TPS63020QDSJRQ1 [TI]

具有 4A 开关的高效汽车类单传感器降压/升压转换器 | DSJ | 14 | -40 to 125;
TPS63020QDSJRQ1
型号: TPS63020QDSJRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 4A 开关的高效汽车类单传感器降压/升压转换器 | DSJ | 14 | -40 to 125

升压转换器 开关 光电二极管 传感器
文件: 总27页 (文件大小:1621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
TPS63020-Q1 具有 4A 开关电流的高效单电感升压/降压转换器  
1 特性  
2 应用范围  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
信息娱乐  
远程信息处理/紧急呼叫 (eCall)  
器件温度等级:运行结温范围为 -40°C 至  
125°C  
3 说明  
TPS63020-Q1 器件是一款电源解决方案,广泛应用于  
2-3 节碱性电池、镍镉 (NiCd) 电池、镍氢 (NiMH)  
电池以及单节锂离子电池或锂聚合物电池供电的产品。  
当使用单节锂离子电池或锂聚合物电池供电时,该器件  
提供高达 3A 的输出电流并可对电池进行放电,使其电  
压降至 2.5V 或更低水平。 此升压/降压转换器基于一  
个频率固定的脉宽调制 (PWM) 控制器。该控制器可通  
过同步整流实现效率最大化。 在负载电流较低的情况  
下,该转换器会进入节能模式,以在宽负载电流范围内  
保持高效率。 禁用省电模式则会强制转换器以固定开  
关频率运行。 开关的最大平均电流为 4A(典型值)。  
输出电压可通过外部电阻分频器进行编程。 转换器可  
被禁用以最大限度地减少电池消耗。 在关机期间,负  
载从电池上断开。 该器件采用 3mm × 4mm 14 引脚  
VSON PowerPAD™ 封装 (DSJ)。  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 H1B  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
输入电压范围:1.8V 5.5V  
效率高达 96%  
3.3V 降压模式下的输出电流为 3A (VIN > 3.6V)  
3.3V 升压模式下的输出电流高于 2A (VIN > 2.5V)  
在降压和升压模式之间实现自动转换  
动态输入电流限制  
器件的静态电流小于 50μA  
可调节输出电压范围:1.2V 5.5V  
用于改进低输出功率效率的节能模式  
2.4MHz 强制固定运行频率并可实现同步  
智能电源正常状态输出  
关机期间负载断开  
过温保护  
器件信息(1)  
过压保护  
部件号  
封装  
VSON (14)  
封装尺寸(标称值)  
采用 3mm × 4mm 超薄小外形尺寸无引线 (VSON)-  
14 封装  
TPS63020-Q1  
3.00mm x 4.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用电路原理图  
效率与输出电流间的关系  
100  
L
1 1µH  
90  
80  
70  
60  
50  
40  
VOUT  
VIN  
L1  
L2  
3.3V2A  
C2  
2.5 V to 5.5V  
VIN  
VINA  
EN  
VOUT  
FB  
R1  
R3  
1MΩ  
C1  
2X10µF  
1MΩ  
4X22µF  
C3  
0.1µF  
PS/SYNC  
R2  
180kΩ  
PG  
GND  
PGND  
Power Good  
Output  
TPS63020  
30  
VIN = 1.8V, VOUT = 2.5V  
VIN = 3.6V, VOUT = 2.5V  
VIN = 2.4V, VOUT = 4.5V  
20  
VIN = 3.6V, VOUT = 4.5V  
10  
TPS63020, Power Save Enabled  
0
100m  
1m  
10m  
100m  
1
4
Output Current (A)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD52  
 
 
 
 
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
目录  
9.4 Device Functional Modes.......................................... 9  
10 Application and Implementation........................ 12  
10.1 Application Information.......................................... 12  
10.2 Typical Application ................................................ 12  
10.3 System Examples ................................................. 17  
11 Power Supply Recommendations ..................... 18  
12 Layout................................................................... 18  
12.1 Layout Guidelines ................................................. 18  
12.2 Layout Example .................................................... 18  
12.3 Thermal Considerations........................................ 19  
13 器件和文档支持 ..................................................... 20  
13.1 器件支持................................................................ 20  
13.2 文档支持................................................................ 20  
13.3 社区资源................................................................ 20  
13.4 ....................................................................... 20  
13.5 静电放电警告......................................................... 20  
13.6 Glossary................................................................ 20  
14 机械、封装和可订购信息....................................... 20  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用电路原理图................................................. 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 ESD Ratings ............................................................ 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information ................................................. 4  
8.5 Electrical Characteristics........................................... 5  
8.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
9.1 Overview ................................................................... 7  
9.2 Functional Block Diagram ......................................... 7  
9.3 Feature Description................................................... 7  
9
5 修订历史记录  
日期  
修订版本  
注释  
2015 10 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
6 Device Comparison Table  
PART NUMBER  
VOUT  
Adjustable  
TPS63020-Q1  
7 Pin Configuration and Functions  
DSJ Package  
14-Pin VSON (QFN)  
(Top View)  
VINA  
GND  
FB  
PG  
PS/SYNC  
EN  
Exposed  
Thermal  
Pad *)  
VOUT  
VOUT  
L2  
VIN  
VIN  
L1  
L2  
L1  
NOTE: *) The exposed thermal pad is connected to PGND.  
See TPS63020-Q1 Pin FMEA Application Report SLVA736  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
12  
3
I
I
Enable input (1 enabled, 0 disabled), must not be left open  
Voltage feedback of adjustable versions.  
Control/logic ground  
FB  
GND  
L1  
2
8, 9  
6, 7  
14  
I
I
Connection for inductor  
L2  
Connection for inductor  
PG  
O
Output power good (1 good, 0 failure; open drain)  
Power ground  
PGND  
PS/SYNC  
13  
I
Enable/disable power save mode (1 disabled, 0 enabled, clock signal for synchronization), must not  
be left open  
VIN  
10, 11  
1
I
I
Supply voltage for power stage  
VINA  
Supply voltage for control stage  
VOUT  
Exposed  
4, 5  
O
Buck-boost converter output  
The exposed thermal pad is connected to PGND.  
Thermal Pad  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–40  
–65  
MAX  
7
UNIT  
V
(2)  
Voltage  
VIN, VINA, L1, L2, VOUT, PS/SYNC, EN, FB, PG  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
8.2 ESD Ratings  
Value  
±1000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(2)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge(1)  
V
(1) Electrostatic discharge (ESD) measures device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
(2) JAEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
8.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage at VIN, VINA  
Operating junction temperature range, TJ  
–40  
125  
°C  
8.4 Thermal Information  
TPS63020-Q1  
THERMAL METRIC(1)  
DSJ (VSON)  
UNIT  
14 PINS  
41.8  
47  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
16.8  
3.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
8.5 Electrical Characteristics  
VIN = 1.8 V to 5.5 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC/DC STAGE  
Input voltage range  
1.8  
1.5  
5.5  
1.9  
2.0  
5.5  
V
V
V
V
VIN  
Minimum input voltage for startup  
Minimum input voltage for startup  
TPS63020 output voltage range  
Duty cycle in step down conversion  
TPS63020 feedback voltage  
TPS63020 feedback voltage  
Maximum line regulation  
0°C TA 85°C  
1.8  
1.8  
1.5  
VOUT  
1.2  
20%  
495  
0.6%  
VFB  
VFB  
PS/SYNC = VIN  
500  
505  
5%  
mV  
PS/SYNC = GND referenced to 500 mV  
0.5%  
0.5%  
2400  
2400  
4000  
50  
Maximum load regulation  
f
Oscillator frequency  
2200  
2200  
3500  
2600  
2600  
4500  
kHz  
kHz  
mA  
mΩ  
mΩ  
μA  
Frequency range for synchronization  
Average switch current limit  
High side switch on resistance  
Low side switch on resistance  
2.0 V VIN 5.5 V  
ISW  
VIN = VINA = 3.6 V, TJ = 25°C  
VIN = VINA = 3.6 V  
VIN = VINA = 3.6 V  
50  
VIN and VINA  
VOUT  
25  
50  
10  
Quiescent  
current  
IO = 0 mA, VEN = VIN = VINA = 3.6 V,  
VOUT = 3.3 V, -40°C TJ 85°C  
Iq  
5
μA  
VEN = 0 V, VIN = VINA = 3.6 V, –40°C TJ  
85°C  
IS  
Shutdown current  
0.1  
1
μA  
CONTROL STAGE  
Under voltage lockout threshold  
VINA voltage decreasing  
1.4  
1.2  
1.5  
1.6  
0.4  
V
mV  
V
UVLO  
Under voltage lockout hysteresis  
EN, PS/SYNC input low voltage  
EN, PS/SYNC input high voltage  
EN, PS/SYNC input current  
PG output low voltage  
200  
VIL  
VIH  
V
Clamped to GND or VINA  
0.01  
0.04  
0.01  
0.2  
0.4  
0.1  
7
μA  
V
VOUT = 3.3 V, IPGL = 10 μA  
PG output leakage current  
Output overvoltage protection  
Overtemperature protection  
Overtemperature hysteresis  
μA  
V
5.5  
140  
20  
°C  
°C  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
8.6 Typical Characteristics  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
VOUT = 3.3 V  
VOUT = 3.8 V  
VOUT = 5 V  
0.5  
0
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
Input Voltage (V)  
D001  
Figure 1. Output Current vs Input Voltage at TJ= 125 °C  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
9 Detailed Description  
9.1 Overview  
The controller circuit of the device is based on an average current mode topology. The controller also uses input  
and output voltage feedforward. Changes of input and output voltage are monitored and immediately can change  
the duty cycle in the modulator to achieve a fast response to those errors. The voltage error amplifier gets its  
feedback input from the FB pin. At adjustable output voltages, a resistive voltage divider must be connected to  
that pin. At fixed output voltages, FB must be connected to the output voltage to directly sense the voltage. Fixed  
output voltage versions use a trimmed internal resistive divider. The feedback voltage will be compared with the  
internal reference voltage to generate a stable and accurate output voltage.  
The device uses 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible  
operating conditions. This enables the device to keep high efficiency over a wide input voltage and output power  
range. To avoid ground shift problems due to the high currents in the switches, two separate ground pins GND  
and PGND are used. The reference for all control functions is the GND pin. The power switches are connected to  
PGND. Both grounds must be connected on the PCB at only one point, ideally, close to the GND pin. Due to the  
4-switch topology, the load is always disconnected from the input during shutdown of the converter. To protect  
the device from overheating an internal temperature sensor is implemented.  
9.2 Functional Block Diagram  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
VINA  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
_
+
VINA  
+
_
Modulator  
Oscillator  
FB  
PG  
+
-
VREF  
Device  
Control  
PS/SYNC  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
9.3 Feature Description  
9.3.1 Dynamic Voltage Positioning  
As detailed in Figure 3, the output voltage is typically 3% above the nominal output voltage at light load currents,  
as the device is in power save mode. This gives additional headroom for the voltage drop during a load transient  
from light load to full load. This allows the converter to operate with a small output capacitor and still have a low  
absolute voltage drop during heavy load transient changes. See Figure 3 for detailed operation of the power  
save mode.  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
9.3.2 Dynamic Current Limit  
To protect the device and the application, the average inductor current is limited internally on the IC. At nominal  
operating conditions, this current limit is constant. The current limit value can be found in the electrical  
characteristics table. If the supply voltage at VIN drops below 2.3 V, the current limit is reduced. This can happen  
when the input power source becomes weak. Increasing output impedance, when the batteries are almost  
discharged, or an additional heavy pulse load is connected to the battery can cause the VIN voltage to drop. The  
dynamic current limit has its lowest value when reaching the minimum recommended supply voltage at VIN. At  
this voltage, the device is forced into burst mode operation trying to stay active as long as possible even with a  
weak input power source.  
If the die temperature increases above the recommended maximum temperature, the dynamic current limit  
becomes active. Similar to the behavior when the input voltage at VIN drops, the current limit is reduced with  
temperature increasing.  
9.3.2.1 Device Enable  
The device is put into operation when EN is set high. It is put into a shutdown mode when EN is set to GND. In  
shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load is  
disconnected from the input. This means that the output voltage can drop below the input voltage during  
shutdown. During start-up of the converter, the duty cycle and the peak current are limited in order to avoid high  
peak currents flowing from the input.  
9.3.2.2 Power Good  
The device has a built in power good function to indicate whether the output voltage is regulated properly. As  
soon as the average inductor current gets limited to a value below the current the voltage regulator demands for  
maintaining the output voltage the power good output gets low impedance. The output is open drain, so its logic  
function can be adjusted to any voltage level the connected logic is using, by connecting a pull up resistor to the  
supply voltage of the logic. By monitoring the status of the current control loop, the power good output provides  
the earliest indication possible for an output voltage break down and leaves the connected application a  
maximum time to safely react.  
9.3.2.3 Overvoltage Protection  
If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the  
output voltage will not work anymore. Therefore overvoltage protection is implemented to avoid the output  
voltage exceeding critical values for the device and possibly for the system it is supplying. The implemented  
overvoltage protection circuit monitors the output voltage internally as well. In case it reaches the overvoltage  
threshold the voltage amplifier regulates the output voltage to this value.  
9.3.2.4 Undervoltage Lockout  
An undervoltage lockout function prevents device start-up if the supply voltage at VINA is lower than  
approximately its threshold (see electrical characteristics table). When in operation, the device automatically  
enters the shutdown mode if the voltage at VINA drops below the undervoltage lockout threshold. The device  
automatically restarts if the input voltage recovers to the minimum operating input voltage.  
9.3.2.5 Overtemperature Protection  
The device has a built-in temperature sensor which monitors the internal IC temperature. If the temperature  
exceeds the programmed threshold (see electrical characteristics table) the device stops operating. As soon as  
the IC temperature has decreased below the programmed threshold, it starts operating again. There is a built-in  
hysteresis to avoid unstable operation at IC temperatures at the overtemperature threshold.  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
9.4 Device Functional Modes  
9.4.1 Softstart and Short Circuit Protection  
After being enabled, the device starts operating. The average current limit ramps up from an initial 400 mA  
following the output voltage increasing. At an output voltage of about 1.2 V, the current limit is at its nominal  
value. If the output voltage does not increase, the current limit will not increase. There is no timer implemented.  
Thus, the output voltage overshoot at startup, as well as the inrush current, is kept at a minimum. The device  
ramps up the output voltage in a controlled manner even if a large capacitor is connected at the output. When  
the output voltage does not increase above 1.2 V, the device assumes a short circuit at the output, and keeps  
the current limit low to protect itself and the application. At a short on the output during operation, the current limit  
also is decreased accordingly.  
9.4.2 Buck-Boost Operation  
To regulate the output voltage at all possible input voltage conditions, the device automatically switches from  
step down operation to boost operation and back as required by the configuration. It always uses one active  
switch, one rectifying switch, one switch permanently on, and one switch permanently off. Therefore, it operates  
as a step down converter (buck) when the input voltage is higher than the output voltage, and as a boost  
converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4  
switches are permanently switching. Controlling the switches this way allows the converter to maintain high  
efficiency at the most important point of operation, when input voltage is close to the output voltage. The RMS  
current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.  
For the remaining 2 switches, one is kept permanently on and the other is kept permanently off, thus causing no  
switching losses.  
9.4.3 Control Loop  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop. Figure 2 shows the  
control loop.  
The non inverting input of the transconductance amplifier, gmv, is assumed to be constant. The output of gmv  
defines the average inductor current. The inductor current is reconstructed by measuring the current through the  
high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode  
the current is measured during the on time of the same MOSFET. During the off time, the current is  
reconstructed internally starting from the peak value at the end of the on time cycle. The average current and the  
feedback from the error amplifier gmv forms the correction signal gmc. This correction signal is compared to the  
buck and the boost sawtooth ramp giving the PWM signal. Depending on which of the two ramps the gmc output  
crosses either the Buck or the Boost stage is initiated. When the input voltage is close to the output voltage, one  
buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row of the same  
mode are allowed. This control method in the buck-boost region ensures a robust control and the highest  
efficiency.  
The Buck-Boost Overlap ControlTM makes sure that the classical buck-boost function, which would cause two  
switches to be on every half a cycle, is avoided. Thanks to this block whenever all switches becomes active  
during one clock cycle, the two ramps are shifted away from each other, on the other hand when there is no  
switching activities because there is a gap between the ramps, the ramps are moved closer together. As a result  
the number of classical buck-boost cycles or no switching is reduced to a minimum and high efficiency values  
has been achieved.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
TM  
Figure 2. Average Current Mode Control  
9.4.4 Power Save Mode and Synchronization  
The PS/SYNC pin can be used to select different operation modes. Power save mode is used to improve  
efficiency at light load. To enable power-save, PS/SYNC must be set low. If PS/SYNC is set low then power save  
mode is entered when the average inductor current gets lower then about 100 mA. At this point the converter  
operates with reduced switching frequency and with a minimum quiescent current to maintain high efficiency.  
During the power save mode, the output voltage is monitored with a comparator by the threshold comp low and  
comp high. When the device enters power save mode, the converter stops operating and the output voltage  
drops. The slope of the output voltage depends on the load and the value of output capacitance. As the output  
voltage falls below the comp low threshold set to 2.5% typical above VOUT, the device ramps up the output  
voltage again, by starting operation using a programmed average inductor current higher than required by the  
current load condition. Operation can last one or several pulses. The converter continues these pulses until the  
comp high threshold, set to typically 3.5% above VOUT nominal, is reached and the average inductance current  
gets lower than about 100 mA. When the load increases above the minimum forced inductor current of about 100  
mA, the device will automatically switch to PWM mode.  
The power save mode can be disabled by programming high at the PS/SYNC. Connecting a clock signal at  
PS/SYNC forces the device to synchronize to the connected clock frequency.  
Synchronization is done by a PLL, so synchronizing to lower and higher frequencies compared to the internal  
clock works without any issues. The PLL can also tolerate missing clock pulses without the converter  
malfunctioning. The PS/SYNC input supports standard logic thresholds.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
Device Functional Modes (continued)  
Heavy Load transient step  
PFM mode at light load  
current  
3.5%  
Comparator High  
3%  
2.5%  
Comparator low  
Vo  
PWM mode  
Absolute Voltage drop  
with positioning  
Figure 3. Power Save Mode Thresholds and Dynamic Voltage Positioning  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS63020-Q1 is a high efficiency, low quiescent current buck-boost converter suitable for applications  
where the input voltage is higher or lower than the output voltage. Continuous output current can go as high  
as 2 A in boost mode and as high as 4 A in buck mode. The maximum average current in the switches is  
limited to a typical value of 4 A.  
10.2 Typical Application  
L
1 1.5µH  
VOUT  
VIN  
L1  
L2  
3.3V1.5A  
C2  
2.5 V to 5.5V  
VIN  
VINA  
EN  
VOUT  
FB  
R1  
R3  
1MΩ  
C1  
2X10µF  
1MΩ  
3X22µF  
C3  
0.1µF  
PS/SYNC  
R2  
180kΩ  
PG  
GND  
PGND  
Power Good  
Output  
TPS63020  
Figure 4. Application Circuit  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the operating conditions  
specified on the Application Circuit schematic.  
Table 1 shows the list of components for the Application Characteristic Curves.  
Table 1. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
TPS63020  
Texas Instruments  
L1  
1.5 μH, 4 mm x 4 mm x 2 mm  
2 × 10 μF 6.3V, 0603, X5R ceramic  
3 × 22 μF 6.3V, 0603, X5R ceramic  
0.1 μF, X5R or X7R ceramic  
XFL4020-152ML, Coilcraft  
GRM188R60J106ME84D, Murata  
GRM188R60J226MEAOL Murata  
C1  
C2  
C3  
R1  
R2  
R3  
Depending on the output voltage at TPS63020  
Depending on the output voltage at TPS63020  
1 MΩ  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
10.2.2 Detailed Design Procedure  
The TPS63020-Q1 series of buck-boost converter has internal loop compensation. Therefore, the external L-C  
filter has to be selected to work with the internal compensation. As a general rule of thumb, the product L x C  
should not move over a wide range when selecting a different output filter. However, when selecting the output  
filter a low limit for the inductor value exists to avoid subharmonic oscillation which could be caused by a far too  
fast ramp up of the amplified inductor current. For the TPS63020-Q1 series the minimum inductor value should  
be kept at 1 uH.  
In particular either 1 µH or 1.5 µH is recommended working at output current between 1.5 A and 2 A. If operating  
with lower load current is also possible to use 2.2 µH.  
Selecting a larger output capacitor value is less critical because the corner frequency moves to lower  
frequencies.  
10.2.2.1 Inductor Selection  
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 6. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(1)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where  
D =Duty Cycle in Boost mode  
f = Converter switching frequency (typical 2.5MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
Note: The calculation must be done for the minimum input voltage possible in boost mode  
(2)  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using Equation 2. Possible inductors are listed in Table 2.  
(1)  
Table 2. Inductor Selection  
VENDOR  
Coilcraft  
Toko  
INDUCTOR SERIES  
XFL4020  
FDV0530S  
(1) See Third-party Products Disclaimer  
10.2.2.2 Capacitor Selection  
10.2.2.2.1 Input Capacitor  
At least a 10 μF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior  
of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and PGND pins of  
the IC is recommended.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
10.2.2.2.2 Output Capacitor  
For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND  
pins of the IC is recommended. If, for any reason, the application requires the use of large capacitors which can  
not be placed close to the IC, use a smaller ceramic capacitor in parallel to the large capacitor. The small  
capacitor should be placed as close as possible to the VOUT and PGND pins of the IC. The recommended  
typical output capacitor value is 30 µF with a variance that depends on the specific application requirements.  
There is also no upper limit for the output capacitance value. Larger capacitors will cause lower output voltage  
ripple as well as lower output voltage drop during load transients.  
When choosing input and output capacitors, it needs to be kept in mind, that the value of capacitance  
experiences significant losses from their rated value depending on the operating temperature and the operating  
DC voltage. It is not uncommon for a small surface mount ceramic capacitor to lose 50% and more of its rated  
capacitance. For this reason it could be important to use a larger value of capacitance or a capacitor with higher  
voltage rating in order to ensure the required capacitance at the full operating voltage.  
10.2.2.2.3 Bypass Capacitor  
To make sure that the internal control circuits are supplied with a stable low noise supply voltage, a capacitor can  
be connected between VINA and GND. Using a ceramic capacitor with a value of 0.1 μF is recommended. The  
value of this capacitor should not be higher than 0.22 μF.  
10.2.2.3 Setting the Output Voltage  
The feedback resistor divider must be connected between VOUT, FB and GND. When the output voltage is  
regulated, the typical value of the voltage at the FB pin is 500 mV. The maximum recommended value for the  
output voltage is 8 V. The current through the resistive divider should be about 100 times greater than the current  
into the FB pin. The typical current into the FB pin is 0.01 μA, and the voltage across the resistor between FB  
and GND, R2, is typically 500 mV. Based on these two values, the recommended value for R2 should be lower  
than 500 k, in order to set the divider current at 1 μA or higher. It is recommended to keep the value for this  
resistor in the range of 200 k. From that, the value of the resistor connected between VOUT and FB, R1,  
depending on the needed output voltage (VOUT), can be calculated using Equation 3:  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(3)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
10.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.8V, VOUT = 2.5V  
VIN = 3.6V, VOUT = 2.5V  
VIN = 2.4V, VOUT = 4.5V  
VIN = 3.6V, VOUT = 4.5V  
VIN = 1.8V, VOUT = 2.5V  
VIN = 3.6V, VOUT = 2.5V  
VIN = 2.4V, VOUT = 4.5V  
VIN = 3.6V, VOUT = 4.5V  
TPS63020, Power Save Enabled  
TPS63020, Power Save Disabled  
100m  
1m  
10m  
100m  
1
4
100m  
1m  
10m  
100m  
1
4
Output Current (A)  
Output Current (A)  
PS/SYNC = Low  
VOUT = 2.5 V, 4.5 V  
PS/SYNC = High  
VOUT = 2.5 V, 4.5 V  
Figure 5. Efficiency vs Output Current,  
Power Save Enabled  
Figure 6. Efficiency vs Output Current,  
Power Save Disabled  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 10mA  
IOUT = 500mA  
IOUT = 1A  
IOUT = 10mA  
IOUT = 500mA  
IOUT = 1A  
IOUT = 2A  
IOUT = 2A  
TPS63020, VOUT = 2.5V, Power Save Enabled  
TPS63020, VOUT = 4.5V, Power Save Enabled  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
Input Voltage (V)  
Input Voltage (V)  
PS/SYNC = Low  
VOUT = 2.5 V  
PS/SYNC = Low  
VOUT = 4.5 V  
Figure 7. Efficiency vs Input Voltage,  
Power Save Enabled  
Figure 8. Efficiency vs Input Voltage,  
Power Save Enabled  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 10mA  
IOUT = 500mA  
IOUT = 1A  
IOUT = 10mA  
IOUT = 500mA  
IOUT = 1A  
IOUT = 2A  
IOUT = 2A  
TPS63020, VOUT = 2.5V, Power Save Disabled  
TPS63020, VOUT = 4.5V, Power Save Disabled  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
Input Voltage (V)  
Input Voltage (V)  
PS/SYNC = High  
VOUT = 2.5 V  
PS/SYNC = High  
VOUT = 4.5 V  
Figure 9. Efficiency vs Input Voltage,  
Power Save Disabled  
Figure 10. Efficiency vs Input Voltage,  
Power Save Disabled  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.6  
2.55  
2.5  
VIN = 3.6V  
IOUT = 10mA  
IOUT = 500mA  
IOUT = 1A  
2.45  
IOUT = 2A  
TPS63021, Power Save Disabled  
TPS63020, Power Save Disabled  
2.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
4.2  
4.6  
5
5.4  
100m  
1m  
10m  
100m  
1
5
Input Voltage (V)  
Output Current (A)  
PS/SYNC = High  
VOUT = 2.5 V, 4.5 V  
PS/SYNC = High  
VOUT = 2.5 V  
Figure 11. Efficiency vs Input Voltage,  
Power Save Disabled  
Figure 12. Load Transient Response  
4.6  
4.55  
4.5  
VIN = 3.6V  
Output Voltage  
50 mV/div, AC  
Output Current  
500 mA/div, DC  
4.45  
TPS63020, Power Save Disabled  
4.4  
100m  
TPS63020  
V
= 2.4 V, I = 500 mA to 1500 mA  
OUT  
IN  
1m  
10m  
100m  
1
5
Output Current (A)  
Time 2 ms/div  
PS/SYNC = High  
VOUT = 4.5 V  
PS/SYNC = High  
VOUT = 3.3V  
Figure 13. Load Transient Response  
Figure 14. Load Transient Response  
Output Voltage  
50 mV/div, AC  
Output Voltage  
50 mV/div, AC  
Output Current  
500 mA/div, DC  
Input Voltage  
500 mV/div, AC  
TPS63020  
V
= 3.0 V to 3.7 V, I  
OUT  
= 1500 mA  
TPS63020  
V
= 4.2 V, I = 500 mA to 1500 mA  
OUT  
IN  
IN  
Time 2 ms/div  
Time 2 ms/div  
PS/SYNC = High  
VOUT = 3.3V  
PS/SYNC = High  
VOUT = 3.3V  
Figure 15. Load Transient Response  
Figure 16. Line Transient Response  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
Enable  
2 V/div, DC  
Enable  
2 V/div, DC  
Output Voltage  
1 V/div, DC  
Output Voltage  
1 V/div, DC  
Inductor Current  
500 mA/div, DC  
Inductor Current  
1 A/div, DC  
Voltage at L1  
5 V/div, DC  
Voltage at L2  
5 V/div, DC  
TPS63020  
V
= 2.4 V, V  
OUT  
= 3.3 V  
R = 2.2 W  
L
TPS63020  
V
= 4.2 V, V  
OUT  
= 3.3 V  
R
= 2.2 W  
L
IN  
IN  
Time 100 ms/div  
Time 40 ms/div  
PS/SYNC = High  
VOUT = 3.3V  
Figure 17. Startup After Enable  
PS/SYNC = High  
VOUT = 3.3V  
Figure 18. Startup After Enable  
10.3 System Examples  
10.3.1 2-A Load Current  
L
1 1µH  
VOUT  
VIN  
L1  
L2  
3.3V2A  
2.5 V to 5.5V  
VIN  
VINA  
EN  
VOUT  
FB  
R1  
R3  
1MΩ  
R1  
C1  
2X10µF  
C3  
C2  
300kΩ  
68kΩ  
C4  
4.7pF  
4X22µF  
0.1µF  
PS/SYNC  
R2  
53kΩ  
PG  
GND  
PGND  
Power Good  
Output  
TPS63020  
Figure 19. Application Circuit for 2A Load Current  
Capacitor C4 and resistor R1 are added for improved load transient performance..  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS63020-Q1 device has no special requirements for its input power supply.  
The output current of the power supply must be rated according to the supply voltage, output voltage and output  
current of the TPS63020-Q1.  
12 Layout  
12.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.  
The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the  
control ground, short traces are recommended as well, separation from the power ground traces. This avoids  
ground shift problems, which can occur due to superimposition of power ground current and control ground  
current.  
12.2 Layout Example  
L1  
GND  
VIN  
GND  
C1  
C2  
U1  
VOUT  
R1  
R2  
C3  
GND  
Figure 20. PCB Layout Suggestion  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS63020-Q1  
www.ti.com.cn  
ZHCSEB8 OCTOBER 2015  
12.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the exposed thermal pad  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Note (SZZA017), and Semiconductor and IC Package Thermal Metrics Application Note (SPRA953).  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS63020-Q1  
ZHCSEB8 OCTOBER 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 文档支持  
13.2.1 相关文档ꢀ  
相关文档请参见以下部分:  
《散热特性数据应用手册(文献编号:SZZA017)  
IC 封装热指标应用手册(文献编号:SPRA953)  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63020QDSJRQ1  
TPS63020QDSJTQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DSJ  
DSJ  
14  
14  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
63020Q  
63020Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS63020QDSJTQ1

具有 4A 开关的高效汽车类单传感器降压/升压转换器 | DSJ | 14 | -40 to 125
TI

TPS63020_1

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 4-A SWITCHES
TI

TPS63021

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 4-A SWITCHES
TI

TPS63021DSJ

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 4-A SWITCHES
TI

TPS63021DSJR

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 4-A SWITCHES
TI

TPS63021DSJT

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 4-A SWITCHES
TI

TPS63024

高效 1.5A 单电感器降压/升压转换器
TI

TPS630241

高效 1.5A 单电感器降压/升压转换器
TI

TPS630241YFFR

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630241YFFT

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630242

高效 1.5A 单电感器降压/升压转换器
TI

TPS630242YFFR

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI