TPS65262-1RHBR [TI]

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85;
TPS65262-1RHBR
型号: TPS65262-1RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85

开关 转换器
文件: 总46页 (文件大小:2954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
TPS65262-1 具有双路可350mA/150mA 低压降稳压(LDO) 4.5V 18V 输  
入电压,3A/1A/1A 输出电流三路同步降压转换器  
1 特性  
3 说明  
• 工作输入电压范围4.5V 18V  
• 反馈基准电压0.6V ±1%  
• 最大连续输出电流3A/1A/1A  
600kHz 固定开关频率  
TPS65262-1 是一款具有 3A/1A/1A 输出电流的单片三  
路同步步降降压转换器。4.5V 18V 的宽输入电  
源电压范围包括大多数运行自 5V9V12V 15V  
电源总线的中间总线电压。该转换器具有恒定频率峰值  
电流模式专用于简化应用同时方便设计人员根据目  
标应用来优化系统。此器件运行在 600kHz 的固定开关  
频率上。为了减少外部组件数量已经集成针对 buck2  
buck3 的环路补偿。buck1 buck 2buck3 之间  
180° 异相运行buck2 buck3 同相运行可最大  
限度降低对输入滤波器的要求。轻载条件下该器件自  
动在脉冲跳跃模式 (PSM) 下运行从而通过减少开关  
损耗来提供高效率。  
• 集成双LDO:  
– 输入电压范围1.3V 5.5V  
– 持续输出电流350mA/150mA  
• 针Buck1 的可编程软启动时间  
• 针Buck2 Buck3 的固定软启动时1ms  
• 针Buck2 Buck3 的内部环路补偿  
• 针对每个降压转换器的专用使能引脚  
• 自动加电和断电序列  
• 轻负载条件下的脉冲跳跃模(PSM)  
• 输出电压电源正常状态指示器  
• 热过载保护  
TPS65262-1 内置两个低压降线性稳压器 (LDO)它们  
的输入电压范围为 1.3V 5.5V持续输出电流为  
350/150mA具有独立使能和可调输出电压特性。  
2 应用  
TPS65262-1 特有自动电源序列可将 MODE 引脚驱  
动为高电平并配EN1EN2 EN3 引脚。  
• 数字电(DTV)  
• 机顶盒  
• 家庭网关和接入点网络  
• 无线路由器  
• 安全监控  
该器件具有过压保护、过流保护、短路保护和过热保护  
功能。电源正常引脚在任何降压输出电压降至稳压范围  
之外时被置为有效。  
封装信息(1)  
POS 机  
封装尺寸标称值)  
器件型号  
TPS65262-1  
封装  
RHBVQFN325.00mm × 5.00mm  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
Vout1  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
Vin  
VINx  
LX1  
PGOOD  
MODE  
ENx  
FB1  
LX2  
Vout2  
Vout3  
SS1  
TPS65262-1  
LVIN1  
LOUT1  
LFB1  
LDO1  
LDO2  
FB2  
LX3  
LEN1  
GND  
GND  
LVIN2  
LOUT2  
LFB2  
VIN = 12 V  
VOUT = 3.3 V  
LEN2  
10%  
0%  
FB3  
AGND PGND  
0.01  
0.10  
1.00  
Output Load (A)  
C001  
典型应用  
效率与输出负载之间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCN5  
 
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................23  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Application.................................................... 25  
9.3 Power Supply Recommendations.............................35  
9.4 Layout....................................................................... 35  
10 Device and Documentation Support..........................37  
10.1 接收文档更新通知................................................... 37  
10.2 支持资源..................................................................37  
10.3 Trademarks.............................................................37  
10.4 静电放电警告.......................................................... 37  
10.5 术语表..................................................................... 37  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................8  
7.6 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................16  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (October 2014) to Revision B (May 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 通篇去除了图像的颜色........................................................................................................................................1  
Changed the description of V7V pin in the Pin Functions table..........................................................................4  
Moved the storage temperature row in the ESD Ratings table to the Absolute Maximum Ratings table...........6  
Renamed the ESD Ratings table........................................................................................................................6  
Changed the recommended value of capacitor from V7V pin to power ground in V7V Low Dropout Regulator  
and Bootstrap .................................................................................................................................................. 20  
Changed the recommended value of C8 in the Typical Application Schematic................................................25  
Changes from Revision * (June 2014) to Revision A (October 2014)  
Page  
• 将器件状态更改为量产数据................................................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
2
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
5 Device Comparison Table  
PART  
DESCRIPTION  
NUMBER  
COMMENTS  
4.5 to 18 V, triple buck with  
TPS65261/-1 input voltage power failure  
indicator  
Triple buck 3-A/2-A/2-A output current, features an open-drain RESET signal to monitor  
input power failure, automatic power sequencing  
4.5 to 18 V, triple buck with  
TPS65262  
Triple buck 3-A/1-A/1-A output current, automatic power sequencing. Dual LDOs 200  
mA/100 mA  
dual adjustable LDOs  
4.5 to 18 V, triple buck with I2C  
TPS65263  
interface  
Triple buck 3-A/2-A/2-A output current, I2C controlled dynamic voltage scaling (DVS)  
4.5 to 18 V, triple buck with  
Triple buck 3-A/2-A/2-A output current, up to 2.1-A USB power with overcurrent setting by  
TPS65287  
TPS65288  
power switch and push button external resistor, push-button control for intelligent system power-on and power-off  
control  
operation  
4.5 to 18 V, triple buck with  
dual power switches  
Triple buck 3-A/2-A/2-A output current, two USB power switches current limiting at typical  
1.2 A (0.8, 1.0, 1.4, 1.6, 1.8, 2.0, and 2.2 A available with manufacture trim options)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
BST3  
LX3  
25  
BST1  
LX1 26  
PGND3  
VIN3  
14  
13  
12  
PGND1  
27  
VIN1  
28  
29  
Thermal Pad  
VIN2  
LEN1  
PGND2  
LX2  
11  
10  
9
LFB1  
LOUT1  
LVIN1  
30  
31  
32  
BST2  
1
2
3
4
5
6
7
8
(There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal  
performance.)  
6-1. RHB Package 32 Pins (Top View)  
6-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
Input power supply for LDO2. Connect LVIN2 pin as close as possible to the (+) terminal of an input ceramic capacitor  
(suggest 1 µF).  
LVIN2  
1
LDO2 output. Connect LOUT2 pin as close as possible to the (+) terminal of an output ceramic capacitor (suggest  
1 µF).  
LOUT2  
2
LFB2  
LEN2  
3
4
Feedback Kelvin sensing pin for LDO2 output voltage. Connect this pin to LDO2 resistor divider.  
Enable for LDO2. Float to enable.  
An open-drain output, asserts low if the output voltage of any buck is beyond regulation range due to thermal shutdown,  
overcurrent, undervoltage, or ENx shut down.  
PGOOD  
5
When high, an automatic power-up or power-down sequence is provided according to the states of EN1, EN2, and EN3  
pins.  
MODE  
FB2  
6
7
8
Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider.  
Enable for buck2. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck2 with a resistor  
divider.  
EN2  
Boot-strapped supply to the high-side floating gate driver in buck2. Connect a capacitor (recommend 47 nF) from BST2  
pin to LX2 pin.  
BST2  
LX2  
9
Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is from a  
diode voltage below the ground up to VIN2 voltage.  
10  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
4
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
PIN  
6-1. Pin Functions (continued)  
DESCRIPTION  
NAME  
NO.  
Power ground connection of buck2. Connect PGND2 pin as close as possible to the () terminal of VIN2 input ceramic  
capacitor.  
PGND2  
11  
12  
13  
14  
15  
16  
Input power supply for buck2. Connect VIN2 pin as close as possible to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
VIN2  
VIN3  
PGND3  
LX3  
Input power supply for buck3. Connect VIN3 pin as close as possible to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
Power ground connection of buck3. Connect PGND3 pin as close as possible to the () terminal of VIN3 input ceramic  
capacitor.  
Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is from a  
diode voltage below the ground up to VIN3 voltage.  
Boot-strapped supply to the high-side floating gate driver in buck3. Connect a capacitor (recommend 47 nF) from BST3  
pin to LX3 pin.  
BST3  
Enable for buck3. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck3 with a resistor  
divider.  
EN3  
17  
18  
19  
20  
21  
FB3  
Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider.  
Analog ground common to buck controllers and other analog circuits. It must be routed separately from high-current  
power grounds to the () terminal of the bypass capacitor of input voltage VIN.  
AGND  
V7V  
Internal LDO for gate driver and internal controller. Connect a 10-µF capacitor from the pin to power ground.  
Error amplifier output and loop compensation pin for buck1. Connect a series resistor and capacitor to compensate the  
control loop of buck1 with peak current PWM mode.  
COMP1  
Soft-start and tracking input for buck1. An internal 5-µA pullup current source is connected to this pin. The soft-start time  
can be programmed by connecting a capacitor between this pin and ground.  
SS1  
FB1  
EN1  
22  
23  
24  
Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider.  
Enable for buck1. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck1 with a resistor  
divider.  
Boot-strapped supply to the high side floating gate driver in buck1. Connect a capacitor (recommend 47 nF) from BST1  
pin to LX1 pin.  
BST1  
LX1  
25  
26  
27  
28  
Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is from a  
diode voltage below the ground up to VIN1 voltage.  
Power ground connection of Buck1. Connect PGND1 pin as close as possible to the () terminal of VIN1 input ceramic  
capacitor.  
PGND1  
VIN1  
Input power supply for buck1. Connect VIN1 pin as close as possible to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
LEN1  
LFB1  
29  
30  
Enable for LDO1. Float to enable.  
Feedback Kelvin sensing pin for LDO1 output voltage. Connect this pin to LDO1 resistor divider.  
LDO1 output. Connect LOUT1 pin as close as possible to the (+) terminal of an output ceramic capacitor (suggest  
1 µF).  
LOUT1  
LVIN1  
PAD  
31  
32  
Input power supply for LDO1. Connect LVIN1 pin as close as possible to the (+) terminal of an input ceramic capacitor  
(suggest 1 µF).  
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for  
optimal thermal performance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (1)  
MIN  
0.3  
1  
MAX  
20  
20  
7
UNIT  
VIN1, VIN2, VIN3  
LX1, LX2, LX3 (maximum withstand voltage transient <20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
-55  
Voltage  
MODE, LEN1, LEN2, EN1, EN2, EN3, PGOOD, V7V  
LOUT1, LOUT2, LVIN1, LVIN2  
7
V
7
FB1, FB2, FB3, LFB1, LFB2, COMP1 , SS1  
AGND, PGND1, PGND2, PGND3  
Operating junction temperature  
3.6  
0.3  
125  
150  
TJ  
°C  
°C  
Tstg  
Storage temperature range  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
MIN  
MAX  
2000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
2000  
V (ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
500  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
VIN1, VIN2, VIN3  
4.5  
18  
18  
LX1, LX2, LX3 (maximum withstand voltage transient <20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
MODE, LEN1, LEN2, EN1, EN2, EN3, PGOOD, V7V  
FB1, FB2, FB3, LFB1, LFB2, COMP1 , SS1  
LOUT1, LOUT2, LVIN1, LVIN2  
0.8  
0.1  
0.1  
0.1  
0.1  
40  
40  
6.8  
V
6.3  
Voltage  
3
5.5  
TA  
TJ  
Operating ambient temperature  
85  
°C  
°C  
Operating junction temperature  
125  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
6
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
 
 
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.4 Thermal Information  
TPS65262-1  
UNIT  
RHB (32 PINS)  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
32.0  
24.2  
6.4  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
6.4  
1.3  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
MAX UNIT  
7.5 Electrical Characteristics  
TA = 25°C, VIN = 12 V, FSW = 600 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
4.5  
4
18  
4.5  
4
V
V
VIN rising  
VIN falling  
Hysteresis  
4.25  
3.75  
500  
12  
UVLO  
VIN undervoltage lockout  
Shutdown supply current  
3.5  
V
mV  
µA  
IDDSDN  
EN1 = EN2 = EN3 = MODE = LEN1 = LEN2 = 0 V  
EN1 = EN2 = EN3 = 5 V, FB1 = FB2 = FB3 = 0.8 V, LEN1 =  
LEN2 = 0  
IDDQ_NSW  
790  
µA  
Input quiescent current without buck1,  
buck2, buck3 switching  
IDDQ_NSW1  
IDDQ_NSW2  
IDDQ_NSW3  
IDDQ_LDO1  
IDDQ_LDO2  
V7V  
EN1 = 5 V, EN2 = EN3 = 0 V, FB1 = 0.8 V, LEN1 = LEN2 = 0  
EN2 = 5 V, EN1 = EN3 = 0 V, FB2 = 0.8 V, LEN1 = LEN2 = 0  
EN3 = 5V, EN1 = EN2 = 0 V, FB3 = 0.8 V, LEN1 = LEN2 = 0  
EN1 = EN2 = EN3 = LEN2 = 0 V, LFB1 = 0.8 V, LEN1 = 5 V  
EN1 = EN2 = EN3 = LEN1 = 0 V, LFB2 = 0.8 V, LEN2 = 5 V  
V7V load current = 0 A  
340  
370  
370  
190  
190  
6.3  
µA  
µA  
µA  
µA  
µA  
V
LDO input quiescent current  
V7V LDO output voltage  
V7V LDO current limit  
6
6.6  
IOCP_V7V  
175  
mA  
FEEDBACK VOLTAGE REFERENCE  
VCOMP = 1.2 V, TJ = 25°C  
0.595  
0.594  
0.6 0.605  
0.6 0.606  
V
VFB  
Feedback voltage  
V
VCOMP = 1.2 V, TJ = 40°C to 125°C  
IOUT1 = 1.5 A, IOUT2 = 1 A, IOUT3 = 1 A, 5 V < VINx < 18 V  
VIN = 12 V, IOUTx = (10100%) × IOUTx_max  
VLINEREG_BUCK  
Line regulation-DC(1)  
0.002  
%/V  
%/A  
VLOADREG_BUCK Load regulation-DC(1)  
0.02  
BUCK1, BUCK2, BUCK3  
EN1, EN2, EN3 high-level input  
voltage  
VENXH  
VENXL  
1.2  
1.26  
V
V
EN1, EN2, EN3 low-level input voltage  
1.1  
4.3  
1.15  
3.6  
6.6  
3
ENx = 1 V  
IENX  
EN1, EN2, EN3 pullup current  
µA  
ENx = 1.5 V  
IENhys  
Hysteresis current  
µA  
µA  
ms  
ns  
ISS1  
Buck1 soft-start charging current  
Buck2, buck3 soft-start time  
Minimum on time  
5
6
TSS2/3  
1
TON_MIN  
Gm_EA1/2/3  
80  
300  
100  
Error amplifier trans-conductance  
µs  
2 µA < ICOMPX < 2 µA  
COMP voltage to inductor current Gm  
Gm_PS1/2/3  
ILX = 0.5 A  
7.4  
A/V  
(1)  
ILIMIT1  
Buck1 peak inductor current limit  
Buck1 low-side source current limit  
Buck1 low-side sink current limit  
4.4  
1.8  
5.1  
4.4  
1.3  
6.06  
3
A
A
A
ILIMITSOURCE1  
ILIMITS1  
Buck2, buck3 peak inductor current  
limit  
ILIMIT2/3  
2.4  
1.75  
1
A
A
A
Buck2, buck3 low-side source current  
limit  
ILIMITSOURCE2/3  
ILIMITS2/3  
Buck2, buck3 low-side sink current  
limit  
THiccup_wait  
THiccup_re  
OC wait time(1)  
0.5  
14  
ms  
ms  
Hiccup time before restart(1)  
Buck1 high-side switch resistance  
Buck1 low-side switch resistance  
Buck2 high-side switch resistance  
Buck2 low-side switch resistance  
Buck3 high-side switch resistance  
Rdson_HS1  
Rdson_LS1  
Rdson_HS2  
Rdson_LS2  
Rdson_HS3  
VIN1 = 12 V  
VIN1 = 12 V  
VIN1 = 12 V  
VIN1 = 12 V  
VIN1 = 12 V  
100  
65  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
195  
145  
195  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
8
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TA = 25°C, VIN = 12 V, FSW = 600 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Rdson_LS3  
Buck3 low-side switch resistance  
VIN1 = 12 V  
145  
mΩ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TA = 25°C, VIN = 12 V, FSW = 600 kHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER GOOD, MODE, POWER SEQUENCE  
FBx undervoltage falling  
FBx undervoltage rising  
FBx overvoltage rising  
FBx overvoltage falling  
92.5  
95  
Vth_PG  
Feedback voltage threshold  
%VREF  
107.5  
105  
0.19  
1
TDEGLITCH(PG)_F PGOOD falling edge deglitch time  
TRDEGLITCH(PG)_R PGOOD rising edge deglitch time  
ms  
ms  
IPG  
PGOOD pin leakage  
0.05  
0.4  
µA  
V
VLOW_PG  
VMODEH  
VMODEL  
PGOOD pin low voltage  
MODE high-level input voltage  
MODE low-level input voltage  
ISINK = 1 mA  
1.2  
1.15  
3.6  
1.26  
V
1.1  
V
MODE = 1 V  
IMODE  
MODE pullup current  
µA  
ms  
MODE = 1.5 V  
6.6  
Delay time between bucks at  
Tpsdelay  
MODE = 1.5 V  
1.7  
automatic power sequencing mode(1)  
LDO1 AND LDO2  
VLENXH  
LEN1, LEN2 high-level input voltage  
LEN1, LEN2 low-level input voltage  
1.2  
1.15  
3.6  
1.26  
5.5  
V
V
VLENXL  
1.1  
LENx = 1 V  
ILENX  
LEN1, LEN2 pullup current  
µA  
LENx = 1.5 V  
6.6  
VINLDO1  
VOUTLDO1  
VLDOFB1  
LDO input voltage range  
LDO output voltage range  
LDO voltage reference  
LDO current limit  
1.3  
1
V
V
Load current = 350 mA  
Load current = 10 mA  
0.594  
350  
0.6 0.606  
V
455  
12  
540  
mA  
mV  
mV  
Imax_LDO1  
IOUT = 20 mA  
IOUT = 350 mA  
Vdropout1  
LDO dropout voltage  
400  
VOUT = 1.8 V, IOUT = 10 mA,  
LVIN1 changes from 2 to 5.5 V  
VLINEREG_LDO1  
LDO line regulation-DC(1)  
0.002  
%/V  
VLOADREG_LDO1 LDO load regulation-DC(1)  
IOUT = 1 to 350 mA, LVIN1 = 5 V  
0.2  
56  
%/A  
dB  
V
PSRRLDO1  
VINLDO2  
Ripple rejection(1)  
LVIN1 = 5 V, Vout = 1.8 V, IOUT = 10 mA, ƒ= 10 kHz  
LDO input voltage range  
LDO output voltage range  
LDO voltage reference  
LDO current limit  
1.3  
1
5.5  
VOUTLDO2  
VLDOFB2  
Load current = 150 mA  
Load current = 10 mA  
V
0.594  
170  
0.6 0.606  
V
Imax_LDO2  
220  
12  
290  
mA  
IOUT = 10 mA  
IOUT = 150 mA  
Vdropout2  
LDO dropout voltage(1)  
mV  
250  
VOUT = 1.8 V, IOUT= 10 mA,  
LVIN2 changes from 2 to 5.5 V  
VLINEREG_LDO2  
LDO line regulation-DC(1)  
0.002  
%/V  
VLOADREG_LDO2 LDO load regulation-DC(1)  
IOUT = 1 to 150 mA, LVIN2 = 5 V  
0.2  
56  
%/A  
dB  
PSRRLDO2  
OSCILLATOR  
FSW  
Ripple rejection(1)  
LVIN2 = 5 V, Vout = 1.8 V, IOUT = 10 mA, ƒ= 10 kHz  
Switching frequency  
570  
600  
630  
kHz  
THERMAL PROTECTION  
TTRIP_OTP  
Temperature rising  
Hysteresis  
160  
20  
°C  
°C  
Thermal protection trip point(1)  
THYST_OTP  
(1) Lab validation result  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
10  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
TA = 25°C, VIN = 12 V, VOUT1= 1.2 V, VOUT2= 1.8 V, VOUT3= 3.3 V FSW = 600 kHz (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VOUT 1.2 V  
VOUT 3.3 V  
VOUT 5 V  
VOUT 1.8 V  
VOUT 3.3 V  
VOUT 5 V  
0.01  
0.10  
1.00  
0.01  
0.10  
1.00  
Output Load (A)  
Output Load (A)  
C002  
C002  
7-1. BUCK1 Efficiency  
7-2. BUCK2 Efficiency  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
VIN 5 V  
VIN 5 V  
VIN 12 V  
VIN 12 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Output Load (A)  
Output Load (A)  
C004  
C004  
7-3. BUCK1, Load Regulation  
7-4. BUCK2, Load Regulation  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
1.208  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
IOUT 0.1 A  
VIN 5 V  
VIN 12 V  
1.0  
IOUT 1.5 A  
IOUT 3 A  
0.0  
0.2  
0.4  
0.6  
0.8  
4
6
8
10  
12  
14  
16  
18  
Output Load (A)  
Input Voltage (V)  
C004  
C004  
7-5. BUCK3, Load Regulation  
7-6. BUCK1, Line Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1= 1.2 V, VOUT2= 1.8 V, VOUT3= 3.3 V FSW = 600 kHz (unless otherwise noted)  
1.808  
1.806  
1.804  
1.802  
1.800  
1.798  
1.796  
1.794  
1.792  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
IOUT 0.1 A  
IOUT 0.5 A  
IOUT 1 A  
IOUT 0.1 A  
IOUT 0.5 A  
IOUT 1 A  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Input Voltage (V)  
C004  
C004  
7-7. BUCK2, Line Regulation  
7-8. BUCK3, Line Regulation  
1.82  
1.81  
1.80  
1.79  
1.78  
1.82  
1.81  
1.80  
1.79  
1.78  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.00  
0.03  
0.06  
0.09  
0.12  
0.15  
Output Load (A)  
Output Load (A)  
C010  
C010  
7-9. LDO1, Load Regulation  
7-10. LDO2, Load Regulation  
1.82  
1.82  
1.81  
1.80  
1.79  
1.78  
1.81  
1.80  
1.79  
1.78  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
C010  
C010  
7-11. LDO1, Line Regulation  
7-12. LDO2, Line Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
12  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1= 1.2 V, VOUT2= 1.8 V, VOUT3= 3.3 V FSW = 600 kHz (unless otherwise noted)  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
640  
620  
600  
580  
560  
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-13. Voltage Reference vs Temperature  
7-14. Oscillator Frequency vs Temperature  
18  
16  
14  
12  
10  
8
4.8  
4.2  
3.6  
3.0  
2.4  
6
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-15. Shutdown Quiescent Current vs Temperature  
7-16. EN Pin Pullup Current vs Temperature, EN = 1 V  
7.8  
1.28  
7.2  
6.6  
6.0  
5.4  
1.24  
1.20  
1.16  
1.12  
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-17. EN Pin Pullup Current vs Temperature, EN = 1.5 V  
7-18. EN Pin Threshold Rising vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25°C, VIN = 12 V, VOUT1= 1.2 V, VOUT2= 1.8 V, VOUT3= 3.3 V FSW = 600 kHz (unless otherwise noted)  
1.23  
1.19  
1.15  
1.11  
1.07  
5.8  
5.4  
5.0  
4.6  
4.2  
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-19. EN Pin Threshold Falling vs Temperature  
7-20. SS Pin Charge Current vs Temperature  
5.5  
2.8  
5.3  
5.1  
4.9  
4.7  
2.6  
2.4  
2.2  
buck2  
buck3  
2.0  
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-21. Buck1 High-Side Current Limit vs Temperature  
7-22. Buck2, 3 High-Side Current Limit vs Temperature  
530  
260  
490  
450  
410  
370  
240  
220  
200  
180  
10  
30  
50  
70  
90  
110 130  
10  
30  
50  
70  
90  
110 130  
œ50 œ30 œ10  
œ50 œ30 œ10  
Junction Temperature (°C)  
Junction Temperature (°C)  
C014  
C014  
7-23. LDO Current Limit vs Temperature  
7-24. LDO2 Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
14  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65262-1 is a monolithic, triple-synchronous step-down (buck) converter with 3-A/1-A/1-A output  
currents. A wide 4.5- to 18-V input supply voltage range encompasses most intermediate bus voltages operating  
off 5-V, 9-V, 12-V, or 15-V power bus. The feedback voltage reference for each buck is 0.6 V. Each buck is  
independent with dedicated enable, soft-start, and loop compensation.  
The TPS65262-1 implements a constant frequency, peak current mode control that simplifies external loop  
compensation. The switching frequency is fixed 600 kHz. The switching clock of buck1 is 180° out-of-phase  
operation from the clocks of buck2 and buck3 channels to reduce input current ripple, input capacitor size, and  
power-supply-induced noise.  
The TPS65262-1 is designed for safe monotonic startup into prebiased loads. The default start up is when VIN is  
typically 4.25 V. The ENx pin can also be used to adjust the input voltage undervoltage lockout (UVLO) with an  
external resistor divider. In addition, the ENx pin has an internal 3.6-µA current source, so the EN pin can be  
floating for automatically powering up the converters.  
The TPS65262-1 reduces the external component count by integrating the bootstrap circuit. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor between the BST and LX pins. A UVLO circuit  
monitors the bootstrap capacitor voltage VBST-VLX in each buck. When VBST-VLX voltage drops to the  
threshold, LX pin is pulled low to recharge the bootstrap capacitor. The TPS65262-1 can operate at 100% duty  
cycle as long as the bootstrap capacitor voltage is higher than the BOOT-LX UVLO threshold, which is typically  
2.1 V.  
The TPS65262-1 features a PGOOD pin to supervise each output voltage of buck converters. The TPS65262-1  
has power good comparators with hysteresis, which monitor the output voltages through feedback voltages.  
When all bucks are in regulation range and power sequence is done, PGOOD is asserted to high.  
The SS (soft-start/tracking) pin is used to minimize inrush currents during power-up. A small-value capacitor or  
resistor divider is coupled to the pin for soft-start or voltage tracking.  
At light loading, TPS65262-1 automatically operates in PSM to save power.  
The TPS65262-1 integrates low dropout voltage linear regulators (LDO) with input voltage from 1.3 to 5.5 V,  
independent enable, and adjustable outputs, up to 350 mA for LDO1 and 150 mA for LDO2 continuous output  
current.  
The TPS65262-1 is protected from overload and overtemperature fault conditions. The converter minimizes  
excessive output overvoltage transients by taking advantage of the power good comparator. When the output is  
more than 107.5% of the 0.6-V reference voltage, the high-side MOSFET is turned off until the internal feedback  
voltage is lower than 105% of the 0.6-V reference voltage. The TPS65262-1 implements both high-side  
MOSFET overload protection and bidirectional low-side MOSFET overload protections to avoid inductor current  
runaway. If the overcurrent condition lasts for more than the OC wait time (0.5 ms), the converter shuts down  
and restarts after the hiccup time (14 ms). The TPS65262-1 shuts down if the junction temperature is higher than  
thermal shutdown trip point 160°C. When the junction temperature drops 20°C (typical) below the thermal  
shutdown trip point, the TPS65262-1 is restarted under control of the soft-start circuit automatically.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
8.2 Functional Block Diagram  
CLK2  
CLK3  
OSC-600-kHz  
Phase Shift  
V7V  
VIN  
CLK1  
clk2  
VIN2  
VIN  
V7V  
V3V  
V7V LDO  
Bias  
en_buck2  
enable  
BST2  
LX2  
BST  
LX  
BUCK2  
MODE  
PGND2  
clk  
1
PGND  
vfb  
V7V  
FB2  
VIN  
VIN1  
VIN  
enable  
en_buck1  
BST1  
LX1  
BST  
BUCK1  
V7V  
VIN  
MODE  
clk3  
LX  
VIN3  
VIN  
PGND1  
PGND  
Comp  
vfb  
en_buck3  
MODE  
enable  
BST3  
LX3  
5 µA  
SS1  
BST  
LX  
BUCK3  
SS  
FB1  
PGND3  
PGND  
vfb  
COMP1  
FB3  
PGOOD  
FB1  
FB2  
FB3  
Power  
Good  
LVIN1  
LVIN  
LOUT  
FB  
VIN  
3.6 µA  
3 µA  
LOUT1  
en_ldo1  
enable  
LDO1  
MODE  
LFB1  
2 k  
6.3 V  
1.2 V  
3.6 µA  
3 µA  
en_buck1  
en_buck2  
en_buck3  
en_ldo1  
EN1(EN2, EN3)  
State  
Machine  
2 kꢀ  
6.3 V  
1.2 V  
VIN  
LVIN2  
LVIN  
LOUT  
FB  
3.6 µA  
3 µA  
LOUT2  
en_ldo2  
enable  
LDO2  
LEN1(LEN2)  
en_ldo2  
2 kꢀ  
6.3 V  
LFB2  
1.2 V  
OT  
Over  
Temp  
AGND  
8.3 Feature Description  
8.3.1 Adjusting the Output Voltage  
The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. TI  
recommends to use 1% tolerance, or better, divider resistors.  
Vout  
R1  
FB  
COMP  
R2  
0.6 V  
8-1. Voltage Divider Circuit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
16  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
0.6  
R2 = R1 ´  
Vout - 0.6  
(1)  
To improve efficiency at light loads, consider using larger value resistors. If the values are too high, the regulator  
is more sensitive to noise. 8-1 shows the recommended resistor values.  
8-1. Output Resistor Divider Selection  
R1  
(kΩ)  
R2  
(kΩ)  
Output Voltage  
(V)  
1
10  
10  
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
5
15  
10  
20  
10  
31.6  
45.3  
22.6  
73.2  
36.5  
10  
10  
4.99  
10  
5
4.99  
8.3.2 Enable and Adjusting UVLO  
The EN1, EN2, and EN3 pins provide electrical on and off control of the device. When the EN1, EN2, and EN3  
pins' voltage exceeds the threshold voltage, the device starts operation. If each ENx pin voltage is pulled below  
the threshold voltage, the regulator stops switching and enters low Iq state.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device. If  
an application requires controlling the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500 mV. If an  
application requires a higher UVLO threshold on the VIN pin, then the ENx pin can be configured as shown in 图  
8-2. When using the external UVLO function, TI recommends to set the hysteresis to be greater than 500 mV.  
The EN pin has a small pullup current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. The UVLO thresholds can be  
calculated using 方程2 and 方程3.  
æ
ö
÷
ø
VENFALLING  
V
- V  
STOP  
START ç  
VENRISING  
è
R1  
=
æ
ö
VENFALLING  
I
1-  
+ I  
÷
h
P ç  
VENRISING  
è
ø
(2)  
(3)  
R1 ´ VENFALLING  
VSTOP - VENFALLING + R I + I  
R2  
=
1 (h )  
p
where  
Ih = 3 µA  
Ip = 3.6 µA  
VENRISING = 1.2 V  
VENFALLING = 1.15 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
i
h
R1  
p
i
EN  
R2  
8-2. Adjustable VIN UVLO  
8.3.3 Soft-Start Time  
The voltage on the SS1 pin controls the start-up of buck1 output. When the voltage on the SS1 pin is less than  
the internal 0.6-V reference, The TPS65262-1 regulates the internal feedback voltage to the voltage on the SS1  
pin instead of 0.6 V, allowing VOUT to rise smoothly from 0 V to its regulated voltage without inrush current. The  
device has an internal pullup current source of 5 µA (typical) that charges an external soft-start capacitor to  
provide a linear ramping voltage at SS1 pin.  
Buck1s soft-start time can be calculated approximately by 方程4.  
Buck2 and Buck3 have fixed 1-ms soft-start time.  
Css(nF)´ Vref(V)  
Tss(ms) =  
Iss(mA)  
(4)  
8.3.4 Power-Up Sequencing  
TPS65262-1 features a comprehensive sequencing circuit for the three bucks. If the MODE pin is driving to high  
at the same time EN1 or EN2 pin (or both), the automatic power-up and power-down sequence function is  
active. If MODE pin ties low to ground, three buck on or off is separately controlled by three enable pins.  
8.3.4.1 External Power Sequencing  
The TPS65262-1 has a dedicated enable pin for each converter. The converter enable pins are biased by a  
current source that allows for easy sequencing with the addition of an external capacitor. Disabling the converter  
with an active pulldown transistor on the ENx pin allows for a predictable power-down timing operation. 8-3  
shows the timing diagram of a typical buck power-up sequence with a capacitor connected at ENx pin.  
A typical 1.4-µA current charges the ENx pin from the input supply when the ENx pin voltage is lower than  
typical 0.4 V. The internal V7V LDO turns on when the ENx pin voltage rises to typical 0.4 V and a 3.6-µA pullup  
current sources ENx. After the ENx pin voltage reaches 1.2 V typical, 3-µA hysteresis current sources to the pin  
to improve noise sensitivity. If all output voltages are in regulation, PGOOD is asserted after PGOOD deglitch  
time.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
18  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
V7V  
EN Threshold  
EN Threshold  
ENx Rise Time  
Dictated by CEN  
Charge CEN  
with 6.6 µA  
ENx  
Soft Start Rise Time  
Dictated by CSS  
Pre-Bias Startup  
PGOOD Deglitch Time  
VOUTx  
T = CSS × 0.6 V /5 µA  
T = CEN × (1.2 œ 0.4) V / 3.6 µA  
T = CEN × 0.4 V / 1.4 µA  
PGOOD  
8-3. Startup Power Sequence  
8.3.4.2 Automatic Power Sequencing  
The TPS65262-1 starts with a predefined power-up and power-down sequence when the MODE pin is driven to  
high. As shown in 8-2, the sequence is dictated by different combinations of the EN1 and EN2 status. EN3 is  
used to start or stop the converters. Buck2 and buck3 are identical converters and can be swapped in the  
system operation to allow for additional sequencing stages. 8-4 shows the power sequencing when EN1 and  
EN2 are pulled up high.  
8-2. Power Sequencing  
MODE  
High  
High  
High  
High  
EN1  
High  
Low  
High  
Low  
EN2  
High  
High  
Low  
Low  
EN3  
Start Sequencing  
Buck1buck2buck3  
Buck2buck1buck3  
Buck2buck3buck1  
Reserved  
Shutdown Sequencing  
Buck3buck2buck1  
Buck3buck1buck2  
Buck1buck3buck2  
Reserved  
Used to start or stop  
bucks in sequence  
Automatic power  
sequencing  
Reserved  
Externally  
controlled  
sequencing  
Used to start or  
stop buck1  
Used to start or Used to start or stop  
stop buck2 buck3  
Low  
x
x
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
V7V  
MODE  
EN1  
EN2  
EN3  
Buck1  
Buck2  
Buck3  
PGOOD  
t1  
t2  
t3  
t4  
Tpsdelay = t1 = t2 = t3 = t4 = 1.7 ms  
8-4. Automatic Power Sequencing  
8.3.5 V7V Low Dropout Regulator and Bootstrap  
Power for the high-side and low-side MOSFET drivers and most other internal circuitry is derived from the V7V  
pin. The internal built-in low dropout linear regulator (LDO) supplies 6.3 V (typical) from VIN to V7V. A 10-µF  
ceramic capacitor must be connected from V7V pin to power ground.  
If the input voltage, VIN decreases to UVLO threshold voltage, the UVLO comparator detects V7V pin voltage  
and forces the converter off.  
Each high-side MOSFET driver is biased from the floating bootstrap capacitor, CB, shown in 8-5, which is  
normally recharged during each cycle through an internal low-side MOSFET or the body diode of low-side  
MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less  
than VIN and the BST-LX voltage is below regulation. The recommended value of this ceramic capacitor is 47  
nF. TI recommends a ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or  
higher because of the stable characteristics over temperature and voltage. Each low-side MOSFET driver is  
powered from V7V pin directly.  
To improve dropout, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage  
is greater than the BST-LX UVLO threshold, which is typically 2.1 V. When the voltage between BST and LX  
drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on allowing the boot capacitor to be recharged.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
20  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
VIN  
LDO  
(VBSTx VLXx)  
2.1 V  
+
nBootUV  
PVINx  
V7V  
BSTx  
CBIAS  
10 µF  
High-side  
MOSFET  
nBootUV  
PWM  
UVLO Bias Buck  
Controller  
Gate  
Driver  
CB  
LXx  
Low-side  
MOSFET  
nBootUV  
PWM  
Gate  
Driver  
BootUV  
Protection  
CLK  
8-5. V7V Linear Dropout Regulator and Bootstrap Voltage Diagram  
8.3.6 Out-of-Phase Operation  
To reduce input ripple current, the switch clock of buck1 is 180° out-of-phase from the clock of buck2 and buck3.  
This enables the system having less input current ripple to reduce input capacitorssize, cost, and EMI.  
8.3.7 Output Overvoltage Protection (OVP)  
The device incorporates an output OVP circuit to minimize output voltage overshoot. When the output is  
overloaded, the error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin  
voltage is lower than the internal reference voltage for a considerable time, the output of the error amplifier  
demands maximum output current. After the condition is removed, the regulator output rises and the error  
amplifier output transitions to the steady-state voltage. In some applications with small output capacitance, the  
load can respond faster than the error amplifier. This leads to the possibility of an output overshoot. Each buck  
compares the FB pin voltage to the OVP threshold. If the FB pin voltage is greater than the OVP threshold, the  
high-side MOSFET is turned off preventing current from flowing to the output and minimizing output overshoot.  
When the FB voltage drops lower than the OVP threshold, the high-side MOSFET turns on at the next clock  
cycle.  
8.3.8 PSM  
The TPS65262-1 can enter high-efficiency PSM operation at light load current.  
When the controller is enabled for PSM operation, the peak inductor current is sensed and compared with 230-  
mA current typically. Because the integrated current comparator catches the peak inductor current only, the  
average load current entering PSM varies with the applications and external output filters. In PSM, the sensed  
peak inductor current is clamped at 230 mA.  
When a controller operates in PSM, the inductor current is not allowed to reverse. The reverse current  
comparator turns off the low-side MOSFET when the inductor current reaches 0, preventing it from reversing and  
going negative.  
Due to the delay in the circuit and current comparator tdly (typical 50 ns at Vin = 12 V), the real peak inductor  
current threshold to turn off high-side power MOSFET can shift higher depending on inductor inductance and  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
input or output voltages. Calculate the threshold of peak inductor current to turn off high-side power MOSFET  
with 方程5.  
vin - vout  
ILPEAK =230mA +  
´ tdly  
L
(5)  
After the charge accumulated on the Vout capacitor is more than loading needs, the COMP pin voltage drops to  
low voltage driven by error amplifier. There is an internal comparator at the COMP pin. If the comp voltage is  
lower than 0.35 V, the power stage stops switching to save power.  
230 mA  
Turn off  
High-Side Power MOSFET  
Inductor  
Current Peak  
Current  
Current Comparator  
Delay: tdly  
Sensing  
x1  
IL_Peak  
Inductor Peak Current  
8-6. PSM Current Comparator  
8.3.9 Slope Compensation  
To prevent subharmonic oscillations when the device operates at duty cycles greater than 50%, the device adds  
built-in slope compensation, which is a compensating ramp to the switch current signal.  
8.3.10 Overcurrent Protection (OCP)  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and low-side MOSFET.  
8.3.10.1 High-Side MOSFET OCP  
The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch current  
and the current reference generated by the COMP pin voltage are compared. When the peak switch current  
intersects the current reference, the high-side switch is turned off.  
8.3.10.2 Low-Side MOSFET OCP  
While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During  
normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-  
side MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario, both MOSFETs are  
off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) lasts for more than the  
hiccup wait time (which is programmed for 0.5 ms, shown in 8-7) the device shuts down itself and restarts  
after the hiccup time, 14 ms. The hiccup mode helps to reduce the device power dissipation under severe  
overcurrent condition.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
OCP peak inductor current  
threshold  
Soft Start Time  
buck1: T = Css × 0.6  
V / 5 µA  
Hiccup  
Time  
14 ms  
OC limiting (waiting) time  
Output over  
loading  
0.5 ms  
buck2/3: 1 ms  
iL  
Inductor  
Current  
Soft-start is reset after OC waiting time  
About 2.1 V  
0.6V  
OC fault removed, soft-start & output recovery  
SS  
SS Pin  
Voltage  
Output hard short circuit  
Vout  
Output  
Voltage  
8-7. OCP  
8.3.11 Power Good  
The PGOOD pin is an open-drain output. When feedback voltage of each buck is between 95% (rising) and  
105% (falling) of the internal voltage reference, the PGOOD pin pulldown is deasserted and the pin floats. TI  
recommends to use a pullup resistor between the values of 10 to 100 kΩ to a voltage source that is 6.3 V or  
less. The PGOOD is in a defined state when the VIN input voltage is greater than 1 V but with reduced current  
sinking capability. The PGOOD achieves full current sinking capability when the VIN input voltage is above  
UVLO threshold, which is 4.25 V typically.  
The PGOOD pin is pulled low when any feedback voltage of buck is lower than 92.5% (falling) or greater than  
107.5% (rising) of the nominal internal reference voltage. Also, the PGOOD is pulled low, if the input voltage is  
undervoltage locked up, thermal shutdown is asserted, the EN pin is pulled low or the converter is in a soft-start  
period.  
8.3.12 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 140°C  
typically.  
8.4 Device Functional Modes  
8.4.1 Operation With VIN < 4.5 V (Minimum VIN)  
The device operates with input voltages above 4.5 V. The maximum UVLO voltage is 4.5 V and operates at input  
voltages above 4.5 V. The typical UVLO voltage is 4.25 V, and the device can operate at input voltages above  
that point. The device also can operate at lower input voltages; the minimum UVLO voltage is 4 V (rising) and  
3.5 V (falling). At input voltages below the UVLO minimum voltage, the device does not operate.  
8.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.2 V typical and 1.26 V maximum. With EN held below that voltage,  
the device is disabled and switching is inhibited. The IC quiescent current is reduced in this state. When the  
input voltage is above the UVLO threshold and the EN voltage is increased above the rising edge threshold, the  
device becomes active. Switching is enabled, and the soft-start sequence is initiated. The device starts at the  
soft-start time determined by the external soft start capacitor as shown in 9-2 to 9-7.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
8.4.3 Operation at Light Loads  
The device is designed to operate in high-efficiency PSM under light load conditions. Pulse skipping is initiated  
when the switch current falls to 0.23 A. During pulse skipping, the low-side FET is turned off. The switching node  
(LX) waveform takes on the characteristics of DCM operation and the apparent switching frequency decreases  
as shown in 9-8, 9-10, and 9-12.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
24  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The device is triple-synchronous, step-down DC/DC converter with dual LDOs. The device is typically used to  
convert a higher DC voltage to lower DC voltages with continuous available output current of 3 A/1 A/1 A. The  
following design procedure can be used to select component values for the TPS65262-1. This section presents  
a simplified discussion of the design process.  
9.2 Typical Application  
9.2.1 Design Requirements  
This example details the design of a triple-synchronous step-down converter. A few parameters must be known  
to start the design process. These parameters are typically determined at the system level. For this example,  
start with the following known parameters shown in 9-1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9-1. Design Parameters  
PARAMETER  
VALUE  
Vout1  
1.2 V  
Iout1  
3 A  
Vout2  
1.8 V  
Iout2  
Vout3  
1 A  
3.3 V  
Iout3  
1 A  
Buck1 transient response 1-A load step  
Buck2, buck3 transient response 0.5-A load step  
Input voltage  
±5%  
±5%  
12 V normal, 4.5 to 18 V  
±1%  
Output voltage ripple  
Switching frequency  
600 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 6. LIR is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for  
the majority of applications.  
V
- Vout  
Vout  
Vinmax ´ ƒsw  
inmax  
L =  
´
Io ´LIR  
(6)  
For the output filter inductor, it is important not to exceed the RMS current and saturation current ratings. The  
RMS and peak inductor current can be found from 方程8 and 方程9.  
V
- Vout  
´
Vout  
Vinmax ´ ƒsw  
inmax  
Iripple  
=
L
(7)  
æ
ö2  
Vout ´ V  
- Vout  
(
)
inmax  
ç
ç
÷
÷
Vinmax ´L ´ ƒsw  
è
ø
ILrms  
=
IO2 +  
12  
(8)  
(9)  
Iripple  
ILpeak =Iout  
+
2
The current flowing through the inductor is the inductor ripple current plus the output current. During power-up,  
faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated previously. In transient conditions, the inductor current can increase up to the switch current limit  
of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
9.2.2.2 Output Capacitor Selection  
The designer needs to account for three primary considerations when selecting the value of the output capacitor.  
The output capacitor determines the modulator pole, the output voltage ripple, and how the regulator responds  
to a large change in load current. The output capacitance must be selected based on the most stringent of these  
three criteria.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
26  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
The first criterion is the desired response to a large change in the load current. The output capacitor needs to  
supply the load with current when the regulator cannot. This situation can occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change  
in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be  
sized to supply the extra current to the load until the control loop responds to the load change. The output  
capacitance must be large enough to supply the difference in current for two clock cycles while only allowing a  
tolerable amount of droop in the output voltage. 方程式 10 shows the minimum output capacitance necessary to  
accomplish this.  
2´ DIout  
Co =  
ƒsw ´ DVout  
(10)  
where  
• ΔIout is the change in output current.  
• ƒsw is the regulator's switching frequency.  
• ΔVout is the allowable change in the output voltage.  
方程11 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
1
1
Co >  
´
Voripple  
8´ ƒsw  
Ioripple  
(11)  
where  
• ƒsw is the switching frequency.  
Voripple is the maximum allowable output voltage ripple.  
Ioripple is the inductor ripple current.  
方程式 12 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification.  
Voripple  
Resr  
<
Ioripple  
(12)  
Additional capacitance deratings for aging, temperature, and DC bias must be factored in, which increase this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some  
capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. 方程式 13 can  
be used to calculate the RMS ripple current the output capacitor needs to support.  
Vout ´ V  
- Vout  
(
)
12 ´ Vinmax ´L ´ ƒsw  
inmax  
Icorms  
=
(13)  
9.2.2.3 Input Capacitor Selection  
The TPS65262-1 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10 µF  
of effective capacitance on the VIN input voltage pins. In some applications, additional bulk capacitance can also  
be required for the VIN input. The effective capacitance includes any DC bias effects. The voltage rating of the  
input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
rating greater than the maximum input current ripple of the TPS65262-1. Calculate the input ripple current using  
方程14.  
V
(
- Vout  
)
Vout  
inmin  
I
=Iout  
´
´
inrms  
V
V
inmin  
inmin  
(14)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple  
voltage of the regulator. Calculate the input voltage ripple using 方程15.  
I
outmax ´ 0.25  
DV  
=
in  
Cin ´ ƒsw  
(15)  
9.2.2.4 Loop Compensation  
The TPS65262-1 incorporates a peak current mode control scheme. The error amplifier is a transconductance  
amplifier with a gain of 300 µS. A typical type II compensation circuit adequately delivers a phase margin  
between 60° and 90°. Cb adds a high frequency pole to attenuate high-frequency noise when needed. To  
calculate the external compensation components, follow these steps.  
1. Switching frequency, ƒsw, 600 kHz is appropriate for application depending on L and C sizes, output ripple,  
EMI, and so forth. It also gives the best trade-off between performance and cost.  
2. Set up crossover frequency, ƒc, which is typically between 1/5 and 1/20 of ƒsw.  
3. RC can be determined by 方程16.  
2p´ fc ´ Vo´ Co  
RC  
=
Gm-EA ´ Vref ´ Gm-PS  
(16)  
where  
Gm_EA is the error amplifier gain (300 µS)  
Gm_PS is the power stage voltage to current conversion gain (7.4 A/V)  
æ
1
ö
.
çƒp =  
÷
Co ´ RL  
è
´ 2p ø  
4. Calculate CC by placing a compensation zero at or before the dominant pole  
RL ´ Co  
CC  
=
RC  
(17)  
(18)  
5. Optional Cb can be used to cancel the zero from the ESR associated with CO.  
R
ESR ´ Co  
Cb =  
RC  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
28  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
LX  
VOUT  
iL  
RESR  
Current  
Sense I/V  
Converter  
Gm_PS = 7.4 A / V  
RL  
Co  
C1  
R1  
Vfb  
EA  
FB  
COMP  
Vref = 0.6 V  
Gm_EA = 300  
Rc  
s
Cb  
Cc  
GND  
9-1. DC/DC Loop Compensation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9.2.3 Application Curves  
9-2. BUCK1, Soft-Start With No Load  
9-4. BUCK2, Soft-Start With No Load  
9-6. BUCK3, Soft-Start With No Load  
9-3. BUCK1, Soft-Start With Full Load  
9-5. BUCK2, Soft-Start With Full Load  
9-7. BUCK3, Soft-Start With Full Load  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9-8. Buck1, Steady State Operation at Light  
Load  
9-9. Buck1, Steady State Operation at Full Load  
9-10. Buck2, Steady State Operation at Light 9-11. Buck2, Steady State Operation at Full Load  
Load  
9-12. Buck3, Steady State Operation at Light 9-13. Buck3, Steady State Operation at Full Load  
Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9-14. Buck1, Load Transient, 0.75 to 1.5 A SR = 9-15. Buck1, Load Transient, 1.5 to 2.25 A SR =  
0.25 A/µs 0.25 A/µs  
9-16. Buck2, Load Transient, 0.25 to 0.5 A SR = 9-17. Buck2, Load Transient, 0.5 to 0.75 A SR =  
0.25 A/µs 0.25 A/µs  
9-18. Buck3, Load Transient, 0.25 to 0.5 A SR = 9-19. Buck3, Load Transient, 0.5 to 0.75 A SR =  
0.25 A/µs  
0.25 A/µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
32  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9-20. Buck1, OCP  
9-22. Buck2, OCP  
9-24. Buck3, OCP  
9-21. Buck1, Hiccup and Recovery  
9-23. Buck2, Hiccup and Recovery  
9-25. Buck3, Hiccup and Recovery  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9-26. Automatic Power Sequencing, MODE =  
9-27. Automatic Power Sequencing, MODE =  
EN1 = EN2 = HIGH  
EN1 = EN2 = HIGH  
9-28. Automatic Power Sequencing, MODE =  
9-29. Automatic Power Sequencing, MODE =  
EN1 = HIGH, EN2 = LOW  
EN1 = HIGH, EN2 = LOW  
9-30. Automatic Power Sequencing, MODE =  
9-31. Automatic Power Sequencing, MODE =  
EN2 = HIGH, EN1 = LOW  
EN2 = HIGH, EN1 = LOW  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
Operating at VIN = 12 V, VOUT1 = 1.2 V / 1.5 A, VOUT2 = 1.8  
Operating at VIN = 12 V, VOUT1 = 1.2 V / 3 A, VOUT2 = 1.8  
V / 1 A, VOUT3 = 3.3 V / 1 A,  
V / 0.5 A, VOUT3 = 3.3 V / 0.5 A,  
EVM Condition 4 Layers, 64 mm × 69 mm TA = 30.5°C  
EVM Condition 4 Layers, 64 mm × 69 mm TA = 30.5°C  
9-32. Thermal Signature of TPS65262-1EVM  
9-33. Thermal Signature of TPS65262-1EVM  
9.3 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4.5 to 18 V. This input power  
supply must be well regulated. If the input supply is located more than a few inches from the TPS65262-1  
converter, additional bulk capacitance can be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 47 μF is a typical choice.  
9.4 Layout  
9.4.1 Layout Guidelines  
The TPS65262-1 supports a 2-layer PCB layout, shown in 9-34.  
Layout is a critical portion of good power supply design. See 9-34 for a PCB layout example. The top contains  
the main power traces for VIN, VOUT, and LX. The top layer also has connections for the remaining pins of the  
TPS65262-1 and a large top-side area filled with ground. The top-layer ground area must be connected to the  
bottom-layer ground using vias at the input bypass capacitor, the output filter capacitor, and directly under the  
TPS65262-1 device to provide a thermal path from the exposed thermal pad land to ground. The bottom layer  
acts as a ground plane connecting analog ground and power ground.  
For operation at full-rated load, the top-side ground area and bottom-side ground plane must provide adequate  
heat dissipating area. Several signals paths conduct fast changing currents or voltages that can interact with  
stray inductance or parasitic capacitance to generate noise or degrade the power supply's performance. To help  
eliminate these problems, the VIN pin must be bypassed to ground with a low-ESR ceramic bypass capacitor  
with X5R or X7R dielectric. Take care to minimize the loop area formed by the bypass capacitor connections,  
VIN pins, and ground connections. The VIN pin must also be bypassed to ground using a low-ESR ceramic  
capacitor with X5R or X7R dielectric.  
Because the LX connection is the switching node, the output inductor must be located close to the LX pins, and  
the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor  
ground must use the same power ground trace as the VIN input bypass capacitor. Try to minimize this conductor  
length while maintaining adequate width. The small signal components must be grounded to the analog ground  
path.  
The FB and COMP pins are sensitive to noise so the resistors and capacitors must be located as close as  
possible to the IC and routed with minimal lengths of trace. The additional external components can be placed  
approximately as shown in 9-34.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
9.4.2 Layout Example  
VOUT1  
VOUT3  
BST1  
LX1  
BST3  
LX3  
PGND1  
VIN1  
PGND3  
VIN3  
VIN  
VIN  
LEN1  
LFB1  
LOUT1  
LVIN1  
VIN2  
PGND2  
LX2  
BST2  
VOUT2  
TOPSIDE  
GROUND  
AREA  
0.010-inch diameter  
Thermal VIA to Ground Plane  
VIA to Ground Plane  
9-34. PCB Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSCN5  
36  
Submit Document Feedback  
Product Folder Links: TPS65262-1  
 
TPS65262-1  
ZHCSCZ1B JUNE 2014 REVISED MAY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65262-1  
English Data Sheet: SLVSCN5  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65262-1RHBR  
TPS65262-1RHBT  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TPS  
65262-1  
Samples  
Samples  
ACTIVE  
RHB  
NIPDAU  
TPS  
65262-1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65262-1RHBR  
TPS65262-1RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65262-1RHBR  
TPS65262-1RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65262-1RHBT

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85
TI

TPS65262-2

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器
TI

TPS65262-2RHBR

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85
TI

TPS65262-2RHBT

具有 350mA/150mA 双 LDO 的 4.5V 至 18V 输入电压、3A/1A/1A 三路同步降压转换器 | RHB | 32 | -40 to 85
TI

TPS65262RHBR

4.5- to 18-V Input Voltage, 3-A/1-A/1-A Output Current Triple Synchronous Step-Down Converter With Dual Adjustable 200-mA/100-mA LDOs
TI

TPS65262RHBT

4.5- to 18-V Input Voltage, 3-A/1-A/1-A Output Current Triple Synchronous Step-Down Converter With Dual Adjustable 200-mA/100-mA LDOs
TI

TPS65263

TPS65400-Q1 4.5- to 18-V Input Flexible Power Management Unit With PMBus/I2C Interface
TI

TPS65263-1Q1

4.0V 至 18V 输入、三路 3A/2A/2A 同步降压转换器
TI

TPS65263-1QRHBRQ1

4.0V 至 18V 输入、三路 3A/2A/2A 同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65263-1QRHBTQ1

4.0V 至 18V 输入、三路 3A/2A/2A 同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65263-Q1

支持 I2C 控制的动态电压调节的 4.0V-18V 输入电压、3A/2A/2A 三路同步降压转换器
TI

TPS65263QRHBRQ1

支持 I2C 控制的动态电压调节的 4.0V-18V 输入电压、3A/2A/2A 三路同步降压转换器 | RHB | 32 | -40 to 125
TI