TPS62993QRYTRQ1 [TI]

3V 至 10V、3A、低 IQ 汽车类同步降压转换器 | RYT | 9 | -40 to 125;
TPS62993QRYTRQ1
型号: TPS62993QRYTRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3V 至 10V、3A、低 IQ 汽车类同步降压转换器 | RYT | 9 | -40 to 125

转换器
文件: 总57页 (文件大小:2464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
TPS62993-Q1 结温+165°C TJ 3V 10V3A 汽车类IQ 降压转换器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准:  
ADAS  
车身电子装置和照明  
信息娱乐系统与仪表组  
混合动力、电动和动力总成系统  
– 温度等140°C +125°CTA  
– 器HBM ESD 分类等2  
CDM ESD 分级等C4B  
提供功能安全  
3 说明  
可提供用于功能安全系统设计的文档  
• 扩TJ 范围至高165°C  
• 高效DCS-Control 拓扑  
TPS62993-Q1 是一款高效、小巧、灵活且易用的同步  
降压直流/直流转换器。2.5MHz 1.0MHz 的可选开关  
频率支持使用小型电感器并提供快速瞬态响应。该器  
RDS(ON)62mΩ22mΩ侧  
– 无PWM/PFM 转换  
– 内部补偿  
件在整个运行温度范围内支持 ±1.5% 的高 VOUT  
并通过 DCS-Control 拓扑提高负载瞬态性能。3V  
10V 的宽输入电压范围支持各种标称输入例如 9V  
电源轨、单节或多节锂离子电池、5V 3.3V 电源  
轨。  
4µA IQ典型值)  
• 高3A 的持续输出电流  
• 整个温度范围内的输出电压精度±1.5%  
• 可配置的输出电压选项:  
TPS62993-Q1 可在轻负载时自动进入省电模式如果  
选择了自动 PFM PWM以保持高效率。此外为  
了在非常小的负载下提供高效率该器件具有 4µA 的  
低典型静态电流。AEE如果启用可在 VINVOUT  
和负载电流范围内提供高效率。该器件包含一个  
MODE/Smart-CONF 输入用来设置内部和外部分压  
器、开关频率、输出电压放电和自动省电模式或强制  
PWM 操作。  
0.6V 5.5V VFB 外部分压器  
VSET 内部分压器  
16 个电压选项0.4V 5.5V)  
• 通MODE/S-CONF 引脚提高了灵活性  
2.5 MHz 1.0 MHz 开关频率  
– 具有动态模式更改选项的强PWM 或自动  
PFM省电模式)  
封装信息  
封装(1)  
– 输出放电开和关  
封装尺寸标称值)  
• 无需外部自举电容器  
• 过流和过热保护  
器件型号  
TPS62993-Q1  
RYT (VQFN, 9)  
2.20mm × 2.00mm  
100% 占空比模式  
• 精密使能输入  
• 可调软启动和跟踪  
• 电源正常状态输出  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 针对单层布线的引脚排列进行了优化  
• 可湿2.2mm × 2.0mm VQFN 封装间距为  
0.5mm  
• 借TPS62993-Q1 并使WEBENCH® Power  
Designer 创建定制设计方案  
VIN  
3 V to 10 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VOUT  
0.6 V to 5.5 V  
TPS6299x-Q1  
1
H
VIN  
SW  
EN  
VOS  
C2  
C1  
10  
R1  
R2  
22  
F
F
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
Vin = 6V  
Vin = 9V  
10  
0
简化原理图  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
效率与输出电流间的关系3.3 VO2.5MHz1μH,  
PFM PWM)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGV5  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................24  
9.1 Application Information............................................. 24  
9.2 Typical Application with Adjustable Output Voltage.. 24  
9.3 Typical Application with Selectable VOUT using  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................21  
VSET ..........................................................................35  
9.4 System Examples..................................................... 43  
9.5 Power Supply Recommendations.............................47  
9.6 Layout....................................................................... 47  
10 Device and Documentation Support..........................49  
10.1 Device Support....................................................... 49  
10.2 Documentation Support.......................................... 49  
10.3 接收文档更新通知................................................... 49  
10.4 支持资源..................................................................49  
10.5 Trademarks.............................................................49  
10.6 静电放电警告.......................................................... 50  
10.7 术语表..................................................................... 50  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 50  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2022) to Revision A (March 2023)  
Page  
Corrected 9-59 ............................................................................................................................................ 38  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
2
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
5 Device Comparison Table  
Operating  
Temperature  
Range  
Device Number  
Output Current  
Input Voltage  
Switching Frequency  
PWM Mode  
VO Adjust  
Externally  
programmable or 16  
internal options  
TPS62993-Q1  
TPS62992-Q1  
0 A 3 A  
0 A 2 A  
Selectable 1-MHz or Selectable auto PFM/PWM  
3 V 10 V  
40°C to 165°C  
40°C to 165°C  
2.5-MHz options  
or forced PWM  
TPS62903-Q1  
TPS62902-Q1  
TPS62901-Q1  
TPS62903  
0 A 3 A  
0 A 2 A  
0 A 1 A  
0 A 0.3 A  
0 A 2 A  
0 A 1 A  
0 A 3 A  
Externally  
programmable or 16  
internal options  
Selectable 1-MHz or Selectable auto PFM/PWM  
3 V 18 V  
3 V 18 V  
2.5-MHz options  
or forced PWM  
Externally  
programmable or 16  
internal options  
TPS62902  
40°C to 125°C  
55°C to 165°C  
Selectable 1-MHz or Selectable auto PFM/PWM  
2.5-MHz options  
or forced PWM  
TPS62901  
TPS62903E  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
GND  
4
VOS  
SW  
PG  
3
2
EN  
5
6
VIN  
1
7
8
9
6-1. 9-Pin RYT VQFN Package (Top View, Device Pins Face Down)  
6-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
Number  
Open-drain power-good output. High = VOUT is ready. Low = VOUT is below nominal regulation.  
This pin requires a pullup resistor.  
PG  
1
O
Switch pin of the converter and is connected to the internal power switches. Connect the inductor  
between SW and the output capacitor.  
SW  
2
VOS  
GND  
3
4
I
Output voltage sense pin. Connect directly to the positive pin of the output capacitor.  
Ground pin. This pin must be connected directly to the common ground plane.  
Enable input pin. Connect to logic low to disable the device. Pull high to enable the device. Do not  
leave this pin unconnected.  
EN  
5
6
I
I
Power supply input pin. Ensure the input capacitor is connected as close as possible between the  
VIN and GND pins.  
VIN  
Device mode selection (auto PFM/PWM or forced PWM operation) and SmartConfig pin. Connect  
high, low, or to a resistor to configure the device according to 8-1. Do not leave this pin  
unconnected.  
MODE/  
S-CONF  
7
8
I
I
Soft start and tracking pin. An external capacitor connected from this pin to GND defines the rise  
time for the internal reference voltage. The pin can also be used as an input for tracking and  
sequencing. The pin can be left floating for the fastest ramp-up time.  
SS/TR  
Depends on device configuration (see 8.3.1.)  
FB: Voltage feedback input. Connect a resistive output voltage divider to this pin.  
VSET: Output voltage setting pin. Connect a resistor to GND to choose the output voltage  
according to 8-2.  
FB/VSET  
9
I
(1) O = output, I = input  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3.0  
0.3  
55  
65  
MAX  
12  
UNIT  
V
Voltage((2))  
Voltage(2)  
Voltage((2))  
Voltage(2)  
TJ  
VIN, EN, PG, MODE/S-CONF  
SW ((3))  
VIN + 0.3  
17  
V
SW (AC, less than 10ns)((3))  
FB/VSET, SS/TR, VOS  
Junction temperature  
Storage temperature  
V
6
V
165  
°C  
°C  
Tstg  
165  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC-Q100-002 HBM ESD Classification Level 2,  
all pins((1))  
V(ESD) Electrostatic discharge  
V(ESD) Electrostatic discharge  
±2000  
V
All pins  
±500  
±750  
Charged device model (CDM), per AEC-Q100-011  
CDM ESD Classification level C4B.  
V
Corner pins (3, 4, 7, and 9)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
3.0  
0.4  
3
NOM  
MAX  
10  
UNIT  
VI  
Input voltage range  
V
V
VO  
Output voltage range  
5.5  
CI  
Effective input capacitance  
Effective output capacitance (2.5MHz selection)(1)  
Effective output capacitance (1MHz selection)(1)  
Output inductance(2)  
10  
22  
µF  
µF  
µF  
µH  
A
CO  
CO  
L
10  
10  
1
100 (1)  
100 (1)  
4.7(3)  
3
22  
2.2  
IOUT  
ISINK_PG  
TJ  
Output current  
0
Sink current at PG-Pin  
1
mA  
°C  
Junction temperature (4)  
-40  
165  
(1) This is for capacitors directly at the output of the device. More capacitance is allowed if there is a series resistance associated to the  
capacitor.  
(2) Nominal inductance value.  
(3) Larger values of inductance may be used to reduce the ripple current, but they may have a negative impact on efficiency and the  
overvall transient responce.  
(4) Operating lifetime is derated at junction temperatures greater than 165°C.  
7.4 Thermal Information  
VQFN (RYT)  
THERMAL METRIC((1))  
UNIT  
JEDEC PCB  
TPS6299xEVM-xxx  
73.5  
RθJA  
Junction-to-ambient thermal resistance  
97.2  
°C/W  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
UNIT  
7.4 Thermal Information (continued)  
VQFN (RYT)  
TPS6299xEVM-xxx  
THERMAL METRIC((1))  
JEDEC PCB  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
74.4  
25  
N/A  
N/A  
4.3  
28  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.7  
24.7  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VI = 3 V to 10 V, TJ = -40C °C to +165°C, Typical values at VI = 6V and TA = 25 °C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Operating Quiescent Current (Power  
Save Mode)  
IQ  
Iout = 0 mA device not switching  
4
8
µA  
Operating Quiescent Current (PWM  
Mode)  
VIN= 6V, VOUT=1.2V; Iout = 0 mA,  
device switching  
IQ;PWM  
ISD  
VUVLO  
VUVLO  
mA  
Shutdown current into VIN pin  
Under Voltage Lock-Out  
EN = 0 V,  
VIN rising,  
VIN falling  
0.27  
2.925  
2.79  
3.5  
3.0  
µA  
V
2.85  
2.71  
Under Voltage Lock-Out  
2.87  
V
Under Voltage Lock-Out Hysteresis  
130  
mV  
CONTROL & INTERFACE  
ILKG  
EN Input leakage current  
EN = 5V  
10  
310  
nA  
V
High-Level Input Voltage at MODE/S-  
CONF Pin  
VIH;MODE  
1.0  
Low-Level Input Voltage at MODE/S-  
CONF Pin  
VIL;MODE  
0.15  
185  
V
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
High-level input voltage at EN-Pin  
Low-level input voltage at EN-Pin  
TJ rising  
TJ falling  
168  
175  
12.5  
1.0  
TSD  
°C  
VIH  
VIL  
0.97  
0.820  
93%  
1.03  
0.880  
99%  
96%  
6%  
V
V
0.850  
96%  
92%  
3.5%  
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
VPG  
Power good fthreshold  
88%  
VPG_HYS  
VPG,OL  
IPG,LKG  
tPG,DLY  
Power good threshold hysteresis  
Low-level output voltage at PG pin  
Input leakage current into PG pin  
Power good delay time  
1.5%  
ISINK = 1 mA  
0.4  
V
VPG = 5 V,  
25  
32  
550  
nA  
µs  
VFB rising and falling  
Maximum Capacitance connected to  
VSET pin  
CSET  
30  
pF  
POWER SWITCHES  
ILKG;SW Leakage current into SW-Pin  
EN = 0V, VSW = VOS = 5.5V, TJ up to  
150°C  
2
7
µA  
High-side FET on resistance  
Low-side FET on resistance  
High-side FET current limit  
Low-side FET current limit  
Low-side FET sink current limit  
VIN > 4 V, ISW = 500 mA  
VIN > 4 V, ISW = 500 mA  
62  
22  
111  
41  
5
RDS;ON  
mΩ  
ILIM  
4
3.8  
1.3  
4.4  
4.3  
1.7  
A
A
A
ILIM  
4.8  
2.5  
ILIM;SINK  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
6
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VI = 3 V to 10 V, TJ = -40C °C to +165°C, Typical values at VI = 6V and TA = 25 °C unless otherwise noted  
PARAMETER  
Switching frequency  
Minimum On-time  
Switching frequency  
TEST CONDITIONS  
MIN  
TYP  
2.5  
30  
MAX  
UNIT  
MHz  
ns  
fSW  
2.5-MHz selection  
TON(MIN)  
fSW  
1.0-MHz selection  
1.0  
MHz  
OUTPUT  
VSET Configuration selected, TJ =  
25°C  
VO  
Output Voltage Regulation  
+1%  
1%  
VO  
Output Voltage Regulation  
VSET Configuration selected  
Adjustable Configuration selected  
FB-Option selected. TJ = 25 °C.  
FB-Option selected  
+1.5%  
1.5%  
VFB  
VFB  
VFB  
IFB  
Feedback Regulation Voltage  
Feedback Voltage Regulation  
Feedback Voltage Regulation  
Input leakage current into FB pin  
0.6  
V
+0.6%  
+1.25%  
70  
0.6%  
1.25%  
Adjustable configuration, VFB = 0.6 V  
1
nA  
µs  
IO = 0 mA, time from EN=HIGH until  
start switching, Adjustable  
Configuration selected  
Start-up delay time  
Start-up delay time  
600  
1400  
1850  
Tdelay  
IO = 0 mA, time from EN=HIGH until  
start switching, VSET Configuration  
selected. The typical value is based on  
the first option of VSET configuration.  
650  
150  
µs  
IO = 0 mA after Tdelay, from 1st  
switching pulse until target VO ,  
Css=Open  
TSS  
Soft-Start time  
µs  
ISS  
SS/TR source current  
2.25  
2.5  
0.75  
±8  
2.75  
30  
µA  
Tracking Gain, Adjustable  
Configuration  
VFB/VSS/TR  
VFB/VSS/TR  
RDISCH  
Tracking Gain tolerance  
mV  
Discharge = ON - Option Selected, EN  
= LOW  
Active Discharge Resistance  
7.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
16  
6
5.5  
5
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
14  
12  
10  
8
4.5  
4
3.5  
3
2.5  
2
6
1.5  
1
4
2
0.5  
0
0
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-2. Shutdown Current vs Temperature  
Measured with the device not switching  
7-1. Quiescent Current vs Temperature  
0.603  
0.602  
0.601  
0.6  
5.02  
5.015  
5.01  
5.005  
5
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 6V  
Vin = 9V  
0.599  
0.598  
0.597  
0.596  
0.595  
0.594  
4.995  
4.99  
4.985  
4.98  
4.975  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-3. Feedback Voltage Accuracy - External Feedback  
7-4. Output Voltage Accuracy - VSET Selected  
Selected  
3.32  
2.506  
Vin = 6V  
Vin = 9V  
3.315  
3.31  
2.504  
2.502  
2.5  
3.305  
3.3  
2.498  
2.496  
2.494  
2.492  
2.49  
3.295  
3.29  
3.285  
3.28  
Vin = 3V  
Vin = 6V  
Vin = 9V  
3.275  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
VOUT = 3.3 V  
VOUT = 2.5 V  
7-5. Output Voltage Accuracy - VSET Selected  
7-6. Output Voltage Accuracy - VSET Selected  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
8
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
1.81  
1.808  
1.806  
1.804  
1.802  
1.8  
1.206  
1.205  
1.204  
1.203  
1.202  
1.201  
1.2  
Vin = 3V  
Vin = 6V  
Vin = 9V  
1.199  
1.198  
1.197  
1.196  
1.195  
1.194  
1.798  
1.796  
1.794  
1.792  
1.79  
Vin = 3V  
Vin = 6V  
Vin = 9V  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
VOUT = 1.8 V  
VOUT = 1.2 V  
7-7. Output Voltage Accuracy - VSET Selected  
7-8. Output Voltage Accuracy - VSET Selected  
0.602  
0.76  
0.6015  
0.601  
0.6005  
0.6  
0.7575  
0.755  
0.7525  
0.75  
0.5995  
0.599  
0.5985  
0.598  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.7475  
0.745  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-10. Tracking Voltage Gain vs Temperature  
VOUT = 0.6 V  
7-9. Output Voltage Accuracy - VSET Selected  
1.1  
3
1.075  
1.05  
1.025  
1
2.8  
2.6  
2.4  
2.2  
2
0.975  
0.95  
0.925  
0.9  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
FSW = 1.0 MHz  
FPWM  
Temperature (C)  
FSW = 2.5 MHz  
FPWM  
VOUT = 1.2 V  
IOUT = 0 A  
VOUT = 1.2 V  
IOUT = 0 A  
7-12. Switching Frequency vs Temperature  
7-11. Switching Frequency vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
125  
115  
105  
95  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
85  
75  
65  
55  
45  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
35  
25  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-13. High Side RDSON vs Temperature  
7-14. Low Side RDSON vs Temperature  
4.6  
Vin = 3V  
Vin = 6V  
Vin = 9V  
4.575  
4.55  
4.525  
4.5  
4.475  
4.45  
4.425  
4.4  
4.375  
4.35  
4.325  
4.3  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
7-15. High Side ILIM vs Temperature  
7-16. Low Side ILIM vs Temperature  
1.9  
1.85  
1.8  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
1.75  
1.7  
2.45  
2.4  
2.35  
2.3  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
1.65  
1.6  
2.25  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-17. Negative ILIM vs Temperature  
7-18. Soft Start Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
10  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
3
2.975  
2.95  
2.925  
2.9  
2.875  
2.85  
2.825  
2.8  
2.775  
2.75  
2.725  
2.7  
Vin Rising  
Vin Falling  
PG Rising  
PG Falling  
2.675  
2.65  
87  
86  
-40  
-40  
-10  
20  
50  
80  
110  
140  
170  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temeraturee (C)  
7-20. VVIN UVLO Thresholds vs Temperature  
VVIN = 6 V  
7-19. Power Good Thresholds vs Temperature  
1.01  
0.855  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
0.854  
0.853  
0.852  
0.851  
0.85  
0.849  
0.848  
0.847  
0.846  
0.845  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
-40  
-10  
20  
50  
80  
110  
140  
170  
-40  
-10  
20  
50  
80  
110  
140  
170  
Temperature (C)  
Temperature (C)  
7-21. Percise EN Threshold vs Temperature  
7-22. Percise EN Threshold vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS62993-Q1 synchronous switched mode power converters are based on DCS-Control (Direct Control  
with Seamless Transition into power save mode). DCS-Control is an advanced regulation topology that  
combines the advantages of hysteretic, voltage mode, and current mode control. This control loop takes  
information about output voltage changes and feeds the information directly to a fast comparator stage. DCS-  
Control sets the switching frequency, which is constant for steady-state operating conditions, and provides  
immediate response to dynamic load changes. To get accurate DC load regulation, a voltage feedback loop is  
used. The internally compensated regulation network achieves fast and stable operation with small external  
components and low-ESR capacitors.  
8.2 Functional Block Diagram  
VIN  
PG  
VI  
Ref  
1.0V  
+
HS Limit  
EN  
VO  
Internal/External  
Divider  
FB / VSET  
SW  
Power Control  
Resistor-to-Digital  
Device Control  
and Logic  
Gate  
Driver  
Power Save Mode  
Forced PWM  
VFB  
Smart-Enable  
Ref-System  
100% Mode  
UVLO  
SS/TR  
Start-up Handling  
Smart-CONFIG  
PG-Control  
Thermal Shutdown  
Resistor-to-Digital  
MODE Detection  
MODE / S-CONF  
LS Limit  
VO  
Direct  
VI  
VOS  
Control  
TON timer  
VFB  
+
VO  
Device  
Control  
DCS-Control  
VREF  
GND  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
12  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Mode Selection and Device Configuration MODE/S-CONF  
With MODE/S-CONF (SmartConfig), this device features an input with two functions. This pin can be used to  
customize the device behavior in two ways:  
Select the device mode (Forced PWM or Auto PFM /PWM with AEE operation) with a HIGH-level or LOW-  
level.  
Select the device configuration (switching frequency, internal or external feedback, output discharge, and  
auto PFM/PWM mode) by connecting a single resistor to the MODE/S-CONF pin.  
The TPS62993-Q1 interprets this pin during the start-up sequence after the internal OTP readout and before the  
device starts switching in soft start (see 8-1). If the device reads a HIGH-level or LOW-level, the dynamic  
mode change is active and auto PFM/PWM or FPWM mode can be changed during operation. If the TPS62993-  
Q1 reads a resistor value, the device is configured according to the resistance value in 8-1 and there is no  
further interpretation during operation and device mode or other configurations can only be changed by power  
cycling or disabling the device.  
备注  
The MODE/S-CONF pin must not be left floating. Connect the pin high, low, or to a resistor to  
configure the device according to 8-1.  
EN and UVLO  
Precise  
Enable  
detec on  
PG -> High  
Switching  
Opera on  
OTP  
Readout  
S-CONF  
Readout  
VSET  
Readout  
So start  
Resistor-to-Digi al  
readout and  
interpreta on  
No interpreta on of  
MODE/S-CONF or VSET  
MODE-Pin toggling detec on  
VOUT  
8-1. Interpretation of S-CONF and VSET Flow  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8-1. SmartConfig Setting Table  
FB/VSET  
Pin  
Output  
Discharge  
Mode (Auto Or Forced  
PWM)  
Dynamic Mode  
Change  
Level Or Resistor Value [Ω]  
#
FSW (MHz)  
(1)  
Setting Options by Level  
Auto PFM/PWM with  
AEE  
1
2
GND  
External FB  
External FB  
2.5(2)  
2.5  
yes  
yes  
Active  
HIGH (> VIH_MODE  
)
Forced PWM  
Setting Options by Resistor  
Auto PFM/PWM with  
AEE  
3
7.15 k  
External FB  
2.5(2)  
no  
4
5
6
7
8
8.87 k  
11.0 k  
13.7 k  
16.9 k  
21.0 k  
External FB  
External FB  
External FB  
External FB  
External FB  
2.5  
1
no  
yes  
yes  
no  
Forced PWM  
Auto PFM/PWM  
Forced PWM  
1
1
Auto PFM/PWM  
Forced PWM  
1
no  
Auto PFM/PWM with  
AEE  
9
26.1 k  
32.4 k  
40.2 k  
VSET  
VSET  
VSET  
2.5(2)  
2.5  
yes  
yes  
no  
Not active  
10  
11  
Forced PWM  
Auto PFM/PWM with  
AEE  
2.5(2)  
12  
13  
14  
15  
16  
49.9 k  
61.9 k  
76.8 k  
95.3 k  
118 k  
VSET  
VSET  
VSET  
VSET  
VSET  
2.5  
1
no  
yes  
yes  
no  
Forced PWM  
Auto PFM/PWM  
Forced PWM  
1
1
Auto PFM/PWM  
Forced PWM  
1
no  
(1) E96 resistor series, 1% accuracy, temperature coefficient better or equal than ±200 ppm/°C  
(2) FSW varies based on VIN and VOUT. See 8.4.3 for more details.  
8.3.2 Adjustable VO Operation (External Voltage Divider)  
The TPS62993-Q1 can be programmed by the MODE/S-CONF pin to operating in a classical configuration  
where the FB/VSET pin is used as the feedback pin, sensing VO through an external resistive divider. The  
TPS62993-Q1 can also be programmed to 1 of 16 different fixed output voltages (see 8.3.3).  
If the device is configured to operate in the classical adjustable VO operation, the FB/VSET pin is used as the  
feedback pin and must sense VO through an external divider network. 8-2 shows the typical schematic for this  
configuration.  
VIN  
3 V to 10 V  
VOUT  
0.6 V to 5.5 V  
TPS6299x-Q1  
1 H  
VIN  
SW  
EN  
VOS  
C2  
22 F  
C1  
10 F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
8-2. Adjustable VO Operation Schematic  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
14  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.3.3 Selectable VO Operation (VSET and Internal Voltage Divider)  
If the device is configured to VSET operation, VO is sensed only through the VOS pin by an internal resistor  
divider. The target VO is programmed by an external resistor (RVSET) connected between the VSET pin and  
GND. 8-3 shows the typical schematic for this configuration.  
CAUTION  
The MODE/S-CONF pin must not be configured for external feedback operation (see 8-1) if only  
RVSET (R2 as shown in 8-3) is populated. This causes the output voltage to become unregulated  
and can damage to the device or surrounding circuitry.  
VIN  
VOUT  
0.4 V to 5.5 V  
TPS6299x-Q  
3 V to 10 V  
1 H  
VIN  
SW  
EN  
VOS  
C2  
22 F  
C1  
10 F  
FB/  
VSET  
SS/TR  
R2  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
8-3. Selectable VO Operation Schematic  
8-2. VSET Selection Table  
Level Or Resistor Value [Ω] (1)  
#
1
2
3
4
5
6
7
8
9
Target VO [V]  
GND  
4.64 k  
1.2  
0.4  
5.76 k  
0.6  
7.15 k  
0.8  
8.87 k  
1.0  
11.0 k  
1.1  
13.7 k  
1.3  
16.9 k  
1.35  
1.8  
21.0 k  
10  
26.1 k  
1.9  
11  
12  
13  
14  
15  
16  
40.2 k  
2.5  
61.9 k  
3.8  
76.8 k  
5.0  
95.3 k  
1.25  
5.5  
118.0 k  
249.00 k or larger/Open  
3.3  
(1) E96 resistor series, 1% accuracy, temperature coefficient better or equal than ±200 ppm/°C  
8.3.4 Soft Start and Tracking (SS/TR)  
With the SS/TR pin, the user can adjust the soft-start behavior or track an external voltage source (see 节  
8.3.4.1 for operation details).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and makes sure there is a controlled output voltage rise time. The soft-start circuitry also prevents  
unwanted voltage drops from high impedance power sources or batteries. When EN is set high to start  
operation, the device starts switching after the start-up delay, while the internal reference, and hence VO, rises  
with a slope controlled by the 2.5μA (typical) ISS current source and an external capacitor connected to the  
SS/TR pin and the 2.5μA (typical) ISS current source.  
备注  
Shorting or pulling the SS/TR pin LOW externally prevents the device from switching as this sets the  
internal reference voltage to 0 V.  
备注  
Leaving the SS/TR pin unconnected provides the fastest start-up response, but this can result in some  
output voltage overshoot depending on the Vout value, load current, and external component sizes.  
Adding or increasing the soft-start capacitor (CSS) minimizes or removes the voltage overshoot.  
If the device is set to shut down (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor  
pulls the SS/TR pin down to make sure there is a proper low level. Returning from those states causes a new  
start-up sequence as set by the SS/TR connection.  
8.3.4.1 Tracking Function  
If a tracking function is desired, the SS/TR pin can be used for this purpose by connecting it to an external  
tracking voltage. The output voltage tracks that voltage with the typical gain and offset as specified in the  
Electrical Characteristics.  
备注  
In forced PWM (FPWM) mode the output voltage increases and decreases with any changes in the  
tracking voltage, but in auto PFM (power save) mode, the output voltage only decreases based on the  
load current.  
ISS  
SS/TR  
to VREF  
8-4. Tracking Operation Simplified Schematic  
VFB = 0.75 x VSS/TR  
(1)  
When the SS/TR pin voltage is above 0.8 V, the internal voltage is clamped and the device goes to normal  
regulation. This action works for rising and falling tracking voltages with the same behavior, as long as the input  
voltage is inside the recommended operating conditions. For decreasing the SS/TR pin voltage in PFM mode,  
the device does not sink current from the output. The resulting decrease of the output voltage can therefore be  
slower than the SS/TR pin voltage if the load is light. When driving the SS/TR pin with an external voltage, do not  
exceed the voltage rating of the SS/TR pin, which is 6 V. The SS/TR pin is internally connected with a resistor to  
GND when EN = 0.  
If the input voltage drops below undervoltage lockout, the output voltage goes to zero, independent of the  
tracking voltage. 8-5 shows how to connect devices to get ratiometric and simultaneous sequencing by using  
the tracking function. See 9.4.3 in the systems examples.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
16  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Device 1  
L1  
TPS629xx-Q1  
VOUT1  
VIN  
VIN  
SW  
EN  
VOS  
R1  
R2  
22 μF  
10 μF  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
GND  
CSS  
R3  
Device 2  
L2  
TPS629xx-Q1  
VOUT2  
VIN  
SW  
EN  
VOS  
22 μF  
R7  
R8  
10 μF  
R4  
R5  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
GND  
R6  
8-5. Schematic for Ratiometric and Simultaneous Start-Up  
The resistive divider of R7 and R8 can be used to change the ramp rate of VOUT2 to be faster, slower, or the  
same as VOUT1.  
A sequential start-up is achieved by connecting the PG pin of VOUT of device 1 to the EN pin of device 2. PG  
requires a pullup resistor. Ratiometric start-up sequence happens if both supplies are sharing the same soft-start  
capacitor. 方程式 18 gives the soft-start time, though the SS/TR current has to be doubled. Details about these  
and other tracking and sequencing circuits are found in the Sequencing and Tracking With the TPS621-Family  
and TPS821-Family application report.  
备注  
If the voltage at the FB pin is below its typical value of 0.6 V, the output voltage accuracy can have a  
wider tolerance than specified. The current of 2.5 µA out of the SS/TR pin also has an influence on the  
tracking function, especially for high resistive external voltage dividers on the SS/TR pin.  
8.3.5 Smart Enable with Precise Threshold  
The voltage applied at the enable pin of the TPS62993-Q1 is compared to a fixed threshold rising voltage. This  
allows the user to drive the pin by a slowly changing voltage and enables the use of an external RC network to  
achieve a power-up delay.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
The precise enable input allows the user to program the undervoltage lockout by adding a resistor divider to the  
input of the EN pin.  
The enable input threshold for a falling edge is lower than the rising edge threshold. The TPS62993-Q1 starts  
operation when the rising threshold is exceeded. For proper operation, the EN pin must be terminated and must  
not be left floating. Pulling the EN pin low forces the device into shutdown. In this mode, the internal high-side  
and low-side MOSFETs are turned off and the entire internal control circuitry is switched off.  
An internal resistor pulls the EN pin to GND when the device is disabled and avoids the pin to be floating (after  
the device is enabled, the pulldown is removed). This prevents an uncontrolled start-up of the device in case the  
EN pin cannot be driven to a low level safely. With EN low, the device is in shutdown mode. The device is turned  
on with EN set to a high level. The pulldown control circuit disconnects the pulldown resistor on the EN pin after  
the internal control logic and the reference have been powered up. With EN set to a low level, the device enters  
shutdown mode and the pulldown resistor is activated again.  
8.3.6 Power Good (PG)  
The TPS62993-Q1 has a built-in power-good (PG) feature to indicate whether the output voltage has reached its  
target and the device is ready. The PG signal can be used for start-up sequencing of multiple rails. The PG pin is  
an open-drain output that requires a pullup resistor to any voltage up to the recommended input voltage level.  
PG is low when the device is turned off due to EN, UVLO (undervoltage lockout), or thermal shutdown. VIN must  
remain present for the PG pin to stay low.  
If the power-good output is not used, TI recommends to tie to GND or leave it open.  
8-3. Power Good Indicator Functional Table  
Logic Signals  
PG Status  
VIN  
EN Pin  
Thermal Shutdown  
VOUT  
VOUT on target  
High Impedance  
LOW  
No  
HIGH  
VOUT < target  
VIN > UVLO  
Yes  
×
×
×
×
×
LOW  
LOW  
LOW  
1.8 V< VIN < UVLO  
VIN < 1.8 V  
×
×
×
LOW  
×
Undefined  
备注  
For prebiased VOUT conditions (during start-up) of 60% or more of the programmed output voltage, a  
minimum 250-μs external soft start (CSS > 0.75 nF) is required. If the 250-μs soft start minimum is  
not ensured and VOUT is prebiased above 60% of the programmed output voltage during start-up, PG  
can be seen asserted "early" before VOUT reaches the PG rising threshold, a glitch on PG can be  
observed, or both.  
8.3.7 Output Discharge Function  
The purpose of the discharge function is to make sure there is a defined down-ramp of the output voltage when  
the device is being disabled, and to also keep the output voltage close to 0 V when the device is off. This can be  
especially useful for applications with a system wide EN function that removes the output load in conjunction with  
disabling the power supply.  
The output discharge feature is only active after the TPS62993-Q1 has been enabled at least once since the  
supply voltage was applied (VVIN > UVLO). The internal discharge resistor is connected to the VOS pin. The  
discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in undervoltage lockout.  
The minimum supply voltage required for the discharge function to remain active typically is 2 V.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
18  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.3.8 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
8.3.9 Current Limit and Short-Circuit Protection  
The TPS62993-Q1 is protected against overload and short-circuit events. If the inductor current exceeds the  
high-side FET current limit (ILIMH), the high-side switch is turned off and the low-side switch is turned on to ramp  
down the inductor current. The high-side FET turns on again only if the current in the low-side FET has  
decreased below the low-side FET current limit threshold AND the internal ILIM recovery delay has expired.  
备注  
While the internal recovery delay generally keeps the switching frequency within the normal operating  
range of the device , the switching frequency is not tightly controlled during overload events.  
Due to internal propagation delay, the actual current can exceed the static current limit during that time. The  
dynamic current limit is given as 方程2:  
V
L
L
I
= I  
+
× t  
pd  
(2)  
peak typ  
LIMH  
where  
ILIMH is the static high-side FET current limit as specified in the Electrical Characteristics.  
L is the effective inductance at the peak current.  
VL is the voltage across the inductor (VINVOUT).  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductance is  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
− V  
L
VIN  
VOUT  
I
= I  
+
× 50ns  
(3)  
peak typ  
LIMH  
The TPS62993-Q1 also includes a low-side negative current limit (ILIM:SINK) to protect against excessive negative  
currents that can occur in forced PMW mode under heavy to light load transient conditions. If the negative  
current in the low-side switch exceeds the ILIM:SINK threshold, the low-side switch is disabled. Both the low-side  
and high-side switches remain off until an internal timer re-enables the high-side switch based on the selected  
PWM switching frequency.  
CAUTION  
If Forced PWM (FPWM) mode is being used, TI recommends that the inductor be sized such that  
the inductor ripple current, ΔIL (see 方程式 9), does not exceed 2.6 A to avoid the potential for  
continuous operation of the negative current limit with no output load (IO = 0 A).  
8.3.10 High Temperature Specifications  
The TPS62993-Q1 is capable of high operating junction temperatures up to 165°C. The AEC-Q100 Grade-1  
maximum ambient temperature requirement (TA_max = 125°C) combined with power dissipation on integrated  
chips often results in device operating temperatures well above 125 °C. Additionally, although Grade 1 with  
extended temperature does not exist as a standard by itself, the 165°C maximum operating junction temperature  
allows for the TPS62993-Q1 to be used in applications with ambient temperatures upwards of 150°C that require  
less device power dissipation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
备注  
For more information on the different thermal metrics for semiconductor integrated circuits (ICs)  
including the relationship between the operating junction (TJ) and ambient (TA) temperatures of a  
device, refer to the Semiconductor and IC Package Thermal Metrics application report.  
The TPS62993-Q1 is designed to sustain these high temperatures while maintaining performance and reliability,  
which is accomplished by compliant electrical specifications up to TJ = 165°C. In addition, extra reliability testing  
has been performed that exceeds the AEC-Q100 Grade 1 requirements.  
8.3.11 Thermal Shutdown  
The junction temperature, TJ, of the device is monitored by an internal temperature sensor. If TJ rises and  
exceeds the thermal shutdown threshold, TSD, the device shuts down. Both the high-side and low-side power  
FETs are turned off and PG goes low. When TJ decreases below the hysteresis, the converter resumes normal  
operation, beginning with soft start. In PSM during a PFM skip pause (when both high-side and low-side FETs  
are off, the thermal shutdown feature is not active. A shutdown or restart is only triggered during a switching  
cycle. See 8.4.2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
20  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Forced Pulse Width Modulation (FPWM) Operation  
The TPS62993-Q1 has two operating modes: Forced PWM (FPWM) mode discussed in this section and auto  
PFM and PWM as discussed in 8.4.2.  
With the MODE/S-CONF pin configured for FPWM mode, the TPS62993-Q1 operates with pulse width  
modulation in continuous conduction mode (CCM) with a nominal switching frequency of either 2.5 MHz or 1.0  
MHz. The frequency variation in PWM is controlled and depends on VIN, VOUT, and the inductance. The on time  
in forced PWM mode is given by 方程4:  
V
OUT  
1
T
=
×
(4)  
ON  
V
f
IN  
SW  
For very small output voltages, a minimum on time of approximately 30 ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, which keeps efficiency high.  
8.4.2 Power Save Mode Operation (Auto PFM and PWM)  
When the MODE/S-CONF pin is configured for power save mode (auto PFM and PWM). The device operates in  
PWM mode as long the output current is higher than half of the ripple current of the inductor, and seamlessly  
transitions to PSM operation as the load decreases. In power save mode, the device operates in PFM mode by  
reducing the switching frequency linearly with the load current to maintain high efficiency under light load  
operation. The device remains in power save mode as long as the inductor current remains discontinuous, and  
the transition out of PSM also occurs seamlessly when the load current increases above the DCM boundary.  
In addition to operating in PFM under light load, when the 2.5 MHz FSW option is selected, the TPS62993-Q1  
further adjusts the on time (TON), depending on the input voltage and the output voltage to maintain highest  
efficiency using the AEE function as described in 8.4.3 .  
In power save mode, the TON time can be estimated using 方程4 for 1 MHz and 方程8 for 2.5 MHz.  
For higher input voltages and small output voltages, an absolute minimum on time of approximately 30 ns is kept  
to limit switching losses. The operating frequency is thereby reduced from its nominal value, which keeps  
efficiency high. Using TON, the typical peak inductor current in power save mode is approximated by 方程5:  
V
− V  
L
IN  
OUT  
ILPSM  
=
× T  
(5)  
peak  
ON  
The output voltage ripple in power save mode is given by 方程6:  
2
L × V  
IN  
1
− V  
1
∆ V =  
+
+
V
(6)  
200 × C  
V
IN  
OUT  
OUT  
where  
L is the effective inductance.  
C is the output effective capacitance.  
备注  
When VIN decreases to typically 15% above VOUT, the TPS62993-Q1 does not enter power save  
mode, regardless of the load current. The device maintains output regulation in PWM mode.  
8.4.3 AEE (Automatic Efficiency Enhancement)  
When the MODE/S-CONF pin is configured for auto PFM/PWM with AEE mode, the TPS62993-Q1 provides the  
highest efficiency over the entire input voltage and output voltage range by automatically adjusting the switching  
frequency of the converter (see 方程式 7). To keep the efficiency high over the entire duty cycle range, the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
switching frequency is adjusted while maintaining the ripple current amplitudes. This feature compensates for the  
very small duty cycles of high VIN to low VOUT conversions, which can limit the control range in other topologies.  
V
− V  
OUT  
IN  
F
MHz = 10 × V  
×
(7)  
SW  
OUT  
2
V
IN  
Traditionally, the efficiency of a switched mode converter decreases if VOUT decreases, VIN increases, or both.  
By decreasing the switching losses at lower VOUT values or higher VIN values, the AEE feature provides an  
efficiency enhancement across various duty cycles, especially for the lower VOUT values, where fixed frequency  
converters suffer from a significant efficiency drop.  
To accomplish this, the AEE function in the TPS62993-Q1 adjusts the on time (TON) depending on the input  
voltage and the output voltage, and the on time in steady-state operation can be estimated as using 方程8:  
V
IN  
T
ns = 100 ×  
(8)  
ON  
V
− V  
OUT  
IN  
By using the same TON configuration (see 方程式 9) across the entire load range in AEE mode, the inductor  
ripple current in AEE mode becomes effectively independent of the output voltage and can be approximated by  
方程9:  
V
− V  
L
V
V
IN  
OUT  
IN  
L μH  
∆ I mA = T  
×
= 0.1 ×  
(9)  
L
ON  
The TPS62993-Q1 operates in AEE mode as long as the output current is higher than half the ripple current of  
the inductor. To maintain high efficiency at light loads, the device enters power save mode at the boundary to  
discontinuous mode (DCM), which happens when the output current becomes smaller than half the inductor  
ripple current.  
8.4.4 100% Duty-Cycle Operation  
The duty cycle of the buck converter operating in PWM mode is given as D = VOUT / VIN. The duty cycle  
increases as the input voltage comes close to the output voltage and the off time gets smaller. When the  
minimum off time of typically 80 ns is reached, the TPS62993-Q1 scales down its switching frequency while it  
approaches 100% mode. In 100% mode, the device keeps the high-side switch on continuously. The high-side  
switch stays turned on as long as the output voltage is below the internal set point, allowing the conversion of  
small input to output voltage differences (for example, getting longest operation time of battery-powered  
applications). In 100% duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
spacing  
V
= V  
+ I  
× R  
+ R  
L
(10)  
IN MIN  
OUT  
OUT  
DS ON  
where  
IOUT is the output current.  
RDS(on) is the on-state resistance of the high-side FET.  
RL is the DC resistance of the inductor used.  
8.4.5 Starting into a Prebiased Load  
The TPS62993-Q1 is capable of starting into a prebiased output. The device only starts switching when the  
internal soft-start ramp is equal or higher than the feedback voltage. If the voltage at the feedback pin is biased  
to a higher voltage than the nominal value, the TPS62993-Q1 does not start switching unless the voltage at the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
22  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
feedback pin drops to the target. See the note in 8.3.6 regarding the soft-start requirement during prebiased  
conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS62993-Q1 devices are highly efficient, small, and highly flexible synchronous step-down DC/DC  
converters that are easy to use. A wide input voltage range of 3 V to 10 V supports a wide variety of inputs like  
9-V supply rails, single-cell or multi-cell Li-Ion, and 5-V or 3.3-V rails.  
9.2 Typical Application with Adjustable Output Voltage  
VIN  
3 V to 10 V  
VOUT  
0.6 V to 5.5 V  
TPS6299x-Q1  
1 H  
VIN  
SW  
EN  
VOS  
C2  
22 F  
C1  
10 F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
9-1. Typical Application Circuit  
9.2.1 Design Requirements  
9-1. List of Components  
Description  
Reference  
IC  
Manufacturer  
10 V, 3-A step-down converter  
1-µH inductor  
TPS62993-Q1 series; Texas Instruments  
XGL4020-102; Coilcraft  
L
CIN  
10 µF, 25 V, Ceramic, X8R  
22 µF, 16 V, Ceramic, X8L  
CGA6P1X8R1E106K250AE, TDK  
CGA6P1X8L1C226M250AC, TDK  
AEC-Q200 qualified, 16 V, Ceramic, X8R  
COUT  
CSS  
Depends on soft-start time; see 9.2.2.3.3.3.  
Depending on VOUT; see 9.2.2.2.  
AEC-Q200 qualified, Standard 1% metal  
film  
R1  
R2  
R3  
AEC-Q200 qualified, Standard 1% metal  
film  
Depending on VOUT; see 9.2.2.2.  
AEC-Q200 qualified, Standard 1% metal  
film  
Depending on device setting, see 8.3.1.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62993-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
24  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Programming the Output Voltage  
When the MODE/S_CONF pin is configured for external feedback, the output voltage of the TPS62993-Q1 is  
fully adjustable. It can be programmed for output voltages from 0.6 V to 5.5 V using a resistor divider from VOUT  
to GND. The voltage at the FB pin is regulated to 600 mV. The value of the output voltage is set by the selection  
of the resistor divider from 方程式 11. TI recommends to choose resistor values that allow a current of at least 2  
μA, meaning the value of R2 must not exceed 400 kΩ. Lower resistor values are recommended for highest  
accuracy and most robust design.  
VOUT  
VFB  
R = R ×  
1  
(11)  
1
2
With typical VFB = 0.6 V:  
9-2. Setting the Output Voltage  
Nominal Output Voltage  
R1  
R2  
Exact Output Voltage  
0.749 V  
1.2 V  
0.75 V  
1.2 V  
1.5 V  
1.8 V  
2.0 V  
2.5 V  
3.0 V  
3.3 V  
5.0V  
24.9 kΩ  
100 kΩ  
150 kΩ  
200 kΩ  
49.9 kΩ  
100 kΩ  
100 kΩ  
113 kΩ  
182 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
21.5 kΩ  
31.6 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
1.5 V  
1.8 V  
1.992 V  
2.498 V  
3.009 V  
3.322 V  
4.985 V  
9.2.2.3 External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the control  
loop of the device. The TPS62993-Q1 is optimized to work within a range of external components.  
9.2.2.3.1 Output Filter and Loop Stability  
The TPS62993-Q1 is designed to be stable with a range of L-C filter combinations. The LC output filters  
inductance and capacitance have to be considered together, creating a double pole responsible for the corner  
frequency of the converter using 方程12.  
1
f
=
(12)  
LC  
L × C  
Proven nominal values for inductance and ceramic capacitance are given in 9-3 and are recommended for  
use with the effective capacitance considered to vary by +20% and 50%. Different values can work, but care  
has to be taken on the loop stability, which is affected. More information including a detailed LC stability matrix  
can be found in the Optimizing the TPS62130/40/50/60 Output Filter application report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
200 µF  
9-3. Recommended LC Output Filter Combinations  
4.7 µF  
10 µF  
22 µF  
47 µF  
100 µF  
(1)  
(3)  
1 µH  
(3)  
1.5 µH  
2.2 µH  
3.3 µH  
(2)  
(3)  
(1) This LC combination is the standard value and recommended for most applications with 2.5-MHz switching frequency.  
(2) This LC combination is the standard value and recommended for most applications with 1-MHz switching frequency.  
(3) Output capacitance must have a ESR of 10 mΩfor stable operation, see 9.4.2.  
The TPS62993-Q1 includes an internal 3-pF feedforward capacitor, connected between the VOS and FB pins.  
This capacitor impacts the frequency behavior and sets a pole and zero in the control loop with the resistors of  
the feedback divider, per 方程13 and 方程14:  
1
f
=
=
(13)  
(14)  
zero  
pole  
2π × R × 3pF  
1
1
1
1
f
×
×
R
2π × 3pF  
R
1
2
Although the TPS62993-Q1 devices are stable without the pole and zero being in a particular location, an  
external feedforward capacitor can be added to adjust their locations to the specific needs of the application can  
provide better performance in power save mode, improved transient response, or both. A more detailed  
discussion on the optimization for stability versus transient response can be found in the Optimizing Transient  
Response of Internally Compensated DC-DC Converters and Feedforward Capacitor to Improve Stability and  
Bandwidth of TPS621/821-Family application reports.  
9.2.2.3.2 Inductor Selection  
The TPS62993-Q1 is designed for a nominal 1-µH inductor. Larger values can be used to achieve a lower  
inductor current ripple, but they can have a negative impact on efficiency and transient response. Smaller values  
than 1 µH cause a larger inductor current ripple, which causes larger negative inductor current in forced PWM  
mode at low or no output current. Therefore, TI does not recommend them at large voltages across the inductor  
as it is the case for high input voltages and low output voltages. Low-output current in forced PWM mode causes  
a larger negative inductor current peak, which can exceed the negative current limit. At low or no output current  
and small inductor values, the output voltage cannot be regulated any more. More detailed information on further  
LC combinations can be found in the Optimizing the TPS62130/40/50/60 Output Filter application report.  
The inductor selection is affected by several factors like inductor ripple current, output ripple voltage, PWM-to-  
PFM transition point, and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). 方程15 calculates the maximum inductor current.  
∆ I  
L MAX  
2
I
= I  
+
(15)  
(16)  
L MAX  
OUT MAX  
V
OUT  
1 −  
V
IN MAX  
∆ I  
= V  
×
L MAX  
OUT  
L
× f  
MIN  
SW  
where  
IL(max) is the maximum inductor current.  
• ΔIL(max) is the maximum peak-to-peak inductor ripple current.  
L(min) is the minimum effective inductor value.  
fsw is the actual PWM switching frequency.  
VOUT is the output voltage.  
VIN(max) is the maximum expected output voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
26  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Calculating the maximum inductor current using the actual operating conditions gives the needed minimum  
saturation current of the inductor. TI recommends to add a margin of about 20%. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well. The following  
inductors have been used with the TPS62993-Q1 and are recommended for use:  
9-4. List of Inductors  
Dimensions [L × B  
Type  
Inductance [µH]  
Current [A](1)  
Manufacturer  
× H] mm  
XGL4020-102ME  
XGL4020-222ME  
1.0 µH, ±20%  
8.8  
6.2  
4.0 × 4.0 × 2.1  
4.0 × 4.0 × 2.1  
Coilcraft  
Coilcraft  
2.2 μH, ±20%  
(1) ISAT at 30% drop  
The inductor value also determines the load current at which power save mode is entered:  
1
2
I
=
× ∆ I  
(17)  
Load PSM  
L
9.2.2.3.3 Capacitor Selection  
9.2.2.3.3.1 Output Capacitor  
The recommended value for the output capacitor is 22 µF. The architecture of the TPS62993-Q1 allows the use  
of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low  
output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow  
capacitance variation with temperature, TI recommends the use of X7R or X8R dielectric capacitors. Using a  
higher value has advantages like smaller voltage ripple and a tighter DC output accuracy in power save mode  
(see the Optimizing the TPS62130/40/50/60 Output Filter application report).  
In power save mode, the output voltage ripple depends on the following:  
Output capacitance  
ESR  
ESL  
Peak inductor current  
Using ceramic capacitors provides small ESR, ESL, and low ripple. The output capacitor must be as close as  
possible to the device.  
For large output voltages, the DC bias effect of ceramic capacitors is large and the effective capacitance has to  
be observed.  
9.2.2.3.3.2 Input Capacitor  
For most applications, 10 µF nominal is sufficient and is recommended, though a larger value reduces input  
current ripple further. The input capacitor buffers the input voltage for transient events and also decouples the  
converter from the supply. TI recommends a low-ESR multilayer ceramic capacitor (MLCC) for best filtering and  
must be placed between VIN and GND as close as possible to those pins.  
9-5. List of Capacitors  
Type (1)  
Nominal Capacitance [µF]  
Voltage Rating [V]  
Size  
1210  
1210  
Manufacturer  
TDK  
CGA6P1X8R1E106K250AE  
CGA6P1X8L1C226M250AC  
10  
22  
25  
16  
TDK  
(1) Lower of IRMS at 40°C rise or ISAT at 30% drop  
9.2.2.3.3.3 Soft-Start Capacitor  
A capacitor connected between SS/TR pin and GND allows a user-programmable start-up slope of the output  
voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
ISS  
SS/TR  
to VREF  
9-2. Soft-Start Operation Simplified Schematic  
An internal constant current source is provided to charge the external capacitance. The capacitor required for a  
given soft-start ramp time is given by:  
I
SS  
C
= T  
×
(18)  
SS  
SS  
V
REF  
where  
CSS is the capacitance required at the SS/TR pin.  
TSS is the desired soft-start ramp time.  
ISS is the SS/TR source current, see the Electrical Characteristics.  
VREF is the feedback regulation voltage divided by tracking gain (VFB / 0.75); see the Electrical  
Characteristics.  
The fastest achievable typical ramp time is 150 µs, even if the external Css capacitance is lower than 680 pF or  
the pin is open.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
28  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.2.3 Application Curves  
9.2.3.1 Application Curves Vout = 1.8 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 1.8 V  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 1.8 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-4. Efficiency vs Output Current  
9-3. Efficiency vs Output Current  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.8  
3
4
5
6
7
8
9
10  
Input Voltage (V)  
VOUT = 1.8 V  
Fsw = 2.5 MHz  
VOUT = 1.8 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-5. Switching Frequency vs Input Voltage  
9-6. Switching Frequency vs Input Voltage  
1
1
Vin = 3V  
Vin = 6V  
Vin = 3V  
Vin = 6V  
0.8  
0.8  
Vin = 9V  
Vin = 9V  
0.6  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 1.8 V  
Fsw = 2.5 MHz  
VOUT = 1.8 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-7. Output Voltage vs Output Current  
9-8. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-10. Efficiency vs Output Current  
9-9. Efficiency vs Output Current  
1.4  
1.32  
1.24  
1.16  
1.08  
1
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
Iout = 0.1A  
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.92  
0.84  
0.76  
0.68  
0.6  
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-12. Switching Frequency vs Input Voltage  
9-11. Switching Frequency vs Input Voltage  
1
Vin = 3V  
Vin = 6V  
0.8  
Vin = 9V  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
VOUT = 1.8 V  
Fsw = 1.0 MHz  
Forced PWM  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-13. Output Voltage vs Output Current  
9-14. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.2.3.2 Application Curves Vout = 1.2 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 1.2 V  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 1.2 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-16. Efficiency vs Output Current  
9-15. Efficiency vs Output Current  
4
3.6  
3.2  
2.8  
2.4  
2
3.2  
3
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.6  
1.2  
0.8  
0.4  
0
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.8  
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V  
Fsw = 2.5 MHz  
VOUT = 1.2 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-17. Switching Frequency vs Input Voltage  
9-18. Switching Frequency vs Input Voltage  
1
1
Vin = 3V  
Vin = 6V  
Vin = 3V  
Vin = 6V  
0.8  
0.8  
Vin = 9V  
Vin = 9V  
0.6  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 1.2 V  
Fsw = 2.5 MHz  
VOUT = 1.2 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-19. Output Voltage vs Output Current  
9-20. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-22. Efficiency vs Output Current  
9-21. Efficiency vs Output Current  
1.4  
1.32  
1.24  
1.16  
1.08  
1
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
Iout = 0.1A  
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.92  
0.84  
0.76  
0.68  
0.6  
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-24. Switching Frequency vs Input Voltage  
9-23. Switching Frequency vs Input Voltage  
1
1
Vin = 3V  
Vin = 6V  
Vin = 3V  
Vin = 6V  
0.8  
0.8  
Vin = 9V  
Vin = 9V  
0.6  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 1.2 V  
Fsw = 1.0 MHz  
VOUT = 1.2 V  
Fsw = 1.0 MHz  
Forced PWM  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-25. Output Voltage vs Output Current  
9-26. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.2.3.3 Application Curves Vout = 0.6 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 3V  
Vin = 6V  
Vin = 9V  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-28. Efficiency vs Output Current  
9-27. Efficiency vs Output Current  
4
3.6  
3.2  
2.8  
2.4  
2
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
1.6  
1.2  
0.8  
0.4  
0
3
4
5
6
7
8
9
10  
Input Voltage (V)  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-29. Switching Frequency vs Input Voltage  
9-30. Switching Frequency vs Input Voltage  
3
1
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.8  
0.6  
2
1
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
-1  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
VOUT = 0.6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
Auto PFM/PWM  
9-32. Output Voltage vs Output Current  
9-31. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 3V  
Vin = 6V  
Vin = 9V  
Vin = 3V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 0.6 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 0.6 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-34. Efficiency vs Output Current  
9-33. Efficiency vs Output Current  
1.4  
1.36  
1.32  
1.28  
1.24  
1.2  
1.16  
1.12  
1.08  
1.04  
1
0.96  
0.92  
0.88  
0.84  
0.8  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
Iout = 0.1A  
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 0.6 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 0.6 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-36. Switching Frequency vs Input Voltage  
9-35. Switching Frequency vs Input Voltage  
1
1
Vin = 3V  
Vin = 6V  
Vin = 3V  
Vin = 6V  
0.8  
0.8  
Vin = 9V  
Vin = 9V  
0.6  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 0.6 V  
Fsw = 1.0 MHz  
VOUT = 0.6 V  
Fsw = 1.0 MHz  
Forced PWM  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-37. Output Voltage vs Output Current  
9-38. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.3 Typical Application with Selectable VOUT using VSET  
VIN  
VOUT  
0.4 V to 5.5 V  
TPS6299x-Q  
3 V to 10 V  
1 H  
VIN  
SW  
EN  
VOS  
C2  
22 F  
C1  
10 F  
FB/  
VSET  
SS/TR  
R2  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
9-39. Typical Application Circuit (VSET)  
9.3.1 Design Requirements  
9-6. List of Components  
Description  
Reference  
IC  
Manufacturer  
10 V, 3-A step-down converter  
1-µH inductor  
TPS62993-Q1 series; Texas Instruments  
XGL4020-102; Coilcraft  
L
CIN  
10 µF, 25 V, Ceramic, X8R  
22 µF, 16 V, Ceramic, X8L  
CGA6P1X8R1E106K250AE, TDK  
CGA6P1X8L1C226M250AC, TDK  
AEC-Q200 qualified, 16 V, Ceramic, X8R  
COUT  
CSS  
Depends on soft-start time; see 9.2.2.3.3.3.  
Depending on VOUT; see .8.3.3  
AEC-Q200 qualified, Standard 1% metal  
film  
R2  
R3  
AEC-Q200 qualified, Standard 1% metal  
film  
Depending on device setting, see 8.3.1.  
9.3.2 Detailed Design Procedure  
9.3.2.1 Programming the Output Voltage  
When the resitor (R3) on the MODE/S-CONF pin is sized for "VSET" (internal FB) operation (see 8-1) , the  
output voltage of the TPS62993-Q1 becomes selectable with a resistor (R2) from the FB/VSET pin the GND.  
The output can be programmed to one of 16 different fixed output voltages ranging from 0.4 V to 5.5 V based on  
8-2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.3.3 Application Curves  
9.3.3.1 Application Curves Vout = 5 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 7V  
Vin = 9V  
Vin = 7V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 5.0 V  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 5.0 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-41. Efficiency vs Output Current  
9-40. Efficiency vs Output Current  
4.8  
4.4  
4
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
3.6  
3.2  
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
6
7
8
9
10  
Input Voltage (V)  
VOUT = 5.0 V  
Fsw = 2.5 MHz  
VOUT = 5.0 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-42. Switching Frequency vs Input Voltage  
9-43. Switching Frequency vs Input Voltage  
1
1
Vin = 7V  
Vin = 9V  
Vin = 7V  
Vin = 9V  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 5.0 V  
Fsw = 2.5 MHz  
VOUT = 5.0 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-44. Output Voltage vs Output Current  
9-45. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 7V  
Vin = 9V  
Vin = 7V  
Vin = 9V  
0
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
VOUT = 5.0 V  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 5.0 V  
Fsw = 1.0 MHz  
Forced PWM  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-47. Efficiency vs Output Current  
9-46. Efficiency vs Output Current  
1.4  
1.32  
1.24  
1.16  
1.08  
1
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
Iout = 0.1A  
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.92  
0.84  
0.76  
0.68  
0.6  
6
7
8
9
10  
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 5.0 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 5.0 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-49. Switching Frequency vs Input Voltage  
9-48. Switching Frequency vs Input Voltage  
1
1
Vin = 7V  
Vin = 9V  
Vin = 7V  
Vin = 9V  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 5.0 V  
Fsw = 1.0 MHz  
VOUT = 5.0 V  
Fsw = 1.0 MHz  
Forced PWM  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-50. Output Voltage vs Output Current  
9-51. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.3.3.2 Application Curves Vout = 3.3 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Vin = 6V  
Vin = 9V  
Vin = 6V  
Vin = 9V  
0.05 0.07 0.1  
0.2 0.3 0.40.5 0.7  
Iout (A)  
1
2
3
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
Forced PWM  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-53. Efficiency vs Output Current  
9-52. Efficiency vs Output Current  
3.2  
3
4.8  
4.4  
4
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
2.8  
2.6  
2.4  
2.2  
2
3.6  
3.2  
2.8  
2.4  
2
1.8  
1.6  
1.4  
1.2  
1
1.6  
1.2  
0.8  
0.4  
0
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.8  
4
5
6
7
8
9
10  
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
Auto PFM/PWM  
9-54. Switching Frequency vs Input Voltage  
9-55. Switching Frequency vs Input Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
1
Vin = 6V  
Vin = 9V  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Vin = 6V  
-0.8  
Vin = 9V  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 3.3 V  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
Forced PWM  
L = 1.0 μH  
L = 1.0 μH  
Auto PFM/PWM  
9-56. Output Voltage vs Output Current  
9-57. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Vin = 6V  
Vin = 9V  
0
1E-5  
0.0001  
VOUT = 3.3 V  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
VOUT = 3.3 V  
Fsw = 1.0 MHz  
Forced PWM  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-59. Efficiency vs Output Current  
9-58. Efficiency vs Output Current  
1.4  
1.32  
1.24  
1.16  
1.08  
1
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
Iout = 0.1A  
Iout = 0.1A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
Iout = 0.5A  
Iout = 1A  
Iout = 2A  
Iout = 3A  
0.92  
0.84  
0.76  
0.68  
0.6  
4
5
6
7
8
9
10  
4
5
6
7
8
9
10  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V  
Fsw = 1.0 MHz  
Forced PWM  
VOUT = 3.3 V  
Fsw = 1.0 MHz  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-61. Switching Frequency vs Input Voltage  
9-60. Switching Frequency vs Input Voltage  
1.2  
1
1
Vin = 6V  
Vin = 9V  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
Vin = 6V  
Vin = 9V  
-0.8  
-1  
1E-5  
0.0001  
0.001  
0.01  
Iout (A)  
0.10.2 0.5 1 2 3  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Iout (A)  
3
VOUT = 3.3 V  
Fsw = 1.0 MHz  
VOUT = 3.3 V  
Fsw = 1.0 MHz  
Forced PWM  
L = 2.2 μH  
L = 2.2 μH  
Auto PFM/PWM  
9-62. Output Voltage vs Output Current  
9-63. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
VIN = 6 V  
Css = 3.3 nF  
IOUT = 0 A  
Fsw = 2.5 MHz  
VIN = 6 V  
Css = 0 nF  
IOUT = 0 A  
Fsw = 2.5 MHz  
VOUT = 3.3 V  
Auto PFM/PWM  
VOUT = 3.3 V  
Auto PFM/PWM  
9-64. Start-Up Timing  
9-65. Start-Up Timing  
VIN = 6 V  
Css = 3.3 nF  
IOUT = 3 A  
Fsw = 2.5 MHz  
FPWM  
VIN = 6 V  
Css = 0 nF  
IOUT = 3 A  
Fsw = 2.5 MHz  
FPWM  
VOUT = 3.3 V  
VOUT = 3.3 V  
9-66. Start-Up Timing  
9-67. Start-Up Timing  
VIN = 6 V  
Fsw = 2.5 MHz  
VIN = 6 V  
Css = 3.3 nF  
IOUT = 0 A  
Fsw = 2.5 MHz  
FPWM  
L = 1.0 μH  
VOUT = 3.3 V  
VOUT = 3.3 V  
IOUT = 10 mA  
Auto PFM/PWM  
9-68. Start-Up into Prebiased Output  
9-69. Shutdown Timing with Output Discharge  
Enabled  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
VIN = 6 V  
VOUT = 3.3 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VIN = 6 V  
Fsw = 2.5 MHz  
FPWM  
L = 1.0 μH  
IOUT = 10 mA  
Auto PFM/PWM  
VOUT = 3.3 V  
IOUT = 3 A  
9-70. Shutdown Timing with Output Discharge  
9-71. Shutdown Timing with Output Discharge  
Disabled  
Disabled  
VIN = 6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VIN = 6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VOUT = 3.3 V IOUT = 10 mA to 1  
A
Auto PFM/PWM  
VOUT = 3.3 V IOUT = 10 mA to 1  
A
Auto PFM/PWM  
9-72. Load Transient Response  
9-73. Load Transient Response Undershoot  
VIN = 6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VIN = 6 V  
Fsw = 2.5 MHz  
L = 1.0 μH  
VOUT = 3.3 V IOUT = 1 A to 10  
mA  
Auto PFM/PWM  
VOUT = 3.3 V  
IOUT = 0 A  
Auto PFM/PWM  
9-75. Output Voltage Ripple  
9-74. Load Transient Response Overshoot  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
VIN = 6 V  
Fsw = 2.5 MHz  
VIN = 6 V  
Fsw = 1.0 MHz  
L = 1.0 μH  
L = 2.2 μH  
VOUT = 3.3 V  
IOUT = 1 A  
Auto PFM/PWM  
VOUT = 3.3 V  
IOUT = 100 mA  
Auto PFM/PWM  
9-77. Output Voltage Ripple  
9-76. Output Voltage Ripple  
VIN = 6 V  
Fsw = 2.5 MHz  
FPWM  
VIN = 6 V  
Fsw = 2.5 MHz  
FPWM  
L = 1.0 μH  
L = 1.0 μH  
VOUT = 3.3 V  
IOUT = 3 A  
VOUT = 3.3 V  
IOUT = 3 A  
9-79. Input Voltage Ripple  
9-78. Output Voltage Ripple  
60  
50  
300  
Gain  
Phase  
250  
200  
150  
100  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-50  
-100  
-150  
-200  
-250  
-300  
1000 2000 5000 10000  
100000  
1000000  
VIN = 6 V  
Fsw = 1.0 MHz  
FPWM  
L = 2.2 μH  
Frequency (Hz)  
VOUT = 3.3 V  
IOUT = 5 A  
VIN = 6 V  
Fsw = 2.5 MHz  
FPWM  
L = 1.0 μH  
VOUT = 3.3 V  
IOUT = 3 A  
9-80. Current Limit  
9-81. Bode Plot  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
42  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.4 System Examples  
9.4.1 LED Power Supply  
The TPS62993-Q1 can be used as a power supply for power LEDs. The FB pin can be easily set to lower values  
than nominal by using the SS/TR pin. With that, the voltage drop on the sense resistor (R2) is reduced to avoid  
excessive power loss. Because the SS/TR pin provides 2.5 µA (typical), the feedback pin voltage can be  
adjusted by an external resistor per 方程式 19. This drop, proportional to the LED current, is used to regulate the  
output voltage (anode voltage) to a proper level to drive the LED. Both analog and PWM dimming are supported  
with the TPS62993-Q1. 9-82 shows an application circuit, tested with analog dimming.  
L1  
TPS629xx-Q1  
VIN  
VOUT  
VIN  
SW  
EN  
VOS  
C2  
22 μF  
C1  
10 μF  
FB/  
VSET  
SS/TR  
R2  
MODE/  
S-CONF  
PG  
R3  
R4  
GND  
9-82. Single Power LED Supply  
The resistor at SS/TR defines the FB voltage. The resistor at SS/TR is set to 304 mV by RSS/TR = R4 = 162 kΩ  
using 方程式 19. This cuts the losses on R2 to half from the nominal 0.6 V of feedback voltage while it still  
provides good accuracy.  
VFB = 0.75 x 2.5μA x RSS/TR  
(19)  
The device now supplies a constant current set by resistor R2 from FB/VSET to GND. The minimum input  
voltage has to be rated according the forward voltage needed by the LED used. More information is available in  
the Step-Down LED Driver With Dimming With the TPS621-Family and TPS821-Family application report.  
9.4.2 Powering Multiple Loads  
In applications where the TPS62993-Q1 is used to power multiple load circuits, the total capacitance on the  
output can be very large. To properly regulate the output voltage, there must be an appropriate AC signal level  
on the VOS pin. Tantalum capacitors have a large enough ESR to keep output voltage ripple sufficiently high on  
the VOS pin. With low-ESR ceramic capacitors, the output voltage ripple can get very low, so TI does not  
recommend to use a large capacitance directly on the output of the device. If there are several load circuits with  
their associated input capacitor on a PCB, these loads are typically distributed across the board. This adds  
enough trace resistance (Rtrace) to keep a large enough AC signal on the VOS pin for proper regulation.  
The minimum total trace resistance on the distributed load is 10 mΩ. The total capacitance n × CIN in the use  
case below was 32 × 47 μF of ceramic X7R capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Load-1  
Rtrace  
Rtrace  
CIN1  
CIN2  
VOUT  
0.6 V –  
L1  
TPS629xx-Q1  
VIN  
V
VIN  
SW  
Load-2  
C2  
22 F  
EN  
VOS  
C1  
10 F  
R1  
R2  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
R3  
C3  
GND  
Load-n  
Rtrace  
CINn  
9-83. Multiple Loads  
备注  
9-83 shows an external feedback configuration, but the internal (VSET) configuration can also be  
used.  
9.4.3 Voltage Tracking  
9-84 shows how two TPS62993-Q1s can be configured to tracking output voltages. In this configuration,  
Device 2 follows the voltage applied to its SS/TR pin from Device 1 output. A ramp on the SS/TR pin of Device 2  
to 0.8 V in turn ramps VOUT2 according to the 0.6-V reference on VFB and the R4//R5 resistor divider.  
For this example, to track the 3.8 V (VOUT1) of Device 1 a resistor divider (R7//R8) on SS/TR of Device 2 is  
required to generate 0.8 V when the output voltage (VOUT1) is in regulation. Due to the ISS current of 2.5 µA  
from the SS/TR pin, the equivalent resistance of R7 // R8 must be kept below 15 kΩ to minimize any offset the  
ISS current can cause on the SS/TR pin voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
44  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
Device 1  
L1  
TPS629xx-Q1  
VOUT1  
VIN  
VIN  
SW  
EN  
VOS  
R1  
R2  
22 μF  
10 μF  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
GND  
CSS  
R3  
Device 2  
L2  
TPS629xx-Q1  
VOUT2  
VIN  
SW  
EN  
VOS  
22 μF  
R7  
R8  
10 μF  
R4  
R5  
FB/  
VSET  
SS/TR  
MODE/  
S-CONF  
PG  
GND  
R6  
9-84. Tracking Example  
9-85. Tracking  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.4.4 Inverting Buck-Boost (IBB)  
The need to generate negative voltage rails for electronic designs is a common challenge. The wide 3-V to 10-V  
input voltage range of the TPS62993-Q1 makes it ideal for an inverting buck-boost (IBB) circuit, where the output  
voltage is inverted or negative with respect to ground.  
The circuit operation in the IBB topology differs from that in the traditional buck topology. Though the  
components are connected the same as with a traditional buck converter, the output voltage terminals are  
reversed. See 9-86.  
The maximum input voltage that can be applied to an IBB converter is less than the maximum voltage that can  
be applied to the TPS62993-Q1 in a typical buck configuration. This is because the ground pin of the IC is  
connected to the (negative) output voltage. Therefore, the input voltage across the device is VIN to VOUT, and not  
VIN to ground. Thus, the input voltage range of the TPS62993-Q1 in an IBB configuration becomes 3 V to 10 V +  
VOUT, where VOUT is a negative value.  
The output voltage range is the same as when configured as a buck converter, but only negative. Thus, the  
output voltage for a TPS62993-Q1 in an IBB configuration can be set between 0.4 V and 5.5 V.  
The maximum output current for the TPS62993-Q1 in an IBB topology is normally lower than a traditional buck  
configuration due to the average inductor current being higher in an IBB configuration. Traditionally, lower input  
or (more negative) output voltages results in a lower maximum output current. However, using a larger inductor  
value or the higher 2.5-MHz frequency setting can be used to recover some or all of this lost maximum current  
capability.  
When implementing an IBB design, it is important to understand that the IC ground is tied to the negative voltage  
rail, and in turn, the electrical characteristics of the TPS62993-Q1 device are referenced to this rail. During  
power up, as there is no charge in the output capacitor and the IC GND pin (and VOUT) are effectively 0 V, thus  
parameters such as the VIN UVLO and EN thresholds are the same as in a typical buck configuration. However,  
after the output voltage is in regulation, due to the negative voltage on the IC GND pin, the device traditionally  
continues to operate below what can appear to be the normal UVLO or EN falling thresholds relative to the  
system ground. Take care if the user is using the dynamic mode change feature on the MODE pin of the  
TPS62993-Q1 or driving the EN pin from an upstream microcontroller as the high and low thresholds are relative  
to the negative rail and not the system ground.  
More information on using a DCS regulator in an IBB configuration can be found in the Description  
Compensating the Current Mode Boost Control Loop, Using the TPS6215x in an Inverting Buck-Boost Topology,  
and Using the TPS629210 in an Inverting Buck-Boost Topology application notes.  
TPS629xx-Q1  
L1  
VIN  
VIN  
SW  
22 F  
10 F  
EN  
VOS  
SS/TR  
FB/VSET  
PG  
Css  
MODE/  
S-CONF  
VOUT  
-0.6 V to -5.5 V  
GND  
9-86. IBB Example with Adjustable Feedback  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
46  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
备注  
9-86 shows an external feedback configuration, but the internal (VSET) configuration can also be  
used.  
9.5 Power Supply Recommendations  
The power supply to the TPS62993-Q1 must have a current rating according to the supply voltage, output  
voltage, and output current of the TPS62993-Q1. At a minimum, the input power supply must provide enough  
power to cover the maximum output power divided by the efficiency at maximum load. A good rule of thumb is to  
use a supply with an additional 50% of power capability to withstand the additional loading associated with  
power up, transient events, and potential overload events.  
备注  
For current limited input supplies with a variable supply voltage, the minimum supply voltage must be  
used to determine if the power supply is sufficient.  
9.6 Layout  
9.6.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS62993-Q1 demands careful attention to make sure the device  
works correctly and to get the performance specified. A poor layout can lead to issues like poor regulation (both  
line and load), stability and accuracy weaknesses, increased EMI radiation, and noise sensitivity.  
See 9-87 for the recommended layout of the TPS62993-Q1, which is designed for common external ground  
connections. The input capacitor must be placed as close as possible between the VIN and GND pin of  
TPS62993-Q1. Also, connect the VOS pin in the shortest way to VOUT at the output capacitor.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore paths, conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
traces with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces must be avoided. Loops that conduct an  
alternating current must outline an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB and VOS need to be connected with short wires and not nearby high dv/dt signals (for  
example, SW). As they carry information about the output voltage, they must be connected as close as possible  
to the actual output voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors,  
R1 and R2, must be kept close to the IC and connected directly to those pins and the system ground plane. The  
same applies to the VSET resistor if VSET is used to scale the output voltage.  
The package uses the pins for power dissipation. Thermal vias on the VIN and GND pins help to spread the heat  
through the PCB.  
In case any of the digital inputs EN and MODE/S-CONF must be tied to the input supply voltage at VIN, the  
connection must be made directly at the input capacitor as indicated in the schematics.  
The recommended layout is implemented on the EVM and shown in the TPS6290x-Q1 Step-Down Converter  
Evaluation Module user's guide.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
9.6.2 Layout Example  
9-87. Layout  
9.6.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
The basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design, for example, increasing copper thickness,  
thermal vias, number of layers  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the Thermal Characteristics of Linear and Logic  
Packages Using JEDEC PCB Designs and Semiconductor and IC Package Thermal Metrics application reports.  
The TPS62993-Q1 is designed for a maximum operating junction temperature (TJ) of 165°C. Therefore, the  
maximum output power is limited by the power losses that can be dissipated over the actual thermal resistance,  
given by the package and the surrounding PCB structures. If the thermal resistance of the package is given, the  
size of the surrounding copper area and a proper thermal connection of the IC can reduce the thermal  
resistance. To get an improved thermal behavior, TI recommends to use top layer metal to connect the device  
with wide and thick metal lines. Internal ground layers can connect to vias directly under the IC for improved  
thermal performance.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
The device is qualified for long term qualification with 165°C junction temperature. For more details about the  
derating and life time of the HotRodpackage, see the Derating and Lifetime Calculations for FCOL Packages  
HotRod and FC-SOT application note.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
48  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Development Support  
10.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62993-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Derating and Lifetime Calculations for FCOL Packages HotRod and FC-SOT application  
note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application report  
Texas Instruments, TPS6290x-Q1 Step-Down Converter Evaluation Module user's guide  
Texas Instruments, Using the TPS629210 in an Inverting Buck-Boost Topology application report  
Texas Instruments, Description Compensating the Current Mode Boost Control Loop application report  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS62993-Q1  
English Data Sheet: SLVSGV5  
 
 
 
 
 
 
TPS62993-Q1  
ZHCSQD4A OCTOBER 2022 REVISED MARCH 2023  
www.ti.com.cn  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGV5  
50  
Submit Document Feedback  
Product Folder Links: TPS62993-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62993QRYTRQ1  
ACTIVE  
VQFN-HR  
RYT  
9
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
TS93  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62993QRYTRQ1  
VQFN-  
HR  
RYT  
9
3000  
180.0  
8.4  
2.25  
2.45  
1.15  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RYT  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TPS62993QRYTRQ1  
9
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RYT0009A  
VQFN-HR - 1 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
B
2.1  
1.9  
A
2.3  
2.1  
PIN 1 INDEX AREA  
0.1 MIN  
(0.05)  
SECTION A-A  
TYPICAL  
1.05  
0.95  
C
SEATING PLANE  
0.05  
0.00  
0.08  
0.775  
0.575  
SYMM  
(0.2) TYP  
6X  
3
4
A
A
PIN 1 ID  
SYMM  
2X 1.5  
1
9
7
8X 0.5  
0.3  
13X  
0.2  
0.1  
0.05  
8
0.575  
0.375  
C A B  
2X 1  
4226765/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RYT0009A  
VQFN-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X  
(0.875)  
SYMM  
8
2X  
(0.825)  
(0.65)  
7
4X (0.4)  
9
1
8X (0.5)  
SYMM  
2X (2.55)  
2X (1.5)  
13X  
(0.25)  
(R0.05) TYP  
3
4
2X (1)  
(1.525)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226765/A 04/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RYT0009A  
VQFN-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X  
(0.875)  
SYMM  
8
4X  
(0.825)  
(0.65)  
7
2X (0.4)  
9
1
8X  
(0.5)  
(2.55)  
SYMM  
13X  
(0.25)  
2X (1.5)  
(R0.05) TYP  
4
3
2X (1)  
(1.525)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4226765/A 04/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62A01

采用 SOT-563 封装的 2.5V 至 5.5V 输入、1A 高效率降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A01-Q1

采用 SOT563 封装的汽车类、2.5V 至 5.5V 输入、1A 输出降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A01A

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、1A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A01ADRLR

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、1A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A01DRLR

采用 SOT-563 封装的 2.5V 至 5.5V 输入、1A 高效率降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A02

采用 SOT-563 封装的 2.5V 至 5.5V 输入、2A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A02A

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、2A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A02ADRLR

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A02DRLR

采用 SOT-563 封装的 2.5V 至 5.5V 输入、2A 高效降压转换器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A06

采用 SOT-563 封装的 2.5V 至 5.5V 输入、6A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62A06A

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、6A 高效降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS63000

高效单电感Buck - Boost变换器1.8给开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI