
0.3  
0.3  
0.3  
65  
COMP/FSET, PG, SS/TR  
EN, MODE/SYNC  
VIN + 0.3  
6.5  
Tstg  
Storage temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM ESD classification level 2 (1)  
Charged device model (CDM), per AEC Q100-011 CDM ESD classification level C5  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
2.7  
0.6  
0.15  
32  
NOM  
MAX  
6
UNIT  
V
VIN  
Input voltage range  
VOUT  
L
Output voltage range  
5.5  
0.3  
470  
V
Effective inductance  
0.22  
66  
μH  
μF  
μF  
kΩ  
mA  
°C  
COUT  
CIN  
Effective output capacitance(1)  
Effective input capacitance(1)  
5
10  
RCF  
ISINK_PG  
TJ  
4.5  
0
100  
2
Sink current at PG pin  
Junction temperature  
150  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer's DC bias curves for the effective capacitance versus DC voltage applied. Further restrictions may apply. Please see the  
feature description for COMP/FSET about the output capacitance versus compensation setting and output voltage.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
 
 
 
 
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Thermal Information  
TPS62816-Q1  
TPS62816-Q1  
THERMAL METRIC(1)  
RWY (JEDEC)  
RWY (EVM)  
UNIT  
9 PINS  
71  
9 PINS  
48  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37  
n/a  
16.4  
0.9  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
n/a  
ΨJT  
YJB  
16.1  
n/a  
n/a  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = VIN, no load, device not switching,  
TJ = 125°C, MODE = GND  
IQ  
Quiescent current  
36  
μA  
EN = VIN, no load, device not switching,  
MODE = GND, VOUT = 0.6 V  
IQ  
Quiescent current  
Shutdown current  
Shutdown current  
26  
50  
90  
μA  
μA  
μA  
ISD  
ISD  
EN = GND, at TJ = 125°C  
EN = GND, nominal value at TJ = 25°C,  
max value at TJ = 150°C  
2.2  
230  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.45  
2.1  
2.6  
2.5  
180  
15  
2.7  
2.6  
V
V
VUVLO  
Undervoltage lockout threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
CONTROL and INTERFACE  
VIH,EN Input threshold voltage at EN, rising edge  
VIL,EN  
1.05  
0.96  
1.1  
1.0  
1.15  
1.05  
V
V
Input threshold voltage at EN, falling edge  
High-level input-threshold voltage at  
MODE/SYNC  
VIH  
1.1  
V
nA  
V
IIH,EN  
VIL  
Input leakage current into EN  
VIH = VIN or VIL = GND  
125  
0.3  
Low-level input-threshold voltage at  
MODE/SYNC  
IIH  
Input leakage current into MODE/SYNC  
Enable delay time  
250  
520  
nA  
µs  
Time from EN high to device starts  
switching; VIN applied already  
tDelay  
135  
90  
270  
150  
IOUT = 0 mA, time from device starts  
switching to power good; device not in  
current limit  
Output voltage ramp time, SS/TR pin  
open  
tRamp  
220  
µs  
ISS/TR  
RDIS  
SS/TR source current  
8
10  
12  
µA  
Internal discharge resistance on SS/TR  
when EN = low  
0.7  
1.1  
1.5  
kΩ  
Tracking gain  
Tracking offset  
VFB / VSS/TR  
1
VFB when VSS/TR = 0 V  
±1  
mV  
Frequency range on MODE/SYNC pin for  
synchronization  
fSYNC  
1.8  
4
MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62816-Q1  
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
%
Duty cycle of synchronization signal at  
MODE/SYNC  
20  
80  
Time to lock to external frequency  
50  
µs  
resistance from COMP/FSET to GND for Internal frequency setting with f = 2.25  
0
2.5  
kΩ  
logic low  
MHz  
internal frequency setting with f = 2.25  
MHz  
Voltage on COMP/FSET for logic high  
VIN  
95%  
V
UVP power good threshold voltage; dc  
level  
VTH_PG  
VTH_PG  
rising (%VFB  
)
92%  
87%  
98%  
93%  
UVP power good threshold voltage; dc  
level  
falling (%VFB  
)
)
90%  
OVP power good threshold voltage; dc  
level  
rising (%VFB  
)
107%  
104%  
110%  
113%  
111%  
VTH_PG  
OVP power good threshold voltage; dc  
level  
falling (%VFB  
107%  
0.01  
VOL,PG  
IIH,PG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
For a high level to low level transition on  
the power good output  
tPG  
PG deglitch time  
40  
µs  
OUTPUT  
VFB  
Feedback voltage  
0.6  
1
V
IIH,FB  
VFB  
Input leakage current into FB  
Feedback voltage accuracy  
VFB = 0.6 V  
70  
nA  
1%  
PWM, VIN VOUT + 1 V  
1%  
1%  
PFM, VIN VOUT + 1 V, VOUT 1.5 V,  
Co,eff 47 µF  
VFB  
VFB  
VFB  
Feedback voltage accuracy  
Feedback voltage accuracy  
2%  
2.5%  
5%  
PFM, VIN VOUT + 1 V, VOUT < 1.5 V,  
Co,eff 68 µF  
1%  
5%  
Feedback voltage accuracy with voltage  
tracking  
VIN VOUT + 1 V, VSS/TR = 0.3 V, PWM  
mode  
Load regulation  
PWM  
0.05  
0.02  
%/A  
%/V  
Ω
Line regulation  
PWM, IOUT = 1 A, VIN VOUT + 1 V  
RDIS  
fSW  
fSW  
fSW  
Output discharge resistance  
50  
4
MODE = high, see the FSET pin  
functionality about setting the switching  
frequency  
PWM switching frequency range  
1.8  
2.25  
2.25  
MHz  
MHz  
PWM switching frequency  
With COMP/FSET tied to GND or VIN  
2.08  
2.4  
12%  
67  
using a resistor from COMP/FSET to  
GND  
PWM switching frequency tolerance  
12%  
ton,min  
ton,min  
Minimum on time of high-side FET  
Minimum on time of low-side FET  
45  
15  
ns  
ns  
VIN 3.3 V, TJ = 40°C to 125°C  
VIN 5 V  
VIN 5 V  
High-side FET on-resistance  
11  
26  
mΩ  
RDS(ON)  
Low-side FET on-resistance  
High-side MOSFET leakage current  
Low-side MOSFET leakage current  
SW leakage  
9
0.01  
0.01  
19  
230  
290  
30  
mΩ  
µA  
µA  
µA  
A
IIH  
IIH  
V(SW) = 6 V  
IIH  
V(SW) = 0.6V, current into SW pin  
DC value, VIN = 3 V to 6 V  
-0.05  
7.3  
ILIMH  
High-side FET switch current limit  
9.2  
10.4  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILIMNEG  
Low-side FET negative current limit  
DC value  
-3  
A
7.6 Typical Characteristics  
30  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VIN = 2.7V  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
8
7
7.5  
5
6
5
-40  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
0
25 85  
Junction Temperature (°C)  
125  
150  
D002  
D002  
7-1. RDS(ON) of High-Side Switch  
7-2. RDS(ON) of Low-Side Switch  
4
3.6  
3.2  
2.8  
2.4  
2
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VIN = 2.7V  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
1.6  
1.2  
0.8  
0.4  
0
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
D002  
D002  
7-3. Shutdown Current vs Temperature  
7-4. Quiescent Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62816-Q1  
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
The graphs in this data sheet have been taken based on the schematic and BOM as listed in 8-1 if not  
otherwise mentioned in the plots.  
L
V
IN  
TPS62816-Q1  
0.22mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
C
IN  
R1  
22mF  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
R2  
R3 3 * 22 mF  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
8-1. Measurement Setup for TPS62816-Q1  
8-1. List of Components  
DESCRIPTION  
REFERENCE  
MANUFACTURER (1)  
IC  
TPS62816-Q1  
Texas Instruments  
L
0.25-µH inductor; XGL4020-251ME  
22 µF / 10 V; GCM31CR71A226KE02L  
5 × 22 µF / 10 V; GCM31CR71A226KE02L  
3 × 22 µF / 10 V; GCM31CR71A226KE02L  
Coilcraft  
Murata  
Murata  
Murata  
any  
CIN  
COUT for VOUT = 0.6 V  
COUT for VOUT 1 V  
CSS  
RCF  
CFF  
R1  
15 nF (equal to 0.9-ms start-up ramp)  
any  
8.06 kΩ  
10 pF  
any  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
any  
R2  
any  
R3  
any  
(1) See the Third Party-Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS62816-Q1 synchronous switch mode power converter is based on a peak current mode control  
topology. The control loop is internally compensated.  
To optimize the bandwidth of the control loop to the wide range of output capacitance that can be used with the  
TPS62816-Q1, the internal compensation has two settings. See 9.3.2. One out of the two compensation  
settings is chosen either by a resistor from COMP/FSET to GND, or by the logic state of this pin. The regulation  
network achieves fast and stable operation with small external components and low-ESR ceramic output  
capacitors. The device requires a small feedforward capacitor on the output voltage divider for best transient  
response. See 10-2.  
The device supports forced fixed frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as either 2.25 MHz internally fixed when COMP/FSET is tied to GND or VIN, or in a range  
of 1.8 MHz to 4 MHz defined by a resistor from COMP/FSET to GND. Alternatively, the devices can be  
synchronized to an external clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE pin with no  
need for additional passive components. An internal PLL allows the device to change from internal clock to  
external clock during operation. The synchronization to the external clock is done on a falling edge of the clock  
applied at MODE to the rising edge on the SW pin. This allows a roughly 180° phase shift when the SW pin is  
used to generate the synchronization signal for a second converter. When the MODE pin is set to a logic low  
level, the device operates in power save mode (PFM) at low output current and automatically transfers to fixed-  
frequency PWM mode at higher output current. In PFM mode, the switching frequency decreases linearly based  
on the load to sustain high efficiency down to very low output current.  
9.2 Functional Block Diagram  
VIN  
SW  
Bias  
Regulator  
Gate Drive and Control  
Oscillator  
Ipeak  
Izero  
EN  
MODE  
gm  
GND  
FB  
_
+
PG  
Device  
Control  
+
-
Bandgap  
SS/TR  
Thermal  
Shutdown  
COMP/FSET  
9.3 Feature Description  
9.3.1 Precise Enable  
The voltage applied at the Enable (EN) pin of the TPS62816-Q1 is compared to a fixed threshold of 1.1 V for a  
rising voltage. This allows the user to drive the pin by a slowly changing voltage and enables the use of an  
external RC network to achieve a power-up delay.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62816-Q1  
 
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
The precise enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of the EN pin.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS62816-Q1 starts operation when the rising threshold is exceeded. For proper operation, the EN pin must be  
terminated and must not be left floating. Pulling the EN pin low forces the device into shutdown, with a shutdown  
current of typically 1 μA. In this mode, the internal high-side and low-side MOSFETs are turned off and the  
entire internal control circuitry is switched off.  
9.3.2 COMP/FSET  
This pin allows the user to set two different parameters independently:  
Internal compensation settings for the control loop (three settings available)  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
Enable/ disable spread spectrum clocking (SSC)  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows the user to adopt the device to different values of output capacitance. The resistor must  
be placed close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting  
is sampled at the start-up of the converter, so a change in the resistor during operation only has an effect on the  
switching frequency, but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined switching  
frequency or compensation. Do not leave the pin floating.  
The switching frequency has to be selected based on the input voltage and the output voltage to meet the  
specifications for the minimum on time and minimum off time.  
Example: VIN = 5 V, VOUT = 1 V --> duty cycle (DC) = 1 V / 5 V = 0.2  
with ton = DC × T --> ton,min = 1/fs,max × DC  
--> fs,max = 1/ton,min × DC = 1/0.075 µs × 0.2 = 2.6 MHz  
The compensation range has to be chosen based on the minimum capacitance used. The capacitance can be  
increased from the minimum value as given in 9-1, up to the maximum of 470 µF in all of the three  
compensation ranges. If the capacitance of an output changes during operation, for example, when load  
switches are used to connect or disconnect parts of the circuitry, the compensation has to be chosen for the  
minimum capacitance on the output. With large output capacitance, the compensation must be done based on  
that large capacitance to get the best load transient response. Compensating for large output capacitance but  
placing less capacitance on the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) disabled:  
Space  
18MHz ×kW  
RCF(kW) =  
fS(MHz)  
(1)  
(2)  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) enabled:  
Space  
60MHz ×kW  
RCF(kW) =  
fS(MHz)  
Space  
For compensation (comp) setting 2 with spread spectrum clocking (SSC) disabled:  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
Space  
180MHz ×kW  
RCF(kW) =  
fS(MHz)  
(3)  
9-1. Switching Frequency and Compensation  
MINIMUM OUTPUT  
CAPACITANCE  
COMPENSATION  
RCF  
SWITCHING FREQUENCY  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) ... 4 MHz (4.5 kΩ)  
according to 方程1  
32 µF × V / VOUT[V]  
32 µF × V / VOUT[V]  
10 kΩ... 4.5 kΩ  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (33 kΩ) ... 4 MHz (15 kΩ)  
according to 方程2  
33 kΩ... 15 kΩ  
100 kΩ... 45 kΩ  
tied to GND  
SSC enabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
1.8 MHz (100 kΩ) ... 4 MHz (45 kΩ)  
according to 方程3  
72 µF × V / VOUT[V]  
32 µF × V / VOUT[V]  
72 µF × V / VOUT[V]  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
SSC disabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
tied to VIN  
SSC enabled  
The minimum output capacitance required for stability depends on the output voltage as stated in 9-1. Refer  
to 10.1.2.2.2 for further details on the output capacitance required depending on the output voltage.  
A too-high resistor value for RCF is decoded as "tied to VIN" and a value below the lowest range is decoded as  
"tied to GND". The minimum output capacitance in 9-1 is for capacitors close to the output of the device. If the  
capacitance is distributed, a lower compensation setting can be required.  
9.3.3 MODE/SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode depending on the output current. The  
MODE/SYNC pin forces PWM mode when set high. The pin also allows the user to apply an external clock in a  
frequency range from 1.8 MHz to 4 MHz for external synchronization. Similar to COMP/FSET, the specifications  
for the minimum on time and minimum off time have to be observed when setting the external frequency. For use  
with external synchronization on the MODE/SYNC pin, the internal switching frequency must be set by RCF to a  
similar value than the externally applied clock. This ensures that if the external clock fails, the switching  
frequency stays in the same range. When there is no resistor from COMP/FSET to GND but the pin is pulled  
high or low, external synchronization is not possible.  
9.3.4 Spread Spectrum Clocking (SSC)  
The device offers spread spectrum clocking as an option, set by the COMP/FSET pin. When SSC is enabled,  
the switching frequency is randomly changed in PWM mode when the internal clock is used. The frequency  
variation is typically between the nominal switching frequency and up to 288 kHz above the nominal switching  
frequency. When the device is externally synchronized by applying a clock signal to the MODE/SYNC pin, the  
TPS62816-Q1 follows the external clock and the internal spread spectrum block is turned off. SSC is also  
disabled during soft start.  
9.3.5 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both of  
the power FETs. When enabled, the device is fully operational for input voltages above the rising UVLO  
threshold and turns off if the input voltage trips below the threshold for a falling supply voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62816-Q1  
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
9.3.6 Power Good Output (PG)  
Power good is an open-drain output driven by a window comparator. PG is held low when the device is disabled,  
in undervoltage lockout, and thermal shutdown. When the output voltage is in regulation hence, within the  
window defined in the electrical characteristics, the output is high impedance.  
9-2. PG Status  
EN  
X
DEVICE STATUS  
PG STATE  
undefined  
low  
VIN < 2 V  
low  
VIN 2 V  
2 V VIN UVLO OR in thermal shutdown OR VOUT not in  
high  
high  
low  
regulation  
VOUT in regulation  
high impedance  
9.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 170°C  
(typical), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and  
PG goes low. When TJ decreases below the hysteresis amount of typically 15°C, the converter resumes normal  
operation, beginning with soft start. During a PFM pause, the thermal shutdown is not active. After a PFM pause,  
the device needs up to 9 µs to detect a too-high junction temperature. If the PFM burst is shorter than this delay,  
the device does not detect a too-high junction temperature.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
The TPS62816-Q1 has two operating modes: Forced PWM mode as discussed in this section and PWM/PFM as  
discussed in 9.4.2.  
With the MODE/SYNC pin set to high, the TPS62816-Q1 operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP pin to GND or  
by an external clock signal applied to the MODE/SYNC pin. With an external clock applied to MODE/SYNC, the  
TPS62816-Q1 follows the frequency applied to the pin. In general, the frequency range in forced PWM mode is  
1.8 MHz to 4 MHz. However, the frequency needs to be in a range the TPS62816-Q1 can operate at, taking the  
minimum on time into account.  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of approximately 1.8 A. When the peak inductor current  
drops below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency. In addition, the frequency set with the  
resistor on COMP/FSET must be in a range of 1.8 MHz to 3.5 MHz. The high-side switch in a PFM pulse is  
turned on until the inductor current reaches its peak current limit.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle  
increases as the input voltage comes close to the output voltage and the off time gets smaller. When the  
minimum off time of typically 10 ns is reached, the TPS62816-Q1 skips switching cycles while it approaches  
100% mode. In 100% mode, it keeps the high-side switch on continuously. The high-side switch stays turned on  
as long as the output voltage is below the target. In 100% mode, the low-side switch is turned off. The maximum  
dropout voltage in 100% mode is the product of the on-resistance of the high-side switch plus the series  
resistance of the inductor and the load current.  
9.4.4 Current Limit and Short Circuit Protection  
The TPS62816-Q1 is protected against overload and short circuit events. If the inductor current exceeds the  
current limit ILIMH, the high-side switch is turned off and the low-side switch is turned on to ramp down the  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
inductor current. The high-side switch turns on again only if the current in the low-side switch has decreased  
below the low-side current limit. Due to internal propagation delay, the actual current can exceed the static  
current limit. The dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
×tPD  
L
(4)  
where:  
ILIMH is the static current limit as specified in the electrical characteristics  
L is the effective inductance at the peak current  
VL is the voltage across the inductor (VIN - VOUT  
)
tPD is the internal propagation delay of typically 50 ns  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
IN -VOUT  
Ipeak(typ) = ILIMH  
+
×50ns  
L
(5)  
9.4.5 Foldback Current Limit and Short Circuit Protection  
This is valid for devices where foldback current limit is enabled.  
When the device detects current limit for more than 1024 subsequent switching cycles, it reduces the current  
limit from its nominal value to a typical peak current of 3.7 A. Foldback current limit is left when the current limit  
indication goes away. For the case that device operation continues in current limit, it would, after 3072 switching  
cycles, try again full current limit for again 1024 switching cycles.  
9.4.6 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled, but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active once the TPS62816-Q1 has been enabled at least once since the supply voltage was  
applied. The discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in  
undervoltage lockout. The minimum supply voltage required for the discharge function to remain active typically  
is 2 V. Output discharge is not activated during a current limit or foldback current limit event.  
9.4.7 Soft Start/Tracking (SS/TR)  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a  
delay of about 200 μs, then the internal reference and hence VOUT rises with a slope controlled by an external  
capacitor connected to the SS/TR pin.  
Leaving the SS/TR pin disconnected provides the fastest start-up ramp with 150 µs typically. A capacitor  
connected from SS/TR to GND is charged with 10 µA by an internal current source during soft start until it  
reaches the reference voltage of 0.6 V. The capacitance required to set a certain ramp-time (tramp), therefore, is:  
Css[nF]=10µA*tramp[ms]/0.6V  
(6)  
If the device is set to shutdown (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor  
pulls the SS/TR pin to GND to ensure a proper low level. Returning from those states causes a new startup  
sequence.  
A voltage applied at SS/TR can be used to track a master voltage. The output voltage follows this voltage in both  
directions up and down in forced PWM mode. In PFM mode, the output voltage decreases based on the load  
current. The SS/TR pin must not be connected to the SS/TR pin of other devices. An external voltage applied on  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
SS/TR is internally clamped to the feedback voltage (0.6 V). It is recommended to set the target for the external  
voltage on SS/TR slightly above the feedback voltage. Given the tolerances of the resistor divider R5 and R6 on  
SS/TR, this makes sure the device "switches" to the internal reference voltage when the power-up sequencing is  
finished. See 10-57.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS62816-Q1 is adjustable. It can be programmed for output voltages from 0.6 V to  
5.5 V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of  
the output voltage is set by the selection of the resistor divider from 方程式 7. It is recommended to choose  
resistor values that allow a current of at least 2 µA, meaning the value of R2 must not exceed 400 kΩ. Lower  
resistor values are recommended for the highest accuracy and most robust design.  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(7)  
10.1.2 External Component Selection  
10.1.2.1 Inductor Selection  
The TPS62816-Q1 is designed for a nominal 0.22-µH inductor with a switching frequency of typically 2.25 MHz.  
Larger values can be used to achieve a lower inductor current ripple, but they can have a negative impact on  
efficiency and transient response. Smaller values than 0.22 µH cause a larger inductor current ripple, which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly. See the Recommended Operating  
Conditions for details.  
The inductor selection is affected by several effects like the following:  
Inductor ripple current  
Output ripple voltage  
PWM-to-PFM transition point  
Efficiency  
In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR). 方  
8 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(8)  
(9)  
V
OUT  
æ
ö
V
1-  
OUT × ç  
÷
IN  
1
V
è
Lmin  
ø
DIL(max)  
=
×
f
SW  
where:  
IL(max) is the maximum inductor current.  
• ΔIL(max) is the peak-to-peak inductor ripple current.  
Lmin is the minimum inductance at the operating point.  
10-1. Typical Inductors  
NOMINAL SWITCHING  
FREQUENCY  
DIMENSIONS [L × W ×  
H] mm  
TYPE  
INDUCTANCE [µH]  
CURRENT [A](1)  
MANUFACTURER(2)  
XEL4020-201ME  
0.20 µH, ±20%  
14  
2.25 MHz  
4 × 4 × 2.1  
Coilcraft  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62816-Q1  
 
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10-1. Typical Inductors (continued)  
NOMINAL SWITCHING  
FREQUENCY  
DIMENSIONS [L × W ×  
H] mm  
TYPE  
INDUCTANCE [µH]  
CURRENT [A](1)  
MANUFACTURER(2)  
XGL4020-251ME  
XEL4030-201ME  
0.25 µH, ±20%  
0.20 µH, ±20%  
12  
17  
2.25 MHz  
2.25 MHz  
4 × 4 × 2.1  
4 × 4 × 3.2  
Coilcraft  
Coilcraft  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third Party-Products Disclaimer.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.2.2 Capacitor Selection  
10.1.2.2.1 Input Capacitor  
For most applications, 22 µF nominal is sufficient and is recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for the best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.2.2.2 Output Capacitor  
The architecture of the TPS62816-Q1 allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, it is recommended  
to use dielectric X7R, X7T, or equivalent. Using a higher value has advantages, like smaller voltage ripple and a  
tighter DC output accuracy in Power Save mode. The COMP/FSET pin allows the user to select two different  
compensation settings based on the minimum capacitance used on the output. The maximum capacitance is  
470 µF in any of the compensation settings.  
The minimum capacitance required on the output depends on the compensation setting and output voltage.  
For output voltages below 1 V, the minimum increases linearly from 32 µF at 1 V to 53 µF at 0.6 V with the  
compensation setting for smallest output capacitance. Other compensation ranges are equivalent. See 9-1 for  
details.  
10.2 Typical Application  
L
V
IN  
TPS62816-Q1  
0.22mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
C
IN  
R1  
22mF  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
R2  
R3 3 * 22 mF  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
10-1. Typical Application  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(10)  
With VFB = 0.6 V:  
10-2. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE  
VOUT  
R1  
R2  
CFF  
EXACT OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
15 pF  
13 pF  
6.8 pF  
3.9 pF  
0.7988 V  
1.0 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
1.101 V  
1.2 V  
39.2 kΩ  
68 kΩ  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
3.3 pF  
3.3 pF  
5.6 pF  
3 pF  
1.5 V  
1.803 V  
2.5 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
3.315 V  
19.6 kΩ  
The maximum value for the feedforward capacitor CFF at minimum output capacitance is determined by 方程式  
11:  
CFF,max(F) = 2.661 × 10-7 F × Ω/ R1 (Ω)  
(11)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62816-Q1  
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless otherwise noted.  
The BOM is according to 8-1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
3.5  
4
4.5  
5
5.5  
6
D002  
D002  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-2. Efficiency Versus Output Current  
10-3. Efficiency Versus Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
3.5  
4
4.5  
5
5.5  
6
D002  
D002  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-4. Efficiency Versus Output Current  
10-5. Efficiency Versus Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
3.5  
4
4.5  
5
5.5  
6
D002  
D002  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
10-6. Efficiency Versus Output Current  
10-7. Efficiency Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
3.5  
4
4.5  
5
5.5  
6
D002  
D002  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-8. Efficiency Versus Output Current  
10-9. Efficiency Versus Output Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
3.5  
4
4.5  
5
5.5  
6
D002  
D002  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-10. Efficiency Versus Output Current  
10-11. Efficiency Versus Output Current  
3.4  
3.33  
3.39  
3.38  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.324  
3.318  
3.312  
3.306  
3.3  
3.294  
3.288  
3.282  
3.276  
3.27  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
3.29  
3.28  
3.27  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
D002  
VOUT = 3.3 V  
PWM  
TA = 25°C  
VOUT = 3.3 V  
PFM  
TA = 25°C  
10-13. Output Voltage Versus Output Current  
10-12. Output Voltage Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.796  
1.796  
1.792  
1.788  
1.784  
1.78  
1.792  
1.788  
1.784  
1.78  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
D002  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-14. Output Voltage Versus Output Current  
10-15. Output Voltage Versus Output Current  
1.224  
1.2125  
1.21  
1.2075  
1.205  
1.2025  
1.2  
1.22  
1.216  
1.212  
1.208  
1.204  
1.2  
1.1975  
1.195  
1.1925  
1.19  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.196  
1.192  
1.188  
1.184  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.1875  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
D002  
VOUT = 1.2 V  
PWM  
TA = 25°C  
VOUT = 1.2 V  
PFM  
TA = 25°C  
10-17. Output Voltage Versus Output Current  
10-16. Output Voltage Versus Output Current  
1.02  
1.01  
1.017  
1.014  
1.011  
1.008  
1.005  
1.002  
0.999  
0.996  
0.993  
0.99  
1.008  
1.006  
1.004  
1.002  
1
0.998  
0.996  
0.994  
0.992  
0.99  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
D002  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-18. Output Voltage Versus Output Current  
10-19. Output Voltage Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
0.612  
0.61  
0.606  
0.6045  
0.603  
0.6015  
0.6  
0.608  
0.606  
0.604  
0.602  
0.6  
0.5985  
0.597  
0.5955  
0.594  
0.598  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
0.596  
0.594  
100m  
1m  
10m 100m  
Output Current (A)  
1
6
100m  
1m  
10m 100m  
Output Current (A)  
1
6
D002  
D002  
VOUT = 0.6 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
PFM  
TA = 25°C  
10-21. Output Voltage Versus Output Current  
10-20. Output Voltage Versus Output Current  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-22. Load Transient Response  
10-23. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-24. Load Transient Response  
10-25. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.2 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-26. Load Transient Response  
10-27. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-29. Load Transient Response  
10-28. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-31. Load Transient Response  
10-30. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 3.3 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 6 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-32. Line Transient Response  
10-33. Line Transient Response  
VOUT = 1.8 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 6 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-34. Line Transient Response  
10-35. Line Transient Response  
VOUT = 1.2 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 6 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-36. Line Transient Response  
10-37. Line Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.0 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 6 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-38. Line Transient Response  
10-39. Line Transient Response  
VOUT = 0.6 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 6 A  
PWM  
TA = 25°C  
VIN = 3.0 V to 3.6 V to 3.0 V  
VIN = 3.0 V to 3.6 V to 3.0 V  
10-40. Line Transient Response  
10-41. Line Transient Response  
VOUT = 3.3 V  
VIN = 5 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 6 A  
IOUT = 0.2 A  
10-42. Output Voltage Ripple  
10-43. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.8 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 6 A  
VOUT = 1.8 V  
VIN = 5 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
10-45. Output Voltage Ripple  
10-44. Output Voltage Ripple  
VOUT = 1.2 V  
VIN = 5 V  
10-47. Output Voltage Ripple  
PWM  
TA = 25°C  
IOUT = 6 A  
VOUT = 1.2 V  
VIN = 5 V  
10-46. Output Voltage Ripple  
PFM  
TA = 25°C  
IOUT = 0.2 A  
VOUT = 1.0 V  
VIN = 5 V  
10-49. Output Voltage Ripple  
PWM  
TA = 25°C  
IOUT = 6 A  
VOUT = 1.0 V  
VIN = 5 V  
10-48. Output Voltage Ripple  
PFM  
TA = 25°C  
IOUT = 0.2 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 6 A  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
10-51. Output Voltage Ripple  
10-50. Output Voltage Ripple  
VOUT = 3.3 V  
VIN = 5 V  
PWM or PFM  
CSS = 15 nF  
TA = 25°C  
IOUT = 6 A  
VOUT = 1.8 V  
VIN = 5 V  
PWM or PFM  
CSS = 15 nF  
TA = 25°C  
IOUT = 6 A  
10-52. Start-Up Timing  
10-53. Start-Up Timing  
VOUT = 1.0 V  
VIN = 5 V  
PWM or PFM  
CSS = 15 nF  
TA = 25°C  
IOUT = 6 A  
VOUT = 1.2 V  
VIN = 5 V  
PWM or PFM  
CSS = 15 nF  
TA = 25°C  
IOUT = 6 A  
10-55. Start-Up Timing  
10-54. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM or PFM  
CSS = 15 nF  
TA = 25°C  
IOUT = 6 A  
10-56. Start-Up Timing  
10.3 System Examples  
10.3.1 Voltage Tracking  
The TPS62816-Q1 follows the voltage applied to the SS/TR pin. A voltage ramp on SS/TR to 0.6 V ramps the  
output voltage according to the 0.6-V feedback voltage.  
Tracking the 3.3 V of the primary device such that both rails reach their target voltage at the same time, requires  
a resistor divider on SS/TR of the secondary device equal to the output voltage divider of the primary device.  
The output current of 10 µA on the SS/TR pin causes an offset voltage on the resistor divider formed by R5 and  
R6. The equivalent resistance of R5 // R6 must therefore be kept below 4 kΩ. The current from SS/TR causes a  
slightly higher voltage across R6 than 0.6 V, which is desired because the secondary device switches to its  
internal reference as soon as the voltage at SS/TR is higher than 0.6 V.  
In case both devices need to run in forced PWM mode, it is recommended to tie the MODE pin of the secondary  
device to the output voltage or the power good signal of the primary device. The TPS62816-Q1 has a duty cycle  
limitation defined by the minimum on time. For tracking down to low output voltages, the secondary device  
cannot follow once the minimum duty cycle is reached. Enabling PFM mode while tracking is in progress  
allowsthe user to ramp down the output voltage close to 0 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62816-Q1  
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
Primary converter  
TPS62816-Q1  
VIN  
2.7 V - 6 V  
L
0.22 H  
3.3 V  
VIN  
SW  
10 pF  
CIN  
MODE/SYNC  
22F  
FB  
COUT  
EN  
EN  
3 * 22 F  
SS/TR  
COMP/FSET  
22 nF  
PG  
GND  
Secondary converter  
TPS62816-Q1  
L
0.22 H  
1.8 V  
VIN  
SW  
10 pF  
CIN  
22F  
EN  
FB  
R5  
COUT  
MODE/SYNC  
SS/TR  
3 * 22 F  
COMP/FSET  
PG  
R6  
GND  
10-57. Schematic for Output Voltage Tracking  
10-58. Scope Plot for Output Voltage Tracking  
10.3.2 Synchronizing to an External Clock  
The TPS62816-Q1 can be externally synchronized by applying an external clock on the MODE/SYNC pin. There  
is no need for any additional circuitry as long as the input signal meets the requirements given in the electrical  
specifications. The clock can be applied or removed during operation, allowing the user to switch from an  
externally defined fixed frequency to power save mode or to internal fixed-frequency operation. The value of the  
RCF resistor must be chosen such that the internally defined frequency and the externally applied frequency are  
close to each other. This ensures a smooth transition from internal to external frequency and vice versa.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
L
V
IN  
TPS62816-Q1  
0.22 mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
C
IN  
R1  
22mF  
C
FF  
EN  
FB  
COUT  
MODE/SYNC  
R2  
R 3 3 * 22 mF  
COMP/FSET  
SS/TR  
fEXT  
CSS  
PG  
GND  
10-59. Schematic Using External Synchronization  
VIN = 5 V  
VOUT = 1.8 V  
IOUT = 0.2 A  
VIN = 5 V  
IOUT = 2 A  
RCF = 8.06 kΩ  
RCF = 8.06 kΩ  
fEXT = 2.5 MHz  
VOUT = 1.8 V  
fEXT = 2.5 MHz  
10-60. Switching from External Synchronization 10-61. Switching from External Synchronizaion  
to Power Save Mode (PFM)  
to Internal Fixed Frequency  
10.3.3 Compensation Settings  
The TPS62816-Q1 offers two different compensations settings using the COMP/FSET pin. This allows the user  
to optimize the device regarding its transient response. For applications with no high requirements on transient  
response, a small output capacitance is desired for small size and low cost. In such cases, COMP1 must used  
so the TPS62816-Q1 is stable with as low as 32 μF of output capacitance. When the load is very dynamic,  
adding output capacitance improves transient response, but its effect is limited since this also reduces the cross-  
over frequency of the control loop. For such cases, COMP2 must be used as it increases the bandwidth, but  
requires a larger output capacitance for stable operation. The following scope plots are taken for the same  
conditions, but differ in the compensation setting. Since COMP2 demands 72-μF minimum output capacitance  
for stability, both plots were both taken with 72 μF on the output to allow the user to compare the results. One  
plot was taken for the COMP1 (RCF = 8.06 kΩ) and one for the COMP2 (RCF = 80.6 kΩ) compensation setting.  
The scope plots show that for the same output capacitance of 72 μF, the transient response for COMP2 is  
improved over the COMP1 setting.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62816-Q1  
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
L
V
IN  
TPS62816-Q1  
0.22 H  
VOUT  
2.7 V - 6 V  
VIN  
SW  
C
IN  
R1  
R2  
22  
F  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
R3  
72 F  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
10-62. Schematic  
VIN = 5 V  
VIN = 5 V  
VOUT = 1.8 V  
RCF = 8.06 kΩ  
COUT = 72 μF  
RCF = 80.6 kΩ  
COUT = 72 μF  
VOUT = 1.8 V  
IOUT = 0.6 A to 5.4 A to 0.6 A  
IOUT = 0.6 A to 5.4 A to 0.6 A  
10-63. Load Transient Response with Setting  
10-64. Load Transient Response with Setting  
COMP1  
COMP2  
11 Power Supply Recommendations  
The TPS62816-Q1 device family does not have special requirements for its input power supply. The output  
current of the input power supply needs to be rated according to the supply voltage, output voltage, and output  
current of the TPS62816-Q1.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS62816-Q1 demands careful attention to ensure operation and  
to get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both line and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 12.2 for the recommended layout of the TPS62816-Q1, which is designed for common external ground  
connections. The input capacitor must be placed as close as possible between the VIN and GND pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances and narrow traces must be avoided. Loops that conduct an  
alternating current must outline an area as small as possible, since this area is proportional to the energy  
radiated.  
Sensitive nodes like FB need to be connected with short wires and not nearby high dv/dt signals (for example,  
SW). Since they carry information about the output voltage, they must be connected as close as possible to the  
actual output voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors, R1  
and R2, must be kept close to the IC and connect directly to those pins and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN and GND pins help to spread the heat  
into the PCB.  
The recommended layout is implemented on the EVM and shown in the TPS62816EVM-140 Evaluation Module  
User's Guide.  
12.2 Layout Example  
GND  
GND  
VIN  
VOUT  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62816-Q1  
 
 
 
TPS62816-Q1  
ZHCSNV7A MARCH 2020 REVISED DECEMBER 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TPS62816EVM-140 Evaluation Module User's Guide  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62816-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62816QWRWYRQ1  
ACTIVE  
VQFN-HR  
RWY  
9
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
-40 to 125  
816Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62816QWRWYRQ1 VQFN-  
HR  
RWY  
9
3000  
180.0  
12.4  
2.25  
3.25  
1.15  
4.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RWY  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TPS62816QWRWYRQ1  
9
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RWY 9  
2 x 3, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226729/A  
www.ti.com  
PACKAGE OUTLINE  
RWY0009A  
VQFN-HR - 1 mm max height  
SCALE 5.000  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
1.1  
0.55  
0.675  
0.575  
(0.2) TYP  
6
0.55  
0.45  
5
7
A
A
4
SYMM  
3
2
2
0.2 0.05  
(0.9)  
0.3  
9X  
0.2  
0.1  
0.05  
0.5 TYP  
C A B  
C
8
1
9
0.4  
0.3  
4X  
SYMM  
0.675  
0.575  
0.1  
C A B  
C
0.05  
4224015/B 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWY0009A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
9
(0.65)  
(0.55)  
(0.35)  
SEE SOLDER MASK DETAIL  
(0.25)  
(0.5)  
1
8
3X (0.25)  
2
(0.5)  
SYMM  
(2.65)  
3
4
3X (2.3)  
(R0.05) TYP  
5
7
(0.775)  
6
(0.775)  
0.25  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MAX  
ALL AROUND  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4224015/B 01/2018  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWY0009A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
(0.65)  
(0.775)  
(0.31)  
9
EXPOSED METAL  
TYP  
(0.775)  
1
(0.21)  
8
2
(0.5)  
6X (1.05)  
(2.65)  
SYMM  
3
4
6X (0.25)  
7
(R0.05) TYP  
5
6
SYMM  
(1.25)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1, 5, 7 & 8:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 25X  
4224015/B 01/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RWY0009C  
VQFN-HR - 1 mm max height  
SCALE 5.000  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
1.1  
0.55  
(0.2) TYP  
0.675  
0.575  
6
0.55  
0.45  
5
7
4
SYMM  
3
2
A
A
2
0.2 0.05  
(0.9)  
0.3  
9X  
0.2  
0.1  
0.05  
0.5 TYP  
C A B  
C
8
1
12X (0.16)  
9
0.4  
4X  
SYMM  
0.3  
4X (0.2)  
0.1  
0.05  
C A B  
C
0.675  
0.575  
4226803/A 05/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWY0009C  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
9
(0.65)  
(0.55)  
(0.35)  
SEE SOLDER MASK DETAIL  
(0.25)  
(0.5)  
1
8
3X (0.25)  
2
(0.5)  
SYMM  
(2.65)  
3
4
3X (2.3)  
(R0.05) TYP  
5
7
(0.775)  
6
(0.775)  
0.25  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MAX  
ALL AROUND  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4226803/A 05/2021  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWY0009C  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
(0.65)  
(0.775)  
(0.31)  
9
EXPOSED METAL  
TYP  
(0.775)  
1
(0.21)  
8
2
(0.5)  
6X (1.05)  
(2.65)  
SYMM  
3
4
6X (0.25)  
7
(R0.05) TYP  
5
6
SYMM  
(1.25)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1, 5, 7 & 8:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 25X  
4226803/A 05/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62816QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、6A 降压转换器 | RWY | 9 | -40 to 125
TI

TPS6281XM

TPS6281xM, Extended Temperature, 2.75-V to 6-V Adjustable-Frequency Step-Down DC/DC Converter
TI

TPS62821

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、1A 降压转换器
TI

TPS62821DLCR

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、1A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62821DLCT

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、1A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62822

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器
TI

TPS62822DLCR

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62822DLCT

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62823

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、3A 降压转换器
TI

TPS62823DLCR

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、3A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62823DLCT

采用 1.5mm x 2mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、3A 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62824

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy
TI