TPS628503DRLR [TI]

采用 SOT-583 封装的 2.7V 至 6V、3A 可调频率降压转换器 | DRL | 8 | -40 to 150;
TPS628503DRLR
型号: TPS628503DRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-583 封装的 2.7V 至 6V、3A 可调频率降压转换器 | DRL | 8 | -40 to 150

转换器
文件: 总40页 (文件大小:3144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
TPS62850x SOT583 封装2.7V 6V1A/2A/3A 降压转换器  
1 特性  
3 说明  
提供功能安全  
TPS62850x 是一系列引脚对引脚 1A2A持续和  
3A峰值易用型高效同步降压直流/直流转换器。它  
们基于峰值电流模式控制拓扑低阻开关可支持高达  
2A 的持续输出电流和 3A 的峰值电流。用户可通过外  
部方式在 1.8MHz 4MHz 范围内调节开关频率亦  
可在该频率范围内将其同步至外部时钟。在 PWM 和  
PFM 模式下TPS62850x 会在轻负载时自动进入省电  
模式而在整个负载范围内保持高效率。  
TPS62850x PWM 模式下提供 1% 的输出电压精  
这有助于设计具有高输出电压精度的电源从而满  
足数字处理器FPGA 的严格电源电压要求。  
可帮助进行功能安全系统设计的文档  
• 输入电压范围2.7V 6V  
• 输出电压范围0.6V 5.5V  
• 反馈电压精度1%  
整个温度范围)  
TJ = -40°C +150°C  
1A2A持续3A峰值系列器件  
• 可调开关频率及同步范围为  
1.8MHz 4MHz  
• 强PWM PWM PFM 操作  
• 静态电17µA典型值)  
• 精密使能输入可实现:  
– 用户定义的欠压锁定  
– 准确排序  
100% 占空比模式  
• 有源输出放电  
TPS62850x 采用 8 引脚 1.6mm x 2.1mm SOT583 封  
装。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS628501  
TPS628502  
TPS628503  
1.60mm × 2.10 mm  
• 具有窗口比较器的电源正常输出  
• 有关具有可调软启动的器件选项请参阅  
TPS628511  
SOT583  
包括引脚)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
电机驱动器  
工厂自动化和控制  
楼宇自动化  
测试和测量  
• 通POL  
L
100  
95  
90  
85  
80  
75  
70  
65  
V
IN  
TPS62850x  
0.47mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
R 1  
CFF  
2*10 mF  
0603  
COUT  
EN  
FB  
2*10 mF  
0603  
MODE/SYNC  
R2  
R3  
COMP/FSET  
PG  
60  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
GND  
55  
50  
100m  
简化版原理图  
1m  
10m 100m  
Output Current (A)  
1
3
效率IOUT 间的关系VOUT = 3.3V  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEC8  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9.4 Device Functional Modes..........................................13  
10 Application and Implementation................................15  
10.1 Application Information........................................... 15  
10.2 Typical Application.................................................. 17  
10.3 System Examples................................................... 27  
11 Power Supply Recommendations..............................29  
12 Layout...........................................................................29  
12.1 Layout Guidelines................................................... 29  
12.2 Layout Example...................................................... 30  
13 Device and Documentation Support..........................31  
13.1 Device Support....................................................... 31  
13.2 接收文档更新通知................................................... 31  
13.3 支持资源..................................................................31  
13.4 Trademarks.............................................................31  
13.5 Electrostatic Discharge Caution..............................31  
13.6 术语表..................................................................... 31  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................8  
8 Parameter Measurement Information............................9  
8.1 Schematic................................................................... 9  
9 Detailed Description......................................................10  
9.1 Overview...................................................................10  
9.2 Functional Block Diagram.........................................10  
9.3 Feature Description...................................................10  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2021) to Revision A (June 2022)  
Page  
Added TPS628503............................................................................................................................................. 3  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE NUMBER  
OUTPUT  
VOUT  
FOLDBACK  
SPREAD SPECTRUM  
CLOCKING (SSC)  
SOFT START  
OUTPUT  
VOLTAGE  
CURRENT DISCHARGE CURRENT LIMIT  
TPS628501DRLR  
TPS628502DRLR  
1 A  
2 A  
ON  
ON  
OFF  
OFF  
by COMP/FSET pin  
by COMP/FSET pin  
internal 1 ms  
internal 1 ms  
adjustable  
adjustable  
TPS628503DRLR  
3 A  
ON  
OFF  
by COMP/FSET pin  
internal 1 ms  
adjustable  
6 Pin Configuration and Functions  
GND SW  
PG  
FB  
1
VIN EN  
6-1. 8-Pin SOT583 DRL Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN  
2
I
I
FB  
5
8
Voltage feedback input. Connect the resistive output voltage divider to this pin.  
Ground pin  
GND  
The device runs in PFM/PWM mode when this pin is pulled low. When the pin is pulled high,  
the device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can  
also be used to synchronize the device to an external frequency. See 7.5 for the detailed  
specification for the digital signal applied to this pin for external synchronization.  
MODE/SYNC  
COMP/FSET  
3
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally  
synchronized.  
4
I
PG  
6
7
O
Open-drain power-good output  
SW  
This is the switch pin of the converter and is connected to the internal Power MOSFETs.  
Power supply input. Make sure the input capacitor is connected as close as possible  
between pin VIN and GND.  
VIN  
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
V
VIN  
SW (DC)  
VIN + 0.3  
10  
Pin voltage(2)  
SW (AC, less than 10 ns)(3)  
COMP/FSET, PG  
VIN + 0.3  
6.5  
0.3  
0.3  
65  
EN, MODE/SYNC, FB  
Storage temperature  
Tstg  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
2.7  
0.6  
0.32  
8
NOM  
MAX  
6
UNIT  
V
VIN  
Input voltage range  
VOUT  
L
Output voltage range  
5.5  
1.2  
200  
V
Effective inductance  
0.47  
10  
μH  
μF  
μF  
kΩ  
mA  
A
COUT  
CIN  
Effective output capacitance(1)  
Effective input capacitance(1)  
5
10  
RCF  
ISINK_PG  
IOUT  
TJ  
4.5  
0
100  
2
Sink current at PG pin  
Output current, TPS628503(2)  
0
3
Junction temperature  
150  
°C  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer's DC bias curves for the effective capacitance vs DC voltage applied. Further restrictions may apply. Please see the  
feature description for COMP/FSET about the output capacitance vs compensation setting and output voltage.  
(2) This part is designed for a 2-A continuous output current at a junction temperature of 105°C or 3-A continuous output current at a  
junction temperature of 85°C; exceeding the output current or the junction temperature can significantly reduce lifetime.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
 
 
 
 
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.4 Thermal Information  
DRL (JEDEC)(2)  
DRL (EVM)  
UNIT  
THERMAL METRIC(1)  
8 PINS  
110  
41.3  
20  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
60  
n/a  
n/a  
n/a  
n/a  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ΨJT  
YJB  
20  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) JEDEC standard PCB with four layers, no thermal vias  
7.5 Electrical Characteristics  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = VIN, no load, device not switching,  
MODE = GND, VOUT = 0.6 V  
IQ  
Quiescent current  
17  
36  
48  
μA  
μA  
μA  
EN = GND, nominal value at TJ = 25°C,  
maximum value at TJ = 150°C  
ISD  
ISD  
Shutdown current  
Shutdown current  
1.5  
EN = GND, TJ = 40°C to 85°C,  
including HSFET leakage  
5.5  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.45  
2.1  
2.6  
2.5  
170  
15  
2.7  
2.6  
V
V
VUVLO  
Undervoltage lockout threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
CONTROL and INTERFACE  
VEN,IH Input threshold voltage at EN, rising edge  
VEN,IL  
1.05  
0.96  
1.1  
1.0  
1.15  
1.05  
V
V
Input threshold voltage at EN, falling edge  
High-level input-threshold voltage at  
MODE/SYNC  
VIH  
1.1  
V
nA  
V
IEN,LKG  
VIL  
ILKG  
tDelay  
Input leakage current into EN  
VIH = VIN or VIL = GND  
125  
0.3  
Low-level input-threshold voltage at  
MODE/SYNC  
Input leakage current into MODE/SYNC  
Enable delay time  
100  
520  
nA  
µs  
Time from EN high to device starts  
switching; VIN applied already  
135  
200  
1.3  
Time from EN high to device starts  
switching; VIN applied already,  
VIN 3.3 V  
tDelay  
Enable delay time  
480  
µs  
Time from device starts switching to  
power good; device not in current limit  
tRamp  
fSYNC  
Output voltage ramp time  
0.8  
1.8  
1.8  
4
ms  
Frequency range on MODE/SYNC pin for  
synchronization  
MHz  
Duty cycle of synchronization signal at  
MODE/SYNC  
20%  
80%  
Time to lock to external frequency  
50  
µs  
Resistance from COMP/FSET to GND for Internal frequency setting with  
0
2.5  
kΩ  
logic low  
f = 2.25 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal frequency setting with  
f = 2.25 MHz  
Voltage on COMP/FSET for logic high  
VIN  
V
UVP power-good threshold voltage;  
DC level  
VTH_PG  
VTH_PG  
Rising (%VFB  
)
92%  
87%  
95%  
90%  
98%  
93%  
UVP power-good threshold voltage;  
DC level  
Falling (%VFB  
)
)
OVP power-good threshold voltage;  
DC level  
Rising (%VFB  
)
107%  
104%  
110%  
113%  
111%  
VTH_PG  
OVP power-good threshold voltage;  
DC level  
Falling (%VFB  
107%  
0.07  
VPG,OL  
IPG,LKG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
For a high level to low level transition on  
the power-good output  
tPG  
PG deglitch time  
40  
µs  
OUTPUT  
VFB  
Feedback voltage, adjustable version  
0.6  
1
V
Input leakage current into FB, adjustable  
version  
IFB,LKG  
VFB  
VFB = 0.6 V  
70  
1%  
2%  
nA  
Feedback voltage accuracy  
PWM, VIN VOUT + 1 V  
1%  
1%  
PFM, VIN VOUT + 1 V, VOUT 1.0 V,  
VFB  
Feedback voltage accuracy  
C
o,eff 10 µF, L = 0.47 µH  
PFM, VIN VOUT + 1 V, VOUT < 1.0 V,  
o,eff 15 µF, L = 0.47 µH  
VFB  
Feedback voltage accuracy  
3%  
1%  
C
Load regulation  
PWM  
0.05  
0.02  
%/A  
%/V  
Ω
Line regulation  
PWM, IOUT = 1 A, VIN VOUT + 1 V  
RDIS  
fSW  
Output discharge resistance  
100  
4
MODE = high, see the FSET pin  
functionality about setting the switching  
frequency.  
PWM switching frequency range  
PWM switching frequency range  
1.8  
1.8  
2.25  
2.25  
MHz  
MODE = low, see the FSET pin  
functionality about setting the switching  
frequency.  
fSW  
3.5  
MHz  
MHz  
fSW  
fSW  
PWM switching frequency  
With COMP/FSET tied to GND or VIN  
2.025  
2.475  
12%  
50  
Using a resistor from COMP/FSET to  
GND  
PWM switching frequency tolerance  
12%  
ton,min  
ton,min  
Minimum on time of high-side FET  
Minimum on time of low-side FET  
High-side FET on-resistance  
Low-side FET on-resistance  
35  
10  
65  
33  
ns  
ns  
VIN = 3.3 V, TJ = 40°C to 125°C  
120  
70  
3.5  
44  
5
VIN 5 V  
mΩ  
mΩ  
µA  
RDS(ON)  
VIN 5 V  
High-side MOSFET leakage current  
High-side MOSFET leakage current  
Low-side MOSFET leakage current  
Low-side MOSFET leakage current  
SW leakage  
TJ = 40°C to 85°C  
0.01  
0.01  
µA  
µA  
TJ = 40°C to 85°C  
70  
11  
µA  
V(SW) = 0.6 V, current into SW pin  
-0.05  
3.45  
µA  
DC value, for TPS628503;  
VIN = 3 V to 6 V  
ILIMH  
ILIMH  
High-side FET switch current limit  
High-side FET switch current limit  
4.5  
3.4  
5.1  
3.9  
A
A
DC value, for TPS628502;  
VIN = 3 V to 6 V  
2.85  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction temperature range (TJ = 40°C to +150°C) and VIN = 2.7 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.6  
MAX  
UNIT  
A
DC value, for TPS628501;  
VIN = 3 V to 6 V  
ILIMH  
High-side FET switch current limit  
Low-side FET negative current limit  
2.1  
3.0  
ILIMNEG  
DC value  
A
1.8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
140  
80  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
VIN = 2.7V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 2.7V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 6.0V  
130  
120  
VIN = 6.0V  
110  
100  
90  
80  
70  
60  
50  
40  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
-40  
0
25 85  
Junction Temperature (°C)  
125  
150  
D002  
D002  
7-1. RDS (ON) of High-Side Switch  
7-2. RDS (ON) of Low-Side Switch  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Schematic  
L
V
IN  
TPS62850x  
0.47mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
2*10 mF  
0603  
R 1  
CFF  
COUT  
2*10 mF  
0603  
EN  
FB  
MODE/SYNC  
R2  
R3  
COMP/FSET  
PG  
GND  
8-1. Measurement Setup  
8-1. List of Components  
DESCRIPTION  
REFERENCE  
MANUFACTURER (1)  
IC  
L
TPS628502  
Texas Instruments  
Murata  
Murata  
Murata  
Murata  
Any  
0.47-µH inductor DFE252012PD  
2 × 10 µF / 6.3 V GRM188D70J106MA73  
CIN  
COUT  
COUT  
RCF  
CFF  
R1  
2 × 10 µF / 6.3 V GRM188D70J106MA73 for VOUT 1 V  
3 × 10 µF / 6.3 V GRM188D70J106MA73 for VOUT < 1 V  
8.06 kΩ  
10 pF  
Any  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
Any  
R2  
Any  
R3  
Any  
(1) See the Third-party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS62850x synchronous switch mode power converters are based on a peak current mode control  
topology. The control loop is internally compensated.  
To optimize the bandwidth of the control loop to the wide range of output capacitance that can be used with  
TPS62850x, the internal compensation has two settings. See 9.3.2. One out of the two compensation settings  
is chosen either by a resistor from COMP/FSET to GND, or by the logic state of this pin. The regulation network  
achieves fast and stable operation with small external components and low-ESR ceramic output capacitors. The  
devices can be operated without a feedforward capacitor on the output voltage divider, however, using a typically  
10-pF feedforward capacitor improves transient response.  
The devices support forced fixed frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as either 2.25 MHz internally fixed when COMP/FSET is tied to GND or VIN, or in a range  
of 1.8 MHz to 4 MHz defined by a resistor from COMP/FSET to GND. Alternatively, the devices can be  
synchronized to an external clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE pin with no  
need for additional passive components. An internal PLL allows the internal clock to be changed to an external  
clock during operation. The synchronization to the external clock is done on a falling edge of the clock applied at  
MODE to the rising edge on the SW pin. This allows a roughly 180° phase shift when the SW pin is used to  
generate the synchronization signal for a second converter. When the MODE pin is set to a logic low level, the  
device operates in power save mode (PFM) at low output current and automatically transfers to fixed frequency  
PWM mode at higher output current. In PFM mode, the switching frequency decreases linearly based on the  
load to sustain high efficiency down to very low output current.  
9.2 Functional Block Diagram  
VIN  
SW  
Bias  
Regulator  
Gate Drive and Control  
Oscillator  
Ipeak  
Izero  
EN  
MODE/SYNC  
gm  
GND  
FB  
Device  
Control  
PG  
+
-
Bandgap  
COMP/FSET  
Thermal  
Shutdown  
9.3 Feature Description  
9.3.1 Precise Enable (EN)  
The voltage applied at the enable pin of the TPS62850x is compared to a fixed threshold of 1.1 V for a rising  
voltage. This allows the user to drive the pin by a slowly changing voltage and enables the use of an external RC  
network to achieve a power-up delay.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
The Precise Enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of the Enable pin.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS62850x starts operation when the rising threshold is exceeded. For proper operation, the enable (EN) pin  
must be terminated and must not be left floating. Pulling the enable pin low forces the device into shutdown, with  
a shutdown current of typically 1 μA. In this mode, the internal high-side and low-side MOSFETs are turned off  
and the entire internal control circuitry is switched off.  
9.3.2 COMP/FSET  
This pin allows to set three different parameters:  
Internal compensation settings for the control loop (two settings available)  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
Enable/disable spread spectrum clocking (SSC)  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows the user to adopt the device to different values of output capacitance. The resistor must  
be placed close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting  
is sampled at start-up of the converter, so a change in the resistor during operation only has an effect on the  
switching frequency but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined setting. Do not  
leave the pin floating.  
The switching frequency has to be selected based on the input voltage and the output voltage to meet the  
specifications for the minimum on-time and minimum off-time.  
Example: VIN = 5 V, VOUT = 0.6 V --> duty cycle = 0.6 V / 5 V = 0.12  
--> ton,min = 1 / fs × 0.12  
--> fsw,max = 1 / ton,min × 0.12 = 1 / 0.05 µs × 0.12 = 2.4 MHz  
The compensation range has to be chosen based on the minimum capacitance used. The capacitance can be  
increased from the minimum value as given in 9-1, up to the maximum of 200 µF in both compensation  
ranges. If the capacitance of an output changes during operation, for example, when load switches are used to  
connect or disconnect parts of the circuitry, the compensation has to be chosen for the minimum capacitance on  
the output. With large output capacitance, the compensation must be done based on that large capacitance to  
get the best load transient response. Compensating for large output capacitance but placing less capacitance on  
the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) disabled:  
Space  
18MHz ×kW  
RCF(kW) =  
fS(MHz)  
(1)  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) enabled:  
Space  
60MHz ×kW  
RCF(kW) =  
fS(MHz)  
(2)  
Space  
For compensation (comp) setting 2 with spread spectrum clocking (SSC) disabled:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
Space  
180MHz ×kW  
RCF(kW) =  
fS(MHz)  
(3)  
9-1. Switching Frequency, Compensation and Spread Spectrum Clocking  
MINIMUM  
MINIMUM OUTPUT  
OUTPUT  
MINIMUM OUTPUT  
CAPACITANCE  
CAPACITANCE  
RCF  
COMPENSATION  
SWITCHING FREQUENCY  
CAPACITANCE  
FOR VOUT < 1 V  
FOR 1 V VOUT < 3.3 V FOR VOUT 3.3 V  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) .. 4 MHz (4.5 kΩ)  
according to 方程1  
15 µF  
15 µF  
10 µF  
10 µF  
8 µF  
8 µF  
10 kΩ.. 4.5 kΩ  
33 kΩ.. 15 kΩ  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (33 kΩ) .. 4 MHz (15 kΩ)  
according to Equation 2  
SSC enabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
1.8 MHz (100 kΩ) ..4 MHz (45 kΩ)  
30 µF  
15 µF  
30 µF  
18 µF  
10 µF  
18 µF  
15 µF  
8 µF  
100 kΩ.. 45 kΩ  
tied to GND  
tied to VIN  
according to Equation 3  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
SSC disabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
15 µF  
SSC enabled  
Refer to 10.1.3.2 for further details on the output capacitance required depending on the output voltage.  
A resistor value that is too high for RCF is decoded as "tied to VIN". A value below the lowest range is decoded as  
"tied to GND". The minimum output capacitance in 9-1 is for capacitors close to the output of the device. If the  
capacitance is distributed, a lower compensation setting can be required.  
9.3.3 MODE / SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin allows you to force PWM mode when set high. The pin also allows you to apply an external  
clock in a frequency range from 1.8 MHz to 4 MHz for external synchronization. The specifications for the  
minimum on-time and minimum off-time must be observed when setting the external frequency. For use with  
external synchronization on the MODE/SYNC pin, the internal switching frequency must be set by RCF to a  
similar value to the externally applied clock. This ensures that if the external clock fails, the switching frequency  
stays in the same range and the compensation settings are still valid.  
9.3.4 Spread Spectrum Clocking (SSC)  
The device offers spread spectrum clocking as an option. When SSC is enabled, the switching frequency is  
randomly changed in PWM mode when the internal clock is used. The frequency variation is typically between  
the nominal switching frequency and up to 288 kHz above the nominal switching frequency. When the device is  
externally synchronized by applying a clock signal to the MODE/SYNC pin, the TPS62850x follows the external  
clock and the internal spread spectrum block is turned off. SSC is also disabled during soft start.  
9.3.5 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents misoperation of the device by switching off both the  
power FETs. When enabled, the device is fully operational for input voltages above the rising UVLO threshold  
and turns off if the input voltage trips below the threshold for a falling supply voltage.  
9.3.6 Power Good Output (PG)  
Power good is an open-drain output that requires a pullup resistor to any voltage up to the recommended input  
voltage level. It is driven by a window comparator. PG is held low when the device is disabled, in undervoltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
lockout in thermal shutdown, and not in soft start. When the output voltage is in regulation hence, within the  
window defined in the electrical characteristics, the output is high impedance.  
VIN must remain present for the PG pin to stay low. If the power good output is not used, it is recommended to tie  
it to GND or leave open. The PG indicator features a de-glitch, as specified in the electrical characteristics, for  
the transition from "high impedance" to "low" of its output.  
9-2. PG Status  
EN  
X
DEVICE STATUS  
PG STATE  
undefined  
low  
VIN < 2 V  
low  
VIN 2 V  
2 V VIN UVLO OR in thermal shutdown OR VOUT not in  
high  
high  
low  
regulation OR device in soft start  
VOUT in regulation  
high impedance  
9.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 170°C  
(typ), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and PG  
goes low. When TJ decreases below the hysteresis amount of typically 15°C, the converter resumes normal  
operation, beginning with soft start. During a PFM pause, the thermal shutdown is not active. After a PFM pause,  
the device needs up to 9 µs to detect a junction temperature that is too high. If the PFM burst is shorter than this  
delay, the device does not detect a junction temperature that is too high.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
The TPS62850x has two operating modes: forced PWM mode is discussed in this section and PWM/PFM as  
discussed in 9.4.2.  
With the MODE/SYNC pin set to high, the TPS62850x operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP pin to GND or  
by an external clock signal applied to the MODE/SYNC pin. With an external clock applied to MODE/SYNC, the  
TPS62850x follows the frequency applied to the pin. In general, the frequency range in forced PWM mode is 1.8  
MHz to 4 MHz. However, the frequency needs to be in a range the TPS62850x can operate at, taking the  
minimum on-time into account.  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of approximately 0.8 A. When the peak inductor current  
drops below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency. In addition, the frequency set with the  
resistor on COMP/FSET must be in a range of 1.8 MHz to 3.5 MHz.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle increases  
as the input voltage comes close to the output voltage and the off-time gets smaller. When the minimum off-time  
of typically 10 ns is reached, the TPS62850x skips switching cycles while it approaches 100% mode. In 100%  
mode, it keeps the high-side switch on continuously. The high-side switch stays turned on as long as the output  
voltage is below the target. In 100% mode, the low-side switch is turned off. The maximum dropout voltage in  
100% mode is the product of the on-resistance of the high-side switch plus the series resistance of the inductor  
and the load current.  
9.4.4 Current Limit and Short Circuit Protection  
The TPS62850x is protected against overload and short circuit events. If the inductor current exceeds the  
current limit ILIMH, the high-side switch is turned off and the low-side switch is turned on to ramp down the  
inductor current. The high-side switch turns on again only if the current in the low side-switch has decreased  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
below the low side current limit. Due to internal propagation delay, the actual current can exceed the static  
current limit. The dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
×tPD  
L
(4)  
where  
ILIMH is the static current limit as specified in the Electrical Characteristics  
L is the effective inductance at the peak current  
VL is the voltage across the inductor (VIN - VOUT  
)
tPD is the internal propagation delay of typically 50 ns  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
IN -VOUT  
Ipeak(typ) = ILIMH  
+
×50ns  
L
(5)  
9.4.5 Foldback Current Limit and Short Circuit Protection  
This is valid for devices where foldback current limit is enabled. Contact Texas Instruments for more information  
on this option.  
When the device detects current limit for more than 1024 subsequent switching cycles, it reduces the current  
limit from its nominal value to typically 1.3 A. Foldback current limit is left when the current limit indication goes  
away. If device operation continues in current limit, after 3072 switching cycles, it tries for full current limit for  
1024 switching cycles.  
9.4.6 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled and to keep the output voltage close to 0 V when the device is off. The output discharge feature  
is only active once the TPS62850x has been enabled at least once since the supply voltage was applied. The  
discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in undervoltage lockout.  
The minimum supply voltage required for the discharge function to remain active is typically 2 V. Output  
discharge is not activated during a current limit or foldback current limit event.  
9.4.7 Soft Start  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a  
delay of about 200 μs then the internal reference and hence VOUT rises with a slope defined by an internally  
defined slope of 150 µs or 1 ms (OTP option).  
9.4.8 Input Overvoltage Protection  
When the input voltage exceeds the absolute maximum rating, the device is set to PFM mode so it cannot  
transfer energy from the output to the input.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS62850x is adjustable. It can be programmed for output voltages from 0.6 V to 5.5  
V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of the  
output voltage is set by the selection of the resistor divider from Equation 6. It is recommended to choose  
resistor values that allow a current of at least 2 µA, meaning the value of R2 must not exceed 400 kΩ. Lower  
resistor values are recommended for highest accuracy and the most robust design.  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(6)  
10.1.2 Inductor Selection  
The TPS62850x family is designed for a nominal 0.47-µH inductor with a switching frequency of typically 2.25  
MHz. Larger values can be used to achieve a lower inductor current ripple but they can have a negative impact  
on efficiency and transient response. Smaller values than 0.47 µH cause a larger inductor current ripple, which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly. See 7.3 for details.  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PFM transition point, and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). Equation 7 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(7)  
(8)  
V
OUT  
æ
ö
V
1-  
OUT × ç  
÷
IN  
1
V
è
Lmin  
ø
DIL(max)  
=
×
f
SW  
where  
IL(max) is the maximum inductor current  
• ΔIL(max) is the peak-to-peak inductor ripple current  
Lmin is the minimum inductance at the operating point  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
10-1. Typical Inductors  
NOMINAL  
SWITCHING  
FREQUENCY  
INDUCTANCE  
[µH]  
CURRENT [A]  
DIMENSIONS  
[LxBxH] mm  
TYPE  
FOR DEVICE  
MANUFACTURER(2)  
(1)  
XFL4015-471ME  
XFL4015-701ME  
0.47 µH, ±20%  
0.70 µH, ±20%  
0.80 µH, ±20%  
0.56 µH, ±20%  
0.68 µH, ±20%  
0.68 µH, ±20%  
0.68 µH, ±20%  
0.47 µH, ±20%  
0.68 µH, ±20%  
0.47 µH, ±20%  
3.5  
TPS628501 / 502  
TPS628501 / 502  
TPS628501 / 502  
TPS628501 / 502  
TPS628501 / 502  
TPS628501  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
2.25 MHz  
4 × 4 × 1.6  
4 × 4 × 1.6  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Murata  
3.3  
2.0  
XEL3520-801ME  
3.5 × 3.2 × 2.0  
3.5 × 3.2 × 1.5  
3.0 × 3.0 × 1.2  
2 × 1.9 × 1  
XEL3515-561ME  
4.5  
XFL3012-681ME  
2.1  
XPL2010-681ML  
1.5  
DFE252012PD-R68M  
DFE252012PD-R47M  
DFE201612PD-R68M  
DFE201612PD-R47M  
see data sheet  
see data sheet  
see data sheet  
see data sheet  
TPS628501 / 502  
TPS628501 / 502  
TPS628501 / 502  
TPS628501 / 502  
2.5 × 2 × 1.2  
2.5 × 2 × 1.2  
2 × 1.6 × 1.2  
2 × 1.6 × 1.2  
Murata  
Murata  
Murata  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third-party Products Disclaimer.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.3 Capacitor Selection  
10.1.3.1 Input Capacitor  
For most applications, 10-µF nominal is sufficient and is recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for the best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.3.2 Output Capacitor  
The architecture of the TPS62850x allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, it is recommended  
to use X7R or X5R dielectric. Using a higher value has advantages, like smaller voltage ripple and a tighter DC  
output accuracy in power save mode.  
The COMP/FSET pin allows the user to select two different compensation settings based on the minimum  
capacitance used on the output. The maximum capacitance is 200 µF in any of the compensation settings. The  
minimum capacitance required on the output depends on the compensation setting and output voltage.  
For output voltages below 1 V, the minimum increases linearly from 10 µF at 1 V to 15 µF at 0.6 V with the  
compensation setting for smallest output capacitance. Other compensation ranges are equivalent. See 9-1 for  
details.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
10.2 Typical Application  
L
V
IN  
TPS62850x  
VIN  
0.47mH  
VOUT  
2.7 V - 6 V  
CIN  
SW  
R 1  
CFF  
2*10 mF  
0603  
COUT  
2*10 mF  
0603  
EN  
FB  
MODE/SYNC  
R2  
R3  
COMP/FSET  
PG  
GND  
10-1. Typical Application  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
10.2.2 Detailed Design Procedure  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(9)  
With VFB = 0.6 V:  
10-2. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE  
VOUT  
R1  
R2  
CFF  
EXACT OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
0.7988 V  
1.0 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
19.6 kΩ  
1.101 V  
1.2 V  
39.2 kΩ  
68 kΩ  
1.5 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
1.803 V  
2.5 V  
3.315 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless  
otherwise noted. The BOM is according to 8-1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Output Current (A)  
100m  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3
3
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-2. Efficiency Versus Output Current  
10-3. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
70  
65  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-4. Efficiency Versus Output Current  
10-5. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
65  
60  
55  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
VOUT = 1.1 V  
PFM  
TA = 25°C  
VOUT = 1.1 V  
PWM  
TA = 25°C  
10-6. Efficiency Versus Output Current  
10-7. Efficiency Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
40  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-8. Efficiency Versus Output Current  
10-9. Efficiency Versus Output Current  
3.33  
3.324  
3.318  
3.312  
3.306  
3.3  
3.33  
3.324  
3.318  
3.312  
3.306  
3.3  
3.294  
3.288  
3.282  
3.294  
3.288  
3.282  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
3.276  
3.27  
3.276  
3.27  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-10. Output Voltage Versus Output Current  
10-11. Output Voltage Versus Output Current  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.82  
1.816  
1.812  
1.808  
1.804  
1.8  
1.796  
1.796  
1.792  
1.788  
1.784  
1.78  
1.792  
1.788  
1.784  
1.78  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-12. Output Voltage Versus Output Current  
10-13. Output Voltage Versus Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
1.11  
1.108  
1.106  
1.104  
1.102  
1.1  
1.11  
1.108  
1.106  
1.104  
1.102  
1.1  
1.098  
1.098  
1.096  
1.094  
1.092  
1.09  
1.096  
1.094  
1.092  
1.09  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 1.1 V  
PFM  
TA = 25°C  
VOUT = 1.1 V  
PWM  
TA = 25°C  
10-14. Output Voltage Versus Output Current  
10-15. Output Voltage Versus Output Current  
0.612  
0.606  
0.6045  
0.603  
0.6015  
0.6  
0.61  
0.608  
0.606  
0.604  
0.602  
0.6  
0.5985  
0.597  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
0.598  
VIN = 3.3 V  
0.5955  
0.594  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
0.596  
0.594  
100m  
1m  
10m 100m  
Output Current (A)  
1
3
100m  
1m  
10m 100m  
Output Current (A)  
1
3
VOUT = 0.6 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
PFM  
TA = 25°C  
10-17. Output Voltage Versus Output Current  
10-16. Output Voltage Versus Output Current  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
1.00  
0.75  
0.50  
0.25  
0.00  
1.00  
0.75  
0.50  
0.25  
0.00  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
Ambient temperature (èC)  
Ambient temperature (èC)  
VOUT = 0.6 V  
PWM  
VOUT = 1.1 V  
PWM  
θJA = 60°C/W  
θJA = 60°C/W  
10-18. Output Current Versus Ambient  
10-19. Output Current Versus Ambient  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
VIN=2.7V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
VIN=4.2V  
VIN=5.0V  
VIN=6.0V  
0.00  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
Ambient temperature (èC)  
Ambient temperature (èC)  
VOUT = 1.8 V  
PWM  
VOUT = 3.3 V  
PWM  
θJA = 60°C/W  
θJA = 60°C/W  
10-20. Output Current Versus Ambient  
10-21. Output Current Versus Ambient  
Temperature  
Temperature  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-22. Load Transient Response  
10-23. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-24. Load Transient Response  
10-25. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 1.2 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-26. Load Transient Response  
10-27. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-28. Load Transient Response  
10-29. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-30. Load Transient Response  
10-31. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 3.3 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-32. Line Transient Response  
10-33. Line Transient Response  
VOUT = 1.8 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-34. Line Transient Response  
10-35. Line Transient Response  
VOUT = 1.2 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-36. Line Transient Response  
10-37. Line Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 1.0 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-38. Line Transient Response  
10-39. Line Transient Response  
VOUT = 0.6 V  
IOUT = 0.2 A  
PFM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 2 A  
PWM  
TA = 25°C  
VIN = 3.0 V to 3.6 V to 3.0 V  
VIN = 3.0 V to 3.6 V to 3.0 V  
10-40. Line Transient Response  
10-41. Line Transient Response  
VOUT = 3.3 V  
VIN = 5 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-42. Output Voltage Ripple  
10-43. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 1.8 V  
VIN = 5 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-44. Output Voltage Ripple  
10-45. Output Voltage Ripple  
VOUT = 1.2 V  
VIN = 5 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
VOUT = 1.2 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
10-46. Output Voltage Ripple  
10-47. Output Voltage Ripple  
VOUT = 1.0 V  
VIN = 5 V  
PFM  
TA = 25°C  
IOUT = 0.2 A  
VOUT = 1.0 V  
VIN = 5 V  
PWM  
TA = 25°C  
IOUT = 2 A  
10-48. Output Voltage Ripple  
10-49. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 2 A  
IOUT = 0.2 A  
10-50. Output Voltage Ripple  
10-51. Output Voltage Ripple  
VOUT = 3.3 V  
VIN = 5 V  
PWM or PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5 V  
PWM or PFM  
TA = 25°C  
IOUT = 2 A  
IOUT = 2 A  
10-52. Start-Up Timing  
10-53. Start-Up Timing  
VOUT = 1.2 V  
VIN = 5 V  
PWM or PFM  
TA = 25°C  
IOUT = 2 A  
VOUT = 1.0 V  
VIN = 5 V  
PWM or PFM  
TA = 25°C  
IOUT = 2 A  
10-54. Start-Up Timing  
10-55. Start-Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM or PFM  
TA = 25°C  
IOUT = 2 A  
10-56. Start-Up Timing  
10.3 System Examples  
10.3.1 Synchronizing to an External Clock  
The TPS62850x can be externally synchronized by applying an external clock on the MODE/SYNC pin. There is  
no need for any additional circuitry as long as the input signal meets the requirements given in the electrical  
specifications. The clock can be applied / removed during operation, allowing an externally defined fixed  
frequency to be switched to a power-save mode or to internal fixed frequency operation.  
The value of the RCF resistor must be chosen such that the internally defined frequency and the externally  
applied frequency are close to each other. This ensures a smooth transition from internal to external frequency  
and vice versa.  
L
V
IN  
TPS62850x  
0.47 mH  
VOUT  
2.7 V - 6 V  
VIN  
SW  
CIN  
R1  
2*10 mF  
0603  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
COMP/FSET  
R2  
R 3  
2*10 mF  
0603  
fEXT  
PG  
GND  
10-57. Schematic using External Synchronization  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
VIN = 5 V  
IOUT = 0.1 A  
VIN = 5 V  
IOUT = 0.1 A  
RCF = 8.06 kΩ  
RCF = 8.06 kΩ  
VOUT = 1.8 V  
fEXT = 2.5 MHz  
VOUT = 1.8 V  
fEXT = 2.5 MHz  
10-58. Switching from External Syncronization  
10-59. Switching from External Synchronizaion  
to Power-Save Mode (PFM)  
to Internal Fixed Frequency  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS62850x device family does not have special requirements for its input power supply. The output current  
of the input power supply needs to be rated according to the supply voltage, output voltage, and output current  
of the TPS62850x.  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS62850x demands careful attention to ensure operation and to  
get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both in 12.2 and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 12-1 for the recommended layout of the TPS62850x, which is designed for common external ground  
connections. The input capacitor must be placed as close as possible between the VIN and GND pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances and narrow traces must be avoided. Loops which conduct an  
alternating current must outline an area as small as possible since this area is proportional to the energy  
radiated.  
Sensitive nodes like FB need to be connected with short wires and not nearby high dv/dt signals (for example,  
SW). As they carry information about the output voltage, they must be connected as close as possible to the  
actual output voltage (at the output capacitor). The FB resistors, R1 and R2, must be kept close to the IC and be  
connected directly to the pin and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN and GND pins help to spread the heat  
into the PCB.  
The recommended layout is implemented on the EVM and shown in the TPS628502EVM-092 Evaluation  
Module User's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
12.2 Layout Example  
COUT  
L
V
OUT  
GND  
2
Solution size = 30mm  
CIN  
R2  
U1  
RCF  
V
IN  
GND  
12-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
 
 
 
 
 
 
 
TPS628501, TPS628502, TPS628503  
ZHCSLX5A MARCH 2021 REVISED JUNE 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS628501 TPS628502 TPS628503  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS628501DRLR  
TPS628502DRLR  
TPS628503DRLR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
8
8
8
4000 RoHS & Green  
4000 RoHS & Green  
4000 RoHS & Green  
Call TI | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 150  
100  
200  
300  
Samples  
Samples  
Samples  
Call TI | SN  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS628501, TPS628502, TPS628503 :  
Automotive : TPS628501-Q1, TPS628502-Q1, TPS628503-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS628501DRLR  
TPS628502DRLR  
TPS628503DRLR  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
8
8
8
4000  
4000  
4000  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.75  
2.75  
2.75  
1.9  
1.9  
1.9  
0.8  
0.8  
0.8  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS628501DRLR  
TPS628502DRLR  
TPS628503DRLR  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
8
8
8
4000  
4000  
4000  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS628503QDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62850X

TPS62850x 2.7-V to 6-V, 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62850X-Q1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628510

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628510DRLR

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628511

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628511DRLR

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628512

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628512DRLR

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628513

采用 SOT-583 封装的 2.7V 至 6V、3A 固定频率降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628513DRLR

采用 SOT-583 封装的 2.7V 至 6V、3A 固定频率降压转换器 | DRL | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62851X

TPS62851x 2.7-V to 6-V, 0.5-A / 1-A / 2-A Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI