TPS65261-1RHBR [TI]

4.5V 至 18V 输入电压、3A/2A/2A 输出电流三路同步 | RHB | 32 | -40 to 85;
TPS65261-1RHBR
型号: TPS65261-1RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 18V 输入电压、3A/2A/2A 输出电流三路同步 | RHB | 32 | -40 to 85

开关
文件: 总48页 (文件大小:3293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
TPS6526x 4.5V 18V 输入电压、3A/2A/2A 输出电流  
三路同步降压转换器  
1 特性  
3 说明  
• 工作输入电源电压范围  
TPS65261TPS65261-1 是一款具有 3A/2A/2A 输出  
4.5V 18V)  
电流的单片三路同步降压转换器。4.5V 18V 的宽输  
入电源电压范围包括大多数运行自 5V9V12V 或  
15V 电源总线的中间总线电压。该转换器具有恒定频  
率峰值电流模式专用于简化应用同时方便设计人员  
根据目标应用来优化系统。可使用一个外部电阻器在  
250 kHz 2 MHz 之间调整此转换器的开关频率。  
Buck1 Buck 23 之间的 180°异相运行Buck2 和  
3 同相运行最大限度地减少了对输入滤波器的要求。  
• 反馈基准电压0.6V ±1%  
• 最大连续输出电流3A/2A/2A  
• 可调节时钟频率范围250 kHz 2 MHz  
• 针对每次降压的专用使能引脚和软启动引脚  
• 自动加电/断电序列  
• 轻载条件下的的脉冲跳跃模(PSM)仅限  
TPS65261)  
• 输出电压电源正常状态指示器  
• 输入电压电源故障指示器  
• 热过载保护  
在将 MODE 引脚接至 V7V 并且配置 EN1/2/3 引脚  
TPS65261TPS65261-1 有一个自动上电时  
序。此器件还特有一个开RESET 信号来监视断电。  
2 应用  
轻负载时TPS65261 动运行在脉冲跳跃模式  
(PSM)TPS65261-1 行在强制持续电流模式  
(FCC)PSM 模式通过减少轻负载时的开关损耗来提  
供高效率FCC 模式降低噪声灵敏性和射频 (RF)  
干扰。  
• 数字电(DTV)  
• 机顶盒  
• 家庭网关和接入点网络  
• 无线路由器  
• 安全监控  
POS 机  
此器件特有过压保护、过流和短路保护以及过热保护。  
电源正常引脚在任何输出电压超出稳压范围时被置为有  
效。  
器件信息(1)  
器件型号  
TPS65261  
TPS65261-1  
模式  
PSM  
封装  
RHBVQFN32)  
FCCM  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Vout1  
Vin  
PVINx  
VIN  
LX1  
TPS65261  
TPS65261-1  
FB1  
LX2  
VDIV  
Vout2  
Vout3  
RESET  
PGOOD  
ENx  
FB2  
LX3  
MODE  
SSx  
ROSC  
AGND  
FB3  
PGND  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCD3  
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................24  
8 Application and Implementation..................................26  
8.1 Application Information............................................. 26  
8.2 Typical Application.................................................... 26  
8.3 Power Supply Recommendations.............................36  
8.4 Layout....................................................................... 36  
9 Device and Documentation Support............................39  
9.1 Documentation Support............................................ 39  
9.2 接收文档更新通知..................................................... 39  
9.3 支持资源....................................................................39  
9.4 Trademarks...............................................................39  
9.5 静电放电警告............................................................ 39  
9.6 术语表....................................................................... 39  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
Information.................................................................... 39  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (May 2014) to Revision C (May 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 通篇去除了图像的颜色........................................................................................................................................1  
Changed the description of V7V pin in 5-1.....................................................................................................3  
Moved the storage temperature row in the ESD Ratings table to the Absolute Maximum Ratings table...........5  
Renamed Handling Ratings to ESD Ratings ..................................................................................................... 5  
Changed the recommended value of capacitor from V7V pin to power ground in V7V Low Dropout Regulator  
and Bootstrap................................................................................................................................................... 21  
Changed the recommended value of C5 in 8-1 .......................................................................................... 26  
Changes from Revision A (December 2013) to Revision B (May 2014)  
Page  
• 更改了所有文本、表格和图形以符合新的数据表模板.........................................................................................1  
Changed 8-37 ............................................................................................................................................. 38  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
2
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
32 31 30 29 28 27 26 25  
24  
1
2
3
4
5
6
7
8
EN3  
SS1  
23  
22  
21  
20  
19  
18  
17  
COMP1  
FB1  
PGOOD  
RESET  
MODE  
V7V  
AGND  
ROSC  
FB3  
Thermal Pad  
FB2  
COMP2  
SS2  
COMP3  
SS3  
9
10 11 12 13 14 15 16  
(There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal  
performance.)  
5-1. RHB Package 8-Pin VQFN (Top View)  
5-1. Pin Functions  
PIN  
DESCRIPTION  
NO.  
NAME  
Enable for buck3. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck3 with a resistor  
divider.  
1
EN3  
An open drain output, asserts low if output voltage of any buck beyond regulation range due to thermal shutdown,  
overcurrent, undervoltage or ENx shut down.  
2
3
4
PGOOD  
RESET Open drain power failure output signal.  
When high, an automatic power-up/power-down sequence is provided according to states of EN1, EN2 and EN3  
MODE  
pins.  
5
6
V7V  
FB2  
Internal LDO for gate driver and internal controller. Connect a 10-µF capacitor from the pin to power ground  
Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider.  
Error amplifier output and Loop compensation pin for buck2. Connect a series resistor and capacitor to compensate  
the control loop of buck2 with peak current PWM mode.  
7
COMP2  
SS2  
Soft-start and tracking input for buck2. An internal 5-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
8
Boot strapped supply to the high side floating gate driver in buck2. Connect a capacitor (recommend 47nF) from  
BST2 pin to LX2 pin.  
9
BST2  
Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN2 voltage.  
10  
11  
12  
13  
14  
LX2  
Power ground connection of buck2. Connect PGND2 pin as close as practical to the () terminal of VIN2 input  
ceramic capacitor.  
PGND2  
PVIN2  
PVIN3  
PGND3  
Input power supply for buck2. Connect PVIN2 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 10µF).  
Input power supply for buck3. Connect PVIN3 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 10µF).  
Power ground connection of buck3. Connect PGND3 pin as close as practical to the () terminal of VIN3 input  
ceramic capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
DESCRIPTION  
NO.  
NAME  
Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN3 voltage.  
15  
LX3  
Boot strapped supply to the high side floating gate driver in buck3. Connect a capacitor (recommend 47nF) from  
BST3 pin to LX3 pin.  
16  
17  
18  
BST3  
SS3  
Soft-start and tracking input for buck3. An internal 5-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
Error amplifier output and Loop compensation pin for buck3. Connect a series resistor and capacitor to compensate  
the control loop of buck3 with peak current PWM mode.  
COMP3  
19  
20  
FB3  
Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider.  
Oscillator frequency programmable pin. Connect an external resistor to set the switching frequency.  
ROSC  
Analog ground common to buck controllers and other analog circuits. It must be routed separately from high current  
power grounds to the () terminal of bypass capacitor of input voltage VIN.  
21  
22  
23  
AGND  
FB1  
Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider.  
Error amplifier output and Loop compensation pin for buck1. Connect a series resistor and capacitor to compensate  
the control loop of buck1 with peak current PWM mode.  
COMP1  
Soft-start and tracking input for buck1. An internal 5-µA pullup current source is connected to this pin. The soft-start  
time can be programmed by connecting a capacitor between this pin and ground.  
24  
25  
26  
27  
28  
SS1  
BST1  
LX1  
Boot strapped supply to the high side floating gate driver in buck1. Connect a capacitor (recommend 47nF) from  
BST1 pin to LX1 pin.  
Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is from a  
diode voltage below the ground up to PVIN1 voltage.  
Power ground connection of Buck1. Connect PGND1 pin as close as practical to the () terminal of VIN1 input  
ceramic capacitor.  
PGND1  
PVIN1  
Input power supply for buck1. Connect PVIN1 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 10µF).  
29  
30  
VIN  
Buck controller power supply.  
VDIV  
Input voltage threshold for power failure detection of input voltage.  
Enable for buck1. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck1 with a resistor  
divider.  
31  
32  
EN1  
EN2  
PAD  
Enable for buck2. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck2 with a resistor  
divider.  
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for  
optimal thermal performance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
4
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
1.0  
0.3  
0.3  
0.3  
0.3  
40  
MAX  
20  
UNIT  
V
PVIN1, PVIN2, PVIN3,VIN  
LX1, LX2, LX3 (Maximum withstand voltage transient < 20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, PGOOD, V7V, MODE, RESET, VDIV  
FB1, FB2, FB3, COMP1 , COMP2, COMP3, SS1, SS2, SS3, ROSC  
AGND, PGND1, PGND2, PGND3  
20  
V
7
V
7
V
3.6  
0.3  
125  
150  
V
V
Operating junction temperature, TJ  
°C  
°C  
Storage temperature range, Tstg  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
MIN  
MAX  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
500  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
18  
UNIT  
V
PVIN1, PVIN2, PVIN3,VIN  
LX1, LX2, LX3 (Maximum withstand voltage transient < 20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, PGOOD, V7V, MODE, RESET, VDIV  
FB1, FB2, FB3, COMP1 , COMP2, COMP3, SS1, SS2, SS3, ROSC  
Operating junction temperature  
18  
V
0.8  
0.1  
0.1  
0.1  
40  
40  
6.8  
6.3  
3
V
V
V
TA  
TJ  
85  
°C  
°C  
Operating junction temperature  
125  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
 
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
TPS65261  
THERMAL METRIC(1)  
RHB (32 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
31.6  
23.4  
6.1  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
6.1  
ψJB  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
6
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25°C, VIN = 12 V, fSW = 600 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
4.5  
4
18  
4.5  
4
V
V
VIN rising  
VIN falling  
4.25  
3.75  
500  
9.2  
UVLO  
VIN undervoltage lockout  
Shutdown supply current  
3.5  
Hysteresis  
mV  
µA  
IDDSDN  
EN1=EN2=EN3=MODE=0 V  
EN1=EN2=EN3=5 V,  
FB1=FB2=FB3=0.8 V  
IDDQ_NSW  
605  
µA  
Input quiescent current without  
buck1/2/3 switching  
IDDQ_NSW1  
IDDQ_NSW2  
IDDQ_NSW3  
V7V  
EN1=5V, EN2=EN3=0 V, FB1=0.8V  
EN2=5 V, EN1=EN3=0V, FB2=0.8 V  
EN3=5V, EN1=EN2=0V, FB3=0.8V  
V7V load current = 0 A  
330  
330  
330  
6.3  
µA  
µA  
µA  
V
V7V LDO output voltage  
V7V LDO current limit  
6
6.6  
IOCP_V7V  
175  
mA  
FEEDBACK VOLTAGE REFERENCE  
VCOMP = 1.2 V, TJ = 25°C  
0.596  
0.594  
0.6 0.605  
0.6 0.606  
V
V
VFB  
Feedback voltage  
VCOMP = 1.2 V, TJ = -40°C to 125°C  
IOUT1 = 1.5 A, IOUT2 = 1 A, IOUT3 = 1 A  
5 V < PVINx < 18 V  
VLINEREG_BUCK  
VLOADREG_BUCK  
Line regulation-DC  
Load regulation-DC  
0.002  
%/V  
%/A  
0.02  
IOUTx = (10100%) × IOUTx_max  
Buck1, Buck2, Buck3  
VENXH  
VENXL  
IENX1  
EN1/2/3 high level input voltage  
1.2  
1.15  
3.6  
6.6  
3
1.26  
V
EN1/2/3 low level input voltage  
EN1/2/3 pullup current  
EN1/2/3 pullup current  
Hysteresis current  
1.1  
4.3  
V
ENx = 1 V  
µA  
µA  
µA  
µA  
ns  
µS  
IENX2  
ENx = 1.5 V  
IENhys  
ISSX  
TON_MIN  
Gm_EA  
Soft start charging current  
Minimum on time  
5
6
80  
100  
Error amplifier trans-conductance  
300  
2 µA < ICOMPX < 2 µA  
COMP1/2/3 voltage to inductor current  
Gm  
Gm_PS1/2/3  
ILX = 0.5 A  
7.4  
A/V  
ILIMIT1  
Buck1 peak inductor current limit  
Buck1 low side source current limit  
Buck1 low side sink current limit  
Buck2/3 peak inductor current limit  
Buck2/3 low side source current limit  
Buck2/3 low side sink current limit  
Overcurrent wait time  
4.33  
2.6  
5.1  
4.3  
1.3  
3.1  
2.7  
1
6.02  
3.73  
A
A
ILIMITSOURCE1  
ILIMITSINK1  
A
ILIMIT2/3  
A
ILIMITSOURCE2/3  
ILIMITSINK2/3  
THiccup_wait  
THiccup_re  
A
A
256  
8192  
100  
65  
cycles  
cycles  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
Hiccup time before re-start  
Rdson_HS1  
Rdson_LS1  
Rdson_HS2  
Rdson_LS2  
Rdson_HS3  
Rdson_LS3  
Buck1 High-side switch resistance  
Buck1 low-side switch resistance  
Buck2 High-side switch resistance  
Buck2 low-side switch resistance  
Buck3 High-side switch resistance  
Buck3 low-side switch resistance  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
VIN = 12 V  
140  
95  
140  
95  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TA = 25°C, VIN = 12 V, fSW = 600 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD, MODE, POWER SEQUENCE  
FBx undervoltage Falling  
92.5  
95  
%VREF  
%VREF  
%VREF  
%VREF  
cycles  
cycles  
µA  
FBx undervoltage Rising  
FBx overvoltage Rising  
FBx overvoltage Falling  
Vth_PG  
Feedback voltage threshold  
107.5  
105  
TDEGLITCH(PG)_F PGOOD falling edge deglitch time  
TRDEGLITCH(PG)_R PGOOD rising edge deglitch time  
128  
512  
IPG  
PGOOD pin leakage  
0.05  
0.4  
VLOW_PG  
VMODEH  
VMODEL  
IMODE1  
IMODE2  
PGOOD pin low voltage  
MODE high level input voltage  
MODE low level input voltage  
MODE pullup current  
ISINK = 1 mA  
V
1.2  
1.15  
3.6  
1.26  
V
1.1  
V
MODE = 1 V  
µA  
MODE pullup current  
MODE = 1.5 V  
6.6  
µA  
Delay time between bucks at automatic  
power sequencing mode  
Tpsdelay  
MODE = 1.5 V  
1024  
cycles  
POWER FAILURE DETECTOR  
VDIVth  
VDIV threshold  
1.18  
1.23  
1
1.26  
V
µA  
VDIV = 1 V  
IVDIV  
VDIV pullup current  
VDIV = 1.5 V  
2
µA  
IVDIVhys  
VDIV hysteresis current  
1
µA  
Tdeglitch_R  
Tdeglitch_F  
OSCILLATOR  
FSW  
RESET deglitch on the rising edge  
RESET deglitch on the falling edge  
534  
14  
cycles  
12  
16 cycles  
560  
250  
600  
640  
2000  
kHz  
kHz  
ROSC = 73.2 kΩ  
Switching frequency  
FSW_range  
THERMAL PROTECTION  
TTRIP_OTP  
Temperature rising  
Hysteresis  
160  
20  
°C  
°C  
Thermal protection trip point  
THYST_OTP  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
8
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = 25°C, VIN = 12 V, VOUT1 = 1.2 V, VOUT2 = 3.3 V, VOUT3 = 1.8 V, fSW = 600 kHz (unless otherwise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSM Mode, Vout = 1.2V  
PSM Mode, VO = 1.2 V  
PSM Mode, Vout = 1.8V  
PSM Mode, VO = 1.8 V  
PSM M VO = 3.3V  
PSM Mode, VO = 3.3 V  
PSM M Vout = .3V  
PSM Mode, VO = 3.3 V  
PSM M VO = 5.0V  
PSM Mode, VO = 5.0 V  
VO = 1.2V  
PSM M Vout = 5.0V  
PSM Mode, VO = 5.0 V  
M Vout = 1.8V  
FCC Mode, VO = 1.8 V  
F M  
FCC Mode, VO = 1.2 V  
F
F M VO = 3.3V  
FCC Mode, VO = 3.3 V  
F M Vout = .3V  
FCC Mode, VO = 3.3 V  
FFCCCC MMooddee,, VVO==55..00VV  
FFCCCC MMooddee,, VVou=t =5.50.0VV  
O
O
0.01  
0.1  
1
0.01  
0.1  
1
Output Load (A)  
Output Load (A)  
C002  
C003  
6-1. BUCK 1 Efficiency  
6-2. BUCK 2 Efficiency  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
VIN=5V  
IN = 5 V  
VIN=5V  
IN = 5 V  
V
V
VVIN==1122VV  
VVIN==1122VV  
IN  
IN  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Output Load (A)  
Output Load (A)  
C004  
C005  
VOUT = 1.2 V  
6-3. BUCK1, PSM Mode, Load Regulation  
VOUT = 3.3 V  
6-4. BUCK2, PSM Mode, Load Regulation  
1.820  
1.210  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.206  
1.202  
1.198  
1.194  
1.190  
IOUT= A  
IOUT = 0.1 A  
VIN=5V  
VIN = 5 V  
IOUT= A  
IOUT = 1.5 A  
VVIN==1122VV  
IIOUT==3.0AA  
OUT  
IN  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
4
6
8
10  
12  
14  
16  
18  
Output Load (A)  
Input Voltage (V)  
C006  
C007  
VOUT = 1.8 V  
VOUT = 1.2 V  
6-6. BUCK1, PSM Mode, Line Regulation  
6-5. BUCK3, PSM Mode, Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1 = 1.2 V, VOUT2 = 3.3 V, VOUT3 = 1.8 V, fSW = 600 kHz (unless otherwise noted)  
3.300  
3.298  
3.296  
3.294  
3.292  
3.290  
1.810  
1.806  
1.802  
1.798  
1.794  
1.790  
IOUT=  
IOUT = 0.1 A  
A
IOUT=  
IOUT = 0.1 A  
A
IOUT= A  
IOUT = 1.0 A  
IOUT= A  
IOUT = 1.0 A  
IIOUT==2A.0 A  
OUT  
IIOUT==2A.0 A  
OUT  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Input Voltage (V)  
C008  
C009  
VOUT = 3.3 V  
6-7. BUCK2, PSM MODE, LINE REGULATION  
VOUT = 1.8 V  
6-8. BUCK3, PSM Mode, Line Regulation  
640  
620  
600  
580  
560  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0
25  
50  
75  
100  
125  
œ50  
œ25  
0
25  
50  
75  
100  
125  
-50  
-25  
Junction Temperature (°C)  
C011  
Junction Temperature (°C)  
C012  
6-9. Voltage Reference vs Temperature  
ROSC = 73.2 kΩ  
6-10. Oscillator Frequency vs Temperature  
15  
13  
11  
9
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
7
5
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
œ50  
œ25  
œ50  
œ25  
Junction Temperature (°C)  
Junction Temperature (°C)  
C013  
C014  
VIN = 12 V  
VIN = 12 V  
EN = 1 V  
6-11. Shutdown Quiescent vs Temperature  
6-12. EN Pin Pull-Up Current vs Temperature, EN=1.0V  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1 = 1.2 V, VOUT2 = 3.3 V, VOUT3 = 1.8 V, fSW = 600 kHz (unless otherwise noted)  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
1.28  
1.24  
1.20  
1.16  
1.12  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
œ50  
œ25  
œ50  
œ25  
Junction Temperature (°C)  
Junction Temperature (°C)  
C015  
C016  
VIN = 12 V  
EN = 1.5 V  
VIN = 12 V  
6-13. EN Pin Pullup Current vs Temperature, EN = 1.5 V  
6-14. EN Pin Threshold Raising vs Temperature  
1.23  
5.4  
1.19  
1.15  
1.11  
1.07  
5.2  
5.0  
4.8  
4.6  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
œ50  
œ25  
œ50  
œ25  
Junction Temperature (°C)  
Junction Temperature (°C)  
C017  
C018  
VIN = 12 V  
VIN = 12 V  
6-15. EN Pin Threshold Falling vs Temperature  
6-16. SS Pin Charge Current vs Temperature  
5.5  
3.5  
5.3  
5.1  
4.9  
4.7  
3.3  
3.1  
2.9  
2.7  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
œ50  
œ25  
œ50  
œ25  
Junction Temperature (°C)  
Junction Temperature (°C)  
C019  
C020  
VIN = 12 V  
VIN = 12 V  
6-17. Buck1 High-Side Current Limit vs Temperature  
6-18. Buck2 High-Side Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1 = 1.2 V, VOUT2 = 3.3 V, VOUT3 = 1.8 V, fSW = 600 kHz (unless otherwise noted)  
3.5  
3.3  
3.1  
2.9  
2.7  
1.25  
1.24  
1.23  
1.22  
1.21  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
œ50  
œ25  
œ50  
œ25  
Junction Temperature (°C)  
Junction Temperature (°C)  
C021  
C022  
6-20. VDIV Pin Threshold vs Temperature  
VIN = 12 V  
6-19. Buck3 High-Side Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
12  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65261, TPS65261-1 is a monolithic triple synchronous step-down (buck) converter with 3A/2A/2A  
output currents. A wide 4.5V to 18V input supply voltage range encompasses the most intermediate bus  
voltages operating off 5V, 9V, 12V or 15V power bus. The feedback voltage reference for each buck is 0.6V.  
Each buck is independent with dedicated enable, soft-start and loop compensation pins.  
The TPS65261, TPS65261-1 implements a constant frequency, peak current mode control that simplifies  
external loop compensation. The wide switching frequency of 250kHz to 2MHz allows optimizing system  
efficiency, filtering size and bandwidth. The switching frequency can be adjusted with an external resistor  
connected between ROSC pin and ground. The switching clock of buck1 is 180° out-of-phase operation from the  
clocks of buck2 and buck3 channels to reduce input current ripple, input capacitor size and power supply  
induced noise.  
The TPS65261, TPS65261-1 has been designed for safe monotonic startup into pre-biased loads. The default  
start up is when VIN is typically 4.5V. The ENx pin also can be used to adjust the input voltage under voltage  
lockout (UVLO) with an external resistor divider. In addition, the ENx pin has an internal 3.6uA current source, so  
the EN pin can be floating to automatically power up the converters.  
The TPS65261, TPS65261-1 reduces the external component count by integrating a bootstrap circuit. The bias  
voltage for the integrated high-side MOSFET is supplied by a capacitor between the BST and LX pin. A UVLO  
circuit monitors the bootstrap capacitor voltage VBST-VLX in each buck. When VBST-VLX voltage drops to the  
threshold, LX pin is pulled low to recharge the bootstrap capacitor. The TPS65261, TPS65261-1 can operate at  
100% duty cycle as long as the bootstrap capacitor voltage is higher than the BOOT-LX UVLO threshold which is  
typically 2.1V.  
The TPS65261, TPS65261-1 features a PGOOD pin to supervise each output voltage of the buck converters.  
The TPS65261, TPS65261-1 has power good comparators with hysteresis, which monitor the output voltages  
through feedback voltages. When all bucks are in regulation range and power sequence is done, PGOOD is  
asserted to high.  
The SS (soft start/tracking) pin is used to minimize inrush currents or provide power supply sequencing during  
power up. A small value capacitor or resistor divider is connected to the pin for soft start or voltage tracking.  
At light loading, TPS65261 will automatically operate in pulse skipping mode (PSM) to save power.  
The TPS65261, TPS65261-1 is protected from overload and over temperature fault conditions. The converter  
minimizes excessive output overvoltage transients by taking advantage of the power good comparator. When the  
output is overvoltage, the high-side MOSFET is turned off until the internal feedback voltage is lower than 105%  
of the 0.6V reference voltage. The TPS65261, TPS65261-1 implements both high-side MOSFET overload  
protection and bidirectional low-side MOSFET overload protection to avoid inductor current runaway. If the  
overcurrent condition has lasted for more than the OC wait time (256 clock cycles), the converter will shut down  
and re-start after the hiccup time (8192 clock cycles). The TPS65261, TPS65261-1 shuts down if the junction  
temperature is higher than the thermal shutdown trip point. When the junction temperature drops 20°C typically  
below the thermal shutdown trip point, the TPS65261, TPS65261-1 will be restarted under control of the soft  
start circuit automatically.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
7.2 Functional Block Diagram  
ROSC  
VIN  
VIN  
V3V  
OSC/Phase Shift  
V7V LDO  
Bias  
V7V  
V7V  
VIN  
clk  
enable  
PVIN2  
BST2  
LX2  
V7V  
VIN  
clk  
en_buck2  
VIN  
VIN  
PVIN1  
enable  
en_buck1  
BST  
LX  
BST1  
LX1  
BUCK2  
BST  
LX  
MODE  
BUCK1  
PGND2  
MODE  
PGND  
Comp  
vfb  
PGND1  
5 µA  
PGND  
SS2  
FB2  
Comp  
vfb  
SS  
5 µA  
SS1  
SS  
FB1  
COMP1  
1 µA  
COMP2  
1 µA  
VIN  
1.23 V  
Power  
Failure  
deglitch  
VDIV  
RESET  
PGOOD  
clk  
V7V  
VIN  
PVIN3  
BST3  
LX3  
en_buck3  
MODE  
enable  
VIN  
Power  
Good  
BST  
LX  
3 µA  
3.6 µA  
FB1  
FB2  
FB3  
BUCK3  
MODE  
EN1  
PGND3  
PGND  
Comp  
vfb  
5 µA  
1.2 V  
2 K  
6.3 V  
3.6 µA  
SS3  
FB3  
SS  
3 µA  
en_buck1  
1.2 V  
6.3 V  
3.6 µA  
2 K  
2 K  
2 K  
State  
Machine  
en_buck2  
en_buck3  
3 µA  
EN2  
COMP3  
AGND  
1.2 V  
6.3 V  
3.6 µA  
OT  
Over  
Temp  
3 µA  
EN3  
1.2 V  
6.3 V  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. It is  
recommended to use 1% tolerance or better resistors.  
Vout  
R1  
FB  
COMP  
R2  
0.6 V  
7-1. Voltage Divider Circuit  
0.6  
R2 = R1 ´  
Vout - 0.6  
(1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
14  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
To improve efficiency at light loads, consider using larger value resistors. If the values are too high, the regulator  
is more sensitive to noise. The recommended resistor values are shown in 7-1.  
7-1. Output Resistor Divider Selection  
OUTPUT VOLTAGE  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
1
10  
10  
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
5
15  
10  
20  
10  
31.6  
45.3  
22.6  
73.2  
36.5  
10  
10  
4.99  
10  
5
4.99  
7.3.2 Power Failure Detector  
The power failure detector monitors the voltage on VDIV, and sets open-drain output RESET low when VDIV is  
below 1.23V. There is deglitch on the rising edge, 534 frequency cycles. 7-2 shows the power failure detector  
timing diagram.  
1 µA  
VIN  
V7V  
Threshold_r  
VIN  
Threshold_f  
i
h
1 µA  
R1  
1.23 V  
V7V  
Power  
Failure  
ip  
VDIV  
RESET  
RESET  
R2  
Delay Time  
534 Cycles  
7-2. Power Failure Detector Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
The thresholds can be calculated using 方程2 and 方程3.  
R1  
R2  
æ
ö
Threshold_ = Vref 1+  
-Ip ´R1  
r
ç
÷
è
ø
(2)  
(3)  
R1  
R2  
æ
ö
Threshold_ = Vref 1+  
- I +I ´R1  
(
)
f
P
h
ç
÷
è
ø
The divider resisters can be calculated using 方程4 and 方程5.  
Threshold_ - Threshold_  
R1=  
r
f
Ih  
(4)  
(5)  
Vref  
Threshold_ - Vref  
R2 =  
r
´Ih + Ip  
Threshold_ - Threshold_  
r
f
Where Ih = 1µA, Ip = 1µA.  
7.3.3 Enable and Adjusting Undervoltage Lockout  
The EN1/2/3 pin provides electrical on/off control of the device. After the EN1/2/3 pin voltage exceeds the  
threshold voltage, the device starts operation. If each ENx pin voltage is pulled below the threshold voltage, the  
regulator stops switching and enters low Iq state.  
The EN pin has an internal pull-up current source, allowing the user to float the EN pin to enable the device. If an  
application requires controlling the EN pin, use open drain or open collector output logic to interface with the pin.  
The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500mV. If an  
application requires either a higher UVLO threshold on the VIN pin or a secondary UVLO on the PVINx in split  
rail applications, then the ENx pin can be configured as shown in 7-3, 7-4 and 7-5. When using the  
external UVLO function, it is recommended to set the hysteresis to be greater than 500mV.  
The EN pin has a small pull-up current Ip which sets the default state of the pin to enable when no external  
components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. The UVLO thresholds can be  
calculated using 方程6 and 方程7.  
æ
ö
÷
ø
VENFALLING  
V
- V  
STOP  
START ç  
VENRISING  
è
R1 =  
æ
ö
VENFALLING  
I
1-  
+ I  
÷
h
P ç  
VENRISING  
è
ø
(6)  
(7)  
R1 ´ VENFALLING  
VSTOP - VENFALLILNG + R I + I  
R2 =  
1 (h )  
p
Where Ih = 3µA, IP = 3.6uA, VENSRISING = 1.2V, VENFALLING = 1.15V.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
16  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
VIN  
PVIN  
i
h
i
h
R1  
R1  
p
i
p
i
EN  
EN  
R2  
R2  
7-3. Adjustable VIN Undervoltage Lockout  
7-4. Adjustable PVIN Undervoltage Lockout,  
VIN>4.5V  
PVIN  
VIN  
i
h
R1  
p
i
EN  
R2  
7-5. Adjustable VIN and PVIN Undervoltage Lockout  
7.3.4 Soft-Start Time  
The voltage on the respective SS pin controls the start-up of the buck output. When the voltage on the SS pin is  
less than the internal 0.6V reference, the TPS65261, TPS65261-1 regulates the internal feedback voltage to the  
voltage on the SS pin instead of 0.6V. The SS pin can be used to program an external soft-start function or to  
allow output of the buck to track another supply during start-up. The device has an internal pull-up current source  
of 5µA (typical) that charges an external soft-start capacitor to provide a linear ramping voltage at the SS pin.  
The TPS65261, TPS65261-1 regulates the internal feedback voltage to the voltage on the SS pin, allowing  
VOUT to rise smoothly from 0V to its regulated voltage without inrush current. The soft-start time can be  
calculated approximately by 方程8.  
Css(nF)´ Vref(V)  
Tss ms =  
( )  
Iss(µA)  
(8)  
Many of the common power supply sequencing methods can be implemented using the SSx and ENx pins. 图  
7-6 shows the method implementing ratio-metric sequencing by connecting the SSx pins of three buck channels  
together. The regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start  
time, the pull-up current source must be tripled in 方程8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
EN  
31  
EN threshold=1.2 V  
EN1  
32  
EN2  
1
EN3  
Vout3 = 3.3 V  
24  
SS1  
Vout2 1.8 V  
Vout1 1.2 V  
8
SS2  
17  
SS3  
PGOOD  
Css  
PGOOD Deglitch Time  
Tss = Css*0.6 V/15 µA  
7-6. Ratio Metric Power Up Using SSx Pins  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
18  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
Simultaneous power supply sequencing can be implemented by connecting capacitor to SSx pin, shown in 图  
7-7. The capacitors can be calculated using 方程8 and 方程9.  
Css1  
Css2  
Css3  
=
=
Vout1 Vout2 Vout3  
(9)  
EN  
31  
EN threshold = 1.2 V  
EN1  
32  
1
EN2  
EN3  
Vout3 = 3.3 V  
24  
8
SS1  
SS2  
SS3  
Css1  
Vout2 1.8 V  
Vout1 1.2 V  
Css2  
17  
PGOOD  
Css3  
PGOOD Deglitch Time  
Tss = Css3*0.6 V/5 µA  
7-7. Simultaneous Startup Sequence Using SSx Pins  
7.3.5 Power Up Sequencing  
TPS65261, TPS65261-1 features a comprehensive sequencing circuit for the 3 bucks. If the MODE pin ties high  
to V7V, three buck start up and shutdown is in sequence according to different buck enable pin setup. If the  
MODE pin ties low to ground, three buck on/off is separately controlled by three enable pins.  
7.3.5.1 External Power Sequencing  
The TPS65261, TPS65261-1 has a dedicated enable pin and soft-start pin for each converter. The converter  
enable pins are biased by a current source that allows for easy sequencing with the addition of an external  
capacitor. Disabling the converter with an active pull-down transistor on the ENs pin allows for a predictable  
power-down timing operation. 7-8 shows the timing diagram of a typical buck power-up sequence by  
connecting a capacitor at ENx pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
VIN  
V7V  
EN Threshold  
EN  
Threshold  
ENx Rise Time  
Charge CEN  
Dictated by CEN  
with 6.6 µA  
ENx  
Soft Start Rise Time  
Pre-Bias Startup  
Dictated by Css  
VOUTx  
PGOOD Deglitch Time  
t = CSS × 0.6 V / 5 µA  
t = CEN × (1.2 - 0.4) V / 3.6 µA  
t = CEN × 0.4 V / 1.4 µA  
PGOOD  
7-8. Startup Power Sequence  
7.3.5.2 Automatic Power Sequencing  
The TPS65261, TPS65261-1 starts with a pre-defined power-up and power-down sequence when the MODE pin  
ties high to V7V. As shown in 7-2, the sequence is dictated by the different combinations of EN1 and EN2  
status. EN3 is used to start/stop the converters. Buck2 and buck3 are identical converters and can be swapped  
in the system operation to allow for additional sequencing stages. 7-9 shows the power sequencing when  
EN1 and EN2 are pulled up high.  
7-2. Power Sequencing  
MODE  
High  
High  
High  
High  
EN1  
High  
Low  
High  
Low  
EN2  
High  
High  
Low  
Low  
EN3  
Start Sequencing  
Shutdown Sequencing  
Buck1Buck2Buck3 Buck3Buck2Buck1  
Buck2Buck1Buck3 Buck3Buck1Buck2  
Buck2Buck3Buck1 Buck1Buck3Buck2  
Used to start/stop  
bucks in sequence  
Automatic Power  
Sequencing  
Reserved  
Reserved  
Reserved  
Externally  
controlled  
sequencing  
Used to start/stop Used to start/stop Used to start/stop  
buck1 buck2 buck3  
Low  
x
x
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
20  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
VIN  
V7V  
MODE  
EN1  
EN2  
EN3  
Buck1  
Buck2  
Buck3  
PGOOD  
t1 t2  
t3  
t4  
T
= t1 = t2 = t3 = t4 = 1024*(1/fsw)  
psdelay  
7-9. Automatic Power Sequencing  
7.3.6 V7V Low Dropout Regulator and Bootstrap  
Power for the high-side and low-side MOSFET drivers and most other internal circuitry is derived from the V7V  
pin. The internal built-in low dropout linear regulator (LDO) supplies 6.3V (typical) from VIN to V7V. A 10µF  
ceramic capacitor must be connected from V7V pin to power ground.  
If the input voltage, VIN, decreases to UVLO threshold voltage, the UVLO comparator detects the V7V pin  
voltage and forces the converter off.  
Each high-side MOSFET driver is biased from the floating bootstrap capacitor, CB, shown in 7-10, which is  
normally recharged during each cycle through an internal low-side MOSFET or the body diode of a low-side  
MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less  
than VIN and BST-LX voltage is below regulation. The recommended value of this ceramic capacitor is 47nF. A  
ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10V or higher is recommended  
because of the stable characteristics over temperature and voltage. Each low-side MOSFET driver is powered  
from the V7V pin directly.  
To improve drop out, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage  
is greater than the BST-LX UVLO threshold, which is typically 2.1V. When the voltage between BST and LX  
drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on allowing the boot capacitor to be recharged.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
VIN  
LDO  
(VBSTx VLXx)  
+
nBootUV  
2.1 V  
PVINx  
V7V  
BSTx  
CBIAS  
10 µF  
High-side  
MOSFET  
nBootUV  
PWM  
UVLO Bias Buck  
Controller  
Gate  
Driver  
CB  
LXx  
Low-side  
MOSFET  
nBootUV  
PWM  
Gate  
Driver  
BootUV  
Protection  
CLK  
7-10. V7V Linear Dropout Regulator and Bootstrap Voltage Diagram  
7.3.7 Out-of-Phase Operation  
To reduce input ripple current, the switch clock of buck1 is 180° out-of-phase from the clock of buck2 and buck3.  
This enables the system, having less input current ripple, to reduce the input capacitorssize, cost and EMI.  
7.3.8 Output Overvoltage Protection (OVP)  
The device incorporates an output overvoltage protection (OVP) circuit to minimize output voltage overshoot.  
When the output is overloaded, the error amplifier compares the actual output voltage to the internal reference  
voltage. If the FB pin voltage is lower than the internal reference voltage for a considerable time, the output of  
the error amplifier demands maximum output current. After the condition is removed, the regulator output rises  
and the error amplifier output transitions to the steady state voltage. In some applications with small output  
capacitance, the load can respond faster than the error amplifier. This leads to the possibility of an output  
overshoot. Each buck compares the FB pin voltage to the OVP threshold. If the FB pin voltage is greater than  
the OVP threshold, the high-side MOSFET is turned off preventing current from flowing to the output and  
minimizing output overshoot. When the FB voltage drops lower than the OVP threshold, the high-side MOSFET  
turns on at the next clock cycle.  
7.3.9 Slope Compensation  
To prevent the sub-harmonic oscillations when the device operates at duty cycles greater than 50%, the device  
adds built-in slope compensation, which is a compensating ramp to the switch current signal.  
7.3.10 Overcurrent Protection  
The device is protected from overcurrent conditions with cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET.  
7.3.10.1 High-side MOSFET Overcurrent Protection  
The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. During each cycle, the switch  
current and the current reference generated by the COMP pin voltage are compared, when the peak switch  
current intersects the current reference, the high-side switch is turned off.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
22  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
7.3.10.2 Low-side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During  
normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-  
side MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are  
off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than  
the hiccup wait time which is programmed for 256 switching cycles shown in 7-11, the device will shut down  
itself and restart after the hiccup time of 8192 cycles. The hiccup mode helps reduce the device power  
dissipation under severe overcurrent condition.  
OCP peak inductor current threshold  
OC limiting (waiting) time  
256 cycles  
hiccup time  
8192 cycles  
soft start time  
t = Css × 0.6 V / 5 µA  
Output over loading  
iL  
Inductor Current  
Soft-start is reset after OC waiting time  
About 2.1 V  
0.6 V  
OC fault removed, soft-start, and output recovery  
SS  
SS Pin Voltage  
Output hard short circuit  
Vout  
Output Voltage  
7-11. Overcurrent Protection  
7.3.11 Power Good  
The PGOOD pin is an open drain output. After feedback voltage of each buck is between 95% (rising) and 105%  
(falling) of the internal voltage reference, the PGOOD pin pull-down is de-asserted and the pin floats. It is  
recommended to use a pull-up resistor between the values of 10kand 100kto a voltage source that is 5.5V  
or less. The PGOOD is in a defined state after the VIN input voltage is greater than 1V, but with reduced current  
sinking capability. The PGOOD achieves full current sinking capability after the VIN input voltage is above UVLO  
threshold, which is 4.25V.  
The PGOOD pin is pulled low when any feedback voltage of a buck is lower than 92.5% (falling) or greater than  
107.5% (rising) of the nominal internal reference voltage. Also, the PGOOD is pulled low if the input voltage is  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
undervoltage locked up, thermal shutdown is asserted, the EN pin is pulled low or the converter is in a soft-start  
period.  
7.3.12 Adjustable Switching Frequency  
The ROSC pin can be used to set the switching frequency by connecting a resistor to GND. The switching  
frequency of the device is adjustable from 250KHz to 2MHz.  
To determine the ROSC resistance for a given switching frequency, use 方程式 10 or the curve in 7-12. To  
reduce the solution size, set the switching frequency as high as possible, but tradeoffs of the supply efficiency  
and minimum controllable on time must be considered.  
ƒosc kHz = 39557´R(kW)-0.975  
(
)
(10)  
200  
175  
150  
125  
100  
75  
50  
25  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Switching Frequency (kHz)  
C010  
7-12. ROSC versus Switching Frequency  
7.3.13 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power up sequence when the junction temperature drops below 140°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Pulse Skipping MODE (PSM)  
The TPS65261 can enter high efficiency pulse skipping mode (PSM) operation at light load current.  
When a controller is enabled for PSM operation, the peak inductor current is sensed and compared with 230mA  
current typically. Because the integrated current comparator catches the peak inductor current only, the average  
load current entering PSM varies with applications and external output filters. In PSM, the sensed peak inductor  
current is clamped at 230mA.  
When a controller operates in PSM, the inductor current is not allowed to reverse. The reverse current  
comparator turns off the low-side MOSFET when the inductor current reaches zero, preventing it from reversing  
and going negative.  
Due to the delay in the circuit and current comparator tdly (typical 50ns at VIN = 12V), the real peak inductor  
current threshold to turn off high-side power MOSFET, can shift higher depending on inductor inductance and  
input/output voltages. The threshold of peak inductor current to turn off high-side power MOSFET can be  
calculated by 方程11.  
Vin - Vout  
ILPEAK = 230 mA +  
´ tdly  
L
(11)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
24  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
After the charge accumulated on the Vout capacitor is more than loading need, COMP pin voltage drops to low  
voltage driven by the error amplifier. There is an internal comparator at the COMP pin. If COMP voltage is lower  
than 0.35V, the power stage stops switching to save power.  
230 mA  
Turn off  
high-side Power MOSFET  
Inductor  
Current Peak  
Current  
Current Comparator  
Delay: tdly  
Sensing  
x1  
IL_Peak  
Inductor Peak Current  
7-13. PSM Current Comparator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The devices are triple synchronous step down dc/dc converters. They are typically used to convert a higher dc  
voltage to lower dc voltages with continuous available output current of 3A/2A/2A. The following design  
procedure can be used to select component values for the TPS65261 and TPS65261-1. This section presents a  
simplified discussion of the design process.  
8.2 Typical Application  
C15  
22 pF  
C26  
22 pF  
R263  
20 K  
R153  
19.5 K  
R152 39 K  
R262 20 K  
C17  
C24  
10 nF  
C231  
C181  
10 nF  
3.3 nF  
2.2 nF  
R20  
73.2 K  
C232  
22 pF  
R23  
20 K  
R18  
30 K  
C182  
22 pF  
R25  
0
16 R16  
0
25  
Vout1  
+1.2 V  
Max. 3 A  
Vout3  
+ 1.8 V  
Max. 2 A  
BST1  
LX1  
BST3  
L1  
C25  
C16  
47 nF  
L3  
47 nF  
15  
26  
27  
LX3  
PGND3  
PVIN3  
PVIN2  
PGND2  
LX2  
4.7 uH  
4.7 uH  
C151  
22 uF  
C152  
22 uF  
C261  
22 uF  
C262  
14  
22 uF  
PGND1  
PVIN1  
VIN  
C28  
10 uF  
C13  
10 uF  
13  
Vin  
Vin  
Vin  
Vin  
28  
29  
30  
TPS65261  
TPS65261-1  
12  
11  
C29  
1 uF  
C12  
R29  
10 uF  
146 K  
VDIV  
EN1  
C101  
22 uF  
C102  
22 uF  
R30  
20 K  
L2  
10  
9
31  
32  
4.7 uH  
C9  
47nF  
Vout2  
+ 3.3 V  
Max. 2 A  
R9  
0
EN2  
BST2  
R7  
30 K  
C72  
22 pF  
C5  
10 uF  
C8  
10 nF  
C71  
R2  
2.2 nF  
100 K  
R3  
R10239 K  
100 K  
R103  
8.67 K  
C10  
22 pF  
8-1. Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
26  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8.2.1 Design Requirements  
This example details the design of triple synchronous step-down converter. A few parameters must be known in  
order to start the design process. These parameters are typically determined at the system level. For this  
example, we start with the following known parameters:  
8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Vout1  
1.2 V  
Iout1  
3 A  
Vout2  
Iout2  
3.3 V  
2 A  
Vout3  
1.8 V  
Iout3  
2 A  
Transient Response 1A Load Step  
Input Voltage  
±5%  
12 V normal, 4.5 V to 18 V  
±1%  
Output Voltage Ripple  
Switching Frequency  
600 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 12. LIR is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for  
the majority of applications.  
V
- Vout  
Vout  
inmax  
L =  
´
Io ´LIR  
V
max ´ ƒsw  
in  
(12)  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS and peak inductor current can be found from 方程14 and 方程15.  
V
- Vout  
´
Vout  
Vinmax ´ ƒsw  
inmax  
Iripple  
=
L
(13)  
2
æ
ö
Vout ´ V  
- Vout  
(
)
inmax  
ç
ç
÷
÷
Vinmax ´L ´ ƒsw  
è
ø
ILrms  
=
IO2 +  
12  
(14)  
(15)  
Iripple  
ILpeak = Iout  
+
2
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8.2.2.2 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in  
load current. The output capacitance needs to be selected based on the most stringent of these three criteria.  
The desired response to a large change in the load current is the first criteria. The output capacitor needs to  
supply the load with current when the regulator cannot. This situation can occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change  
in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be  
sized to supply the extra current to the load until the control loop responds to the load change. The output  
capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a  
tolerable amount of drop in the output voltage. 方程式 16 shows the minimum output capacitance necessary to  
accomplish this.  
2´ DIout  
Co =  
ƒsw ´ DVout  
(16)  
Where ΔIout is the change in output current, fsw is the regulators switching frequency and ΔVout is the allowable  
change in the output voltage.  
方程式 17 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
Where fsw is the switching frequency, Voripple is the maximum allowable output voltage ripple, and Ioripple is the  
inductor ripple current.  
1
1
Co >  
´
Voripple  
8´ ƒsw  
Ioripple  
(17)  
方程式 18 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification.  
Voripple  
Resr  
<
Ioripple  
(18)  
Additional capacitance de-ratings for aging, temperature and DC bias must be factored in, which increases this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some  
capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. 方程式 19 can  
be used to calculate the RMS ripple current the output capacitor needs to support.  
Vout ´ V  
- Vout  
(
)
12 ´ Vinmax ´L ´ ƒsw  
inmax  
Icorms  
=
(19)  
8.2.2.3 Input Capacitor Selection  
The TPS65261, TPS65261-1 requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at  
least 10 µF of effective capacitance on the PVIN input voltage pins. In some applications, additional bulk  
capacitance can also be required for the PVIN input. The effective capacitance includes any DC bias effects.  
The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
28  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
also have a ripple current rating greater than the maximum input current ripple of The TPS65261, TPS65261-1.  
The input ripple current can be calculated using 方程20.  
V
(
- Vout  
)
Vout  
inmin  
I
= Iout  
´
´
inrms  
V
V
inmin  
inmin  
(20)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple  
voltage of the regulator. The input voltage ripple can be calculated using 方程21.  
I
outmax ´ 0.25  
DV  
=
in  
Cin ´ ƒsw  
(21)  
8.2.2.4 Loop Compensation  
The TPS65261, TPS65261-1 incorporates a peak current mode control scheme. The error amplifier is a trans-  
conductance amplifier with a gain of 300 µS. A typical type II compensation circuit adequately delivers a phase  
margin between 60° and 90°. Cb adds a high frequency pole to attenuate high frequency noise when needed. To  
calculate the external compensation components, follow these steps.  
1. Select switching frequency fsw that is appropriate for application depending on L and C sizes, output ripple,  
and EMI. Switching frequency between 500kHz to 1MHz gives best trade-off between performance and cost.  
To optimize efficiency, lower switching frequency is desired.  
2. Set up cross over frequency, ƒc, which is typically between 1/5 and 1/20 of fsw.  
3. RC can be determined by  
2p´ ƒc ´ Vo´Co  
RC  
=
Gm _EA ´ Vref ´Gm _  
PS  
(22)  
Where Gm_EA is the error amplifier gain (300µS), Gm_PS is the power stage voltage to current conversion  
gain (7.4A/V).  
æ
ç
è
ö
÷
ø
1
ƒp =  
.
Co ´RL ´ 2p  
4. Calculate CC by placing a compensation zero at or before the dominant pole  
RL ´ Co  
CC  
=
RC  
(23)  
(24)  
5. Optional Cb can be used to cancel the zero from the ESR associated with CO.  
R
ESR ´ Co  
Cb =  
RC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
LX  
VOUT  
iL  
RESR  
RL  
Current Sense  
I/V Converter  
Gm_PS = 7.4 A / V  
Co  
C1  
R1  
Vfb  
EA  
+
FB  
COMP  
Vref = 0.6 V  
R2  
Gm_EA = 300 uS  
Rc  
Cc  
Cb  
8-2. DC/DC Loop Compensation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
30  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
8-3. BUCK1, Soft-Start with No Load  
8-4. BUCK1, Soft-Start with Full Load  
8-6. BUCK2, Soft-Start with Full Load  
8-8. BUCK3, Soft-Start with Full Load  
8-5. BUCK2, Soft-Start with No Load  
8-7. BUCK3, Soft-Start with No Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8-9. BUCK1, PSM Mode, Steady State Operation  
at Light Load  
8-10. BUCK1, Steady State Operation with Full  
Load  
8-12. BUCK2, Steady State Operation with Full  
8-11. BUCK2, PSM Mode, Steady State  
Load  
Operation at Light Load  
8-13. BUCK3, PSM Mode, Steady State  
8-14. BUCK3, Steady State Operation with Full  
Operation with Light Load  
Load  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8-15. BUCK1, Load Transient, 0.75 A to 1.5 A SR 8-16. BUCK1, Load Transient, 1.5 A to 2.25 A SR  
= 0.25 A/µs = 0.25 A/µs  
8-17. BUCK2, Load Transient, 0.5 A to 1.0 A SR 8-18. BUCK2, Load Transient, 1.0 A to 1.5 A SR  
= 0.25 A/µs  
= 0.25 A/µs  
8-20. BUCK3, Load Transient, 1.0 A to 1.5 A SR  
8-19. BUCK3, Load Transient, 0.5 A to 1.0 A SR  
= 0.25 A/µs  
= 0.25 A/µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8-21. BUCK1, Overcurrent Protection  
8-22. BUCK1, Hiccup and Recovery  
8-24. BUCK2, Hiccup and Recovery  
8-23. BUCK2, Overcurrent Protection  
8-25. BUCK3, Overcurrent Protection  
8-26. BUCK3, Hiccup and Recovery  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8-28. Automatic Power Sequencing,  
8-27. Automatic Power Sequencing,  
MODE=EN1=EN2=HIGH  
MODE=EN1=EN2=HIGH  
8-30. Automatic Power Sequencing,  
8-29. Automatic Power Sequencing,  
MODE=EN1=HIGH, EN2=LOW  
MODE=EN1= HIGH, EN2=LOW  
8-31. Automatic Power Sequencing,  
MODE=EN2=HIGH, EN1=LOW  
8-32. Automatic Power Sequencing,  
MODE=EN2=HIGH, EN1=LOW  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8-33. Trigger Voltage 1.23V, Reset vs VDIV  
8-34. Deglitch Time, Reset vs VDIV  
VIN = 12 V  
VOUT1 = 1.2 V/1.5 A VOUT2 = 3.3 V/1 A  
VOUT3 = 1.8 V/1 A  
VIN = 12 V VOUT1 = 1.2 V/3 A VOUT2 = 3.3 V/2 A  
VOUT3 = 1.8 V/2 A  
EVM Condition 4 Layers, 64 mm × 69 mm, TA = 27.2°C  
EVM Condition 4 Layers, 64 mm × 69 mm, TA = 27.2°C  
8-35. Thermal Signature of TPS65261EVM  
8-36. Thermal Signature of TPS65261EVM  
8.3 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4.5 V and 18 V. This input  
power supply must be well regulated. If the input supply is located more than a few inches from the TPS65261 or  
TPS65261-1 converter additional bulk capacitance can be required in addition to the ceramic bypass capacitors.  
An electrolytic capacitor with a value of 47 μF is a typical choice.  
8.4 Layout  
8.4.1 Layout Guidelines  
The TPS65261, TPS65261-1 can be laid out on 2-layer PCB, illustrated in 8-37.  
Layout is a critical portion of good power supply design. See 8-37 for a PCB layout example. The top contains  
the main power traces for PVIN, VOUT, and LX. Also on the top layer are connections for the remaining pins of  
the TPS65261, TPS65261-1 and a large top side area filled with ground. The top layer ground area must be  
connected to the bottom layer ground using vias at the input bypass capacitor, the output filter capacitor and  
directly under the TPS65261, TPS65261-1 device to provide a thermal path from the exposed thermal pad land  
to ground. The bottom layer acts as ground plane connecting analog ground and power ground.  
For operation at full rated load, the top side ground area together with the bottom side ground plane must  
provide adequate heat dissipating area. There are several signals paths that conduct fast changing currents or  
voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
36  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
supplies performance. To help eliminate these problems, the PVIN pin must be bypassed to ground with a low  
ESR ceramic bypass capacitor with X5R or X7R dielectric. Care must be taken to minimize the loop area formed  
by the bypass capacitor connections, the PVIN pins and the ground connections. The VIN pin must also be  
bypassed to ground using a low ESR ceramic capacitor with X5R or X7R dielectric.  
Because the LX connection is the switching node, the output inductor must be located close to the LX pins, and  
the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor  
ground must use the same power ground trace as the PVIN input bypass capacitor. Try to minimize this  
conductor length while maintaining adequate width. The small signal components must be grounded to the  
analog ground path.  
The FB and COMP pins are sensitive to noise so the resistors and capacitors must be located as close as  
possible to the IC and routed with minimal lengths of trace. The additional external components can be placed  
approximately as shown.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
VOUT1  
VOUT3  
BST1  
LX1  
BST3  
LX3  
PGND1  
PVIN1  
VIN  
PGND3  
PVIN3  
PVIN2  
PGND2  
LX2  
PVIN  
PVIN  
VIN  
VDIV  
EN1  
3
EN2  
BST2  
VOUT2  
TOPSIDE  
GROUND  
AREA  
0.010 in. Diameter  
Thermal VIA to Ground Plane  
VIA to Ground Plane  
8-37. PCB Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCD3  
38  
Submit Document Feedback  
Product Folder Links: TPS65261 TPS65261-1  
 
 
TPS65261, TPS65261-1  
ZHCSBX0C DECEMBER 2013 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
TPS65262  
4.5 V to 18 V, triple buck with dual adjustable Triple buck 3-A/1-A/1-A output current, dual LDOs 100-mA/200-mA  
LDOs  
output current, automatic power sequencing  
TPS65263  
4.5 V to 18 V, triple buck with I2C interface  
Triple buck 3-A/2-A/2-A output current, I2C controlled dynamic voltage  
scaling (DVS)  
TPS65651-1/2/3  
TPS65287  
4.5 V to 18 V, triple buck with different  
PGOOD deglitch time  
Triple buck 3-A/2-A/2-A output current, support 1s, 32-ms, 256-ms  
PGOOD deglitch time, adjustable current limit setting by external resistor  
4.5 V to 18 V, triple buck with power switch  
and push button control  
Triple buck 3-A/2-A/2-A output current, up to 2.1-A USB power with  
overcurrent setting by external resistor, push button control for intelligent  
system power-on/power-off operation  
TPS65288  
4.5 V to 18 V, triple buck with dual power  
switches  
Triple buck 3-A/2-A/2-A output current, 2 USB power switches current  
limiting at typical 1.2 A (0.8/1.0/1.4/1.6/1.8/2.0/2.2A available with  
manufacture trim options)  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS65261 TPS65261-1  
English Data Sheet: SLVSCD3  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65261-1RHBR  
TPS65261-1RHBT  
TPS65261RHBR  
TPS65261RHBT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPS  
65261-1  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
RHB  
NIPDAU  
NIPDAU  
NIPDAU  
TPS  
65261-1  
RHB  
TPS  
65261  
RHB  
TPS  
65261  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65261-1RHBR  
TPS65261-1RHBR  
TPS65261-1RHBT  
TPS65261-1RHBT  
TPS65261RHBR  
TPS65261RHBR  
TPS65261RHBT  
TPS65261RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
32  
32  
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.5  
12.4  
12.4  
12.5  
12.4  
5.3  
5.25  
5.3  
5.3  
5.25  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
5.25  
5.25  
5.3  
5.25  
5.25  
5.3  
3000  
3000  
250  
5.25  
5.3  
5.25  
5.3  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65261-1RHBR  
TPS65261-1RHBR  
TPS65261-1RHBT  
TPS65261-1RHBT  
TPS65261RHBR  
TPS65261RHBR  
TPS65261RHBT  
TPS65261RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
32  
32  
3000  
3000  
250  
346.0  
338.0  
210.0  
205.0  
338.0  
346.0  
338.0  
210.0  
346.0  
355.0  
185.0  
200.0  
355.0  
346.0  
355.0  
185.0  
33.0  
50.0  
35.0  
33.0  
50.0  
33.0  
50.0  
35.0  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65261-1RHBT

4.5V 至 18V 输入电压、3A/2A/2A 输出电流三路同步 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65261RHBR

4.5V 至 18V 输入电压、3A/2A/2A 输出电流三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65261RHBT

4.5V 至 18V 输入电压、3A/2A/2A 输出电流三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262

TPS65400-Q1 4.5- to 18-V Input Flexible Power Management Unit With PMBus/I2C Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-1

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-1RHBR

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-1RHBT

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-2

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-2RHBR

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262-2RHBT

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262RHBR

4.5- to 18-V Input Voltage, 3-A/1-A/1-A Output Current Triple Synchronous Step-Down Converter With Dual Adjustable 200-mA/100-mA LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65262RHBT

4.5- to 18-V Input Voltage, 3-A/1-A/1-A Output Current Triple Synchronous Step-Down Converter With Dual Adjustable 200-mA/100-mA LDOs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI