TPS6283810YFPT [TI]

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125;
TPS6283810YFPT
型号: TPS6283810YFPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

转换器
文件: 总25页 (文件大小:1849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS6283810  
ZHCSJ57 DECEMBER 2018  
采用 1.2mm x 0.8mm WCSP 封装的 TPS6283810 小型 6 引脚 3A 降压转  
换器  
1 特性  
3 说明  
1
DCS-Control™拓扑  
该器件是一款高频同步降压转换器,经优化具有小解决  
方案尺寸和高效率等特性。该器件的输入电压范围为  
2.4V 5.5V,支持常用电池技术。该转换器在中等程  
度的负载到高负载时运行于脉宽调制 (PWM) 模式,并  
在轻负载时自动进入省电模式运行,从而在整个负载电  
流范围内保持高效率。该器件的开关频率为 3.5MHz,  
因此能够使用小型外部组件。凭借其所有的 DCS-  
control 架构,可实现出色的负载瞬态性能和输出电压  
调节精度。其他 特性 还具有过流保护、热关断保护、  
有源输出放电和电源良好指示等其他特性。该器件采用  
6 引脚 WCSP 封装。  
1V 固定输出电压,精度为 1%  
26mΩ 26mΩ 内部功率 MOSFET  
2.4V 5.5V 输入电压范围  
4μA 运行静态电流  
3.5MHz 开关频率  
可在轻载条件下实现高效率的省电模式  
有源输出放电  
电源正常输出  
热关断保护  
断续短路保护  
采用 0.8mm x 1.2mm x 0.5mm 6 引脚 WCSP 封装  
使用 TPS6283810 并借助 WEBENCH® 电源设计  
创建定制设计方案  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TPS6283810  
YFP (6)  
1.2mm x 0.8mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
消费类无线模块  
可穿戴产品  
智能手机  
光学模块  
空白  
典型应用原理图  
效率  
VIN  
2.4 V to 5.5 V  
VOUT  
1.0 V  
TPS6283810  
L1  
0.24 µH  
100  
95  
90  
85  
80  
75  
70  
VIN  
SW  
FB  
C1  
4.7 µF  
C2  
10 µF  
C3  
10 µF  
R3  
100 k  
EN  
VPG  
PG GND  
Copyright Ú 2018, Texas Instruments Incorporated  
65  
VIN = 2.5V  
VIN = 3.3V  
60  
VIN = 4.2V  
VIN = 5.0V  
50  
55  
100m  
1m  
10m  
Load (A)  
100m  
1
3
D003  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEX7  
 
 
 
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application ................................................. 10  
Power Supply Recommendations...................... 15  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 ELECTRICAL CHARACTERISTICS........................ 4  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
7.4 Device Functional Modes.......................................... 9  
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
10.3 Thermal Considerations........................................ 15  
11 器件和文档支持 ..................................................... 16  
11.1 器件支持................................................................ 16  
11.2 文档支持................................................................ 16  
11.3 社区资源................................................................ 16  
11.4 ....................................................................... 16  
11.5 静电放电警告......................................................... 16  
11.6 术语表 ................................................................... 16  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 12 月  
*
最初发布版本  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
5 Pin Configuration and Functions  
YFP Package  
Top View  
YFP Package  
Bottom View  
1
2
1
2
A
B
C
EN  
VIN  
C
B
A
FB  
GND  
PG  
FB  
SW  
PG  
EN  
SW  
GND  
VIN  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
A1  
I
O
I
Power good open drain output pin. The pull-up resistor can be connected to voltages up to  
5.5 V. If unused, leave it floating.  
PG  
FB  
B1  
C1  
Feedback pin. For the fixed output voltage versions, this pin must be connected to the  
output.  
GND  
SW  
C2  
B2  
A2  
Ground pin.  
PWR  
PWR  
Switch pin of the power stage.  
Input voltage pin.  
VIN  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
-1.0  
-2.5  
–40  
–65  
MAX  
6
UNIT  
V
VIN, FB, EN, PG  
SW (DC)  
Voltage at Pins(2)  
VIN + 0.3  
VIN + 0.3  
10  
SW (DC, in current limit)  
SW (AC, less than 10ns)(3)  
Operating Junction, TJ  
150  
°C  
Temperature  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN NOM  
2.4  
MAX UNIT  
VIN  
Input voltage range  
Output voltage range  
Output current range(1)  
5.5  
4
V
V
VOUT  
IOUT  
0.6  
0
3
A
ISINK_PG Sink current at PG pin  
1
mA  
V
VPG  
TJ  
Pull-up resistor voltage  
5.5  
125  
Operating junction temperature  
–40  
°C  
(1) Lifetime is reduced when operating continuously at IOUT = 3 A and the junction temperature 105 °C.  
6.4 Thermal Information  
TPS6283810  
YFP (6-PINS), JEDEC  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
141.3  
1.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
47.3  
0.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
47.5  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 ELECTRICAL CHARACTERISTICS  
TJ = -40 °C to 125 °C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25 °C and VIN = 5 V , unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
IQ  
Quiescent current  
Shutdown current  
EN = High, no load, device not switching  
4
10  
µA  
µA  
ISD  
EN = Low, TJ = -40to 85℃  
0.05  
0.5  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
ELECTRICAL CHARACTERISTICS (continued)  
TJ = -40 °C to 125 °C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25 °C and VIN = 5 V , unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.2  
MAX UNIT  
Under voltage lock out threshold  
Under voltage lock out hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN falling  
VIN rising  
TJ rising  
TJ falling  
2.1  
2.3  
V
VUVLO  
160  
150  
20  
mV  
°C  
°C  
TJSD  
LOGIC INTERFACE EN  
VIH  
VIL  
High-level threshold voltage  
Low-level threshold voltage  
1.0  
V
V
0.4  
0.1  
IEN,LKG Input leakage current into EN pin  
0.01  
µA  
SOFT START, POWER GOOD  
tSS  
Soft start time  
Time from EN high to 95% of VOUT nominal  
VPG rising, VFB referenced to VOUT nominal  
VPG falling, VFB referenced to VOUT nominal  
VPG rising, VFB referenced to VOUT nominal  
VPG falling, VFB referenced to VOUT nominal  
Isink = 1 mA  
1.25  
96  
ms  
%
%
%
%
V
94  
90  
98  
94  
Power good lower threshold  
92  
VPG  
103  
108  
105  
110  
107  
112  
0.4  
0.1  
Power good upper threshold  
VPG,OL Low-level output voltage  
IPG,LKG Input leakage current into PG pin  
OUTPUT  
VPG = 5.0 V  
0.01  
µA  
VOUT  
RFB  
IDIS  
Output voltage accuracy  
TPS6283810, PWM mode  
VSW = 0.4V; EN = LOW  
0.990  
75  
1.0 1.010  
V
Internal resistor divider connected to FB  
pin  
7.5  
MΩ  
mA  
Output discharge current  
400  
POWER SWITCH  
High-side FET on-resistance  
26  
26  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
High-side FET switch current limit  
PWM switching frequency  
ILIM  
fSW  
3.6  
4.3  
3.5  
5.0  
IOUT = 1 A, VOUT = 1.0 V  
MHz  
版权 © 2018, Texas Instruments Incorporated  
5
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
TJ = 0 °C  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
10.0  
TJ = 125 °C  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D011  
D010  
2. Low-Side FET On-Resistance  
1. High-Side FET On-Resistance  
8.0  
6.0  
4.0  
2.0  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
D001  
D000  
3. Quiescent Current  
4. Shutdown Current  
6
版权 © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
7 Detailed Description  
7.1 Overview  
The synchronous step-down converter adopts a DCS-Control (Direct Control with Seamless transition into Power  
Save Mode) topology. This is an advanced regulation topology that combines the advantages of hysteretic,  
voltage, and current mode control schemes.  
The DCS-Control topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions  
and in Power Save Mode at light load currents. In PWM mode, the converter operates with its nominal switching  
frequency of 3.5 MHz, having a controlled frequency variation over the input voltage range. As the load current  
decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC  
current consumption to achieve high efficiency over the entire load current range. Because DCS-Control supports  
both operation modes (PWM and PFM) within a single building block, the transition from PWM mode to Power  
Save Mode is seamless and without effects on the output voltage. The devices offer both excellent DC voltage  
and superior load transient regulation, combined with very low output voltage ripple, minimizing interference with  
RF circuits.  
7.2 Functional Block Diagram  
PG  
VIN  
VPG_H  
+
œ
VFB  
Control Logic  
VREF  
+
VPG_L  
GND  
EN  
œ
UVLO  
Thermal Shutdown  
Startup  
Peak Current Detect  
HICCUP  
VSW  
VIN  
TON  
Direct Control  
&
VSW  
Compensation  
SW  
Gate  
Drive  
Modulator  
VREF  
+
EA  
_
Comparator  
FB  
Zero Current Detect  
GND  
Fixed VOUT  
GND  
7.3 Feature Description  
7.3.1 Power Save Mode  
As the load current decreases, the device enters Power Save Mode (PSM) operation. The power save mode  
occurs when the inductor current becomes discontinuous. PSM is based on a fixed on-time architecture and the  
switching frequency in PSM is reduced, as related in 公式 1.  
版权 © 2018, Texas Instruments Incorporated  
7
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
VOUT  
tON = 250ns ì  
V
IN  
2 ìIOUT  
fPSM  
=
V
V
- VOUT  
tO2 N  
ì
ì
IN  
IN  
VOUT  
L
(1)  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized  
by increasing the output capacitor or inductor value.  
When the device operates close to 100% duty cycle mode, the device can't enter Power Save Mode regardless  
of the load current if the input voltage decreases to typically 10% above the output voltage. The device maintains  
output regulation in PWM mode.  
7.3.2 100% Duty Cycle Low Dropout Operation  
The devices offer low input-to-output voltage difference by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. This is particularly  
useful in battery powered applications to achieve the longest operation time by taking full advantage of the whole  
battery voltage range. The minimum input voltage to maintain output regulation, depending on the load current  
and output voltage can be calculated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
where  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
(2)  
7.3.3 Soft Start  
After enabling the device, there is a 250-µs delay before switching starts. Then, an internal soft startup circuitry  
ramps up the output voltage which reaches nominal output voltage during the startup time of 1 ms. This avoids  
excessive inrush current and creates a smooth output voltage rise slope. It also prevents excessive voltage  
drops of primary cells and rechargeable batteries with high internal impedance.  
The device is able to start into a pre-biased output capacitor. It starts with the applied bias voltage and ramps the  
output voltage to its nominal value.  
7.3.4 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a heavy  
load or shorted output circuit condition. If the inductor current reaches the threshold ILIM, the high-side MOSFET  
is turned off and the low-side MOSFET remains off, while the inductor current flows through its body diode and  
quickly ramps down.  
When this switch current limits is triggered 32 times, the device stops switching. The device then automatically  
starts a new start-up after a typical delay time of 128 µs has passed. This is named HICCUP short-circuit  
protection. The device repeats this mode until the high load condition disappears.  
7.3.5 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, under voltage lockout is implemented that shuts down  
the device at voltages lower than VUVLO  
.
8
版权 © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
Feature Description (接下页)  
7.3.6 Thermal Shutdown  
The device goes into thermal shutdown and stops the power stage switching when the junction temperature  
exceeds TJSD. When the device temperature falls below the threshold by 20°C, the device returns to normal  
operation automatically by switching the power stage again.  
7.4 Device Functional Modes  
7.4.1 Enable and Disable  
The device is enabled by setting the EN pin to a logic High. Accordingly, shutdown mode is forced if the EN pin  
is pulled Low with a shutdown current of typically 50 nA. In shutdown mode, the internal power switches as well  
as the entire control circuitry are turned off. An internal switch smoothly discharges the output through the SW  
pin in shutdown mode. Do not leave the EN pin floating.  
The typical threshold value of the EN pin is 0.89 V for rising input signal, and 0.62 V for falling input signal.  
7.4.2 Power Good  
The device has a power good output. The PG pin goes high impedance once the FB pin voltage is above 96%  
and less than 105% of the nominal voltage, and is driven low once the voltage falls below typically 92% or higher  
than 110% of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 1 mA. The  
power good output requires a pull-up resistor connecting to any voltage rail less than 5.5 V. The PG signal can  
be used for sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin  
unconnected when not used.  
The PG rising edge has a 100-µs blanking time and the PG falling edge has a deglitch delay of 20 µs.  
1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH IMPEDANCE  
LOW  
EN = High, VFB 96% of Nominal Value  
EN = High, VFB 92% of Nominal Value  
EN = High, VFB 105% of Nominal Value  
EN = High, VFB 110% of Nominal Value  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
Power Supply Removal  
VIN < 0.7 V  
版权 © 2018, Texas Instruments Incorporated  
9
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
8.2 Typical Application  
VIN  
VOUT  
1.0 V  
TPS6283810  
L1  
0.24 µH  
2.4 V to 5.5 V  
VIN  
SW  
FB  
C1  
4.7 µF  
C2  
10 µF  
C3  
10 µF  
R3  
100 k  
EN  
VPG  
PG GND  
Copyright Ú 2018, Texas Instruments Incorporated  
5. Typical Application of Fixed Output  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
1.0 V  
Output voltage  
Maximum peak output current  
3 A  
3 lists the components used for the example.  
3. List of Components of 5  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
Taiyo Yuden  
Murata  
C1  
C2, C3  
L1  
4.7 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, JMK107BB7475MA  
10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106MA73D  
0.24 µH, Power Inductor, size 0603, DFE160810S-R24M (DFE18SANR24MG0)  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0603  
Murata  
R3  
Std  
(1) See Third-party Products disclaimer.  
4. List of Components of 5, Smallest Solution  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1, C2, C3  
10 µF, Ceramic capacitor, 6.3 V, X5R, size 0402, GRM155R60J106ME47  
0.24 µH, Power Inductor, size 0603, DFE160810S-R24M (DFE18SANR24MG0)  
100 kΩ, Chip resistor, 1/16 W, size 0402  
Murata  
Murata  
Std  
L1  
R3  
(1) See Third-party Products disclaimer.  
10  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, 5 outlines  
possible inductor and capacitor value combinations for most applications. Checked cells represent combinations  
that are proven for stability by simulation and lab test. Further combinations should be checked for each  
individual application.  
5. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](2)  
NOMINAL L [µH](1)  
10  
+
2 x 10 or 1 x 22  
47  
+
100  
(3)  
0.24  
0.33  
0.47  
+
+
+
+
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and –30%.  
(2) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and –50%.  
(3) This LC combination is the standard value and recommended for most applications.  
8.2.2.3 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 公式 3 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
(3)  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate  
inductor. 6 lists recommended inductors.  
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
6. List of Recommended Inductors(1)  
Inductance  
Dimensions  
Current Rating [A]  
DC Resistance [mΩ]  
[L x W x H mm]  
Part Number  
[µH]  
Murata, DFE160810S-R24M  
(DFE18SANR24MG0)  
0.24  
4.9  
1.6 x 0.8 x 1.0  
30  
0.24  
0.24  
0.25  
0.24  
0.24  
6.5  
4.9  
9.7  
3.5  
3.5  
2.0 x 1.2 x 1.0  
1.6 x 0.8 x 0.8  
4.0 x 4.0 x 1.2  
2.0 x 1.6 x 0.6  
2.0 x 1.6 x 0.6  
25  
22  
Murata, DFE201210U-R24M  
Cyntec, HTEH16080H-R24MSR  
Coilcraft, XFL4012-251ME  
7.64  
35  
Wurth Electronics, 74479977124  
Sunlord, MPM201606SR24M  
35  
(1) See Third-party Products disclaimer.  
8.2.2.4 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converters which helps to provide stable  
operation. A low ESR multilayer ceramic capacitor is recommended for best filtering and must be placed between  
VIN and GND as close as possible to those pins. For most applications, 4.7 μF is sufficient, though a larger value  
reduces input current ripple.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. The recommended typical output capacitor value is 2 x 10 μF or 1 x 22 µF; this  
capacitance can vary over a wide range as outline in the output filter selection table.  
8.2.3 Application Curves  
VIN = 5.0 V, VOUT = 1.0 V, TA = 25 ºC, BOM = 3, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.011  
1.008  
1.005  
1.002  
0.999  
0.996  
0.993  
0.990  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D003  
D031  
VOUT = 1.0 V  
VOUT = 1.0 V  
6. Efficiency  
7. Load Regulation  
12  
版权 © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
VIN = 5.0 V, VOUT = 1.0 V, TA = 25 ºC, BOM = 3, unless otherwise noted.  
5.0  
ICOIL  
1A/DIV  
4.0  
3.0  
2.0  
1.0  
0.0  
VOUT  
10mV/DIV  
AC  
VSW  
5V/DIV  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
Time - 200ns/DIV  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load (A)  
D013  
D008  
IOUT = 3.0 A  
VOUT = 1.0 V  
9. PWM Operation  
8. Switching Frequency  
VEN  
5V/DIV  
ICOIL  
1A/DIV  
VPG  
5V/DIV  
VOUT  
10mV/DIV  
AC  
VOUT  
1V/DIV  
VSW  
5V/DIV  
ICOIL  
0.5A/DIV  
Time - 1s/DIV  
Time - 200s/DIV  
D014  
D015  
IOUT = 50 mA  
No Load  
11. Startup and Shutdown with No-Load  
10. PSM Operation  
VPG  
5V/DIV  
VEN  
5V/DIV  
VPG  
5V/DIV  
ILOAD  
2A/DIV  
VOUT  
1V/DIV  
VOUT  
50mV/DIV  
AC  
ICOIL  
2A/DIV  
Time - 200s/DIV  
Time - 10s/DIV  
D016  
D017  
IOUT = 3.0 A  
12. Startup and Shutdown with Load  
IOUT = 0.1 A to 3 A  
13. Load Transient  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
VIN = 5.0 V, VOUT = 1.0 V, TA = 25 ºC, BOM = 3, unless otherwise noted.  
VPG  
5V/DIV  
ICOIL  
2A/DIV  
VOUT  
0.5V/DIV  
Time - 100s/DIV  
D018  
IOUT = 3 A  
14. HICCUP Short Circuit Protection  
14  
版权 © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
10 Layout  
10.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device. See  
and 15 for the recommended PCB layout.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the power GND to avoid a  
GND potential shift.  
The sense traces connected to FB is a signal trace. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes. The connection of the output voltage trace for the FB  
resistors should be made at the output capacitor.  
Refer to and 15 for an example of component placement, routing and thermal design.  
10.2 Layout Example  
15. PCB Layout of Fixed Output Voltage Application  
10.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the Thermal Characteristics Application Notes,  
SZZA017 and SPRA953.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
TPS6283810  
ZHCSJ57 DECEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 开发支持  
11.2.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用该器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2.2 相关文档  
请参阅如下相关文档:  
《热工特性应用手册》SZZA017  
《热工特性应用手册》SPRA953  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
16  
版权 © 2018, Texas Instruments Incorporated  
TPS6283810  
www.ti.com.cn  
ZHCSJ57 DECEMBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6283810YFPR  
TPS6283810YFPT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFP  
YFP  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1DU  
1DU  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Feb-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6283810YFPR  
TPS6283810YFPT  
DSBGA  
DSBGA  
YFP  
YFP  
6
6
3000  
250  
180.0  
180.0  
8.4  
8.4  
0.9  
0.9  
1.3  
1.3  
0.62  
0.62  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Feb-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6283810YFPR  
TPS6283810YFPT  
DSBGA  
DSBGA  
YFP  
YFP  
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFP0006  
DSBGA - 0.5 mm max height  
S
C
A
L
E
1
0
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
0.4  
TYP  
SYMM  
C
B
D: Max = 1.19 mm, Min = 1.13 mm  
E: Max = 0.79 mm, Min = 0.73 mm  
0.8  
SYMM  
TYP  
0.4 TYP  
A
0.25  
0.21  
C A B  
6X  
0.015  
1
2
4223410/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
2
1
A
B
(0.4) TYP  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223410/A 11/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0006  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
1
2
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4223410/A 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62840

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器
TI

TPS62840DLCR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62840YBGR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | YBG | 6 | -40 to 125
TI

TPS62841DGRR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DGR | 8 | -40 to 125
TI

TPS62841DLCR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DLC | 8 | -40 to 125
TI

TPS62841YBGR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | YBG | 6 | -40 to 125
TI

TPS62842DGRR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DGR | 8 | -40 to 125
TI

TPS62843

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP
TI

TPS62849DLCR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DLC | 8 | -40 to 125
TI

TPS628501

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package
TI

TPS628501-Q1_V01

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A Automotive Step-Down Converter in SOT583 Package
TI