TPS63802DLAT [TI]

采用 QFN/DFN 封装的 2A 高效 11µA 静态电流降压/升压转换器 | DLA | 10 | -40 to 125;
TPS63802DLAT
型号: TPS63802DLAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 QFN/DFN 封装的 2A 高效 11µA 静态电流降压/升压转换器 | DLA | 10 | -40 to 125

升压转换器 开关 光电二极管 输出元件
文件: 总38页 (文件大小:2938K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS63802  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
DFN 封装TPS63802 2A、高效率、IQ 降压/升压转换器  
1 特性  
2 应用  
• 输入电压范围1.3V 5.5V  
系统前置稳压器跟踪和远程信息处理、便携式  
POS、家庭自动化、IP 网络摄像头)  
• 负载点调节有线传感器、端口/电缆适配器和加密  
狗、电子智能锁、物联网)  
• 蓄电池备用电源电表数据集中器、电能质量监  
测仪)  
– 器件启动时输入电压大1.8V  
• 输出电压范围1.8V 5.2V可调节)  
VI 2.3VVO = 3.3V 输出电流2A  
• 在整个负载范围内具有高效率  
11µA 工作静态电流  
• 热电器件电源TEC光纤模块)  
• 通用电压稳定器和转换器  
– 具有省电模式和强PWM 模式  
• 峰值电流降压/升压模式架构  
– 可在降压、降压/升压和升压操作模式之间定义  
切换点  
– 正向和反向电流运行  
– 启动至预偏置输出  
3 说明  
TPS63802 是一款高效率、高输出电流降压/升压转换  
器。根据输入电压不同当输入电压近似等于输出电压  
它会自动以升压、降压或全新的 4 周期降压/升压  
模式运行。在定义的阈值内进行模式切换避免不必要  
的模式内切换以减少输出电压纹波。这类器件的输出  
电压可在较宽输出电压范围内通过电阻式分压器进行单  
独调整。静态电流11μA可在超小甚至空载条件下  
实现出色效率。  
• 安全、可靠运行的特性  
– 集成软启动  
– 过热和过压保护  
– 带负载断开功能的真正关断功能  
– 正向和反向电流限制  
21.5mm2 的小解决方案尺寸  
– 小SON/DFN 封装类似QFN)  
– 小0.47µH 电感器  
22µF 最小输出电容器配合使用  
• 使TPS63802 并借WEBENCH® Power  
Designer 创建定制设计方案  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS63802  
10 VSON-HR  
0.5mm 间隔)  
3.0mm × 2.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
0.47 µH  
100  
90  
80  
70  
60  
50  
40  
L1  
L2  
VOUT  
3.3 V  
VIN  
1.3 V œ 5.5 V  
VIN  
EN  
VOUT  
22 F  
10 F  
PG  
FB  
TPS63802  
MODE  
GND  
30  
AGND  
VIN = 3.0 V  
VIN = 3.3 V  
20  
VIN = 3.6 V  
VIN = 4.2 V  
10  
0
典型应用  
100m  
1m  
10m  
Output Current (A)  
100m  
1
2
D
D001  
01  
效率与输出电流间的关(VO = 3.3V)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEU9  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
Table of Contents  
9.4 Device Functional Modes..........................................13  
10 Application and Implementation................................17  
10.1 Application Information........................................... 17  
10.2 Typical Application.................................................. 17  
11 Power Supply Recommendations..............................27  
12 Layout...........................................................................28  
12.1 Layout Guidelines................................................... 28  
12.2 Layout Example...................................................... 28  
13 Device and Documentation Support..........................29  
13.1 Device Support....................................................... 29  
13.2 Documentation Support.......................................... 29  
13.3 接收文档更新通知................................................... 29  
13.4 支持资源..................................................................29  
13.5 Trademarks.............................................................30  
13.6 静电放电警告.......................................................... 30  
13.7 术语表..................................................................... 30  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Device Comparison Table...............................................3  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 5  
8.1 Absolute Maximum Ratings........................................ 5  
8.2 ESD Ratings............................................................... 5  
8.3 Recommended Operating Conditions.........................5  
8.4 Thermal Information....................................................5  
8.5 Electrical Characteristics.............................................6  
8.6 Typical Characteristics................................................8  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram...........................................9  
9.3 Feature Description...................................................10  
Information.................................................................... 30  
4 Revision History  
Changes from Revision C (June 2020) to Revision D (January 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Changes from Revision B (September 2019) to Revision C (June 2020)  
Page  
Added device comparison ................................................................................................................................. 3  
Changed 1x 22 µF to 2x 22 µF.........................................................................................................................19  
Changed Part Number from TPS63802RMW to TPS63802DLA .....................................................................20  
Change MODE from High to Low in Application Curves ................................................................................. 20  
Deleted layout guideline to separate AGND and PGND ..................................................................................28  
Changed Use a common-power GND, but connect AGND and PGND through via at a different layer. to Use a  
common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC. ..............28  
Changes from Revision A (January 2019) to Revision B (September 2019)  
Page  
• 将器件状态从预告信更改为量产数.............................................................................................................1  
• 更改了封装组名称...............................................................................................................................................1  
Added related documentation ..........................................................................................................................29  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
5 Description (continued)  
The TPS63802 comes in a 1.4 mm x 2.3 mm thermally enhanced HotRod™ dual flat no-lead (DFN) package.  
With the tiny bill-off material, the solution size can be small.  
6 Device Comparison Table  
PART  
NUMBER  
SWITCH CURRENT LIMIT BOOST  
(MIN.)  
OUTPUT VOLTAGE I(Q;VIN) (TYP.)  
C(O,EFF) (MIN.)  
PACKAGE  
TPS63802  
SIMILAR TI PARTS  
TPS63805  
Adjustable  
11 µA  
7 µF  
4 A  
VSON  
Adjustable  
11 µA  
15 µA  
7 µF  
4 A  
WCSP  
WCSP  
TPS63810  
fixed: 3.3 V/3.45 V  
16 µF  
5.2 A  
TPS63811  
or I2C programmable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS63802  
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
7 Pin Configuration and Functions  
EN  
MODE  
AGND  
FB  
1
2
3
4
5
10  
9
VIN  
L1  
8
GND  
L2  
7
6
PG  
VOUT  
Not to scale  
7-1. 10-Pin DLA Package (Top View)  
7-1. Pin Functions  
DESCRIPTION  
PIN  
NAME  
EN  
NO.  
1
Device Enable input. Set HIGH to enable and LOW to disable. It must not be left floating.  
MODE  
2
PFM/PWM mode selection. Set LOW for power save mode, set HIGH for forced PWM mode. It must not be  
left floating.  
AGND  
FB  
3
4
Analog ground  
Voltage feedback sensing pin  
Power good indicator, open-drain output  
Power stage output  
PG  
5
VOUT  
L2  
6
7
Connection for inductor  
Power ground  
GND  
L1  
8
9
Connection for inductor  
Supply voltage input  
VIN  
10  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
3  
MAX UNIT  
VIN, L1, L2, EN, MODE, VOUT, FB, PG  
6
9
V
V
Voltage(2)  
L1, L2 (AC, less than 10 ns)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground pin.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
MIN  
1.3 (1)  
1.8  
NOM  
MAX  
5.5  
UNIT  
V
VI  
VO  
CI  
L
Input voltage  
Output voltage  
5.2 (2)  
V
Effective capacitance connected to VIN  
Effective inductance  
4
5
μF  
μH  
μF  
µF  
0.37  
10  
0.47  
0.57  
125  
1.8 V VO 2.3 V  
CO  
TJ  
TPS63802 Effective capacitance connected to VOUT  
Operating junction temperature  
VO > 2.3 V  
7
8.2  
Operating junction  
temperature  
°C  
40  
(1) Minimum startup voltage of VI > 1.8 V until power good  
(2) VO margin for accuracy and load steps is considerd in absolut maximum ratings  
8.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)(1)  
TPS63802  
THERMAL METRIC  
VSON  
10 PINS  
81.0  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
36.4  
23.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ΨJT  
23.5  
ΨJB  
RΘJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS63802  
 
 
 
 
 
 
 
 
 
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
8.5 Electrical Characteristics  
VIN= 1.8 V to 5.5 V, VOUT = 1.8 V to 5.2 V , TJ= 40°C to +125°C, typical values are at VIN= 3.6 V, VOUT = 3.3 V and TJ=  
25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Minimum input voltage for full load,  
once started  
VIN;LOAD  
IOUT = 2 A, VOUT = 3.3 V, TJ = 25°C  
2.3  
11  
V
TPS63802; TJ = 25°C, EN = VIN = 3.6 V, VOUT = 3.3 V, not  
switching  
IQ;VIN  
ISD  
Quiescent current into VIN  
μA  
Shutdown current into VIN  
Undervoltage lockout threshold  
Undervoltage lockout threshold  
Thermal shutdown  
45  
1.25  
1.7  
600  
1.29  
1.79  
nA  
V
EN = low, -40°C TJ 85°C, VIN = 3.6 V, VOUT = 0 V  
VIN falling, VOUT 1.8 V, once started  
VIN rising  
1.2  
1.6  
UVLO  
V
TSD  
Temperature rising  
150  
20  
°C  
°C  
TSD;HYST  
Thermal shutdown hysteresis  
SOFT-START, POWER GOOD  
Tramp Soft-start, Current limit ramp time  
TJ = 25°C, VIN = 3.6 V, VOUT = 3.3 V, IO = 3.5 A, time from  
first switching to power good  
224  
321  
µs  
µs  
TJ = 25°C, VIN = 3.6 V, VOUT = 3.3 V, Delay from EN-edge  
until rising  
first switching  
Delay from EN-edge until rising  
VOUT  
Tdelay  
LOGIC SIGNALS EN, MODE  
VTHR;EN Threshold Voltage rising for EN-Pin  
1.07  
0.97  
1.2  
1.1  
1
1.13  
1.03  
V
V
Threshold Voltage falling for EN-  
Pin  
VTHF;EN  
VIH  
High-level input voltage  
Low-level input voltage  
V
V
VIL  
0.4  
0.4  
VPG;rising  
VPG;falling  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
95  
90  
%
%
Power Good threshold voltage  
Power Good low-level output  
voltage  
VPG;Low  
ISINK = 1 mA  
VFB falling  
V
tPG;delay  
Ilkg  
Power Good delay time  
Input leakage current  
14  
µs  
0.01  
0.2  
µA  
OUTPUT  
ISD  
Shutdown current into VOUT  
Feedback Regulation Voltage  
Feedback Voltage accuracy  
±0.5  
500  
±600  
nA  
mV  
%
EN = low, -40°C TJ 85°C, VIN = 3.6 V, VOUT = 3.3 V  
VFB  
VFB  
PWM mode  
VOUT rising  
VIN rising  
1
5.9  
5.9  
1  
5.5  
5.5  
5.7  
5.7  
V
Overvoltage Protection Threshold  
V
Peak Inductor Current to enter  
PFM-Mode  
IPWM/PFM  
IFB  
VIN = 3.6 V; VOUT = 3.3 V  
VFB = 500 mV  
1.06  
A
Feedback Input Bias Current  
5
5
100  
nA  
A
Peak Current Limit, Boost Mode  
4
5.75  
Peak Current Limit, Buck-Boost  
Mode  
IPK  
5
3.8  
A
A
A
TPS63802; VIN 2.5 V  
Peak Current Limit, Buck Mode  
Peak Current Limit for Reverse  
Operation  
IPK;Reverse  
VI = 5 V, VO = 3.3 V  
0.9  
VIN = 3 V, VOUT = 3.3 V; I(L2) = 0.19 VIN = 3 V, VOUT = 3.3  
High-side FET on-resistance  
Low-side FET on-resistance  
High-side FET on-resistance  
Low-side FET on-resistance  
47  
30  
43  
18  
m  
mΩ  
mΩ  
mΩ  
A
V; IO = 0.5 A  
Buck  
RDS;ON  
VIN = 3 V, VOUT = 3.3 V; I(L2) = 0.19 VIN = 3 V, VOUT = 3.3  
A
V; IO = 0.5 A  
VIN = 3 V, VOUT = 3.3 V; I(L1) = 0.19 VIN = 3 V, VOUT = 3.3  
A
V; IO = 0.5 A  
Boost  
RDS;ON  
VIN = 3 V, VOUT = 3.3 V; I(L1) = 0.19 VIN = 3 V, VOUT = 3.3  
A
V; IO = 0.5 A  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
VIN= 1.8 V to 5.5 V, VOUT = 1.8 V to 5.2 V , TJ= 40°C to +125°C, typical values are at VIN= 3.6 V, VOUT = 3.3 V and TJ=  
25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Inductor Switching Frequency,  
Boost Mode  
VIN = 2.3V, VOUT = 3.3V, no Load, MODE = HIGH, TJ = 25°C  
2.1  
MHz  
Inductor Switching Frequency,  
Buck-Boost Mode  
fSW  
VIN = 3.3V, VOUT = 3.3V, no Load, MODE = HIGH, TJ = 25°C  
1.4  
MHz  
Inductor Switching Frequency,  
Buck Mode  
VIN = 4.3, VOUT = 3.3V, no Load, MODE = HIGH, TJ = 25°C  
VIN = 2.4 V to 5.5 V, VOUT = 3.3V, IOUT = 2 A  
1.6  
0.3  
0.1  
MHz  
%
Line regulation  
Load regulation  
VIN= 3.6 V, VOUT = 3.3V, IOUT = 0 A to 2 A, forced-PWM  
mode  
%
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS63802  
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
8.6 Typical Characteristics  
16  
1.4  
1.2  
1
VI = 1.8 V  
VI = 3.6 V  
VI = 5.5 V  
VI = 1.8 V  
VI = 3.6 V  
VI = 5.5 V  
12  
8
0.8  
0.6  
0.4  
0.2  
0
4
-0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D004  
D006  
EN = LOW  
MODE = LOW  
VO = 3.3 V  
IO = 0 mA, not  
switching  
8-2. Shutdown Current vs. Temperature  
8-1. Quiescent Current vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
9 Detailed Description  
9.1 Overview  
The TPS63802 buck-boost converter uses four internal switches to maintain synchronous power conversion at  
all possible operating conditions. This enables the device to keep high efficiency over a wide input voltage and  
output load range. To regulate the output voltage at all possible input voltage conditions, the device automatically  
transitions between buck, buck-boost, and boost operation as required by the operating conditions. Therefore, it  
operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter  
when the input voltage is lower than the output voltage. When the input voltage is close to the output voltage, it  
operates in a 3-cycle buck-boost operation. In this mode, all four switches are active (see 9.4.1.3). The RMS  
current through the switches and the inductor is kept at a minimum to minimize switching and conduction losses.  
Controlling the switches this way allows the converter to always keep high efficiency over the complete input  
voltage range. The device provides a seamless transition between all modes.  
9.2 Functional Block Diagram  
L
L1  
L2  
VOUT  
VIN  
CIN  
COUT  
Current  
Sensor  
Gate  
Gate  
Driver  
Driver  
Device  
Device  
Control  
Control  
PG  
VOUT  
VIN  
Device  
Control  
VMAX Switch  
+
EN  
Device Control  
Ref  
œ
+
Power Safe Mode  
Protection  
1.1 V  
FB  
+
œ
VIN  
Ref  
500 mV  
Current Limit  
œ
Buck/Boost Control  
Off-time calculation  
Soft-Start  
Gate  
Driver  
MODE  
GND  
Power  
Good  
VOUT  
AGND  
L1, L2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
9.3 Feature Description  
9.3.1 Control Loop Description  
The TPS63802 uses a peak current mode control architecture. It has an inner current loop where it measures  
the peak current of the boost high-side MOSFET and compares it to a reference current. This current is the  
output of the outer voltage loop. It measures the output voltage via the FB-pin and compares it with the internal  
voltage reference. That means, the outer voltage loop measures the voltage error (VREF-VFB), and transforms it  
into the system current demand (IREF) for the inner current loop.  
9-1 shows the simplified schematic of the control loop. The error amplifier and the type-2 compensation  
represent the voltage loop. The voltage output is converted into the reference current IREF and fed into the  
current comparator.  
The scheme shows the skip-comparator handling the power-save mode (PFM) to achieve high efficiency at light  
loads. See 9.4.2 for further details.  
VIN  
L1  
IPK  
œ
Gate  
Driver  
IREF  
+
FB  
VEA  
+
Ref  
500mV  
œ
+
œ
ISKIP  
9-1. Control Loop Architecture Scheme  
9.3.2 Precise Device Enable: Threshold- or Delayed Enable  
The enable-pin is a digital input to enable or disable the device by applying a high or low level. The device enters  
shutdown when EN is set low. In addition, this input features a precise threshold and can be used as a  
comparator that enables and disables the part at a defined threshold. This allows you to drive the state by a  
slowly changing voltage and enables the use of an external RC network to achieve a precise power-up delay.  
The enable pin can also be used with an external voltage divider to set a user-defined minimum supply voltage.  
For proper operation, the EN pin must be terminated and must not be left floating.  
VTHRESHOLD  
VDELAY  
R4  
R5  
R4  
C5  
EN  
EN  
9-2. Circuit Example for How to Use the Precise Device Enable Feature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
9.3.3 Mode Selection (PFM/PWM)  
The mode-pin is a digital input to enable the automatic PWM/PFM mode that features the highest efficiency by  
allowing pulse-frequency-modulation for lower output currents. This mode is enabled by applying a low level.  
The device can be forced in PWM operation regardless of the output current to achieve minimum output ripple  
by applying a high level. This pin must not be left floating.  
9.3.4 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. It activates the  
device once the input voltage (VI) has increased the UVLOrising value. Once active, the device allows operation  
down to even smaller input voltages, which is determined by the UVLOfalling. This behavior requires VO to be  
higher than the minimum value of 1.8 V.  
UVLOrising  
UVLOfalling  
VIN  
Device  
active  
9-3. Rising and Falling Undervoltage Lockout Behavior  
9.3.5 Soft Start  
To minimize inrush current and output voltage overshoot during start-up, the device features a controlled soft  
start-up. After the device is enabled, the device starts all internal reference and control circuits within the enable  
delay time, Tdelay. After that, the maximum switch current limit rises monotonically from 0 mA to the current limit.  
The loop stops switching once VO is reached. This allows a quick output voltage ramp for small capacitors at the  
output. The bigger the output capacitor, the longer it takes to settle Vo. A potential load during start-up will  
lengthen the duration of the output voltage ramp as well. The gradual ramp of the current limit allows a small  
inrush current for no-load conditions, as well as the possibility to start into high loads at start-up.  
The converter can start-up into pre-biased loads by a forced operation in PFM during the soft-start until the first  
switching cycle request from the output voltage control loop.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS63802  
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
VIN  
EN  
Current Limit  
Inductor  
Current  
0.95 x VOUT  
VOUT  
Power Good  
Tdelay  
Tramp  
TStart-up  
9-4. Device Start-up Scheme  
9.3.6 Adjustable Output Voltage  
The device's output voltage is adjusted by applying an external resistive divider between VO, the FB-pin, and  
GND. This allows you to program the output voltage in the recommended range. The divider must provide a low-  
side resistor of less than 100 kΩ. The high-side resistor is chosen accordingly.  
9.3.7 Overtemperature Protection - Thermal Shutdown  
The device has a built-in temperature sensor which monitors the junction temperature. If the temperature  
exceeds the threshold, the device stops operating. As soon as the IC temperature has decreased below the  
programmed threshold, it starts operating again. There is a built-in hysteresis to avoid unstable operation at  
junction temperatures at the overtemperature threshold.  
9.3.8 Input Overvoltage - Reverse-Boost Protection (IVP)  
The TPS63802 can operate in reverse mode where the device transfers energy from the output back to the  
input. If the source is not able to sink the revers current, the negative current builds up a charge to the input  
capacitance and VIN rises. To protect the device and other components from that scenario, the device features  
an input voltage protection (IVP) for reverse boost operation. Once the input voltage is above the threshold, the  
converter forces PFM mode and the negative current operation is interrupted.  
The PG signal goes low to indicate that behavior.  
9.3.9 Output Overvoltage Protection (OVP)  
In case of a broken feedback-path connection, the device can loose VO information and is not able to regulate.  
To avoid an uncontrolled boosting of VO, the TPS63802 features output overvoltage protection. It measures the  
voltage on the VOUT pin and stops switching when VO is greater than the threshold to avoid harm to the  
converter and other components.  
9.3.10 Power-Good Indicator  
The power good goes high-impedance once the output is above 95% of the nominal voltage, and is driven low  
once the output voltage falls below typically 90% of the nominal voltage. This feature also indicates overvoltage  
and device shutdown cases as shown in 9-1. The PG pin is an open-drain output and is specified to sink up to  
1 mA. The power-good output requires a pullup resistor connecting to any voltage rail less than 5.5 V. The PG  
signal can be used to sequence multiple rails by connecting it to the EN pin of other converters. Leave the PG  
pin unconnected when not used.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS63802  
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
9-1. Power-Good Indicator Truth Table  
LOGIC SIGNALS  
PG LOGIC STATUS  
Undefined  
EN  
X
VO  
VI  
OVP  
X
IVP  
X
< 1.8 V  
< UVLO_R  
> UVLO_F  
> 1.3V  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
X
X
X
LOW  
LOW  
LOW  
LOW  
HIGH Z  
VO < 0.9 × target-VO  
X
X
X
> UVLO_F  
> UVLO_F  
> UVLO_F  
HIGH  
X
X
X
HIGH  
LOW  
VO > 0.95 × target-VO  
LOW  
9.4 Device Functional Modes  
9.4.1 Peak-Current Mode Architecture  
The TPS63802 is based on a peak-current mode architecture. The error amplifier provides a peak-current target  
(voltage that is translated into an equivalent current, see 9-1), based on the current demand from the voltage  
loop. This target is compared to the actual inductor current during the ON-time. The ON-time is ended once the  
inductor current is equal to the current target and OFF-time is initiated. The OFF-time is calculated by the control  
and a function of VI and VO.  
IPEAK  
VEAmp  
IIND  
IPK-PK  
TON  
TOFF  
0
time  
9-5. Peak-Current Architecture Operation  
9.4.1.1 Reverse Current Operation, Negative Current  
When the TPS63802 is forced to PWM operation (MODE = HIGH), the device current can flow in reverse  
direction. This happens by the negative current capability of the TPS63802 . The error amplifier provides a peak-  
current target (voltage that is translated into an equivalent current, see 9-1), even if the target has a negative  
value. The maximum average current is even more negative than the peak current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS63802  
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
time  
0
IPEAK  
VEAmp  
IAVG  
IIND  
IPK-PK  
9-6. Peak-Current Operation, Reverse Current  
9.4.1.2 Boost Operation  
When VI is smaller than VO (and the voltages are not close enough to trigger buck-boost operation), the  
TPS63802 operates in boost mode where the boost high-side and low-side switches are active. The buck high-  
side switch is always turned on and the buck low-side switch is always turned off. This lets the TPS63802  
operate as a classical boost converter.  
IPEAK  
VEAmp  
IIND  
TON  
TOFF  
9-7. Peak-Current Boost Operation  
9.4.1.3 Buck-Boost Operation  
When VI is close to VO, the TPS63802 operates in buck-boost mode where all switches are active and the  
device repeats 3-cycles:  
TON: Boost-charge phase where boost low-side and buck high-side are closed and the inductor current is built  
up  
TOFF: Buck discharge phase where boost high-side and buck low-side are closed and the inductor is  
discharged  
TCOM: VI connected to VO where all high-side switches are closed and the input is connected to the output  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
IPEAK  
VEAmp  
IIND  
TON  
TCOM  
TOFF  
TCOM  
9-8. Peak-Current Buck-Boost Operation  
9.4.1.4 Buck Operation  
When VI is greater than VO (and the voltages are not close enough to trigger buck-boost operation), the  
TPS63802 operates in buck mode where the buck high-side and low-side switches are active. The boost high-  
side switch is always turned on and the boost low-side switch is always turned off. This lets the TPS63802  
operate as a classical buck converter.  
IPEAK  
VEAmp  
IIND  
TON  
TOFF  
9-9. Peak-Current Buck Operation  
9.4.2 Power Save Mode Operation  
Besides continuos conduction mode (PWM), the TPS63802 features power safe mode (PFM) operation to  
achieve high efficiency at light load currents. This is implemented by pausing the switching operation, depending  
on the load current.  
The skip comparator manages the switching or pause operation. It compares the current demand signal from the  
voltage loop, IREF, with the skip threshold, ISKIP, as shown in 9-1. If the current demand is lower than the skip  
value, the comparator pauses switching operation. If the current demand goes higher (due to falling VO), the  
comparator activates the current loop and allows switching according to the loop behavior. Whenever the current  
loop has risen VO by bringing charge to the output, the voltage loop output, IREF (respectively VEA), decreases.  
When IREF falls below ISKIP-hysteresis, it automatically pauses again.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
ICOIL  
VO  
ISKIP  
VEA  
Hysteresis  
/ IREF  
SKIP  
Yes/No  
Pause  
Switching  
t
9-10. Power Safe Mode Operation Curves  
9.4.2.1 Current Limit Operation  
To limit current and protect the device and application, the maximum peak inductor current is limited internally on  
the IC. It is measured at the buck high-side switch which turns into an input current detection. To provide a  
certain load current across all operation modes, the boost and buck-boost peak current limit is higher than in  
buck mode. It limits the input current and allows no further increase of the delivered current. When using the  
device in this mode, it behaves similar to a current source.  
The current limit depends on the operation mode (buck, buck-boost, or boost mode).  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS63802  
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TPS63802 is a high efficiency, low quiescent current, non-inverting buck-boost converter, suitable for  
applications that need a regulated output voltage from an input supply that can be higher or lower than the  
output voltage.  
10.2 Typical Application  
L1  
0.47 µH  
VIN  
L1  
L2  
VIN  
1.3V t 5.5V  
VOUT = 3.3V  
VIN  
EN  
VOUT  
R3  
100lQ  
C2  
C1  
22 F  
10 F  
PG  
FB  
R1  
511lQ  
MODE  
GND  
R2  
91lQ  
AGND  
TPS63802  
10-1. 3.3 VOUT Typical Application  
10.2.1 Design Requirements  
The design guideline provides a component selection to operate the device within 10-1.  
10-1 shows the list of components for the application characteristic curves.  
10-1. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL  
INDUCTOR VALUE  
[µH](1)  
NOMINAL OUTPUT CAPACITOR VALUE [µF](2)  
10  
22  
47  
66  
100  
(3)  
0.47  
-
+
+
+
+
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and 30%.  
(2) Capacitance tolerance and DC bias voltage derating is anticipated. The effective capacitance can vary by 20% and 50%.  
(3) TPS63802 typical application. Other check marks indicate possible filter combinations.  
10.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process, 8.1 outlines minimum  
and maximum values for inductance and capacitance. Take tolerance and derating into account when selecting  
nominal inductance and capacitance.  
10.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS63802 device with the WEBENCH® Power Designer.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS63802  
 
 
 
 
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
10.2.2.2 Inductor Selection  
The inductor selection is affected by several parameters such as the following:  
Inductor ripple current  
Output voltage ripple  
Transition point into power save mode  
Efficiency  
See 10-2 for typical inductors.  
For high efficiencies, the inductor must have a low DC resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced, mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady-state operation is calculated using 方程式 2. Only the equation which defines the switch  
current in boost mode is shown because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(1)  
(2)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where  
D = Duty Cycle in Boost mode  
f = Converter switching frequency  
L = Inductor value  
η= Estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)  
Note  
The calculation must be done for the minimum input voltage in boost mode.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using 方程2. 10-2 lists the possible inductors.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
10-2. List of Recommended Inductors  
INDUCTOR  
VALUE [µH]  
SATURATION CURRENT  
[A]  
PART NUMBER  
MANUFACTURER(1) SIZE (LxWxH mm)  
DCR [mΩ]  
0.47  
0.47  
5.4  
5.5  
7.6  
26  
XFL4015-471ME  
DFE201612E  
Coilcraft  
Toko  
4 x 4 x 2  
2.0 x 1.6 x 1.2  
(1) See Third-party Products Disclaimer.  
10.2.2.3 Output Capacitor Selection  
For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the  
VOUT and PGND pins of the IC. The recommended nominal output capacitor value is a single 22 µF for all  
programmed output voltages 3.6 V. Above that voltage, 2x 22 µF capacitors are recommended.  
It is important that the effective capacitance is given according to the recommended value in 8.3. In general,  
consider DC bias effects resulting in less effective capacitance. The choice of the output capacitance is mainly a  
trade-off between size and transient behavior since higher capacitance reduces transient response overshoot  
and undershoot and increases transient response time. 10-3 lists possible output capacitors.  
There is no upper limit for the output capacitance value.  
10-3. List of Recommended Capacitors(1)  
CAPACITOR  
[µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
PART NUMBER  
MANUFACTURER  
ESR [mΩ]  
22  
22  
22  
22  
47  
47  
6.3  
6.3  
10  
10  
10  
40  
10  
43  
43  
GRM188R60J226MEA0  
GRM187R61A226ME15  
GRM188R61A226ME15  
GRM187R60J226ME15  
GRM188R60J476ME15  
GRM219R60J476ME44  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
0603 (1608)  
0603 (1608)  
0603 (1608)  
0805 (2012)  
10  
6.3  
6.3  
(1) See Third-party Products Disclaimer.  
10.2.2.4 Input Capacitor Selection  
A 10 µF input capacitor is recommended to improve line transient behavior of the regulator and EMI behavior of  
the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and  
PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input supply is  
located more than a few inches from the TPS63802 converter, additional bulk capacitance can be required in  
addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical  
choice.  
10-4. List of Recommended Capacitors(1)  
CAPACITOR  
[µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
PART NUMBER  
MANUFACTURER  
ESR [mΩ]  
10  
10  
22  
6.3  
10  
10  
40  
10  
GRM188R60J106ME84  
GRM188R61A106ME69  
GRM188R60J226MEA0  
Murata  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
0603 (1608)  
6.3  
10.2.2.5 Setting The Output Voltage  
The output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT,  
FB, and GND. The feedback voltage is 500 mV nominal. The low-side resistor R2 (between FB and GND) must  
not exceed 100 k. The high-side resistor (between FB and VOUT) R1 is calculated by 方程3.  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS63802  
 
 
 
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
where  
VFB = 500 mV  
10-5. Resistor Selection for Typ. Voltages  
VO [V]  
2.5  
3.3  
3.6  
5
R1 [kΩ]  
R2 [kΩ]  
91  
365  
511  
91  
562  
91  
806  
91  
10.2.3 Application Curves  
10-6. Components for Application Characteristic Curves (1)  
REFERENCE  
DESCRIPTION  
PART NUMBER  
MANUFACTURER COMMENT  
TPS63802 2 A Buck-Boost Converter (2  
mm x 3 mm QFN)  
TPS63802DLA  
Texas Instruments  
0.47 µH, 4 mm x 4 mm x 1.5 mm, 5.4 A,  
7.6 mΩ  
L1  
XFL4015-471ME  
Coilcraft  
Murata  
10 µF, 0603, Ceramic Capacitor, ±20%,  
6.3 V  
C1  
C2  
C2  
GRM188R60J106ME84  
GRM188R60J226MEA0  
GRM188R60J226MEA0  
1x 22 µF, 0603, Ceramic Capacitor, ±20%,  
6.3 V  
Murata  
Murata  
VO 3.6 V  
2x 22 µF, 0603, Ceramic Capacitor, ±20%,  
6.3 V  
VO > 3.6 V  
R1  
R1  
R1  
R2  
R3  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
VO = 3.3 V  
VO = 3.6 V  
VO = 5 V  
511 k, 0603 Resistor, 1%, 100 mW  
562 k, 0603 Resistor, 1%, 100 mW  
806 k, 0603 Resistor, 1%, 100 mW  
91 k, 0603 Resistor, 1%, 100 mW  
100 k, 0603 Resistor, 1%, 100 mW  
(1) See Third-party Products Disclaimer.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
10-7. Typical Characteristics Curves  
PARAMETER  
CONDITIONS  
FIGURE  
Output Current Capability  
Typical Output Current Capability versus Input Voltage  
Switching Frequency  
VO = 3.3 V  
10-2  
Typical Inductor Switching Frequency versus Input  
Voltage  
IO = 0 A, MODE = High  
VO = 3.3 V  
10-3  
10-4  
Typical Inductor Burst Frequency versus Output Current  
Efficiency  
Efficiency versus Output Current (PFM/PWM)  
Efficiency versus Output Current (PWM only)  
Efficiency versus Output Current (PFM/PWM)  
Efficiency versus Output Current (PWM only)  
Efficiency versus. Input Voltage (PFM/PWM)  
Efficiency versus Input Voltage (PWM only)  
Regulation Accuracy  
VI = 2.5 V to 4.2 V, VO = 3.3 V, MODE = Low  
VI = 2.5 V to 4.2 V, VO = 3.3 V, MODE = High  
VI = 1.8 V to 5 V, VO = 3.3 V, MODE = Low  
VI = 1.8 V to 5 V, VO = 3.3 V, MODE = High  
VO = 3.3 V, MODE = Low  
10-5  
10-6  
10-7  
10-8  
10-9  
10-10  
IO = 1 A, MODE = High  
Load Regulation, PWM Operation  
VO = 3.3 V, MODE = High  
VO = 3.3 V, MODE = Low  
IO = 1 A, MODE = High  
IO = 1 A, MODE = Low  
10-11  
10-12  
10-13  
10-14  
Load Regulation, PFM/PWM Operation  
Line Regulation, PWM Operation  
Line Regulation, PFM/PWM Operation  
Switching Waveforms  
Switching Waveforms, PFM Boost Operation  
Switching Waveforms, PFM Buck-Boost Operation  
Switching Waveforms, PFM Buck Operation  
Switching Waveforms, PWM Boost Operation  
Switching Waveforms, PWM Buck-Boost Operation  
Switching Waveforms, PWM Buck Operation  
Transient Performance  
VI = 2.3 V, VO = 3.3 V, MODE = Low  
VI = 3.3 V, VO = 3.3 V, MODE = Low  
VI = 4.3 V, VO = 3.3 V, MODE = Low  
VI = 2.3 V, VO = 3.3 V, MODE = High  
VI = 3.3 V, VO = 3.3 V, MODE = High  
VI = 4.3 V, VO = 3.3 V, MODE = High  
10-15  
10-16  
10-17  
10-18  
10-19  
10-20  
VI = 2.5 V, VO = 3.3 V, Load = 100 mA to 1A, MODE =  
Low  
Load Transient, PFM/PWM Boost Operation  
Load Transient, PFM/PWM Buck-Boost Operation  
Load Transient, PFM/PWM Buck Operation  
Load Transient, PWM Boost Operation  
Load Transient, PWM Buck-Boost Operation  
Load Transient, PWM Buck Operation  
Line Transient, PWM Operation  
10-21  
10-22  
10-23  
10-24  
10-25  
10-26  
10-27  
10-28  
10-29  
VI = 3.3 V, VO = 3.3 V, Load = 100 mA to 1A, MODE =  
Low  
VI = 4.2 V, VO = 3.3V, Load = 100 mA to 1A, MODE =  
Low  
VI = 2.5 V, VO = 3.3 V, Load = 100 mA to 1A, MODE =  
High  
VI = 3.3 V, VO = 3.3 V, Load = 100 mA to 1A, MODE =  
High  
VI = 4.2 V, VO = 3.3 V, Load = 100 mA to 1A, MODE =  
High  
VI = 2.3 V to 4.3 V, VO = 3.3 V, Load = 0.5 A , MODE =  
Low  
VI = 2.3 V to 4.3 V, VO = 3.3 V, Load = 1 A , MODE =  
Low  
Line Transient, PWM Operation  
VI = 3 V to 3.6 V, VO = 3.3 V, Load = 0.5 A , MODE =  
Low  
Line Transient, PWM Operation  
Start-up  
Start-up Behavior from Rising Enable, PFM Operation  
Start-up Behavior from Rising Enable, PWM Operation  
VI = 2.2 V, VO = 3.3 V, Load = 10 mA, MODE = Low  
VI = 2.2 V, VO = 3.3 V, Load = 10 mA, MODE = High  
10-30  
10-31  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS63802  
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
VO = 3.3 V  
VO = 3.6 V  
VO = 5 V  
0.5  
0.0  
1.3  
1.8  
2.3  
2.8  
3.3  
Input Voltage (V)  
3.8  
4.3  
4.8  
5.3  
2.5  
2.7  
2.9  
3.1  
3.3 3.5  
Input Voltage (V)  
3.7  
3.9  
4.1  
4.3  
D002  
D007  
MODE = High  
I O = 0 A  
MODE = High  
VI rising  
10-2. Typical Output Current Capability versus  
10-3. Typical Inductor Switching Frequency  
Input Voltage  
versus Input Voltage  
1M  
100k  
10k  
100  
90  
80  
70  
VI = 2.5 V  
VI = 3.6 V  
VI = 4.8 V  
VI = 2.5 V  
VI = 3.6 V  
VI = 4.2 V  
1k  
1m  
60  
100m  
10m  
100m  
1m  
10m  
Output Current (A)  
100m  
1
2
Output Current (A)  
D018  
D019  
VO = 3.6 V  
MODE = Low  
VO = 3.3 V  
MODE = Low  
10-4. Typical Inductor Burst Frequency versus  
10-5. Efficiency versus Output Current (PFM/  
Output Current  
PWM)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
20  
VI = 2.5 V  
VI = 3.6 V  
VI = 4.2 V  
VI = 1.8 V  
VI = 3.3 V  
VI = 5.0 V  
10  
0
60  
100m  
1m  
10m  
100m  
Output Current (A)  
1
2
1m  
10m  
Output Current (A)  
100m  
1
2
D020  
D021  
VO = 3.3 V  
MODE = High  
VO = 3.3 V  
MODE = Low  
10-6. Efficiency versus Output Current (PWM  
10-7. Efficiency versus Output Current (PFM/  
Only)  
PWM)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
IO = 100 mA  
IO = 10 mA  
IO = 100 mA  
IO = 1 A  
VI = 1.8 V  
VI = 3.3 V  
VI = 5.0 V  
IO = 1.5 A  
0
1m  
10m  
100m  
Output Current (A)  
1
2
2.5  
2.9  
3.3  
Input Voltage (V)  
3.7  
4.1  
D022  
D023  
VO = 3.3 V  
MODE = High  
VO = 3.3 V  
MODE = Low  
10-8. Efficiency versus Input Voltage (PWM  
10-9. Efficiency versus Input Voltage (PFM/  
Only)  
PWM)  
100  
90  
0.2  
0.1  
0.0  
80  
-0.1  
70  
VI = 2.5 V  
VI = 3.6 V  
VI = 4.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
-0.2  
-0.3  
60  
0
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
1.8  
2.3  
2.8  
3.3 3.8  
Input Voltage (V)  
4.3  
4.8  
5.3  
D026  
D024  
VO = 3.3 V  
MODE = High  
IO = 1 A  
MODE = Low  
10-11. Load Regulation (PWM Only)  
10-10. Efficiency versus Input Voltage (PWM  
Only)  
1.5  
1.0  
0.5  
0.0  
0.3  
0.2  
0.1  
0.0  
-0.5  
-0.1  
-0.2  
-0.3  
VI = 2.5 V  
VI = 3.6 V  
VI = 4.2 V  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
-1.0  
-1.5  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
2.5  
2.7  
2.9  
3.1  
3.3 3.5  
Input Voltage (V)  
3.7  
3.9  
4.1  
4.3  
D027  
D028  
VO = 3.3 V  
MODE = Low  
IO = 1 A  
MODE = Low  
10-12. Load Regulation (PFM/PWM)  
10-13. Line Regulation (PWM Only)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
0.2  
0.1  
0.0  
-0.1  
VO = 1.8 V  
VO = 3.3 V  
VO = 5.2 V  
-0.2  
2.5  
2.7  
2.9  
3.1  
3.3 3.5  
Input Voltage (V)  
3.7  
3.9  
4.1  
4.3  
VI = 2.3 V, VO = 3.3  
V
MODE = Low  
IO = 40 mA  
D029  
IO = 1 A  
MODE = High  
10-15. Switching Waveforms, PFM Boost  
10-14. Line Regulation (PFM/PWM)  
Operation  
VI = 3.3 V, VO = 3.3  
VI = 4.2 V, VO = 3.3 V  
MODE = Low  
IO = 40 mA  
MODE = Low  
IO = 40 mA  
V
10-17. Switching Waveforms, PFM Buck  
10-16. Switching Waveforms, PFM Buck-Boost  
Operation  
Operation  
VI = 3.3 V, VO = 3.3  
VI = 2.3 V, VO = 3.3  
MODE = Low  
IO = 2 A  
MODE = Low  
IO = 2 A  
V
V
10-19. Switching Waveforms, PWM Buck-Boost  
10-18. Switching Waveforms, PWM Boost  
Operation  
Operation  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
VI = 4.2 V, VO = 3.3  
IO from 100 mA to  
MODE = Low  
IO = 2 A  
VI = 2.5 V, VO = 3.3  
V
V
1 A tr = 1 µs, tf = 1  
µs  
MODE = Low  
10-20. Switching Waveforms, PWM Buck  
Operation  
10-21. Load Transient, PFM/PWM Boost  
Operation  
IO from 100 mA  
IO from 100 mA  
VI = 3.3 V, VO = 3.3 V to 1 A tr = 1 µs, tf  
= 1 µs  
MODE = Low  
VI = 5 V, VO = 3.3 V  
to 1 A tr = 1 µs, tf  
= 1 µs  
MODE = Low  
10-22. Load Transient, PFM/PWM Buck-Boost  
10-23. Load Transient, PFM/PWM Buck  
Operation  
Operation  
IO from 100 mA  
IO from 100 mA  
VI = 2.5 V, VO = 3.3 V to 1 A tr = 1 µs, tf  
= 1 µs  
MODE = High  
VI = 3.3 V, VO = 3.3 V to 1 A tr = 1 µs, tf  
= 1 µs  
MODE = High  
10-24. Load Transient, PWM Boost Operation  
10-25. Load Transient, PWM Buck-Boost  
Operation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
VI from 2.2 V to  
IO from 100 mA  
IO = 0.5 A  
4.2 V tr =1 µs, tf = MODE = High  
1 µs  
VI = 5 V, VO = 3.3 V to 1 A tr = 1 µs, tf  
= 1 µs  
MODE = High  
10-27. Line Transient, PWM Operation  
10-26. Load Transient, PWM Buck Operation  
VI from 3 V to 3.6  
VI from 2.2 V to  
IO = 0.5 A  
V tr = 1 µs, tf = 1  
µs  
MODE = High  
IO = 1 A  
4.2 V tr = 1 µs, tf  
= 1 µs  
MODE = High  
10-29. Line Transient, PWM Operation  
10-28. Line Transient, PWM Operation  
VI = 4.2 V, VO = 3.3  
V
VI = 4.2 V, VO  
3.3 V  
=
100 mΩresistive  
100 mΩ  
MODE = Low  
MODE = High  
load  
resistive load  
10-30. Start-up Behavior from Rising Enable,  
10-31. Start-up Behavior from Rising Enable,  
PFM Operation  
PWM Operation  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
11 Power Supply Recommendations  
The TPS63802 device family has no special requirements for its input power supply. The input power supply  
output current needs to be rated according to the supply voltage, output voltage, and output current of the  
TPS63802.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS63802  
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
12 Layout  
12.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS63802 device.  
1. Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Route wide  
and direct traces to the input and output capacitor results in low trace resistance and low parasitic  
inductance.  
2. Use a common ground node for power ground and a different one for control ground to minimize the effects  
of ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.  
3. Use separate traces for the supply voltage of the power stage and the supply voltage of the analog stage.  
4. The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.  
12.2 Layout Example  
L1  
C1  
C2  
R2  
R1  
12-1. TPS63802 Layout  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
13.1.2 Development Support  
QFN/SON Package FAQs  
13.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS63802 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Selecting a DC/DC Converter for Maximum Battery Life in Pulsed-Load Applications  
Application Report  
Texas Instruments, Selecting the Right DC/DC Converter for Maximum Battery Life Application Report  
Texas Instruments, Supercapacitor Backup Power Supply with TPS63802 Application Report  
Texas Instruments, Extend Battery Lifetime in Wireless Network Cameras and Video Doorbells Application  
Note  
Texas Instruments, Prevent Battery Overdischarge with Precise Threshold Enable Pin Application Note  
Texas Instruments, Using Non-Inverting Buck-Boost Converter for Voltage Stabilization Application Report  
Texas Instruments, Precise Delayed Start-up with Precise Threshold Enable-pin Application Note  
Texas Instruments, Buck-Boost Converters Solving Power Challenges in Optical Modules Application Note  
Texas Instruments, Improving Load Transient Response for Controlled Loads Application Report  
Texas Instruments, TPS63802EVM User's Guide  
Texas Instruments, HotRod QFN Package PCB Attachment Application Report  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS63802  
 
 
 
 
 
TPS63802  
www.ti.com.cn  
ZHCSJ11D NOVEMBER 2018 REVISED JANUARY 2021  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS63802  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63802DLAR  
TPS63802DLAT  
ACTIVE  
ACTIVE  
VSON-HR  
VSON-HR  
DLA  
DLA  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
63802  
63802  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS63802DLAR  
TPS63802DLAT  
VSON-  
HR  
DLA  
DLA  
10  
10  
3000  
250  
180.0  
8.4  
2.25  
3.25  
1.05  
4.0  
8.0  
Q1  
VSON-  
HR  
180.0  
8.4  
2.25  
3.25  
1.05  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS63802DLAR  
TPS63802DLAT  
VSON-HR  
VSON-HR  
DLA  
DLA  
10  
10  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
DLA0010A  
2.1  
1.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
(0.1) TYP  
SYMM  
0.5  
0.3  
5X  
0.3  
0.2  
5X  
5
6
8X 0.5  
SYMM  
2
10  
1
0.3  
0.2  
5X  
0.8  
0.6  
0.1  
C A B  
C
4X  
1.2  
0.05  
1
4223750/D 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
DLA0010A  
PKG  
5X (0.9)  
4X (0.75)  
(0.55)  
5X (0.6)  
5X (0.25)  
10  
1
8X  
(0.5)  
(0.25)  
(2)  
PKG  
(R0.05) TYP  
5
6
4X (0.25)  
4X (0.9)  
(1.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
METAL  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223750/D 03/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
DLA0010A  
PKG  
5X (0.9)  
(0.175)  
4X (0.75)  
5X (0.6)  
5X (0.25)  
10  
1
8X  
(0.5)  
2X  
(0.25)  
PKG  
(2)  
(R0.05) TYP  
(0.5)  
5
6
4X (0.25)  
2X (0.55)  
(0.75)  
4X (0.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 8: 83%  
SCALE: 30X  
4223750/D 03/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS63805

具有微型解决方案尺寸的 2A 高效 11µA 静态电流降压/升压转换器
TI

TPS63805YFFR

具有微型解决方案尺寸的 2A 高效 11µA 静态电流降压/升压转换器 | YFF | 15 | -40 to 125
TI

TPS63805YFFT

具有微型解决方案尺寸的 2A 高效 11µA 静态电流降压/升压转换器 | YFF | 15 | -40 to 125
TI

TPS63805_V02

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS63806

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS63806YFFR

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS63807

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS63807YFFR

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS6380X

TPS6380x High-Efficiency, Low IQ Buck-Boost Converter with Small Solution Size
TI

TPS63810

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器
TI

TPS63810YFFR

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器 | YFF | 15 | -40 to 125
TI

TPS63811

可实现动态电压调节且具有 I²C 接口的 2.5A 高效降压/升压转换器
TI