TPS629210DRLR-ET [TI]

温度范围为 -55°C 至 150°C 的 3V 至 17V、1A、高效同步降压转换器 | DRL | 8 | -55 to 150;
TPS629210DRLR-ET
型号: TPS629210DRLR-ET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

温度范围为 -55°C 至 150°C 的 3V 至 17V、1A、高效同步降压转换器 | DRL | 8 | -55 to 150

转换器
文件: 总48页 (文件大小:4126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS629210E  
ZHCSOS1 – MARCH 2022  
TPS629210E 1A3V 17V–55°C +150°C IQ 压转换器  
1 特性  
3 说明  
扩展的工作温度性能  
TPS629210E 器件是高效、小巧、高度灵活且易于使  
用的同步降压直流/直流转换器。3V 17V 的宽输入  
电压范围支持各种由 12V5V 3.3V 电源轨或者单  
节或多节锂离子电池供电的系统。可将 TPS629210E  
配置为以强制 PWM 模式或可变频率(自动 PFM)模  
式在 2.5 MHz 1 MHz 频率下运行。在自动 PFM  
模式下,器件在轻负载时自动转换为省电模式,以保持  
高效率。此外,借助 4µA 的低典型静态电流,可在极  
小的负载下实现高效率。TI 的自动效率增强 (AEE) 模  
式可根据输入和输出电压自动调整开关频率,从而无需  
使用不同的电感器即可在整个工作范围内保持高转换效  
率。除选择开关频率的行为之外,MODE/S-CONF 输  
入引脚还可用于在外部和内部反馈分压器和启用/禁用  
输出电压放电功能的不同组合之间进行选择。在内部反  
馈配置中,FB/VSET 引脚和 GND 之间的电阻器可用  
于在 18 种不同的输出电压选项之间进行选择(请参阅  
8-2)。  
– -55°C 150°C 的工作结温范围  
高效率 DCS-Control 拓扑  
内部补偿  
无缝 PWM/PFM 转换  
4 µA(典型值)低静态电流  
输出电流高达 1A  
RDSON250 mΩ 高侧,85 mΩ 低侧  
输出电压精度为 ±1%  
可配置的输出电压选项:  
– VFB 外部分压器:0.6V 5.5V  
– VSET 内部分压器:  
18 个电压选项(0.4V 5.5V)  
通过 MODE/S-CONF 引脚提高了灵活性  
– 2.5 MHz 1.0 MHz 开关频率  
具有动态模式更改选项的强制 PWM 或自动  
(PFM) 省电模式  
器件信息  
输出放电开/关  
器件型号  
封装(1)  
封装尺寸(标称值)  
无需外部自举电容器  
过流和过热保护  
1.60mm × 2.10mm  
(包括引脚)  
TPS629210E  
SOT-5X3 (8)  
100% 占空比模式  
精密使能输入  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
电源正常状态输出  
录。  
TPS629210TPS629206 TPS629203 器件  
引脚对引脚兼容  
0.5mm 间距、8 引脚 SOT-5X3 封装  
2 应用  
航天和国防  
飞行器驾驶舱显示屏  
加固型通信  
智能弹药  
工业运输  
VIN  
3V œ 17V  
VOUT  
0.4V œ 5.5V  
100  
90  
80  
70  
60  
50  
2.2 µH  
VIN  
SW  
22 F  
4.7 F  
EN  
VOS  
FB/  
VSET  
MODE/  
S-CONF  
PG  
GND  
40  
30  
20  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
简化版原理图  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
效率与输出电流间的关系(频率为 1.0MHz,  
VOUT = 3.3V,自动 PFM/PWM)  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGI8  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................15  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application.................................................... 19  
9.3 System Examples..................................................... 38  
10 Power Supply Recommendations..............................39  
11 Layout...........................................................................40  
11.1 Layout Guidelines................................................... 40  
11.2 Layout Example...................................................... 40  
12 Device and Documentation Support..........................42  
12.1 Device Support....................................................... 42  
12.2 Documentation Support.......................................... 42  
12.3 接收文档更新通知................................................... 42  
12.4 支持资源..................................................................42  
12.5 Trademarks.............................................................42  
12.6 Electrostatic Discharge Caution..............................43  
12.7 术语表..................................................................... 43  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 43  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
5 Device Comparison Table  
Operating  
Temperature  
Range  
Device Number  
Output Current  
Input Voltage  
Switching Frequency  
PWM Mode  
VO Adjust  
TPS629203  
TPS629206  
TPS629210  
TPS629210E  
0 A–0.3 A  
0 A–0.6 A  
0 A–1 A  
Externally  
programmable or 18  
internal options  
–40°C to 125°C  
–55°C to 150°C  
Selectable 1 MHz or Selectable auto PWM/PFM  
3 V–17 V  
2.5 MHz options  
or forced PWM  
0 A–1 A  
6 Pin Configuration and Functions  
/
F
E
N
D
D
O
N
N
I
C
N
-
MO  
G
E
V
S
8
1
7
6
5
2
3
4
/
T
B
S
G
P
E
F
W
S
O
V
S
6-1. TPS629210E 8-Pin DRL SOT-5X3 Pinout  
6-1. Pin Functions  
Pin  
I/O  
Description  
Name  
NO.  
Dependent upon device configuration (see 8.3.1)  
FB: Voltage feedback input. Connect a resistive output voltage divider to this pin.  
VSET: Output voltage setting pin. Connect a resistor to GND to choose the output voltage  
according to 8-2.  
FB/VSET  
1
I
PG  
2
3
4
5
O
I
Open-drain power-good output  
VOS  
SW  
Output voltage sense pin. Connect directly to the positive pin of the output capacitor.  
Switch pin of the converter. Connected to the internal power switches  
Ground pin  
GND  
Power supply input. Make sure the input capacitor is connected as close as possible between  
the VIN pin and GND.  
VIN  
EN  
6
7
8
I
I
I
Enable/disable pin including a threshold comparator. Connect to logic low to disable the device.  
Pull high to enable the device. Do not leave this pin unconnected.  
Device mode selection (auto PFM/PWM or forced PWM operation) and Smart-CONFIG pin.  
Connect a resistor to configure the device according to 8-1.  
MODE/S-CONF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–3.0  
–0.3  
MAX  
UNIT  
V
Voltage(2)  
Voltage(2)  
Voltage(2)  
Voltage(2)  
Current  
Tstg  
VIN, EN, PG, MODE/S-CONF  
SW(3)  
18  
VIN + 0.3  
V
SW (AC, less than 10 ns)(3)  
23  
6
V
FB/VSET, VOS  
V
PG  
10  
mA  
°C  
Storage temperature  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
3.0  
0.4  
3
NOM  
MAX  
17  
UNIT  
V
VI  
Input voltage range  
VO  
Output voltage range  
Effective input capacitance  
Effective output capacitance(1)  
Output inductance(2)  
5.5  
V
CI  
4.7  
22  
µF  
µF  
µH  
A
CO  
L
10  
100  
4.7(4)  
1
1.0(3)  
2.2  
IOUT  
ISINK_PG  
TJ  
Output current  
0
Sink current at the PG pin  
Junction temperature (5)  
1
mA  
°C  
–55  
150  
(1) This is for capacitors directly at the output of the device. More capacitance is allowed if there is a series resistance associated to the  
capacitor.  
(2) Nominal inductance value  
(3) Not recommended for 1-MHz operation  
(4) Larger values of inductance can be used to reduce the ripple current, but they can have a negative impact on efficiency and the overall  
transient response.  
(5) Operating lifetime is derated at junction temperatures greater than 150°C.  
7.4 Thermal Information  
SOT-5X3 (8)  
THERMAL METRIC(1)  
UNIT  
JEDEC PCB  
TPS6292xx EVM  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
120  
45  
25  
1
60  
n/a  
n/a  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
SOT-5X3 (8)  
TPS6292xx EVM  
n/a  
THERMAL METRIC(1)  
UNIT  
JEDEC PCB  
ΨJB  
Junction-to-board characterization parameter  
20  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VIN = 3 V to 17 V, TJ = –55°C to +150°C, typical values at VI = 12 V and TA = 25°C,unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Operating quiescent current (power  
save mode)  
IQ  
IOUT = 0 mA, device not switching  
4
5
µA  
Operating quiescent current (PWM  
mode)  
VIN = 12 V, VOUT = 1.2 V; IOUT = 0  
mA, device switching  
IQ;PWM  
ISD  
VUVLO  
VUVLO  
mA  
Shutdown current into the VIN pin  
Undervoltage lockout  
EN = 0 V  
VIN rising  
VIN falling  
0.25  
2.95  
2.75  
200  
3
3.0  
µA  
V
2.85  
2.65  
Undervoltage lockout  
2.85  
V
Undervoltage lockout hysteresis  
mV  
CONTROL AND INTERFACE  
ILKG  
EN input leakage current  
EN = VIN  
3
300  
nA  
V
High-level input voltage at the  
MODE/S-CONF pin  
VIH;MODE  
1.0  
Low-level input voltage at the  
MODE/S-CONF pin  
VIL;MODE  
0.15  
V
VIH  
VIL  
High-level input voltage at the EN pin  
Low-level input voltage at the EN pin  
0.97  
0.87  
93%  
89%  
1.0  
0.9  
1.03  
0.93  
99%  
96%  
V
V
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
Hysteresis  
96%  
93%  
3%  
32  
VPG  
Power-good threshold  
VPG_HYS  
tPG,DLY  
tPG,DLY  
VPG,OL  
IPG,LKG  
Power-good threshold hysteresis  
Power-good delay time  
µs  
Power-good pulldown resistance  
10  
Low-level output voltage at the PG pin ISINK = 1 mA  
0.1  
1
V
Input leakage current into the PG pin  
VPG = 5 V  
0.01  
µA  
POWER SWITCHES  
High-side FET on resistance  
250  
85  
RDS;ON  
mΩ  
Low-side FET on resistance  
High-side FET current limit  
Low-side FET current limit  
Low-side FET sink current limit  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
Switching frequency  
1.5  
1.3  
0.8  
1.8  
1.6  
1
2.1  
1.9  
1.2  
A
A
A
ILIM  
ILIM;SINK  
TSD  
TJ rising  
170  
20  
°C  
TJ falling  
fSW  
2.5-MHz selection (FPWM mode)  
1.0-MHz selection (FPWM mode)  
2.5  
1.0  
40  
MHz  
MHz  
ns  
fSW  
Switching frequency  
TON(MIN)  
ILKG;SW  
OUTPUT  
Minimum on time  
Leakage current into the SW pin  
EN = 0 V, VSW = VOS = 5.5 V  
0.1  
5
µA  
VSET configuration selected, TJ =  
25°C  
VO  
Output voltage regulation  
–0.75%  
+0.75%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = 3 V to 17 V, TJ = –55°C to +150°C, typical values at VI = 12 V and TA = 25°C,unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSET option selected, –55°C ≤ TJ ≤  
150°C  
VO  
Output voltage regulation  
–1.5%  
+1%  
VFB  
VFB  
Feedback regulation voltage  
Feedback voltage regulation  
Adjustable configuration selected  
FB option selected, TJ = 25°C  
0.6  
V
–0.5 %  
–1.5%  
+ 0.5%  
+0.5%  
100  
FB option selected, –55°C ≤ TJ ≤  
150°C  
VFB  
IFB  
Tdelay  
Feedback voltage regulation  
Input leakage current into the FB pin  
Adjustable configuration, VFB = 0.6 V  
1
nA  
µs  
IO = 0 mA, time from EN rising  
edge until start switching, external FB  
configuration selected  
Start-up delay time  
Start-up delay time  
700  
1750  
2000  
IO = 0 mA, time from EN rising  
edge until start switching, VSET  
configuration selected  
Tdelay  
1000  
µs  
IO = 0 mA after Tdelay, from first  
switching pulse until target VO  
TSS  
Soft-start time  
600  
7.5  
700  
20  
µs  
Discharge = ON - option selected, EN  
= LOW  
RDISCH  
Active discharge resistance  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
10  
9
8
7
6
5
4
3
2
1
0
1.4  
1.2  
1
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
0.8  
0.6  
0.4  
0.2  
0
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
Temperature (C)  
Measured with the device not switching  
7-2. Typical Shutdown Current vs Temperature  
5.05  
7-1. Typical Quiescent Current vs Temperature  
0.5  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
0.4  
0.3  
0.2  
0.1  
0
5.04  
5.03  
5.02  
5.01  
5
4.99  
4.98  
4.97  
4.96  
4.95  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
VOUT = 5.0 V  
7-4. Output Voltage Accuracy – VSET Selected  
7-3. Output Voltage Accuracy – External Feedback  
1.818  
1.812  
1.806  
1.8  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
1.794  
1.788  
1.782  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
VOUT = 3.3 V  
VOUT = 1.8 V  
7-5. Output Voltage Accuracy – VSET Selected  
7-6. Output Voltage Accuracy – VSET Selected  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS629210E  
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
1.212  
0.606  
0.604  
0.602  
0.6  
Vin = 3V  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
1.209  
1.206  
1.203  
1.2  
1.197  
1.194  
1.191  
1.188  
0.598  
0.596  
0.594  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
Temperature (C)  
VOUT = 1.2 V  
VOUT = 0.6 V  
7-7. Output Voltage Accuracy – VSET Selected  
2.8  
7-8. Output Voltage Accuracy – VSET Selected  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
1.9  
1.8  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
FPWM  
IOUT = 0 A  
VOUT = 1.2 V  
FSW = 2.5 MHz  
FPWM  
IOUT = 0 A  
7-10. Switching Frequency vs Temperature  
7-9. Switching Frequency vs Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
160  
140  
120  
100  
80  
Vin = 3V  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
60  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-11. High-Side RDSON vs Temperature  
7-12. Low-Side RDSON vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
1.85  
1.64  
1.62  
1.6  
Vin = 3V  
1.84  
1.83  
1.82  
1.81  
1.8  
Vin = 6V  
Vin = 12V  
Vin = 17V  
1.58  
1.56  
1.54  
1.52  
1.5  
1.79  
1.78  
1.77  
1.76  
1.75  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
7-14. Low-Side ILIM vs Temperature  
7-13. High-Side ILIM vs Temperature  
1.03  
1.02  
1.01  
1
3
2.95  
2.9  
2.85  
2.8  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
2.75  
2.7  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
2.65  
2.6  
Rising  
Falling  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-15. Low-Side INEG vs Temperature  
7-16. VIN UVLO Thresholds vs Temperature  
1.005  
1.004  
1.003  
1.002  
1.001  
1
0.9  
0.899  
0.898  
0.897  
0.896  
0.895  
0.894  
0.893  
0.892  
0.891  
0.89  
0.999  
0.998  
0.997  
0.996  
0.995  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
Vin = 3V  
Vin = 6V  
Vin = 12V  
Vin = 17V  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-17. Precision Enable Threshold vs Temperature  
7-18. Precision Enable Threshold vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS629210E synchronous switched mode power converter is based on DCS-Control (Direct Control with  
Seamless Transition into power save mode), an advanced regulation topology that combines the advantages  
of hysteretic, voltage mode, and current mode control. This control loop takes information about output voltage  
changes and feeds it directly to a fast comparator stage. It sets the switching frequency, which is constant for  
steady state operating conditions, and provides immediate response to dynamic load changes. To get accurate  
DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves  
fast and stable operation with small external components and low-ESR capacitors.  
8.2 Functional Block Diagram  
VIN  
PG  
VI  
Ref  
1.0V  
+
HS Limit  
EN  
VO  
Internal/External  
Divider  
Device Control  
& Logic  
Power Control  
FB/VSET  
SW  
Power Save Mode  
Forced PWM  
100% Mode  
Resistor-to-  
Digital  
Gate  
Driver  
Smart-Enable  
Ref-System  
VFB  
UVLO  
Start-up Handling  
Smart-CONFIG  
PG-Control  
Thermal Shutdown  
Resistor-to-  
Digital  
MODE/  
S-CONF  
LS Limit  
MODE Detection  
VO  
Direct  
Control  
VI  
VOS  
TON timer  
VFB  
VO  
+
Device  
Control  
VREF  
DCS-Control  
GND  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Mode Selection and Device Configuration (MODE/S-CONF Pin)  
The MODE/S-CONF pin is an input with two functions. It can be used to customize the device behavior in two  
ways:  
Select the device mode (forced PWM or auto PFM/PWM operation) traditionally with a HIGH or LOW level.  
Select the device configuration (switching frequency, internal and external feedback, output discharge, and  
PFM/PWM mode) by connecting a single resistor to this pin.  
The device interprets this pin during its start-up sequence after the internal OTP readout and before it starts  
switching in soft start. If the device reads a HIGH or LOW level, dynamic mode change is active and PFM/PWM  
mode can be changed during operation. If the device reads a resistor value, there is no further interpretation  
during operation and the device mode or other configurations cannot be changed afterward.  
EN & UVLO  
Precise  
Enable  
detection  
PG -> High  
Switching  
Operation  
OTP  
Readout  
S-CONF  
Readout  
VSET  
Readout  
Softstart  
Resistor-to-Digitial  
readout &  
interpretation  
No interpretation of  
MODE/S-CONF or VSET  
MODE-Pin toggling detection  
VOUT  
8-1. Interpretation of S-CONF and VSET Flow  
8-1. Smart-CONFIG Setting Table  
Dynamic  
Mode  
Change  
M ODE/S-CONF Level Or  
Resistor Value [Ω] (1)  
FB/VSET  
Pin  
Output  
Discharge  
#
FSW (MHz)  
Mode (Auto Or Forced PWM)  
Setting Options by Level  
1
2
GND  
HIGH (> 1.8 V)  
Setting Options by Resistor  
7.50 k  
external FB  
external FB  
up to 2.5(2)  
2.5  
yes  
yes  
Auto PFM/PWM with AEE  
Forced PWM  
Active  
3
4
external FB  
external FB  
external FB  
external FB  
external FB  
external FB  
VSET  
up to 2.5(2)  
no  
no  
Auto PFM/PWM with AEE  
Forced PWM  
9.31 k  
2.5  
5
11.50 k  
1
yes  
yes  
no  
Auto PFM/PWM  
Forced PWM  
6
14.30 k  
1
7
17.80 k  
1
Auto PFM/PWM  
Forced PWM  
8
22.10 k  
1
no  
9
27.40 k  
up to 2.5(2)  
yes  
yes  
no  
Auto PFM/PWM with AEE  
Forced PWM  
not active  
10  
11  
12  
13  
14  
15  
16  
34.00 k  
VSET  
2.5  
42.20 k  
VSET  
up to 2.5(2)  
Auto PFM/PWM with AEE  
Forced PWM  
52.30 k  
VSET  
2.5  
1
no  
64.90 k  
VSET  
yes  
yes  
no  
Auto PFM/PWM  
Forced PWM  
80.60 k  
VSET  
1
100.00 k  
VSET  
1
Auto PFM/PWM  
Forced PWM  
124.00 k  
VSET  
1
no  
(1) E96 Resistor Series, 1% accuracy, temperature coefficient better or equal than ±200 ppm/°C  
(2) FSW varies based on VIN and VOUT. See 8.4.3 for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS629210E  
 
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8.3.2 Adjustable VO Operation (External Voltage Divider)  
If the device is configured to operate in classical adjustable VO operation, the FB/VSET pin is used as the  
feedback pin and needs to sense VO through an external divider network. shows the typical schematic for this  
configuration.  
VIN  
3V œ 17V  
VOUT  
0.6V œ 5.5V  
2.2 µH  
VIN  
EN  
SW  
22 F  
4.7 F  
VOS  
FB/  
VSET  
MODE/  
S-CONF  
PG  
GND  
8-2. Adjustable VO Operation Schematic  
8.3.3 Selectable VO Operation (VSET and Internal Voltage Divider)  
If the device is configured to VSET operation, the device interprets the VSET pin value following the MODE/S-  
CONF readout (see ). There is no further interpretation of the VSET pin during operation and the output voltage  
cannot be changed afterward without toggling the EN pin.  
shows the typical schematic for this configuration, where VO is directly sensed at the VOS pin of the device. VO  
is sensed only through the VOS pin by an internal resistor divider. The target VO is programmed by an external  
resistor connected between VSET and GND (see 8-2).  
VIN  
3V œ 17V  
VOUT  
0.4V œ 5.5V  
2.2 µH  
VIN  
EN  
SW  
22 F  
4.7 F  
VOS  
FB/  
VSET  
MODE/  
S-CONF  
PG  
GND  
8-3. Selectable VO Operation Schematic  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8-2. VSET Selection Table  
VSET #  
Resistor Value [Ω](1)  
GND  
Target VO [V]  
1
2
1.2  
0.4  
0.6  
0.8  
0.85  
1.0  
1.1  
1.25  
1.3  
1.35  
1.8  
1.9  
2.5  
3.8  
5.0  
5.1  
5.5  
3.3  
4.87 k  
3
6.04 k  
4
7.50 k  
5
9.31 k  
6
11.50 k  
7
14.30 k  
8
17.80 k  
9
22.10 k  
10  
11  
12  
13  
14  
15  
16  
17  
18  
27.40 k  
34.00 k  
42.20 k  
52.30 k  
64.90 k  
80.60 k  
100.00 k  
124.00 k  
249.00 k or larger/open  
(1) E96 Resistor Series, 1% accuracy, temperature coefficient  
better or equal to ±200 ppm/°C  
8.3.4 Smart Enable with Precise Threshold  
The voltage applied at the EN pin of the TPS629210E is compared to a fixed threshold rising voltage. This  
allows the user to drive the pin by a slowly changing voltage and enables the use of an external RC network to  
achieve a power-up delay.  
The precise enable input allows the use of a user-programmable undervoltage lockout by adding a resistor  
divider to the input of the EN pin.  
The enable input threshold for a falling edge is lower than the rising edge threshold. The TPS629210E starts  
operation when the rising threshold is exceeded. For proper operation, the EN pin must be terminated and must  
not be left floating. Pulling the EN pin low forces the device into shutdown. In this mode, the internal high-side  
and low-side MOSFETs are turned off and the entire internal control circuitry is switched off.  
An internal resistor pulls the EN pin to GND and avoids the pin to be floating. This prevents an uncontrolled  
start-up of the device in case the EN pin cannot be driven to a low level safely. With EN low, the device is in  
shutdown mode. The device is turned on with EN set to a high level. The pulldown control circuit disconnects the  
pulldown resistor on the EN pin once the internal control logic and the reference have been powered up. With  
EN set to a low level, the device enters shutdown mode and the pulldown resistor is activated again.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8.3.5 Power Good (PG)  
The TPS629210E has a built-in power-good (PG) feature to indicate whether the output voltage has reached its  
target and the device is ready. The PG signal can be used for start-up sequencing of multiple rails. The PG pin  
is an open-drain output that requires a pullup resistor to any voltage up to the recommended input voltage level.  
PG is low when the device is turned off due to EN, UVLO (undervoltage lockout), or thermal shutdown. VIN must  
remain present for the PG pin to stay low.  
If the power-good output is not used, it is recommended to tie to GND or leave open.  
8-3. Power-Good Indicator Functional Table  
Logic Signals  
PG Status  
VI  
EN Pin  
Thermal Shutdown  
VO  
VO on target  
High Impedance  
LOW  
No  
HIGH  
VO < target  
VVIN > UVLO  
Yes  
x
x
x
x
x
LOW  
LOW  
LOW  
1.8 V < VVIN < UVLO  
VI < 1.8 V  
x
x
x
LOW  
x
Undefined  
8.3.6 Output Discharge Function  
The purpose of the discharge function is to make sure there is a defined down-ramp of the output voltage when  
the device is being disabled but also to keep the output voltage close to 0 V when the device is off. The output  
discharge feature is only active once the TPS629210E has been enabled at least once since the supply voltage  
was applied. The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as  
soon as the device is disabled (EN pin = low), in thermal shutdown, or in undervoltage lockout. The minimum  
supply voltage required for the discharge function to remain active typically is 2 V.  
8.3.7 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both  
the power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
8.3.8 Current Limit and Short Circuit Protection  
The TPS629210E is protected against overload and short circuit events. If the inductor current exceeds the  
current limit, ILIM_HS, the high-side switch is turned off and the low-side switch is turned on to ramp down the  
inductor current. The high-side FET turns on again only if the current in the low-side FET has decreased below  
the low-side current limit threshold, ILIM_LS  
.
Due to internal propagation delay, the actual current can exceed the static current limit during that time. The  
dynamic current limit is given in 方程式 1.  
V
L
Ipeak(typ) = ILIMH  
+
´tPD  
L
(1)  
where:  
ILIMH is the static current limit as specified in the electrical characteristics.  
L is the effective inductance at the peak current.  
VL is the voltage across the inductor (VIN – VOUT).  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
V IN - VO U T  
I
peak ( typ ) = IL IM H  
+
´ 50 ns  
L
(2)  
The TPS629210E also includes a low-side negative current limit (ILIM:SINK) to protect against excessive negative  
currents that can occur in forced PMW mode under heavy to light load transient conditions. If the negative  
current in the low-side switch exceeds the ILIM:SINK threshold, the low-side switch is disabled. Both the low-side  
and high-side switches remain off until an internal timer re-enables the high-side switch based on the selected  
PWM switching frequency.  
CAUTION  
It is recommended that the inductor be sized such that the inductor ripple current, ΔIL (see 方程式  
9), does not exceed 1.6 A to avoid the potential for continuous operation of the negative current limit  
with no output load (IO = 0 A).  
8.3.9 Thermal Shutdown  
The junction temperature of the device, TJ, is monitored by an internal temperature sensor. If TJ rises and  
exceeds the thermal shutdown threshold, TSD, the device shuts down. Both the high-side and low-side power  
FETs are turned off and PG goes low. When TJ decreases below the hysteresis, the converter resumes normal  
operation, beginning with soft start. During a PFM skip pause, the thermal shutdown feature is not active. A  
shutdown or restart is only triggered during a switching cycle. See 8.4.2.  
8.4 Device Functional Modes  
8.4.1 Forced Pulse Width Modulation (PWM) Operation  
The TPS629210E has two operating modes: forced PWM mode discussed in this section and auto PFM/PWM  
mode as discussed in 8.4.2.  
With the MODE/S-CONF pin set to forced PWM mode, the device operates with pulse width modulation in  
continuous conduction mode (CCM) with a nominal switching frequency of either 1.0 MHz or 2.5 MHz. The  
frequency variation in PWM is controlled and depends on VIN, VOUT, and the inductance. The on time in forced  
PWM mode is given by 方程式 3.  
VOUT  
VIN  
1
TON =  
ì
fsw  
(3)  
For very small output voltages, an absolute minimum on time of about 40 ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, which keeps efficiency high.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
8.4.2 Power Save Mode Operation (Auto PFM/PWM)  
When the MODE/S-CONF pin is configured for auto PFM/PWM mode, power save mode is allowed. The device  
operates in PWM mode as long the output current is higher than half the ripple current of the inductor. To  
maintain high efficiency at light loads, the device enters power save mode at the boundary to discontinuous  
conduction mode (DCM). This happens if the output current becomes smaller than half the ripple current of the  
inductor. Power save mode is entered seamlessly to make sure there is high efficiency in light-load operation.  
The device remains in power save mode as long as the inductor current is discontinuous.  
In power save mode, the switching frequency decreases linearly with the load current maintaining high efficiency.  
The transition into and out of power save mode is seamless in both directions.  
The TPS629210E adjusts the on time (TON) in power save mode, depending on the input voltage and the output  
voltage to maintain highest efficiency. The on time in steady-state operation can be estimated as:  
With the MODE/S-CONF pin set to 1.0-MHz operation:  
VOUT  
610 O) =  
8+0  
(4)  
(5)  
With the MODE/S-CONF pin set to 2.5-MHz operation:  
VIN  
TON =100´  
[ns]  
VIN -VOUT  
Using TON, the typical peak inductor current in power save mode is approximated by:  
(V IN - VO U T )´ TO N  
=
IL P SM ( peak )  
L
(6)  
(7)  
The output voltage ripple in power save mode is given by 方程式 7:  
2 æ  
ç
ö
÷
ø
L´VIN  
1
1
DV =  
+
200´C VIN -VOUT VOUT  
è
备注  
When VIN decreases to typically 15% above VOUT, the device will not enter power save mode  
regardless of the load current. The device maintains output regulation in PWM mode.  
8.4.3 AEE (Automatic Efficiency Enhancement)  
When the MODE/S-CONF pin is configured for auto PFM/PWM with AEE mode, the TPS629210E provides the  
highest efficiency over the entire input voltage and output voltage range by automatically adjusting the switching  
frequency of the converter (see 方程式 8). To keep the efficiency high over the entire duty cycle range, the  
switching frequency is adjusted while maintaining the ripple current amplitudes. This feature compensates for the  
very small duty cycles of high VIN to low VOUT conversions, which can limit the control range in other topologies.  
VIN -VOUT  
VIN  
F (MHz) =10ìVOUT  
ì
sw  
2
(8)  
Traditionally, the efficiency of a switched mode converter decreases if VOUT decreases, VIN increases, or both.  
By decreasing the switching losses at lower VOUT values or higher VIN values, the AEE feature provides an  
efficiency enhancement across various duty cycles, especially for the lower VOUT values, where fixed frequency  
converters suffer from a significant efficiency drop. Furthermore, when used with the recommended 2.2-μH  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
inductor, the ripple current amplitudes remains low enough to deliver the full output current without reaching  
current limit across the entire range of input and output voltages (see 8-4).  
By using the same TON configuration (see 方程式 9) across the entire load range in AEE mode, the inductor  
ripple current in AEE mode becomes effectively independent of the output voltage and can be approximated by  
方程式 9:  
(9)  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
2
4
6
8
10  
Input Voltage (V)  
12  
14  
16  
18  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM with AEE  
8-4. Typical Inductor Ripple Current Versus Input Voltage in AEE Mode  
The TPS629210E operates in AEE mode as long as the output current is higher than half the ripple current  
of the inductor. To maintain high efficiency at light loads, the device enters power save mode at the boundary  
to discontinuous mode (DCM), which happens when the output current becomes smaller than half the inductor  
ripple current.  
8.4.4 100% Duty-Cycle Operation  
The duty cycle of the buck converter operated in PWM mode is given in 方程式 10.  
VOUT  
& =  
8+0  
(10)  
The duty cycle increases as the input voltage comes close to the output voltage and the off time of the high-side  
switch gets smaller. When the minimum off time of typically 80 ns is reached, the TPS629210E scales down  
its switching frequency while it approaches 100% mode. In 100% mode, the device keeps the high-side switch  
on continuously as long as the output voltage is below the internal set point. This allows the conversion of  
small input to output voltage differences. For example, getting the longest operation time of battery-powered  
applications. In 100% duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
VIN(min) =VOUT + IOUT(RDS(on) + R  
L
)
(11)  
where:  
IOUT is the output current.  
RDS(on) is the on-state resistance of the high-side FET.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS629210E  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
RL is the DC resistance of the inductor used.  
8.4.5 Starting into a Prebiased Load  
The TPS629210E is capable of starting into a prebiased output. The device only starts switching when the  
internal soft-start ramp is equal or higher than the feedback voltage. If the voltage at the feedback pin is biased  
to a higher voltage than the nominal value, the TPS629210E does not start switching unless the voltage at the  
feedback pin drops to the target. Performance is the same for devices configured for VSET operation (internal  
feedback), however, the switching will be delayed until the soft-start ramp reaches the internal feedback voltage.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS629210E device is a highly efficient, small, and highly-flexible synchronous step-down DC-DC converter  
that is easy to use. A wide input voltage range of 3 V to 17 V supports a wide variety of inputs like 12-V supply  
rails, single-cell or multi-cell Li-Ion, and 5-V or 3.3-V rails.  
9.2 Typical Application  
L1  
2.2 µH  
VIN  
3V œ 17V  
VOUT  
0.6V œ 5.5V  
VIN  
EN  
SW  
VOS  
C2  
22 F  
C1  
4.7 F  
FB/  
VSET  
R1  
MODE/  
S-CONF  
PG  
R2  
R3  
GND  
9-1. Typical Application Setup  
9-1. List of Components  
Description  
Reference  
Manufacturer  
L1  
2.2-µH inductor  
XGL3530-222; Coilcraft  
C1  
4.7 µF, 25 V, Ceramic, 1206  
C3216X7R1E475K160AC, TDK  
C2  
22 µF, 6.3 V, Ceramic, 0805  
GCM21BD70J226ME36L, MuRata  
R1  
R2  
R3  
Depending on VOUT; see 9.2.2.2.  
Depending on VOUT; see 9.2.2.2.  
Depending on device setting, see 8.3.1.  
Standard 1% metal film  
Standard 1% metal film  
Standard 1% metal film  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS629210E  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS629210E device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Programming the Output Voltage  
The output voltage of the TPS629210E is adjustable. It can be programmed for output voltages from 0.6 V to 5.5  
V, using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of  
the output voltage is set by the selection of the resistor divider from 9-2. It is recommended to choose resistor  
values that allow a current of at least 2 μA, meaning the value of R2 should not exceed 300 kΩ. Lower resistor  
values are recommended for highest accuracy and most robust design.  
VOUT  
æ
ç
è
ö
÷
ø
R1  
= R2 ´  
-1  
VFB  
(12)  
where  
VFB is 0.6 V.  
9-2. Setting the Output Voltage  
Nominal Output Voltage  
R1  
R2  
Exact Output Voltage  
0.8 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
51 kΩ  
150 kΩ  
130 kΩ  
100 kΩ  
237 kΩ  
165 kΩ  
137 kΩ  
84.5 kΩ  
0.804 V  
1.200 V  
1.500 V  
1.803 V  
2.502 V  
3.311 V  
4.995 V  
130 kΩ  
150 kΩ  
475 kΩ  
523 kΩ  
619 kΩ  
619 kΩ  
9.2.2.3 External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the control  
loop of the device. The TPS629210E is optimized to work within a range of external components.  
9.2.2.3.1 Output Filter and Loop Stability  
The TPS629210E is internally compensated to be stable with a range of LC filter combinations. The LC output  
filters inductance and capacitance have to be considered together, creating a double pole, responsible for the  
corner frequency of the converter using 方程式 13.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
1
fLC  
=
2p L × C  
(13)  
9-3 can be used to simplify the output filter component selection. The values in 9-3 are nominal values,  
and the effective capacitance was considered to be +20% and –50%. Different values can work, but care has to  
be taken on the loop stability which is affected. More information on the sizing of the LC filter of a DCS-Control  
regulator can be found in the Optimizing the TPS62130/40/50/60 Output Filter Application Note.  
9-3. Recommended LC Output Filter Combinations  
4.7 µF  
10 µF  
22 µF  
47 µF  
100 µF  
200 µF  
1 µH (3) (4)  
1.5 µH  
(2)  
(2)  
(1)  
(2)  
2.2 µH  
3.3 µH  
(2)  
4.7 µH  
(1) This LC combination is the standard value and recommended for most applications.  
(2) Output capacitance needs to have an ESR of ≥ 10 mΩ for stable operation. See 9.3.1.  
(3) Not recommended for 1-MHz operation  
(4) At full load, ILpeak can exceed ILIM_HS at higher input or output voltages.  
Although the TPS629210E is stable without the pole and zero being in a particular location, an external  
feedforward capacitor can also be added to adjust their location based on the specific needs of the application.  
This can provide better performance in power save mode, improved transient response, or both.  
A more detailed discussion on the optimization for stability versus transient response can be found in  
the Optimizing Transient Response of Internally Compensated DC-DC Converters Application Note and  
Feedforward Capacitor to Improve Stability and Bandwidth of TPS621/821-Family Application Note.  
9.2.2.3.2 Inductor Selection  
The TPS629210E is designed for a nominal 2.2-µH inductor. Larger values can be used to achieve a lower  
inductor current ripple but they can have a negative impact on efficiency and transient response. Smaller values  
than 2.2 µH cause larger inductor current ripple, which cause larger negative inductor currents in forced PWM  
mode and higher peak currents at full load. Therefore, they are not recommended at larger voltages across the  
inductor as it is the case for high input voltages and low output voltages. With low output current in forced PWM  
mode, this causes a larger negative inductor current peak that can exceed the negative current limit. At low or  
no output current and small inductor values, the output voltage can therefore not be regulated any more. More  
detailed information on further LC combinations can be found in the Optimizing the TPS62130/40/50/60 Output  
Filter Application Note.  
The inductor selection is affected by several effects like the following:  
Inductor ripple current  
Output ripple voltage  
PWM-to-PFM transition point  
Efficiency  
In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR). 方  
程式 14 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(14)  
(15)  
VIN(max)  
DIL(max)  
=
´100ns  
L
(min)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS629210E  
 
 
 
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
where:  
IL(max) is the maximum inductor current.  
ΔIL is the peak-to-peak inductor ripple current.  
L(min) is the minimum effective inductor value.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It is recommended to add a margin of about 20%. A larger inductor value is  
also useful to get lower ripple current, but increases the transient response time and size as well. The following  
inductors have been used with the TPS629210E and are recommended for use:  
9-4. List of Inductors  
Dimensions  
Type  
Inductance [µH]  
DCR [mΩ]  
Current [A](1)  
Manufacturer  
[L×W×H] mm  
2.0 × 1.2 × 1.0  
2.5 × 2.0 × 1.2  
3.5 × 3.2 × 3  
4 × 4 × 2.1  
DFE201210U-1R5M(2)  
DFE252012PD-2R2M  
XGL3530-222ME  
XGL4020-222ME  
XGL3530-332ME  
XGL4020-472ME  
1.5 µH, ±20%  
2.2 µH, ±20%  
2.2 μH, ±20%  
2.2 µH, ±20%  
3.3 μH, ±20%  
4.7 µH, ±20%  
115  
84  
2.5  
2.8  
4.0  
6.2  
3.3  
4.1  
muRata  
muRata  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
20  
19.5  
33  
3.5 × 3.2 × 3  
4 × 4 × 2.1  
43  
(1) ISAT at 30% drop  
(2) For smaller size solutions that do not require maximum efficiency at the full output current  
The inductor value also determines the load current at which power save mode is entered:  
1
Iload(PSM )  
=
DIL  
2
(16)  
9.2.2.3.3 Capacitor Selection  
9.2.2.3.3.1 Output Capacitor  
The recommended value for the output capacitor is 22 µF. The architecture of the TPS629210E allows the  
use of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide  
low output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get  
narrow capacitance variation with temperature, it is recommended to use X7R or X5R dielectric. Using a higher  
value has advantages like smaller voltage ripple and a tighter DC output accuracy in power save mode (see  
Optimizing the TPS62130/40/50/60 Output Filter Application Note for more information).  
In power save mode, the output voltage ripple depends on the following:  
Output capacitance  
ESR  
ESL  
Peak inductor current  
Using ceramic capacitors provides small ESR, ESL, and low ripple.  
The output capacitor needs to be as close as possible to the device, and it is recommended to have the VOS  
signal and feedback resistors (if used) should be connected to the positive terminal of the output capacitor.  
For large output voltages, the DC bias effect of ceramic capacitors is large and the effective capacitance has to  
be observed.  
9.2.2.3.3.2 Input Capacitor  
For most applications, 4.7-µF nominal is sufficient and is recommended, though a larger value reduces input  
current ripple further. The input capacitor buffers the input voltage for transient events and also decouples the  
converter from the supply. A low-ESR multilayer ceramic capacitor (MLCC) is recommended for best filtering and  
should be placed between VIN and GND as close as possible to those pins.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9-5. List of Capacitors  
Type  
Nominal Capacitance [µF]  
Voltage Rating [V]  
Size  
Manufacturer  
TDK  
C3216X7R1E475K160AC  
C3216X7R1E106K160AC  
4.7  
10  
25  
25  
1206(1)  
1206(1)  
TDK  
(1) Smaller (0805 or 0603) options may be used and are available from various manufacturers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS629210E  
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 7V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 7V  
VIN = 9V  
VIN =12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1  
Iout (A)  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
9-2. Efficiency vs Output Current  
9-3. Efficiency vs Output Current  
3.5  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
3
2.5  
2
1.5  
1
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
0.5  
6
8
10  
12  
14  
16  
18  
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-4. Switching Frequency vs Input Voltage  
9-5. Switching Frequency vs Input Voltage  
0.5  
VIN = 7V  
0.45  
0.4  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
9-6. Output Voltage vs Output Current  
VOUT = 5.0 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
9-7. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 7V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 7V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-8. Efficiency vs Output Current  
9-9. Efficiency vs Output Current  
1.8  
1.1  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
6
8
10  
12  
14  
16  
18  
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-11. Switching Frequency vs Input Voltage  
9-10. Switching Frequency vs Input Voltage  
0.8  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
VIN = 7V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.015  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
VIN = 7V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 5.0 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-12. Output Voltage vs Output Current  
9-13. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-14. Efficiency vs Output Current  
9-15. Efficiency vs Output Current  
3.5  
3.25  
3
3
2.8  
2.6  
2.4  
2.2  
2
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.8  
1.6  
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-16. Switching Frequency vs Input Voltage  
9-17. Switching Frequency vs Input Voltage  
0.55  
0.085  
0.08  
0.075  
0.07  
0.065  
0.06  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.5  
0.45  
0.4  
0.35  
0.3  
0.055  
0.05  
0.25  
0.2  
0.045  
0.04  
0.15  
0.1  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 3.3 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
9-19. Output Voltage vs Output Current  
9-18. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-20. Efficiency vs Output Current  
9-21. Efficiency vs Output Current  
1.15  
1.8  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.6  
1.4  
1.2  
1
1.125  
1.1  
1.075  
1.05  
1.025  
1
0.8  
0.6  
0.4  
0.2  
0
0.975  
0.95  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-23. Switching Frequency vs Input Voltage  
9-22. Switching Frequency vs Input Voltage  
0.7  
0.1  
0.08  
0.06  
0.04  
0.02  
0
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-24. Output Voltage vs Output Current  
VOUT = 3.3 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
9-25. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-26. Efficiency vs Output Current  
9-27. Efficiency vs Output Current  
4
3.1  
3
3.5  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.5  
2
1.5  
1
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
0.5  
0
2
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-28. Switching Frequency vs Input Voltage  
9-29. Switching Frequency vs Input Voltage  
0.16  
0.14  
0.12  
0.1  
0.75  
0.65  
0.55  
0.45  
0.35  
0.25  
0.15  
0.05  
-0.05  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.08  
0.06  
0.04  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
Iout (A)  
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
VOUT = 1.8 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
9-30. Output Voltage vs Output Current  
9-31. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-32. Efficiency vs Output Current  
9-33. Efficiency vs Output Current  
1.225  
1.2  
1.4  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.3  
1.2  
1.1  
1
1.175  
1.15  
1.125  
1.1  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.075  
1.05  
1.025  
1
0.975  
2
4
6
8
10  
12  
14  
16  
18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-35. Switching Frequency vs Input Voltage  
0.05  
9-34. Switching Frequency vs Input Voltage  
0.5  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.45  
0.4  
0.03  
0.01  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
-0.01  
-0.03  
-0.05  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.05  
0
-0.05  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-36. Output Voltage vs Output Current  
VOUT = 1.8 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
9-37. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-38. Efficiency vs Output Current  
9-39. Efficiency vs Output Current  
4
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
3.5  
3
2.5  
2
1.5  
1
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
0.5  
0
2
4
6
8
10  
12  
14  
16  
18  
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-40. Switching Frequency vs Input Voltage  
9-41. Switching Frequency vs Input Voltage  
1.2  
1
0.16  
0.14  
0.12  
0.1  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.8  
0.6  
0.4  
0.2  
0
0.08  
0.06  
0.04  
0.02  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
-0.02  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 1.2 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
9-42. Output Voltage vs Output Current  
9-43. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-44. Efficiency vs Output Current  
9-45. Efficiency vs Output Current  
1.4  
1.3  
1.25  
1.2  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.15  
1.1  
1.05  
1
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
0.95  
2
4
6
8
10  
12  
14  
16  
18  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-47. Switching Frequency vs Input Voltage  
0.1  
9-46. Switching Frequency vs Input Voltage  
0.3  
VIN = 3V  
0.08  
0.06  
0.04  
0.02  
0
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
-0.05  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-48. Output Voltage vs Output Current  
VOUT = 1.2 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
9-49. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-50. Efficiency vs Output Current  
9-51. Efficiency vs Output Current  
2.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
2
4
6
8
10  
12  
14  
16  
18  
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-52. Switching Frequency vs Input Voltage  
9-53. Switching Frequency vs Input Voltage  
0.15  
3
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
0.125  
0.1  
0.075  
0.05  
0.025  
0
-0.025  
-0.05  
-0.075  
-0.1  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
-0.125  
-0.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Iout (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 0.6 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
Auto PFM/PWM  
9-55. Output Voltage vs Output Current  
9-54. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
1E-5  
0.0001  
0.001  
Iout (A)  
0.01  
0.1 0.2 0.5 1  
0.01  
0.02 0.03 0.050.07 0.1  
Iout (A)  
0.2 0.3  
0.5 0.7  
1
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-56. Efficiency vs Output Current  
9-57. Efficiency vs Output Current  
1.45  
1.5  
1.45  
1.4  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
IOUT = 0.1A  
IOUT = 0.3A  
IOUT = 0.6A  
IOUT = 1.0A  
1.4  
1.35  
1.3  
1.35  
1.3  
1.25  
1.2  
1.25  
1.2  
1.15  
1.1  
1.15  
1.1  
1.05  
1
1.05  
1
0.95  
0.9  
0.95  
0.9  
2
4
6
8
10  
12  
14  
16  
18  
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
Auto PFM/PWM  
9-58. Switching Frequency vs Input Voltage  
0.4  
9-59. Switching Frequency vs Input Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 3V  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
VIN = 3V  
0.35  
0.3  
VIN = 6V  
VIN = 9V  
VIN = 12V  
VIN = 15V  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.1  
-0.2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Iout (A)  
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Auto PFM/PWM  
9-60. Output Voltage vs Output Current  
VOUT = 0.6 V  
L = 3.3 μH  
Fsw = 1.0 MHz  
Forced PWM  
9-61. Output Voltage vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
VIN = 12 V  
L = 2.2 μH  
IO = 0 A  
Fsw = 2.5 MHz  
VIN = 12 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
Auto PFM/PWM  
VOUT = 3.3 V  
Forced PWM  
9-62. Start-Up Timing  
9-63. Start-Up Timing  
VIN = 12 V  
L = 2.2 μH  
IO = 0 A  
Fsw = 2.5 MHz  
VIN = 12 V  
L = 2.2 μH  
IO = 0 A  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 3.3 V  
Auto PFM/PWM  
VOUT = 3.3 V  
9-65. Shutdown Timing with Output Discharge Enabled  
9-64. Start-Up into Prebiased Output  
VIN = 12 V  
L = 3.3 μH  
IO = 10 mA  
Fsw = 1.0 MHz  
VIN = 12 V  
VOUT = 3.3 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 3.3 V  
Auto PFM/PWM  
9-67. Shutdown Timing with Output Discharge Enabled  
9-66. Shutdown Timing with Output Discharge Disabled  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
VIN = 12 V  
L = 3.3 μH  
IO = 10 mA  
Fsw = 1.0 MHz  
Forced PWM  
VIN = 12 V  
L = 3.3 μH  
IO = 10 mA  
Fsw = 1.0 MHz  
VOUT = 3.3 V  
VOUT = 3.3 V  
Auto PFM/PWM  
9-69. Shutdown Timing with Output Discharge Enabled  
9-68. Shutdown Timing with Output Discharge Disabled  
VIN = 12 V  
L = 3.3 μH  
IO = 10 mA  
Fsw = 1.0 MHz  
Forced PWM  
VIN = 12 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
VOUT = 3.3 V  
IO = 0 A to 0.5 A  
Auto PFM/PWM  
9-70. Shutdown Timing with Output Discharge Disabled  
9-71. Load Transient Response  
VIN = 12 V  
L = 2.2 μH  
Fsw = 2.5 MHz  
VIN = 12 V  
VOUT = 3.3 V  
L = 2.2 μH  
IO = 0 A  
Fsw = 2.5 MHz  
Auto PFM/PWM  
VOUT = 3.3 V  
IO = 0.5 A to 1 A  
Auto PFM/PWM  
9-72. Load Transient Response  
9-73. Output Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
VIN = 12 V  
L = 2.2 μH  
IO = 0 A  
Fsw = 2.5 MHz  
Forced PWM  
VIN = 12 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Auto PFM/PWM  
VOUT = 3.3 V  
VOUT = 3.3 V  
9-74. Output Voltage Ripple  
9-75. Output Voltage Ripple  
VIN = 12 V  
VOUT = 3.3 V  
L = 3.3 μH  
IO = 1 A  
Fsw = 1.0 MHz  
VIN = 12 V  
VOUT = 3.3 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Forced PWM  
Auto PFM/PWM  
9-77. Output Voltage Ripple  
9-76. Output Voltage Ripple  
VIN = 12 V  
VOUT = 3.3 V  
L = 3.3 μH  
IO = 1 A  
Fsw = 1.0 MHz  
Forced PWM  
VIN = 12 V  
VOUT = 3.3 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Auto PFM/PWM  
9-78. Output Voltage Ripple  
9-79. Input Voltage Ripple  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
40  
35  
30  
25  
20  
15  
10  
5
240  
210  
180  
150  
120  
90  
60  
30  
0
0
-5  
-30  
-60  
-90  
-120  
-150  
-10  
-15  
-20  
-25  
-30  
Gain  
Phase  
-180  
1000 2000  
5000 10000  
100000  
Frequency (Hz)  
1000000  
VIN = 12 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Forced PWM  
VIN = 12 V  
L = 2.2 μH  
IO = 1 A  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 0.6 V  
VOUT = 3.3 V  
9-81. Bode Plot  
9-80. Input Voltage Ripple  
40  
35  
30  
25  
20  
15  
10  
5
240  
210  
180  
150  
120  
90  
60  
30  
0
0
-5  
-30  
-60  
-90  
-120  
-150  
-180  
-10  
-15  
-20  
-25  
-30  
Gain  
Phase  
1000 2000  
5000 10000  
100000  
Frequency (Hz)  
1000000  
VIN = 12 V  
L = 3.3 μH  
IO = 1 A  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 0.6 V  
9-82. Bode Plot  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
9.3 System Examples  
9.3.1 Powering Multiple Loads  
In applications where the TPS629210E is used to power multiple load circuits, it is possible that the total  
capacitance on the output is very large. In order to properly regulate the output voltage, there needs to be an  
appropriate AC signal level on the VOS pin. Tantalum capacitors have a large enough ESR to keep output  
voltage ripple sufficiently high on the VOS pin. With low-ESR ceramic capacitors, the output voltage ripple can  
get very low, so it is not recommended to use a large capacitance directly on the output of the device. If there are  
several load circuits with their associated input capacitor on a PCB, these loads are typically distributed across  
the board. This adds enough trace resistance (Rtrace) to keep a large enough AC signal on the VOS pin for  
proper regulation.  
The minimum total trace resistance on the distributed load is 10 mΩ. The total capacitance n × CIN in 9-83  
was 32 × 47 μF of ceramic X7R capacitors.  
Load1  
Rtrace  
CIN  
VIN  
3V – 17V  
VOUT  
0.4V – 5.5V  
L1  
TPS6292xx  
VIN  
SW  
Load2  
Rtrace  
C2  
22 F  
EN  
VOS  
CIN  
C1  
4.7 F  
FB/  
VSET  
R2  
MODE/  
S-CONF  
PG  
R1  
GND  
Loadn  
Rtrace  
CIN  
9-83. Multiple Loads Example  
9.3.2 Inverting Buck-Boost (IBB)  
The need to generate negative voltage rails for electronic designs is a common challenge. The wide 3-V to 17-V  
input voltage range of the TPS629210E makes it ideal for an inverting buck-boost (IBB) circuit, where the output  
voltage is inverted or negative with respect to ground.  
The circuit operation in the IBB topology differs from that in the traditional buck topology. Though the  
components are connected the same as with a traditional buck converter, the output voltage terminals are  
reversed. See 9-84 and 9-85.  
The maximum input voltage that can be applied to an IBB converter is less than the maximum voltage that  
can be applied to the TPS629210E in a typical buck configuration. This is because the ground pin of the IC is  
connected to the (negative) output voltage. Therefore, the input voltage across the device is VIN to VOUT, and not  
VIN to ground. Thus, the input voltage range of the TPS629210E in an IBB configuration becomes 3 V to 17 V +  
VOUT, where VOUT is a negative value.  
The output voltage range is the same as when configured as a buck converter, but only negative. Thus, the  
output voltage for a TPS629210E in an IBB configuration may be set between –0.4 V and –5.5 V.  
The maximum output current for the TPS629210E in an IBB topology is normally lower than a traditional buck  
configuration due to the average inductor current being higher in an IBB configuration. Traditionally, lower input  
or (more negative) output voltages results in a lower maximum output current. However, using a larger inductor  
value or the higher 2.5-MHz frequency setting can be used to recover some or all of this lost maximum current  
capability.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
When implementing an IBB design, it is important to understand that the IC ground is tied to the negative voltage  
rail, and in turn, the electrical characteristics of the TPS629210E device are referenced to this rail. During power  
up, as there is no charge in the output capacitor, the IC GND pin (and VOUT) are effectively 0 V, thus parameters  
such as the VIN UVLO and EN thresholds are the same as in a typical buck configuration. However, after the  
output voltage is in regulation, due to the negative voltage on the IC GND pin, the device traditionally continues  
to operate below what could appear to be the normal UVLO/EN falling thresholds relative to the system ground.  
Thus, special care needs to be taken if the user is utilizing the dynamic mode change feature on the MODE pin  
of the TPS629210E or driving the EN pin from an upstream microcontroller as the high and low thresholds are  
relative to the negative rail and not the system ground.  
More information on using a DCS regulator in an IBB configuration can be found in the Description  
Compensating the Current Mode Boost Control Loop Application Note and Using the TPS6215x in an Inverting  
Buck-Boost Topology Application Note.  
TPS6292xx  
2.2 µH  
VIN  
VIN  
SW  
22  
F
10  
F
EN  
VOS  
FB/  
VSET  
MODE/  
S-CONF  
PG  
VOUT  
-0.6V to -5.5V  
GND  
9-84. IBB Example with Adjustable Feedback  
TPS6292xx  
2.2 µH  
VIN  
VIN  
SW  
22  
F
10  
F
EN  
VOS  
FB/  
VSET  
MODE/  
S-CONF  
PG  
GND  
VOUT  
-0.4V to -5.5V  
9-85. IBB Example with Internal Feedback  
10 Power Supply Recommendations  
The power supply to the TPS629210E needs to have a current rating according to the supply voltage, output  
voltage, and output current of the TPS629210E.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS629210E  
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more so at high switching  
frequencies. Therefore, the PCB layout of the TPS629210E demands careful attention to make sure proper  
operation and to get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both line and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 11-1 for the recommended layout of the TPS629210E, which is designed for common external ground  
connections. The input capacitor should be placed as close as possible between the VIN and GND pin of the  
TPS629210E.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current should be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes)  
for wires with high dv/dt. Therefore, the input and output capacitance should be placed as close as possible  
to the IC pins and parallel wiring over long distances as well as narrow traces should be avoided. Loops that  
conduct an alternating current should outline an area as small as possible, as this area is proportional to the  
energy radiated.  
Sensitive nodes like FB and VOS need to be connected with short wires and not nearby high dv/dt signals  
(for example, SW). As they carry information about the output voltage, they should be connected as close as  
possible to the actual output voltage (at the output capacitor). The FB resistors, R1 and R2, should be kept  
close to the IC and connect directly to those pins and the system ground plane. The same applies for the  
S-CONFIG/MODE and VSET programming resistors.  
The package uses the pins for power dissipation. Thermal vias on the VIN, GND, and SW pins help to spread  
the heat through the PCB.  
In case any of the digital inputs (EN or S-CONF/MODE pins) need to be tied to the input supply voltage at VIN,  
the connection must be made directly at the input capacitor as indicated in the schematics.  
The recommended layout is implemented on the EVM and shown in the TPS629210EEVM User's Guide.  
11.2 Layout Example  
GND  
VOUT  
GND  
VIN  
SW  
VOS  
PG  
EN  
FB  
S-CONFIG  
VIN  
11-1. TPS629210E Layout  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
11.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
The following are basic approaches for enhancing thermal performance:  
Improving the power dissipation capability of the PCB design (for example, increasing copper thickness,  
thermal vias, number of layers)  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the Thermal Characteristics of Linear and Logic  
Packages Using JEDEC PCB Designs Application Note and Semiconductor and IC Package Thermal Metrics  
Application Note.  
The TPS629210E is designed for a maximum operating junction temperature (TJ) of 150°C. Therefore, the  
maximum output power is limited by the power losses that can be dissipated over the actual thermal resistance,  
given by the package and the surrounding PCB structures. If the thermal resistance of the package is given,  
the size of the surrounding copper area and a proper thermal connection of the IC can reduce the thermal  
resistance. To get an improved thermal behavior, it is recommended to use top layer metal to connect the device  
with wide and thick metal lines. Internal ground layers can connect to vias directly under the IC for improved  
thermal performance.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS629210E  
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此  
类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS629210E device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
Application Note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Note  
Texas Instruments, TPS629210EEVM User's Guide  
Texas Instruments, Description Compensating the Current Mode Boost Control Loop Application Note  
Texas Instruments, Using the TPS6215x in an Inverting Buck-Boost Topology Application Note  
Texas Instruments, Optimizing the TPS62130/40/50/60 Output Filter Application Note  
Texas Instruments, Optimizing Transient Response of Internally Compensated DC-DC Converters Application  
Note  
Texas Instruments, Description Compensating the Current Mode Boost Control Loop Application Note  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS629210E  
 
 
 
 
 
 
TPS629210E  
ZHCSOS1 – MARCH 2022  
www.ti.com.cn  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS629210E  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS629210DRLR-ET  
ACTIVE  
SOT-5X3  
DRL  
8
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-55 to 150  
T10T  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS629210E

温度范围为 -55°C 至 150°C 的 3V 至 17V、1A、高效同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS629210QDRLRQ1

TPS629210-Q1 3-V to 17-V, 1-A Low IQ Buck Converter in a SOT-583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS629210QDYCRQ1

采用 SOT-583 封装的汽车类 3V 至 17V、1A、高效率和低 IQ 同步降压转换器 | DYC | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS629211-Q1

采用 SOT-583 封装的汽车类 3V 至 10V、1A、高效率、低 IQ 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS629211QDRLRQ1

采用 SOT-583 封装的汽车类 3V 至 10V、1A、高效率、低 IQ 同步降压转换器 | DRL | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS629211QDYCRQ1

采用 SOT-583 封装的汽车类 3V 至 10V、1A、高效率、低 IQ 同步降压转换器 | DYC | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62932

TPS62933 3.8-V to 30-V, 3-A Synchronous Buck Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62932DRLR

采用 SOT-583 封装的 3.8V 至 30V 输入、2A、200kHz 至 2.2MHz、低 IQ 同步降压转换器 | DRL | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62933

TPS62933 3.8-V to 30-V, 3-A Synchronous Buck Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62933DRLR

TPS62933 3.8-V to 30-V, 3-A Synchronous Buck Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62933F

TPS62933 3.8-V to 30-V, 3-A Synchronous Buck Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62933FDRLR

采用 SOT-583 封装的 3.8V 至 30V 输入、3A、200kHz 至 2.2Mhz 同步降压转换器 | DRL | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI