TPS630701RNMR [TI]

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125;
TPS630701RNMR
型号: TPS630701RNMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125

升压转换器 PC 开关
文件: 总41页 (文件大小:1928K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
TPS63070 具有 3.6A 开关电流的 2V 16V 降压-升压转换器  
1 特性  
2 应用  
1
输入电压范围:2.0V 16V  
双节锂离子 应用  
输出电压范围:2.5V 9V  
工业计量设备  
效率高达 95%  
数码相机 (DSC) 和便携式摄像机  
笔记本电脑  
脉宽调制 (PWM) 模式下的直流精度为 +/-1%  
脉频调制 (PFM) 模式下的直流精度为 +3%/-1%  
降压模式下的输出电流为 2A  
超便携移动个人计算机和移动互联网器件  
个人医疗产品  
升压模式下的输出电流为 2A  
VIN = 4VVout = 5V)  
3 说明  
TPS6307x 是一款具有低静态电流的高效降压-升压转  
换器,适用于 那些 输入电压可能高于或低于输出电压  
的应用。在升压或降压模式下,输出电流可高达 2A。此  
降压-升压转换器基于一个固定频率、脉宽调制 (PWM)  
控制器,此控制器通过使用同步整流来获得最高效率。  
在低负载电流情况下,此转换器进入省电模式以在宽负  
载电流范围内保持高效率。转换器可被禁用以最大限度  
地减少电池消耗。在关断期间,负载从电池上断开。此  
器件采用 2.5mm x 3mm QFN 封装。  
精密使能输入可实现  
用户定义的欠压闭锁  
准确排序  
在降压和升压模式之间实现自动转换  
器件静态电流典型值:50μA  
具有固定和可调输出电压选项  
具有输出放电选项  
省电模式可提高低输出功率时的效率  
2.4MHz 强制固定运行频率和同步选项  
电源正常输出  
器件信息(1)  
可通过 VSEL 轻松更改输出电压  
关断期间负载断开  
器件号  
TPS63070  
封装  
封装尺寸(标称值)  
2.5mm x 3mm  
VQFN  
VQFN  
VQFN  
过热保护  
TPS630701  
TPS630702  
2.5mm x 3mm  
输入/输出过压保护  
2.5mm x 3mm  
采用四方扁平无引线 (QFN) 封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
效率与输出电流间的关系;Vo = 5V  
L
100%  
90%  
80%  
70%  
60%  
50%  
1.5 µH  
L1  
L2  
TPS63070  
VOUT = 2.5 V to 9 V  
COUT  
C4  
10 µF  
0603  
VIN = 2.0 V to 16 V  
VOUT  
C1  
10 µF  
0603  
VIN  
R1  
CIN  
3x22 µF  
2x10 µF  
0805  
0805  
R4  
100 kΩ  
FB  
R2  
VSEL  
R5  
FB2  
10 kΩ  
40%  
3 V  
4.2 V  
5 V  
7 V  
9 V  
EN  
PG  
30%  
20%  
10%  
0
PGND  
PS/SYNC  
VAUX  
GND  
CVAUX  
100 nF  
12 V  
Copyright  
© 2016, Texas Instruments Incorporated  
100m  
1m  
10m  
100m  
1
2
Output Current (A)  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSC58  
 
 
 
 
 
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram TPS63070....................... 9  
8.3 Functional Block Diagram TPS630701................... 10  
8.4 Feature Description................................................. 10  
8.5 Device Functional Modes........................................ 14  
9
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application for adjustable version .............. 16  
9.3 Typical Application for Fixed Voltage Version ....... 26  
10 Power Supply Recommendations ..................... 31  
10.1 Thermal Information.............................................. 31  
11 Layout................................................................... 32  
11.1 Layout Guidelines ................................................. 32  
11.2 Layout Example .................................................... 32  
12 器件和文档支持 ..................................................... 33  
12.1 器件支持 ............................................................... 33  
12.2 相关链接................................................................ 33  
12.3 接收文档更新通知 ................................................. 33  
12.4 社区资源................................................................ 33  
12.5 ....................................................................... 33  
12.6 静电放电警告......................................................... 33  
12.7 术语表 ................................................................... 33  
13 机械、封装和可订购信息....................................... 33  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (August 2016) to Revision B  
Page  
已添加 添加了多处微小的编辑更新和更.............................................................................................................................. 1  
已添加 添加了“TPS630702 型号” ........................................................................................................................................... 1  
Added TPS630702 Variant with "output discharge=on" option .............................................................................................. 3  
Added TPS630702 VOUT info ............................................................................................................................................... 7  
Added TPS630702 VFB info at 3 instances........................................................................................................................... 7  
Added Parameter Name ROD to output discharge resistance row........................................................................................ 7  
Added Link to TechNote SLVAE62 ...................................................................................................................................... 13  
Added more descriptive text for better understanding.......................................................................................................... 15  
Changed Description of Discharge Feature, reflecting TPS630702..................................................................................... 15  
Changed description of output voltage programming to match EC table............................................................................. 17  
Added table of content for application curves ...................................................................................................................... 20  
已添加 添加了“TPS630702 型号” ......................................................................................................................................... 33  
Changes from Original (June 2016) to Revision A  
Page  
已添加 完整版量产数据数据................................................................................................................................................ 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
5 Device Comparison Table  
Device Number  
TPS63070  
Features  
Output Voltage  
adjustable  
Marking  
3070  
output discharge = off  
output discharge = off  
output discharge = on  
TPS630701  
TPS630702  
fixed 5 V  
0701  
adjustable  
0702  
6 Pin Configuration and Functions  
QFN PACKAGE  
Bottom View  
Top View  
12  
13  
VOUT 8  
8
7
VOUT  
VIN  
12  
13  
VIN  
7
11  
9
11  
9
14  
15  
6 FB2  
EN  
EN  
14  
15  
FB2  
FB  
6
5
10  
10  
5
VSEL  
VSEL  
FB  
3
2
1
3
4
1
2
4
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
14  
5
I
I
Enable input. Pull high to enable the device, pull low to disable the device.  
FB  
Voltage feedback of adjustable versions, must be connected to VOUT on fixed output voltage  
versions  
GND  
L1  
4
11  
9
Control / logic ground  
Connection for Inductor  
Connection for Inductor  
I
I
I
L2  
PS/SYNC  
1
Pull to low for forced PWM, pull high for PWM/PFM (power save) mode. Apply a clock signal to  
synchronize to an external frequency.  
PG  
2
10  
O
Open drain power good output  
PGND  
VIN  
Power ground  
12, 13  
7,8  
3
I
Supply voltage for power stage  
VOUT  
VAUX  
VSEL  
FB2  
O
O
I
Buck-boost converter output  
Connection for Capacitor of internal voltage regulator. This pin must not be loaded externally.  
Voltage scaling input. A high level on this pin enables a transistor which pulls pin FB2 to GND.  
15  
6
O
Voltage scaling output. Connect a resistor from FB to FB2 to change the voltage divider ratio on the  
feedback pin. A logic high level on VSEL will change the output voltage to a higher value. Leave the  
pin open or connect to GND if not used.  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–3  
MAX  
20  
20  
25  
12  
15  
7
UNIT  
V
VIN, PS/SYNC, EN, VSEL  
L1  
L1 (transient for t<10ns)(2)  
V
V
Voltage range  
L2, PG, VOUT, FB  
L2 (transient for t<10ns)(2)  
–0.3  
–3  
V
V
AUX  
FB2  
–0.3  
–0.3  
–40  
V
3
V
Operating junction  
temperature, Tj  
150  
°C  
Storage temperature  
range, Tstg  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
2.0  
2.5  
0.7  
4.7  
NOM  
MAX  
16  
UNIT  
V
Supply voltage at VIN  
Output Voltage  
9
V
Effective Inductance  
1.5  
10  
2.8  
µH  
µF  
nF  
µF  
%
Capacitance connected to VIN pin  
Capacitance connected to VAUX pin  
Total capacitance connected to VOUT pin  
100  
47  
(1)  
15  
30  
20  
470  
duty cycle in buck mode over recommended operating conditions  
duty cycle in buck mode over recommended operating conditions but effective  
%
output capacitance Cout,eff 40uF; effective inductance L,eff = 0.7µH to 1.8uH  
Operating junction temperature range, TJ  
–40  
125  
°C  
(1) Due to the dc bias effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. This  
is why the capacitance is specified to allow the selection of the minimal capacitor required with the dc bias effect for this type of  
capacitor in mind. The capacitance range given above is for the nominal inductance of 1.5 µH. Please also see the detailed design  
procedure in the application section about the ratio of inductance and minimum output capacitance.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
 
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
7.4 Thermal Information  
TPS63070x  
THERMAL METRIC(1)  
VQFN  
13 PINS  
63  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
42  
13  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.4  
ψJB  
13  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
over VIN = 2V to 16V; Tj = -40°C to 125°C; typical values are at Tj = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range  
Input voltage range  
once started; Vout 3.0 V  
2.0  
3.0  
16  
16  
V
V
VIN  
for start-up; Vout < 3.0 V  
during operation with either  
VIN 4.5 V or VOUT 4.5 V  
and the boost factor  
IOUT  
Output current  
2
A
(VOUT/VIN) 1  
into VIN; IOUT= 0 mA,  
IQ  
IQ  
IQ  
Quiescent current  
Quiescent current  
Quiescent current  
VEN = VIN = 6 V, PFM  
VOUT = 5 V; Tj = -40°C to 85°C  
54  
103  
133  
9
μA  
μA  
μA  
into VIN; IOUT= 0 mA,  
VEN = VIN = 6 V, PFM  
VOUT = 5 V; Tj = -40°C to 125°C  
into VOUT; IOUT= 0 mA,  
VEN = VIN = 6 V, VOUT = 5 V, PFM  
Tj = -40°C to 85°C  
5
2
into VOUT; IOUT= 0 mA,  
VEN = VIN = 6 V, VOUT = 5 V, PFM  
Tj = -40°C to 125°C  
IQ  
Quiescent current  
Shutdown current  
17  
12  
μA  
μA  
VEN = 0 V; Tj = -40°C to 85°C;  
VIN = 5V  
ISD  
ISD  
Shutdown current  
VEN = 0 V; Tj = -40°C to 85°C  
VIN voltage falling  
26  
μA  
V
VUVLO  
VUVLO,TH  
TSD  
Undervoltage lockout threshold  
Undervoltage lockout hysteresis  
Thermal shutdown  
1.7  
1.85  
850  
160  
20  
1.95  
VIN voltage rising  
525  
mV  
°C  
°C  
TSD  
Thermal shutdown hysteresis  
LOGIC SIGNALS: EN, PS/SYNC, PG, VSEL  
Threshold Voltage rising edge for  
VTHR  
VTHF  
VIL  
EN pin and PS/SYNC used for  
PWM/PFM mode change  
0.77  
0.67  
0.8  
0.7  
0.83  
0.73  
0.3  
V
V
V
V
Threshold Voltage falling edge for  
EN pin and PS/SYNC used for  
PWM/PFM mode change  
VSEL low level input voltage;  
PS/SYNC low level input voltage  
when used for synchronization  
VSEL high level input voltage;  
PS/SYNC high level input voltage  
when used for synchronization  
1.1  
VIH  
EN, PS/SYNC, VSEL input current  
PG output low voltage  
0.2  
0.4  
0.2  
1
μA  
V
VOL  
ILKG  
IPG  
IPG = -1 mA  
PG output leakage current  
PG sink current  
PG pin high impedance; VPG = 5 V  
μA  
mA  
Power Good Threshold Voltage,  
rising Vout  
VTH_PG  
VTH_PG  
94.5  
90  
96  
92  
98.5  
94.5  
%
%
Power Good Threshold Voltage,  
falling Vout  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Electrical Characteristics (continued)  
over VIN = 2V to 16V; Tj = -40°C to 125°C; typical values are at Tj = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VOUT  
VOUT  
VFB  
TPS63070/TPS630702 output  
voltage range(1)  
2.5  
9
V
V
TPS630701 output voltage  
5.0  
800  
1.5  
TPS63070/TPS630702 feedback  
voltage  
PS/SYNC = VIN  
mV  
feedback impedance  
feedback leakage  
for fixed voltage versions  
MΩ  
for adjustable version; VFB = 0.8V  
100  
1
nA  
TPS63070/TPS630702 feedback  
voltage accuracy  
VFB  
PS/SYNC = GND (PWM mode)  
-1  
-1  
-1  
%
%
%
VOUT  
VFB  
TPS630701 output voltage accuracy PS/SYNC = GND (PWM mode)  
1
TPS63070/TPS630702 feedback  
voltage accuracy  
PS/SYNC = VIN (PFM mode);  
VIN 3V  
3
PS/SYNC = VIN (PFM mode);  
VIN 3V  
VOUT  
fSW  
TPS630701 output voltage accuracy  
-1  
3
%
Oscillator frequency  
2100  
2100  
2400  
2700  
2800  
kHz  
kHz  
Frequency range for synchronization  
VIN = 5.0V; VOUT = 6.5V;  
Tj = 0°C to 125°C  
IIN,max  
IIN,max  
Average, positive input current limit  
Average, negative input current limit  
3050  
1100  
3600  
1800  
4150  
mA  
mA  
VIN = 5.0V; VOUT = 6.5V;  
Tj = 0°C to 125°C  
High side switch on resistance  
Low side switch on resistance  
High side switch on resistance  
Low side switch on resistance  
VIN = 5 V  
VIN = 5 V  
VIN = 5 V  
VIN = 5 V  
50  
100  
40  
80  
160  
70  
mΩ  
mΩ  
mΩ  
mΩ  
RDS(ON)-  
BUCK  
RDS(ON)-  
BOOST  
80  
125  
RDS(ON)-  
FB2  
FB2 resistance to GND  
with VSEL = high  
25  
100  
Input leakage current into FB2  
with VSEL=low  
ILKG  
VFB = VFB2 = 0.8V  
100  
100  
nA  
FB2 sink current  
Line regulation  
Load regulation  
μA  
%/V  
%/A  
V
Power Save Mode disabled  
Power Save Mode disabled  
VIN VOUT; VIN < 6V  
VIN < VOUT  
0.07  
0.2  
VIN - 0.3  
7
7
VAUX  
ROD  
Maximum bias voltage  
VOUT -  
0.3  
V
Output discharge resistance (only in VIN = 5 V; VOUT = 5V  
TPS630702)  
200  
70  
time from EN = VIH to device starts  
switching  
tdelay  
Start-up delay  
μs  
time to ramp from 5% to 95% of  
Vout; buck mode; VIN = 7.2 V,  
Vout = 3.3 V, Iout = 500 mA  
400  
850  
μs  
μs  
tSS  
soft-start time  
time to ramp from 5% to 95% of  
Vout; boost mode; VIN = 3.0 V,  
Vout = 3.3 V, Iout = 250 mA  
(1) Please observe the minimum duty cycle in buck mode  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
7.6 Typical Characteristics  
www.ti.com.cn  
90  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40  
30  
85  
125  
-40  
30  
80  
80  
125  
70  
60  
50  
40  
30  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
VIN [V]  
VIN [V]  
D019  
D020  
Vout = 5V  
I = 1A  
Vout = 5V  
I = 1A  
Figure 1. Rds(on) of High-side Buck Switch  
Figure 2. Rds(on) of High-side Boost Switch  
120  
150  
140  
130  
120  
110  
100  
90  
-40  
30  
85  
-40  
30  
85  
125  
110  
100  
90  
125  
80  
80  
70  
70  
60  
60  
50  
50  
0
5
10  
15  
20  
0
5
10  
15  
20  
VIN [V]  
VIN [V]  
D021  
D022  
Vout = 5V  
I = 1A  
Vout = 5V  
I = 1A  
Figure 3. Rds(on) of Low-side Boost Switch  
Figure 4. Rds(on) of Low-side Buck Switch  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
8 Detailed Description  
8.1 Overview  
The TPS6307x use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible  
operating conditions. This enables the device to keep high efficiency over a wide input voltage and output power  
range. To regulate the output voltage at all possible input voltage conditions, the device automatically switches  
from buck operation to boost operation and back as required by the configuration. It always uses one active  
switch, one rectifying switch, one switch on, and one switch held off. Therefore, it operates as a buck converter  
when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is  
lower than the output voltage. There is no mode of operation in which all 4 switches are switching. The RMS  
current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.  
For the remaining 2 switches, one is kept on and the other is kept off, thus causing no switching losses.  
Controlling the switches this way allows the converter to always keep high efficiency over the complete input  
voltage range. The device provides a seamless transition from buck to boost or from boost to buck operation.  
8.2 Functional Block Diagram TPS63070  
L1  
L2  
VIN  
VOUT  
VIN  
VOUT  
Current  
Sensor  
Bias  
Regulator  
VIN  
PGND  
PGND  
VAUX  
VAUX  
VOUT  
Gate  
Control  
_
+
VAUX  
_
+
Modulator  
Oscillator  
FB  
PG  
+
VREF  
-
Device  
Control  
PS/SYNC  
EN  
FB2  
VSEL  
PGND  
Temperature  
Protection  
GND  
PGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5. Functional Block Diagram  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
8.3 Functional Block Diagram TPS630701  
www.ti.com.cn  
L1  
L2  
VIN  
VOUT  
VIN  
VOUT  
Current  
Sensor  
Bias  
Regulator  
VIN  
PGND  
PGND  
VAUX  
VAUX  
VOUT  
Gate  
Control  
FB  
_
+
VAUX  
_
+
Modulator  
Oscillator  
PG  
+
-
Device  
Control  
VREF  
PS/SYNC  
EN  
FB2  
VSEL  
PGND  
Temperature  
Protection  
GND  
PGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6. Functional Block Diagram  
8.4 Feature Description  
8.4.1 Control Loop Description  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop.  
The non inverting input of the transconductance amplifier gmv can be assumed to be constant. The output of  
gmv defines the average inductor current. The inductor current is reconstructed by measuring the current through  
the high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck  
mode, the current is measured during the on-time of the same MOSFET. During the off-time, the current is  
reconstructed internally starting from the peak value reached at the end of the on-time cycle. The average  
current is then compared to the desired value and the difference, or current error, is amplified and compared to  
the sawtooth ramp of either the Buck or the Boost. Depending on which of the two ramps is crossed by the  
signal, either the Buck MOSFETs or the Boost MOSFETs are activated. When the input voltage is close to the  
output voltage, one buck cycle is followed by a boost cycle. In this condition, not more than three cycle in a row  
of the same mode are allowed. This control method in the buck-boost region ensures a robust control and the  
highest efficiency.  
For an input voltage above 9 V, and Vout below 2.2 V, the switching frequency is reduced by a factor of 2 to  
keep the minimum on-time at a reasonable value. For short circuit protection, at an output voltage below 1.2V,  
the low side input FET and the high side output FET are not actively switched but their back-gate diode used for  
conduction.  
TPS6307x also contains a negative current limit. This allows the inductor current to reverse and flow from the  
output to the input. This is required for forced PWM operation at low output current but also for applications that  
require a fairly high current from the output to the input like TEC (thermo electric cooling) applications where the  
TEC cell is placed between input and output of the converter,  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Feature Description (continued)  
L2  
L1  
Vin  
Vout  
Boost  
Drive  
Buck  
Drive  
PWM  
PWM  
Boost  
Ramp  
Rs  
Buck  
Ramp  
gmc  
gmv  
FB  
Vref  
0.8V  
Ramp Generator  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7. Average Current Mode Control  
8.4.2 Precise Enable  
The enable pin of the TPS63070 is not just a simple digital input but compares the voltage applied to a fixed  
threshold of 0.8V for a rising voltage. This allows to drive the pin by a slowly changing voltage and enables the  
use of an external RC network to achieve a precise power-up delay. The enable input threshold for a falling edge  
is typically 100mV lower than the rising edge threshold. The TPS63070 starts operation when the rising threshold  
is exceeded. For proper operation, the EN pin must be terminated and must not be left floating. Pulling the EN  
pin low forces the device into shutdown. In this mode, the internal high side and low side MOSFETs are turned  
off and the entire internal-control circuitry is switched off. The enable pin can also be used with an external  
voltage divider to set a user-defined minimum supply voltage.  
It is recommended to not connect EN directly to VIN but use a resistor in series in the range of 1kΩ to 1MΩ. If  
several inputs like EN and PS/SYNC are connected to VIN, the resistor can be shared. No resistor is required if  
the pin is driven from an analog or digital signal rather than a supply voltage.  
8.4.3 Power Good  
The device has a built in power good output that indicates whether the output voltage has reached its nominal  
value. The PG signal is generated based on the status of the output voltage monitor. The power good circuit  
operates as long as the converter is enabled and VIN is above the undervoltage lockout threshold.  
If the output voltage has not reached the regulated condition, the PG pin is held low. When the regulated  
condition is reached, PG is high impedance.  
The PG output needs an external pull-up resistor. This resistor can be pulled to any voltage up to the maximum  
output voltage rating.  
Table 1. Power Good Status  
EN  
low  
output voltage status  
PG  
low  
output off  
high  
output voltage above power good  
threshold  
high impedance  
high  
output voltage below power good  
threshold, in thermal shutdown or input /  
output overvoltage protection active  
low  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
8.4.4 Soft Start  
To minimize inrush current during start up, the device has a soft start. When the EN pin is set high, after a  
thermal shutdown or after the undervoltage lockout threshold is exceeded, a soft-start cycle is started and the  
input current is ramped until the output voltage reaches regulation. The device ramps up the output voltage in a  
controlled manner, even if a large capacitor is connected at the output. During soft-start, as long as the output  
voltage is below the power good threshold, the input current limit is reduced to typically 1A. The soft-start time is  
defined by the current limit during the soft-start phase along with the load current, output capacitance and the  
input to output voltage ratio.  
8.4.5 PS/SYNC  
The PS/SYNC pin has two functions:  
switching between forced PWM mode and power save mode  
synchronizing to an external clock applied at pin PS/SYNC  
When PS/SYNC is set high, the device operates in power save mode at low output current. For an average  
inductor current above a certain threshold the device switches to forced PWM mode. The automatic switch-over  
from PFM to PWM and vice versa is done such that the efficiency is kept at the maximum possible level. It is not  
based on a fixed threshold but at a current that depends on input voltage and output voltage to keep the  
efficiency at the maximum possible level.  
The power save mode is disabled when PS/SYNC is set low. The device then operates in forced fixed frequency  
PWM mode independent of the output current.  
TPS6307x can be synchronized to an external clock applied at pin PS/SYNC. Details about the voltage level and  
frequency range can be found in the electrical characteristics. When an external clock is detected, TPS6307x  
switches from internal clock or power save mode to fixed frequency operation based on the external clock  
frequency. When the external clock is removed, TPS6307x switches back to internal clock or power save mode  
depending on the average inductor current and status of the PS/SYNC pin. The PS/SYNC pin has two parallel  
input stages, a slow one with the precise threshold for PWM/PFM mode change and a fast digital input stage for  
an external clock signal for synchronization.  
It is recommended to not connect PS/SYNC directly to VIN but use a resistor in series in the range of 1kΩ to  
1MΩ. If several inputs like EN and PS/SYNC are connected to VIN, the resistor can be shared. No resistor is  
required if the pin is driven from an analog or digital signal rather than a supply voltage.  
8.4.6 Short Circuit Protection  
The TPS6307x provides short circuit protection to protect itself and the application. When the output voltage is  
below 1.2 V, the back-gate diodes of the low side input FET and high side output FET are used for rectification.  
For an input voltage above 9 V and an output voltage below 2.2 V, the switching frequency is scaled to ½ of its  
nominal value.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
8.4.7 VSEL and FB2 pins  
The VSEL pin allows to dynamically select between two different output voltages on the adjustable version. The  
voltage is set by a resistor that is connected between the FB and the FB2 pin. FB2 is connected to GND if VSEL  
= high. FB2 is high impedance if VSEL= low. The transition speed during a voltage change is defined by the loop  
bandwidth of the device and can be adjusted by adding a feed-forward capacitor in parallel to R1.  
1.5 µH  
TPS63070  
L1  
L2  
VIN = 2.0 V to 16 V  
VOUT = Vo1 / Vo2  
VOUT  
VIN  
10 µF  
10 µF  
0603  
2x10 µF  
R1  
R2  
0603  
3x22 µF  
0805  
FB  
PS/SYNC  
EN  
R3  
10 kΩ  
FB2  
VSEL  
PG  
PGND  
GND  
VAUX  
100 nF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8. Typical Application using VSEL  
The resistor values for the feedback divider and FB2 are in the 50-500kΩ range. R3 is calculated as follows:  
(1)  
For more details on how to use VSEL see Technote SLVAE62.  
8.4.8 Overvoltage Protection  
TPS6307x has a built in over-voltage protection which limits the output voltage. The voltage is internally sensed  
on the VOUT pin. In case the voltage on the feedback pin is not set correctly or the connection is open, this limits  
the output voltage to a value that protects the output stage from a too high voltage by limiting it to a internally set  
value.  
Input over-voltage protection forces PFM mode to make sure the device is protected against boosting from the  
output to the input. This may happen if there is a large capacitor charged above the nominal voltage on the  
output and the supply on the input is removed. In PWM mode, the device is able to provide current from the  
output to the input causing a rise in the input voltage. In PFM mode, the current to the input is blocked so the  
input voltage can not rise. The input over-voltage protection does not protect the device from a too high voltage  
applied to the input but just from operating such that the device itself causes a rise of the input voltage above  
critical levels. Both over-voltage sensors are de-glitched by approximately 1µs.  
8.4.9 Undervoltage Lockout  
When the input voltage drops, the undervoltage lockout prevents mis-operation by switching off the device. The  
converter starts operation when the input voltage exceeds the threshold by a hysteresis of typically 850 mV. This  
relatively large hysteresis is needed to allow operation down to 2-V of supply voltage for the case when the  
output voltage is up at 3-V or above but restrict start-up for the case when the output voltage is zero. For start-up  
when the output voltage has not yet ramped, the rising UVLO threshold was set to a level that allows to start  
TPS63070 at a supply voltage where the load does not demand much load current.  
8.4.10 Overtemperature Protection  
The junction temperature (Tj) of the device is monitored by an internal temperature sensor. When Tj exceeds the  
thermal shutdown temperature, the device goes into thermal shutdown. The power stage is turned off and PG  
goes low. When Tj decreases below the hysteresis amount, the converter resumes normal operation, beginning  
with a Soft Start cycle. To avoid unstable conditions, a hysteresis of typically 20°C is implemented on the thermal  
shutdown temperature. In addition, the thermal shutdown is debounced by approximately 10 µs.  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
8.5 Device Functional Modes  
8.5.1 Power Save Mode  
www.ti.com.cn  
Depending on the load current, in order to provide the best efficiency over the complete load range, the device  
works in PWM mode at an inductor current of approximately 650 mA or higher. At lighter load, the device  
switches automatically in to Power Save Mode to reduce power consumption and extend battery life. The  
PFM/PWM pin can be used to select between the two different operation modes. To enable Power Save Mode,  
the PFM/PWM pin must be set high.  
During Power Save Mode, the part operates with a reduced switching frequency and supply current to maintain  
high efficiency. The output voltage is monitored by a comparator for the threshold "comp low" and "comp high" at  
every clock cycle. When the device enters Power Save Mode, the converter stops operating and the output  
voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the output  
voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage again by  
starting operation. Operation can last for one or several pulses until the "comp high" threshold is reached. At the  
next PFM cycle, if the inductor current is still lower than about 650 mA, the device switches off again and the  
same operation is repeated. Instead, if at the next PFM cycle, the inductor current is above approximately 650  
mA , the device automatically switches to PWM mode.  
In order to keep high efficiency in PFM mode, there is only a comparator active to keep the output voltage  
regulated. The AC ripple in this condition is increased, compared to the voltage in PWM mode. The amplitude of  
this voltage ripple typically is 50 mV pk-pk, with 22 µF effective capacitance. In order to avoid a critical voltage  
drop when switching from 0 A to full load, the output voltage in PFM is typically 1 % above the nominal value in  
PWM. This allows the converter to operate with a small output capacitor and still have a low absolute voltage  
drop during heavy load transients.  
Power Save Mode can be disabled by programming the PFM/PWM pin low.  
Heavy Load transient step  
PFM mode at light load  
current  
Comparator high  
50mV ripple in PFM  
+1%*Vo  
Comparator low  
Vo  
PWM mode  
Absolute Voltage drop  
with positioning  
Figure 9. Dynamic Voltage Positioning  
8.5.2 Current Limit  
it is possible to calculate the output current in the different conditions in boost mode using Equation 2 and  
Equation 3 and in buck mode using Equation 4 and Equation 5.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(2)  
(3)  
Output Current Boost  
IOUT = 0 x IIN (1-D)  
V
OUT  
V
Duty Cycle Buck  
D =  
IN  
IOUT = ( 0 x IIN ) / D  
(4)  
(5)  
Output Current Buck  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
 
 
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Device Functional Modes (continued)  
With,  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
IIN = Minimum average input current  
The maximum output current TPS63070 can provide, can directly be seen from the graphs "Maximum Load  
Current vs Input Voltage" for different output voltages at (Figure 43, Figure 20 and Figure 22 ). The start-up  
current is lower because the current limit is set to typically 1A to limit the inrush current at start-up as long as  
the power good signal is low. Please see the typical start-up current graphs at Figure 42, Figure 19 and  
Figure 21. Once the power good comparator indicates "power good", the current limit is set to its nominal  
value as given in the electrical characteristics.  
8.5.3 Output Discharge Function (TPS630702 only)  
To make sure the load applied at TPS630702 is powered up from 0 V once TPS630702 is enabled, the device  
features an internal discharge resistor for the output capacitor. The discharge function is enabled as soon as the  
device is disabled, in thermal shutdown or in undervoltage lockout. The minimum supply voltage required for the  
discharge function to remain active when enabled is approximately 2 V. The discharge function is only active  
after the device has been enabled at least once after supply voltage was applied. This feature is only enabled in  
TPS630702 and it is the only difference between TPS63070 and TPS630702.  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS6307x is a high efficiency, low quiescent current buck-boost converter suitable for applications where  
the input voltage can be higher or lower than the output voltage. The TPS63070 is internally supplied from the  
higher of the input voltage or output voltage. For proper operation either one or both need to have a voltage of  
3.0 V or above but must not exceed their maximum rating.  
9.2 Typical Application for adjustable version  
L
1.5 µH  
L1  
L2  
TPS63070  
VOUT = 2.5 V to 9 V  
COUT  
C4  
10 µF  
0603  
VIN = 2.0 V to 16 V  
VOUT  
C1  
10 µF  
0603  
VIN  
R1  
CIN  
3x22 µF  
0805  
2x10 µF  
0805  
R4  
100 kΩ  
FB  
R2  
VSEL  
R5  
FB2  
10 kΩ  
EN  
PG  
PGND  
PS/SYNC  
VAUX  
GND  
CVAUX  
100 nF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. Typical Application For Adjustable Version  
9.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions. The input and output capacitors have been split into a small 0603 size capacitor close to the device  
pins and 0805 size capacitors to get the required capacitance.  
Table 2. Bill of Materials  
REFERENCE  
DESCRIPTION  
TPS63070RNM  
XFL4020-152ME  
VALUE  
MANUFACTURER  
Texas Instruments  
Coilcraft  
IC  
L
1.5 µH  
2 x 10 µF / 25 V /  
X7S / 0805  
CIN  
C1  
GRM21BC71E106ME11L  
TMK107BBJ106MA-T  
GRM21BC81C226ME44L  
TMK107BBJ106MA-T  
Murata  
Taiyo Yuden  
Murata  
10 µF / 25 V / X5R /  
0603  
3 x 22 µF / 16 V /  
X6S / 0805  
COUT  
C4  
10 µF / 25 V / X5R /  
0603  
Taiyo Yuden  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Table 2. Bill of Materials (continued)  
REFERENCE  
DESCRIPTION  
VALUE  
MANUFACTURER  
100 nF / 25V / X7R /  
0402  
CVAUX  
TMK105B7104MV-FR  
Taiyo Yuden  
depending on desired  
output voltage  
R1, R2  
R4  
Metal Film Resistor ; 1%  
Metal Film Resistor ; 1%  
100 kΩ  
9.2.2 Detailed Design Procedure  
The TPS6307x series of buck-boost converter has internal loop compensation. Therefore, the external L-C filter  
has to be selected according to the internal compensation. It's important to consider that the effective inductance,  
due to inductor tolerance and current derating can vary between 20% and -30%. The same for the capacitance  
of the output filter: the effective capacitance can vary between +20% and -80% of the specified datasheet value,  
due to capacitor tolerance and bias voltage. For this reason, Output Filter Selection shows the nominal  
capacitance and inductance value allowed. The effective capacitance of the adjustable version TPS63070 on the  
output (in µF) needs to be at least 10 times higher than the effective inductance (in µH) to ensure a good  
transient response and stable operation.  
Table 3. Output Filter Selection  
OUTPUT CAPACITOR VALUE [µF](2)  
INDUCTOR  
VALUE [µH](1)  
22  
47  
68  
100  
1.0  
1.5  
2.2  
(3)  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and  
–30%.  
(2) Capacitance tolerance and bias voltage de-rating of +20% and -50% is anticipated. For capacitors with  
larger dc bias effect, a larger nominal value needs to be selected.  
(3) Typical application. Other check marks indicates recommended filter combinations  
9.2.2.1 Programming The Output Voltage  
While the output voltage of the TPS63070 is adjustable, the TPS630701 is set to a fixed voltage. For fixed output  
versions, the FB pin must be connected to the output directly. The adjustable version can be programmed for  
output voltages from 2.5V to 9V by using a resistive divider from VOUT to GND. The voltage at the FB pin  
(VREF)is regulated to 800mV. The value of the output voltage is set by the selection of the resistive divider from  
Equation 6 . It is recommended to choose resistor values which allow a current of at least 2uA, meaning the  
value of R2 shouldn't exceed 400kΩ. Lower resistor values are recommended for highest accuracy and most  
robust design.  
V
æ
ö
OUT  
R1 = R2  
-1  
÷
ç
0.8V  
è
ø
(6)  
Table 4. Typical Resistor Values  
Output Voltage  
3.3 V  
R1  
R2  
470 kΩ  
680 kΩ  
560 kΩ  
300 kΩ  
360 kΩ  
402 kΩ  
150 kΩ  
130 kΩ  
100 kΩ  
51 kΩ  
51 kΩ  
39 kΩ  
5.0 V  
5.3 V  
5.5 V  
6.5 V  
9 V  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
 
 
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
9.2.2.2 Inductor Selection  
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at  
high switching frequencies, the core material has a higher impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 8. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(7)  
(8)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
Where,  
=
+
2 ´ f ´ L  
D =Duty Cycle in Boost mode  
f = Converter switching frequency (typical 2.4MHz)  
L = Selected inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher  
than the value calculated from Equation 8. The following inductors are recommended for use:  
Table 5. Inductor Selection  
INDUCTOR VALUE  
1.2 µH  
COMPONENT SUPPLIER(1)  
Coilcraft, XFL4015-122ME  
Coilcraft, XFL4020-152ME  
Coilcraft, XFL4020-102ME  
Murata, 1277AS-H-1R0M  
SIZE (LxWxH /mm)  
4 x 4 x 1.5  
Isat/DCR  
4.5 A / 18.8 mΩ  
4.6 A / 14.4 mΩ  
5.4 A / 10.8 mΩ  
3.7 A / 45 mΩ  
1.5 µH  
4 x 4 x 2.1  
1.0 µH  
4 x 4 x 2.1  
1 µH  
3.2 x 2.5 x 1.2  
(1) See Third-party Products Disclaimer  
The inductor value also affects the stability of the feedback loop. In particular the boost transfer function exhibits  
a right half-plane zero. The frequency of the right half plane zero is inverse proportional to the inductor value and  
the load current. This means the higher the value of the inductance and load current, the more the right half  
plane zero is moved to a lower frequency. This degrades the phase margin of the feedback loop. It is  
recommended to choose the inductor's value in order to have the frequency of the right half plane zero >400  
kHz. The frequency of the RHPZ is calculated using Equation 9.  
(1 - D)2 ´ Vout  
f
RHPZ  
=
2p ´Iout ´ L  
(9)  
With,  
D =Duty Cycle in Boost mode  
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode  
If the operating conditions results in a frequency of the RHPZ of less than 400kHz, more output capacitance  
should be added to reduce the cross over frequency. The RHPZ moves to lowest frequency at lowest input  
voltage (highest boost factor) and largest output current. Device stability should therefore be observed mainly  
under these worst case operating conditions.  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
9.2.2.3 Capacitor Selection  
9.2.2.3.1 Input Capacitor  
It is recommended to use a combination of capacitors on the input. A small size ceramic capacitor as close as  
possible from the VIN pin to GND to block high frequency noise and a larger one in parallel for the required  
capacitance on for good transient behavior of the regulator. X5R or X7R ceramic capacitor are recommended.  
The input capacitor needs to be large enough to avoid supply voltage dips shorter than 5us as the undervoltage  
lockout circuitry needs time to react.  
9.2.2.3.2 Output Capacitor  
Same as the input, the output capacitor should be a combination of capacitors optimized for suppressing high  
frequency noise and a larger capacitor for low output voltage ripple and stable operation. The use of small X5R  
or X7R ceramic capacitors placed as close as possible to the VOUT and GND pins of the IC is recommended. A  
0603 size capacitor close to the pins of the IC and as many 0805 capacitors as required to get the capacitance  
given the output voltage and dc bias effect of the ceramic capacitors is best. The recommended typical output  
capacitor values are outlined in Output Filter Selection. Please also see the Recommended Operating Conditions  
for the minimum and maximum capacitance at the output.  
Larger capacitors will cause lower output voltage ripple as well as lower output voltage drop during load  
transients.  
Table 6. Typical Capacitors  
VALUE  
PART NUMBER  
COMPONENT  
SUPPLIER(1)  
COMMENT  
SIZE (LxWxH mm)  
22 µF  
22 µF  
10 µF  
EMK212BBJ226MG-T  
TMK316BBJ226ML  
TMK107BBJ106MA-T  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
input capacitor for Vin 8 V  
2 x 1.25 x 1.25  
3.2 x 1.6 x 1.6  
1.6 x 0.8 x 0.8  
input capacitor  
bypass capacitor directly at  
device pins on VIN to GND  
and VOUT to GND  
10 µF  
22 µF  
GRM21BC71E106ME11  
GRM21BC81C226ME44  
Murata  
Murata  
small body size; 2 parts  
required if used at VIN > 6V  
2 x 1.25 x 1.25  
2 x 1.25 x 1.25  
small body size; 3 parts  
required if used at Vo > 5V;  
otherwise 2 parts  
(1) See Third-party Products Disclaimer  
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
9.2.3 Application Curves  
www.ti.com.cn  
Table 7. Typical Application Curves for Adjustable Version  
Parameter  
Conditions  
Figure  
Efficiency  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
7 V , PS/SYNC = Low  
=
=
=
=
Efficiency vs Output Current (PFM/PWM)  
Efficiency vs Output Current (PWM only)  
Efficiency vs Output Current (PFM/PWM)  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
7 V , PS/SYNC = High  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
9 V , PS/SYNC = Low  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
9 V , PS/SYNC = High  
Efficiency vs Output Current (PWM only)  
Load Regulation  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
7 V , PS/SYNC = Low  
=
=
=
=
Load Regulation, PFM/PWM Operation  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
7 V , PS/SYNC = High  
Load Regulation, PWM Operation  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
9 V , PS/SYNC = Low  
Load Regulation, PFM/PWM Operation  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
9 V , PS/SYNC = High  
Load Regulation, PWM Operation  
Output Current  
VOUT = 7 V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C  
Typical Start-up Current vs Input Voltage  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
VOUT = 7 V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C, PG = high  
Maximum Load Current vs Input Voltage  
Typical Start-up Current vs Input Voltage  
VOUT = 9 V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C  
VOUT = 9V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C, PG = high  
Maximum Load Current vs Input Voltage  
Regulation Accuracy  
VIN = 4.2 V, VOUT = 7 V, Load = 100 mA to 1  
A, PS/SYNC = Low  
Load Transient, PFM/PWM Boost Operation  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
VIN = 12 V, VOUT = 7 V, Load = 200 mA to  
1.8 A, PS/SYNC = Low  
Load Transient, PFM/PWM Buck Operation  
Load Transient, PFM/PWM Boost Operation  
Load Transient, PFM/PWM Buck Operation  
Line Transient, PFM/PWM Operation  
VIN = 4.2 V, VOUT = 9 V, Load = 100 mA to 1  
A, PS/SYNC = Low  
VIN = 12 V, VOUT = 9 V, Load = 200 mA to  
1.8 A, PS/SYNC = Low  
VIN = 5 V to 9 V, VOUT = 7 V, Load = 1 A,  
PS/SYNC = Low  
VIN = 8 V to 12 V, VOUT = 9 V, Load = 1 A,  
PS/SYNC = Low  
Line Transient, PFM/PWM Operation  
Output Voltage Ripple  
VIN = 5 V, VOUT = 7 V, Load = 0.3 A,  
PS/SYNC = Low  
Output Voltage Ripple, PFM/PWM Operation  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
VIN = 5 V, VOUT = 7 V, Load = 1 A,  
PS/SYNC = high  
Output Voltage Ripple, PWM Operation  
Output Voltage Ripple, PFM/PWM Operation  
Output Voltage Ripple, PFM/PWM Operation  
Output Voltage Ripple, PWM Operation  
Output Voltage Ripple, PFM/PWM Operation  
VIN = 12 V, VOUT = 7 V, Load = 0.3 A,  
PS/SYNC = Low  
VIN = 5 V, VOUT = 9 V, Load = 0.1 A,  
PS/SYNC = Low  
VIN = 5 V, VOUT = 9 V, Load = 0.5 A,  
PS/SYNC = high  
VIN = 12 V, VOUT = 9 V, Load = 0.1 A,  
PS/SYNC = Low  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
Startup  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Table 7. Typical Application Curves for Adjustable Version (continued)  
Parameter  
Conditions  
Figure  
Start-up Behavior from Rising Enable, PFM/PWM  
Operation  
VIN = 4.5 V, VOUT = 7 V, Load = 0.5 A,  
PS/SYNC = Low  
Figure 35  
Figure 36  
Start-up Behavior from Rising Enable, PFM/PWM  
Operation  
VIN = 7 V, VOUT = 9 V, Load = 0.5 A,  
PS/SYNC = Low  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 3 V  
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
30%  
20%  
10%  
0
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
100m  
1m  
10m  
100m  
1
2
100m  
1m  
10m  
100m  
1
Output Current (A)  
Output Current (A)  
D003  
D004  
Vout = 7 V  
PFM  
T = 25 °C  
Vout = 7 V  
PWM  
T = 25 °C  
Figure 11. Efficiency vs Output Current  
Figure 12. Efficiency vs Output Current  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
100m  
1m  
10m  
100m  
1
2
100m  
1m  
10m  
100m  
1
2
Output Current (A)  
Output Current (A)  
D005  
D006  
Vout = 9 V  
PFM  
T = 25 °C  
Vout = 9 V  
PWM  
T = 25 °C  
Figure 13. Efficiency vs Output Current  
Figure 14. Efficiency vs Output Current  
7.28  
7.21  
7.14  
7.07  
7
7.28  
7.21  
7.14  
7.07  
7
VIN = 3 V  
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
6.93  
6.86  
6.79  
6.93  
6.86  
6.79  
100μ  
1m  
10m 100m  
Output Current (A)  
1
2
100µ  
1m  
10m 100m  
Output Current (A)  
1
2
D009  
D010  
Vout = 7 V  
PFM  
T = 25 °C  
Vout = 7 V  
PWM  
T = 25 °C  
Figure 15. Output Voltage vs Output Current  
Figure 16. Output Voltage vs Output Current  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
9.36  
9.27  
9.18  
9.09  
9
9.36  
9.27  
9.18  
9.09  
9
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
VIN = 3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
8.91  
8.82  
8.73  
8.91  
8.82  
8.73  
100µ  
1m  
10m 100m  
Output Current (A)  
1
2
100µ  
1m  
10m 100m  
Output Current (A)  
1
2
D011  
D012  
Vout = 9 V  
PFM  
T = 25 °C  
Vout = 9 V  
PWM  
T = 25 °C  
Figure 17. Output Voltage vs Output Current  
Figure 18. Output Voltage vs Output Current  
1
4.5  
4
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5  
3
2.5  
2
1.5  
1
-40èC  
25èC  
-40èC  
25èC  
85èC  
85èC  
0.5  
0
125èC  
125èC  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Input Voltage (V)  
Input Voltage (V)  
D014  
D017  
after start-up with  
PG = high  
Vout = 7 V  
resistive load  
Vout = 7 V  
Figure 19. Typical Start-up Current  
Figure 20. Maximum Load Current vs Input Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
-40èC  
25èC  
-40èC  
25èC  
85èC  
85èC  
0.5  
0
125èC  
125èC  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Input Voltage (V)  
Input Voltage (V)  
D015  
D018  
after start-up with  
PG = high  
Vout = 9 V  
resistive load  
Vout = 9 V  
Figure 21. Typical Start-up Current  
Figure 22. Maximum Load Current vs Input Voltage  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Vout = 7 V  
PFM  
Vin = 4.2V  
Vin = 4.2V  
Io = 1A  
Vout = 7 V  
PFM  
Vin = 12V  
Vin = 12V  
Io = 1A  
Figure 23. Load Transient Response  
Figure 24. Load Transient Response  
Vout = 9 V  
PFM  
Vout = 9 V  
PFM  
Figure 25. Load Transient Response  
Figure 26. Load Transient Response  
Vout = 7 V  
PFM  
Vout = 9 V  
PFM  
Figure 27. Line Transient Response  
Figure 28. Line Transient Response  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
Vin = 5V; Vout = 7 V  
PFM  
Io = 0.3A  
Io = 0.3A  
Io = 0.5A  
Vin = 5V; Vout = 7 V  
PWM  
Io = 1A  
Figure 29. Output Voltage Ripple  
Figure 30. Output Voltage Ripple  
Vin = 12V; Vout = 7 V  
PFM  
Vin = 5V; Vout = 9 V  
PFM  
Io = 0.1A  
Figure 31. Output Voltage Ripple  
Figure 32. Output Voltage Ripple  
Vin = 5V; Vout = 9 V  
PWM  
Vin = 12V; Vout = 9 V  
PFM  
Io = 0.1A  
Figure 33. Output Voltage Ripple  
Figure 34. Output Voltage Ripple  
24  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Vin = 7V; Vout = 9 V  
PFM  
Io = 0.5A  
Vin = 4.5V; Vout = 7 V  
PFM  
Io = 0.5A  
Figure 36. Start-up Timing  
Figure 35. Start-up Timing  
Copyright © 2016–2019, Texas Instruments Incorporated  
25  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
9.3 Typical Application for Fixed Voltage Version  
www.ti.com.cn  
L
1.5 µH  
TPS630701  
L1  
L2  
VOUT = 5 V  
C4  
10 µF  
0603  
VIN = 2.0 V to 16 V  
VOUT  
C1  
10 µF  
0603  
COUT  
3x22 µF  
0805  
VIN  
CIN  
2x10 µF  
0805  
R4  
100 kΩ  
FB  
VSEL  
FB2  
R5  
10 kΩ  
EN  
PG  
PGND  
PS/SYNC  
VAUX  
GND  
CVAUX  
100 nF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 37. Typical Application For Fixed Voltage Version With Minimum External Part Count And  
Minimum Soft Start Time  
9.3.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions. The input and output capacitors have been split into a small 0603 size capacitor close to the device  
pins and 0805 size capacitors to get the required capacitance.  
Table 8. Bill of Materials  
REFERENCE  
DESCRIPTION  
TPS630701RNM  
XFL4020-1.5µH  
VALUE  
MANUFACTURER  
Texas Instruments  
Coilcraft  
IC  
L
1.5 µH  
2 x 10 µF / 25 V /  
X7S / 0805  
CIN  
C1  
GRM21BC71E106ME11L  
TMK107BBJ106MA-T  
GRM21BC81C226ME44L  
TMK107BBJ106MA-T  
Murata  
Taiyo Yuden  
Murata  
10 µF / 25 V / X5R /  
0603  
3 x 22 µF / 16 V /  
X6S / 0805  
COUT  
C4  
10 µF / 25 V / X5R /  
0603  
Taiyo Yuden  
100 nF / 25V / X7R /  
0402  
CVAUX  
R4  
TMK105B7104MV-FR  
Taiyo Yuden  
-
Metal Film Resistor ; 1%  
100 kΩ  
26  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
9.3.2 Detailed Design Procedure  
The TPS6307x series of buck-boost converter has internal loop compensation. Therefore, the external L-C filter  
has to be selected according to the internal compensation. It's important to consider that the effective inductance,  
due to inductor tolerance and current derating can vary between 20% and -30%. The same for the capacitance  
of the output filter: the effective capacitance can vary between +20% and -80% of the specified datasheet value,  
due to capacitor tolerance and bias voltage. For this reason, Output Filter Selection shows the nominal  
capacitance and inductance value allowed. For the fixed voltage version TPS630701, the effective capacitance  
on the output (in µF) needs to be at least 15 times higher than the effective inductance (in µH) to ensure a good  
transient response and stable operation.  
9.3.3 Application Curves  
Table 9. Typical Application Curves for Fixed Voltage Version  
Parameter  
Conditions  
Figure  
Efficiency  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
5 V , PS/SYNC = Low  
=
=
Efficiency vs Output Current (PFM/PWM)  
Figure 38  
Figure 39  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
5 V , PS/SYNC = High  
Efficiency vs Output Current (PWM only)  
Load Regulation  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
5 V , PS/SYNC = Low  
=
=
Load Regulation, PFM/PWM Operation  
Figure 40  
Figure 41  
VIN = 3 V, 4.2 V, 5 V, 7 V, 9 V, 12 V, VOUT  
5 V , PS/SYNC = High  
Load Regulation, PWM Operation  
Output Current  
VOUT = 5 V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C  
Typical Start-up Current vs Input Voltage  
Figure 42  
Figure 43  
VOUT = 5 V, TJ = -40 °C, 25 °C, 85 °C, 125  
°C, PG = high  
Maximum Load Current vs Input Voltage  
Regulation Accuracy  
VIN = 4.2 V, VOUT = 5 V, Load = 100 mA to 1  
A, PS/SYNC = Low  
Load Transient, PFM/PWM Boost Operation  
Figure 44  
Figure 45  
Figure 46  
VIN = 12 V, VOUT = 5 V, Load = 200 mA to  
1.8 A, PS/SYNC = Low  
Load Transient, PFM/PWM Buck Operation  
VIN = 4.2 V to 7 V, VOUT = 5 V, Load = 1 A,  
PS/SYNC = Low  
Line Transient, PFM/PWM Operation  
Output Voltage Ripple  
VIN = 4.2 V, VOUT = 5 V, Load = 0.3 A,  
PS/SYNC = Low  
Output Voltage Ripple, PFM/PWM Operation  
Figure 47  
Figure 48  
Figure 49  
VIN = 4.2 V, VOUT = 5 V, Load = 1 A,  
PS/SYNC = high  
Output Voltage Ripple, PWM Operation  
VIN = 7.2 V, VOUT = 5 V, Load = 0.3 A,  
PS/SYNC = Low  
Output Voltage Ripple, PFM/PWM Operation  
Startup  
Start-up Behavior from Rising Enable, PFM/PWM  
Operation  
VIN = 4.5 V, VOUT = 5 V, Load = 0.5 A,  
PS/SYNC = Low  
Figure 50  
Copyright © 2016–2019, Texas Instruments Incorporated  
27  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
3 V  
4.2 V  
5 V  
7 V  
9 V  
3 V  
4.2 V  
5 V  
7 V  
9 V  
12 V  
12 V  
100m  
1m  
10m  
100m  
1
2
100m  
1m  
10m  
100m  
1
2
Output Current (A)  
Output Current (A)  
D001  
D002  
Vout = 5 V  
PFM  
T = 25 °C  
Vout = 5 V  
PWM  
T = 25 °C  
Figure 38. Efficiency vs Output Current  
Figure 39. Efficiency vs Output Current  
5.25  
5.2  
5.15  
5.1  
3 V  
4.2 V  
5 V  
7 V  
9 V  
3 V  
4.2 V  
5 V  
7 V  
9 V  
5.2  
5.15  
5.1  
12 V  
12 V  
5.05  
5
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
4.85  
100m  
1m  
10m  
100m  
1
2
100m  
1m  
10m  
100m  
1
2
Output Current (A)  
Output Current (A)  
D007  
D008  
Vout = 5 V  
PFM  
T = 25 °C  
Vout = 5 V  
PWM  
T = 25 °C  
Figure 40. Output Voltage vs Output Current  
Figure 41. Output Voltage vs Output Current  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
-40èC  
25èC  
-40èC  
25èC  
85èC  
85èC  
0.5  
0
125èC  
125èC  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Input Voltage (V)  
Input Voltage (V)  
D013  
D016  
after start-up with  
PG = high  
Vout = 5 V  
resistive load  
Vout = 5 V  
Figure 42. Typical Start-up Current  
Figure 43. Maximum Load Current vs Input Voltage  
28  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
Vout = 5 V  
PFM  
Vin = 4.2V  
Vout = 5 V  
PFM  
Vin = 12V  
Io = 0.3A  
Io = 0.3A  
Figure 44. Load Transient Response  
Figure 45. Load Transient Response  
Vout = 5 V  
PFM  
Io = 1A  
Vin = 4.2V; Vout = 5 V  
PFM  
Figure 46. Line Transient Response  
Figure 47. Output Voltage Ripple  
Vin = 4.2V; Vout = 5 V  
PWM  
Io = 1A  
Vin = 7.2V; Vout = 5 V  
PFM  
Figure 48. Output Voltage Ripple  
Figure 49. Output Voltage Ripple  
Copyright © 2016–2019, Texas Instruments Incorporated  
29  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
Vin = 4.5V; Vout = 5 V  
PFM  
Io = 0.5A  
Figure 50. Start-up Timing  
30  
Copyright © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
10 Power Supply Recommendations  
The TPS63070 device family has no special requirements for its power supply. The power supply output current  
needs to be rated according to the supply voltage, output voltage and output current of TPS63070. Please see  
the layout guidelines about the placement of the external components.  
10.1 Thermal Information  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the PowerPAD™  
Introducing airflow in the system  
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal  
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).  
Copyright © 2016–2019, Texas Instruments Incorporated  
31  
TPS63070  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
connection. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the  
IC. Use a common ground node for power ground and a different one for control ground to minimize the effects  
of ground noise. Connect these ground nodes at any place close to one of the ground pin of the IC.  
A ceramic capacitor each, as close as possible from the VIN pin to GND and one from the VOUT pin to GND,  
shown as C1 and C4 in the layout proposal are used to suppress high frequency noise. The case size should be  
0603 or smaller for good high frequency performance. Additional 0805 size input and output capacitors are used  
to get the required capacitance on the input and output depending on the supply voltage range and the output  
voltage.  
The feedback divider should be placed as close as possible to the feedback pin of the IC. To lay out the control  
ground, short traces are recommended as well, separation from the power ground traces. This avoids ground  
shift problems, which can occur due to superimposition of power ground current and control ground current.  
In case any of the digital inputs EN, VSEL or PS/SYNC need to be tied to the input supply voltage VIN, a 10k  
resistor must be used in series. One common resistor for all digital inputs that are tied to VIN is sufficient.  
11.2 Layout Example  
L1  
GND  
COUT  
GND  
CIN  
C1  
C4  
VOUT  
VIN  
EN  
FB2  
FB  
R3  
VSEL  
VIN  
VOUT  
R1  
R2  
C
VAUX  
Figure 51. EVM Layout  
32  
版权 © 2016–2019, Texas Instruments Incorporated  
TPS63070  
www.ti.com.cn  
ZHCSFB9B JUNE 2016REVISED MARCH 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
10. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
TPS63070  
TPS630701  
TPS630702  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016–2019, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS630701RNMR  
TPS630701RNMT  
TPS630702RNMR  
TPS630702RNMT  
TPS63070RNMR  
TPS63070RNMT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
15  
15  
15  
15  
15  
15  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0701  
0701  
0702  
0702  
3070  
3070  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU | SN  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS630701RNMR  
TPS630701RNMT  
TPS630702RNMR  
TPS630702RNMT  
TPS63070RNMR  
TPS63070RNMR  
TPS63070RNMT  
TPS63070RNMT  
VQFN-  
HR  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
15  
15  
15  
15  
15  
15  
15  
15  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.2  
1.2  
1.2  
1.2  
1.2  
1.1  
1.2  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
8.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS630701RNMR  
TPS630701RNMT  
TPS630702RNMR  
TPS630702RNMT  
TPS63070RNMR  
TPS63070RNMR  
TPS63070RNMT  
TPS63070RNMT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
RNM  
15  
15  
15  
15  
15  
15  
15  
15  
3000  
250  
346.0  
182.0  
346.0  
182.0  
346.0  
210.0  
182.0  
210.0  
346.0  
182.0  
346.0  
182.0  
346.0  
185.0  
182.0  
185.0  
33.0  
20.0  
33.0  
20.0  
33.0  
35.0  
20.0  
35.0  
3000  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNM0015A  
VQFN - 1 mm max height  
SCALE 4.000  
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
PKG  
2X 0.725  
2X 0.775  
(0.2) TYP  
2X 0.5  
5
7
8
2X (0.25)  
0.5 TYP  
1.6  
1.4  
4
9
SYMM  
1.5  
1
11  
1.25  
1.05  
2X  
1
15  
13  
12  
0.5  
0.3  
0.5  
8X  
2X  
0.3  
0.2  
0.3  
15X  
0.1  
0.05  
C B A  
C
4222000/B 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNM0015A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.75)  
2X (0.725)  
14  
2X (0.525)  
4X (0.6)  
15  
13  
12  
8X (0.6)  
1
8X (0.25)  
SYMM  
2X (1.35)  
11  
2X  
(0.5)  
(2.8)  
9
5X (0.5)  
3X  
(0.25)  
4
(1.7)  
(R0.05) TYP  
2X (0.25)  
4X (0.25)  
8
7
5
6
(0.6)  
(1.15)  
2X (0.775)  
PKG  
LAND PATTERN EXAMPLE  
SCALE:20X  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
PADS 7-13  
NON SOLDER MASK  
DEFINED  
PADS 1-6, 14 & 15  
SOLDER MASK DETAILS  
4222000/B 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNM0015A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.75)  
2X (0.725)  
14  
2X (0.525)  
4X (0.6)  
13  
12  
15  
8X (0.6)  
14X (0.25)  
SOLDER MASK  
EDGE,TYP  
(1.06)  
3X  
EXPOSED  
METAL  
1
11  
2X  
EXPOSED  
METAL  
2X (0.72)  
SYMM  
10  
(2.8)  
(0.5)  
TYP  
5X (0.5)  
9
4X  
(0.575)  
(0.14)  
4
(R0.05) TYP  
2X (0.25)  
METAL UNDER  
SOLDER MASK  
TYP  
5
6
7
8
2X (0.388)  
4X (0.25)  
(1.15)  
2X (1.163)  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR EXPOSED PADS 9-11  
85% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4222000/B 03/2020  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS630701RNMT

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125
TI

TPS630702RNMR

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125
TI

TPS630702RNMT

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125
TI

TPS63070RNMR

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125
TI

TPS63070RNMT

宽输入电压(2V 至 16V)降压/升压转换器 | RNM | 15 | -40 to 125
TI

TPS631000

1.5A 输出电流、高功率密度降压/升压转换器
TI

TPS631000DRLR

1.5A 输出电流、高功率密度降压/升压转换器 | DRL | 8 | -40 to 125
TI

TPS631010

3A 峰值电流超小解决方案尺寸高效降压/升压转换器
TI

TPS631010YBGR

3A 峰值电流超小解决方案尺寸高效降压/升压转换器 | YBG | 8 | -40 to 125
TI

TPS634G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G11

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC