TPS65265RHBR [TI]

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器 | RHB | 32 | -40 to 85;
TPS65265RHBR
型号: TPS65265RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器 | RHB | 32 | -40 to 85

开关 输出元件 转换器
文件: 总49页 (文件大小:3374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65265  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
TPS65265 4.5V 17V 输入电压、5A/3A/2A 输出电流三路同步降压转换器  
1 特性  
3 说明  
• 工作输入电压范围4.5V 17V  
• 反馈基准电压0.6V ±1.33%  
• 持续输出电流5A/3A/2A  
• 可调节时钟频率范围250kHz 至  
2.3MHz  
• 外部同步振荡器  
Buck1Buck2 Buck3 之间具120° 相位差  
• 针对每个降压转换器的专用使能引脚  
• 针对每个降压转换器的固定软启(SS) 时间  
(2.4ms)  
TPS65265 整合了三路同步降压转换器支持 4.5V 至  
17V 宽范围输入电压该电压范围包括大部分中间总  
线关闭电压为 5912 15V 的电源总线或电池。  
这款转换器具有恒定频率峰值电流模式专用于简化应  
同时方便设计人员根据目标应用来优化系统。可通  
过外部电阻或外部时钟在 250kHz 2.3MHz 范围内调  
节转换器的开关频率。Buck1Buck2 Buck3 之间  
120° 异相运行可最大限度降低对输入滤波器的要  
求。  
TPS65265 可通过将 MODE 引脚驱动为高电平或保持  
悬空进入脉冲跳跃模式 (PSM)通过将 MODE 引脚连  
接至 GND 进入强制持续电流模式 (FCC)PSM 模式  
通过减少轻负载时的开关损耗来提供高效率FCC  
模式可降低噪声灵敏度和射(RF) 干扰。  
• 自动加电/断电序列以及各降压转换器间可调节的间  
隔时间6 种组合)  
• 支持脉冲跳跃模(PSM) 和强制持续电流模式  
(FCCM)  
• 输出电压电源正常状态指示器和可调节延迟时间  
• 热过载保护  
32 QFN (RHB) 5mm × 5mm 封装  
TPS65265 采用 32 引脚 5mm × 5mm 耐热增强型  
QFN (RHB) 薄型封装。  
2 应用  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TPS65265  
封装  
• 数字电(DTV)  
• 机顶盒/OTT  
RHBVQFN325.00mm × 5.00mm  
• 家庭网关和接入点网络  
• 监控  
(1) 要了解所有可用封装请见数据表末尾的可订购产品附录。  
Vout1  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
Vin  
PVINx  
LX1  
FB1  
LX2  
MODE  
PSM  
Vout2  
Vout3  
PG_DLY  
TPS65265  
SEQ_DLY  
ENx  
FB2  
LX3  
PGOOD  
ROSC  
PSM Mode, VOUT = 1.2 V  
10%  
PWM Mode, VOUT = 1.2 V  
AGND  
FB3  
PGND  
0
0.01  
0.1  
Output Current (A)  
1
5
D100  
简化版应用电路  
效率与输出负载之间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD86  
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
Table of Contents  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................25  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Application.................................................... 27  
9.3 Power Supply Recommendations.............................38  
9.4 Layout....................................................................... 38  
10 Device and Documentation Support..........................40  
10.1 接收文档更新通知................................................... 40  
10.2 支持资源..................................................................40  
10.3 Trademarks.............................................................40  
10.4 静电放电警告.......................................................... 40  
10.5 术语表..................................................................... 40  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics................................................9  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................14  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2015) to Revision B (May 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 通篇去除了图像的颜色........................................................................................................................................1  
Renamed section 5 to Device Comparison Table ..............................................................................................3  
Change the description of V7V pin in 6-1 ......................................................................................................3  
Changed the recommended value of capacitor from V7V pin to power ground in V7V Low Dropout Regulator  
and Bootstrap .................................................................................................................................................. 21  
Changed the recommended value of C5 in 9-1........................................................................................... 27  
Changes from Revision * (December 2015) to Revision A (December 2015)  
Page  
• 将器件状态更改为量产数据并发布了完整数据表................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
2
Submit Document Feedback  
Product Folder Links: TPS65265  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
5 Device Comparison Table  
PART  
DESCRIPTION  
NUMBER  
COMMENTS  
TPS65261,  
4.5 V to 18 V, triple bucks with input Triple bucks 3-A/2-A/2-A output current, features an open drain RESET signal to  
monitor input power failure, automatic power sequencing  
TPS65261-1 voltage power failure indicator  
TPS65262, 4.5 V to 18 V, triple bucks with dual Triple bucks 3-A/1-A/1-A output current, automatic power sequencing, dual LDOs  
TPS65262-1 adjustable LDOs  
100 mA/200 mA for TPS65262, 350 mA/150 mA for TPS65262-1  
4.5 V to 18 V, triple bucks with I2C  
interface  
Triple bucks 3-A/2-A/2-A output current, I2C controlled dynamic voltage scaling  
(DVS)  
TPS65263  
TPS65266  
2.7 V to 6.5 V, triple bucks  
Triple bucks 3 A/2 A/2 A  
6 Pin Configuration and Functions  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
BST3  
PGND3  
LX3  
BST1  
PGND1  
PGND1  
LX1  
25  
26  
27  
14  
13  
12  
PVIN3  
PVIN2  
LX2  
28  
29  
Thermal Pad  
LX1  
PVIN1  
11  
10  
9
30  
31  
32  
PVIN1  
PSM  
PGND2  
BST2  
1
2
3
4
5
6
7
8
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal  
performance.  
6-1. RHB Package 32-Lead Plastic QFN Top View  
6-1. Pin Functions  
PIN  
DESCRIPTION  
NO.  
NAME  
1
2
V7V  
Internal LDO for gate driver and internal controller. Connect a 10-µF capacitor from the pin to power ground  
An open drain output, asserts low if output voltage of any buck beyond regulation range due to thermal  
shutdown, over-current, under-voltage or ENx shut down.  
PGOOD  
EN1  
Enable for buck1. Float to enable. Can use this pin to adjust the input undervoltage lockout (UVLO) of buck1  
with a resistor divider.  
3
4
5
6
EN2  
EN3  
FB2  
Enable for buck2. Float to enable. Can use this pin to adjust the input UVLO of buck2 with a resistor divider.  
Enable for buck3. Float to enable. Can use this pin to adjust the input UVLO of buck3 with a resistor divider.  
Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
6-1. Pin Functions (continued)  
PIN  
DESCRIPTION  
NO.  
NAME  
COMP2  
Error amplifier output and Loop compensation pin for buck2. Connect a series resistor and capacitor to  
compensate the control loop of buck2 with peak current PWM mode.  
7
8
9
When floating, Buck1/2/3 are controlled separate by EN1/2/3. When tied to HIGH or tied to GND, an automatic  
power-up/power-down sequence is provided according to states of EN1, EN2 and EN3 pins.  
MODE  
BST2  
Boot strapped supply to the high side floating gate driver in buck2. Connect a capacitor (recommend 47nF)  
from BST2 pin to LX2 pin.  
Power ground connection of buck2. Connect PGND2 pin as close as practical to the (-) terminal of PVIN2 input  
ceramic capacitor.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
PGND2  
LX2  
Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is  
from a diode voltage below the ground up to PVIN2 voltage.  
Input power supply for buck2. Connect PVIN2 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 10 µF).  
PVIN2  
PVIN3  
LX3  
Input power supply for buck3. Connect PVIN3 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 10 µF).  
Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is  
from a diode voltage below the ground up to PVIN3 voltage.  
Power ground connection of buck3. Connect PGND3 pin as close as practical to the (-) terminal of PVIN3 input  
ceramic capacitor.  
PGND3  
BST3  
Boot strapped supply to the high side floating gate driver in buck3. Connect a capacitor (recommend 47nF)  
from BST3 pin to LX3 pin.  
Delay time programmable between bucks at automatic power sequencing mode. Connect an external capacitor  
to set the interval delay time.  
SEQ_DLY  
COMP3  
Error amplifier output and Loop compensation pin for buck3. Connect a series resistor and capacitor to  
compensate the control loop of buck3 with peak current PWM mode.  
19  
20  
21  
22  
FB3  
Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider.  
Oscillator frequency programmable pin. Connect an external resistor to set the switching frequency.  
Analog ground common to buck controllers and other analog circuits.  
ROSC  
AGND  
FB1  
Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider.  
Error amplifier output and Loop compensation pin for buck1. Connect a series resistor and capacitor to  
compensate the control loop of buck1 with peak current PWM mode.  
23  
24  
25  
COMP1  
PG_DLY  
BST1  
PGOOD delay programmable pin. Connect an external capacitor to set the delay time.  
Boot strapped supply to the high side floating gate driver in buck1. Connect a capacitor (recommend 47nF)  
from BST1 pin to LX1 pin.  
Power ground connection of Buck1. Connect PGND1 pin as close as practical to the (-) terminal of PVIN1 input  
ceramic capacitor.  
26, 27 PGND1  
28, 29 LX1  
Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is  
from a diode voltage below the ground up to PVIN1 voltage.  
Input power supply for buck1. Connect PVIN1 pin as close as practical to the (+) terminal of an input ceramic  
capacitor (suggest 22 µF).  
30, 31 PVIN1  
32  
PSM  
Ties to HIGH or leaves floating, PSM mode; Ties to GND, FCCM mode.  
There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to  
PCB for optimal thermal performance.  
PAD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
4
Submit Document Feedback  
Product Folder Links: TPS65265  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
1.0  
1.0  
0.3  
0.3  
0.3  
0.3  
40  
55  
MAX  
20  
UNIT  
V
PVIN1, PVIN2, PVIN3, PGOOD  
LX1, LX2, LX3  
19  
V
LX1, LX2, LX3 (maximum withstand voltage transient <10 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins, respectively  
EN1, EN2, EN3, V7V, MODE, PSM  
21  
V
7
V
7
V
FB1, FB2, FB3, COMP1 , COMP2, COMP3, ROSC, SEQ_DLY, PG_DLY  
AGND, PGND1, PGND2, PGND3  
3.6  
0.3  
150  
150  
V
V
Operating junction temperature, TJ  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
PVIN1, PVIN2, PVIN3  
17  
19  
V
V
LX1, LX2, LX3 (Maximum withstand voltage transient <10 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, V7V, MODE, PSM  
0.8  
0.1  
0.1  
0.1  
40  
6.8  
6.3  
3.3  
125  
V
V
FB1, FB2, FB3, COMP1 , COMP2, COMP3, ROSC, SEQ_DLY, PG_DLY  
Operating junction temperature, TJ  
V
°C  
7.4 Thermal Information  
TPS65265  
RHB (QFN)  
32 PINS  
32  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
24.2  
6.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
6.4  
ψJB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
 
 
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
TPS65265  
RHB (QFN)  
32 PINS  
1.3  
THERMAL METRIC(1)  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
6
Submit Document Feedback  
Product Folder Links: TPS65265  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.5 Electrical Characteristics  
TJ = 40°C to 125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
4.5  
3.6  
3.0  
17  
4
V
V
VIN rising  
3.8  
3.2  
UVLO  
VIN undervoltage lockout  
VIN falling  
Hysteresis  
3.4  
V
600  
mV  
PVIN = 12 V, EN1 = EN2 =  
EN3 = MODE = 0 V  
IDDSDN  
Shutdown supply current  
9
550  
280  
280  
280  
11.5  
680  
350  
350  
350  
14  
800  
425  
425  
425  
µA  
µA  
µA  
µA  
µA  
EN1 = EN2 = EN3 = 5 V, FB1  
= FB2 = FB3 = 0.8 V  
IDDQ_NSW  
IDDQ_NSW1  
IDDQ_NSW2  
IDDQ_NSW3  
EN1 = 5 V, EN2 = EN3 = 0 V,  
FB1 = 0.8 V  
Input quiescent current without buck1/2/3  
switching  
EN2 = 5 V, EN1 = EN3 = 0 V,  
FB2 = 0.8 V  
EN3 = 5 V, EN1 = EN2 = 0 V,  
FB3 = 0.8 V  
PVIN1 = 12 V, V7V load  
current = 0 A  
V7V  
V7V LDO output voltage  
V7V LDO current limit  
5.9  
6.1  
6.3  
V
IOCP_V7V  
110  
177  
235  
mA  
FEEDBACK VOLTAGE REFERENCE  
VFB Feedback voltage  
Buck1, Buck2, Buck3  
VCOMP = 1.2 V  
0.592  
0.6  
0.608  
V
VENXH  
VENXL  
IENX1  
EN1/2/3 high-level input voltage  
1.08  
1.06  
2.3  
1.15  
1.12  
2.9  
6
1.22  
1.17  
3.4  
V
EN1/2/3 low-level input voltage  
EN1/2/3 pullup current  
V
ENx = 1 V  
µA  
µA  
µA  
ns  
µS  
IENX2  
EN1/2/3 pullup current  
ENx = 1.5 V  
5.1  
6.8  
IENhys  
tON_MIN  
Gm_EA  
hysteresis current  
3.1  
75  
Minimum on time  
Iload = 100 mA  
120  
530  
Error amplifier transconductance  
COMP1/2/3 voltage to inductor current  
174  
350  
2 µA < ICOMPX < 2 µA  
Gm_PS1/2/3  
ILX = 0.5 A  
12  
A/V  
(1)  
Gm  
ILIMIT1  
buck1 peak inductor current limit  
buck1 low-side source current limit  
buck1 low-side sink current limit  
buck2 peak inductor current limit  
buck2 low-side source current limit  
buck2 low-side sink current limit  
buck3 peak inductor current limit  
buck3 low-side source current limit  
buck3 low-side sink current limit  
Overcurrent wait time(1)  
6.0  
5.3  
8.0  
7.7  
1.4  
5.2  
4.8  
1.2  
3.6  
3.7  
1.2  
256  
8192  
39  
9.6  
10  
A
A
ILIMITSOURCE1  
ILIMITSINK1  
ILIMIT2  
A
3.85  
3
6.65  
5.5  
A
ILIMITSOURCE2  
ILIMITSINK2  
ILIMIT3  
A
A
2.6  
2.6  
4.45  
4.6  
A
ILIMITSOURCE3  
ILIMITSINK3  
tHiccup_wait  
tHiccup_re  
A
A
cycles  
cycles  
mΩ  
mΩ  
mΩ  
mΩ  
Hiccup time before restart(1)  
Rdson_HS1  
Rdson_LS1  
Rdson_HS2  
Rdson_LS2  
buck1 high-side switch resistance  
buck1 low-side switch resistance  
buck2 high-side switch resistance  
buck2 low-side switch resistance  
PVIN = 12 V  
PVIN = 12 V  
PVIN = 12 V  
PVIN = 12 V  
25  
52  
43  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
UNIT  
mΩ  
Rdson_HS3  
Rdson_LS3  
buck3 high-side switch resistance  
buck3 low-side switch resistance  
PVIN = 12 V  
PVIN = 12 V  
65  
mΩ  
PGOOD, MODE, PSM, SEQ_DLY, PG_DLY  
FBx undervoltage falling  
FBx undervoltage rising  
FBx overvoltage rising  
FBx overvoltage falling  
92.5  
95  
%VREF  
%VREF  
Vth_PG  
Feedback voltage threshold  
107.5  
105  
%VREF  
%VREF  
tDEGLITCH(PG)_F  
tDEGLITCH(PG)_R  
IPG  
PGOOD falling edge deglitch time  
PGOOD rising edge deglitch time  
PGOOD pin leakage  
256  
cycles  
256  
cycles  
µA  
V
0.08  
0.25  
2.8  
VLOW_PG  
VMODE_H  
VMODE_L  
VPG_DLYTH  
IPG_DLY  
PGOOD pin low voltage  
MODE high level input voltage  
MODE low level input voltage  
PG_DLY threshold  
PVIN1 = 12 V, ISINK = 1 mA  
2.4  
0.11  
1.4  
2.0  
0.7  
1.4  
2
2.6  
0.16  
1.5  
3.0  
0.75  
1.5  
3
V
0.23  
1.6  
V
V
PG_DLY pullup current  
PG_DLY = 0.5 V  
SEQ_DLY = 0.5 V  
4.1  
µA  
V
VSEQ_DLYTH1  
VSEQ_DLYTH2  
ISEQ_DLY  
SEQ_DLY threshold  
0.8  
SEQ_DLY threshold  
1.58  
4.1  
V
SEQ_DLY pullup current  
PSM pin high level input voltage  
PSM pin low level input voltage  
µA  
V
VPSMH  
1.3  
1
1.4  
1.1  
1.55  
1.2  
VPSML  
V
OSCILLATOR  
FSW  
Switching frequency  
580  
250  
80  
610  
640  
kHz  
kHz  
ns  
ROSC = 82.5 kΩ  
FSW_range  
tSYNC_w  
FSYNC_HI  
VSYNC_LO  
Switching frequency  
2300  
Clock sync minimum pulse width  
Clock sync high threshold  
Clock sync low threshold  
2
V
0.4  
V
THERMAL PROTECTION  
TTRIP_OTP  
Thermal protection trip point(1)  
THYST_OTP  
Temperature rising  
Hysteresis  
160  
20  
°C  
°C  
(1) Lab validation result  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
8
Submit Document Feedback  
Product Folder Links: TPS65265  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.6 Typical Characteristics  
0.606  
650  
630  
610  
590  
570  
0.604  
0.602  
0.6  
0.598  
0.596  
0.594  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D001  
Temperature (èC)  
D002  
7-1. Voltage Reference vs Temperature  
7-2. Oscillator Frequency vs Temperature  
18  
16  
14  
12  
10  
8
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
6
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D004  
D003  
7-4. Vin UVLO Raising vs Temperature  
7-3. Shutdown Quiescent vs Temperature  
3.4  
3.3  
3.2  
3.1  
3
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.9  
2.8  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
7-5. Vin UVLO Falling vs Temperature  
7-6. EN Pin Pullup Current vs Temperature, EN = 1.0 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
6.6  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
6.4  
6.2  
6
5.8  
5.6  
5.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D008  
D007  
7-8. EN Pin Threshold Raising vs Temperature  
7-7. EN Pin Pullup Current vs Temperature, EN = 1.5 V  
3.4  
1.16  
3.3  
3.2  
3.1  
3
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
2.9  
2.8  
2.7  
2.6  
1.09  
1.08  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
7-9. EN Pin Threshold Falling vs Temperature  
7-10. PG_DLY Pin Pullup Current vs Temperature, PG_DLY =  
0.5 V  
3.4  
3.6  
3.3  
3
3.3  
3.2  
3.1  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
2.9  
2.8  
2.7  
2.6  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
7-11. SEQ_DLY Pin Pullup Current vs Temperature, PG_DLY  
7-12. Soft-Start Time vs Temperature  
= 0.5 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
10  
Submit Document Feedback  
Product Folder Links: TPS65265  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
9
8.75  
8.5  
8.25  
8
6.2  
6
5.8  
5.6  
5.4  
5.2  
5
7.75  
7.5  
7.25  
7
4.8  
4.6  
4.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
7-13. Buck1 High-Side Current Limit vs Temperature  
7-14. Buck2 High-Side Current Limit vs Temperature  
4.4  
4.2  
4
140  
IOUT = 10 mA  
IOUT = 100 mA  
120  
100  
80  
60  
40  
20  
3.8  
3.6  
3.4  
3.2  
3
2.8  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D016  
D015  
7-16. Minimum On Time vs Temperature  
7-15. Buck3 High-Side Current Limit vs Temperature  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
30%  
PSM Mode, VOUT = 1.2 V  
PSM Mode, VOUT = 1.8 V  
PWM Mode, VOUT = 1.2 V  
PWM Mode, VOUT = 1.8 V  
PSM Mode, VOUT = 1.5 V  
PSM Mode, VOUT = 3.3 V  
PWM Mode, VOUT = 1.5 V  
PWM Mode, VOUT = 3.3 V  
20%  
10%  
0
0.01  
0.1  
Output Current (A)  
1
5
0.01  
0.1  
Output Current (A)  
1
3
D017  
D018  
7-17. Buck1 Efficiency, VIN = 12 V, Fsw = 610 kHz  
7-18. Buck2 Efficiency, VIN = 12 V, Fsw = 610 kHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
1.22  
1.21  
1.2  
PSM Mode, VIN = 12 V  
PWM Mode, VIN = 12 V  
1.19  
1.18  
PSM Mode, VOUT = 1.8 V  
20%  
10%  
0
PSM Mode, VOUT = 3.3 V  
PWM Mode, VOUT = 1.8 V  
PWM Mode, VOUT = 3.3 V  
0.01  
0.1  
Output Current (A)  
1
2
0
1
2 3  
Output Current (A)  
4
5
D019  
D020  
7-19. Buck3 Efficiency, VIN = 12 V, Fsw = 610 kHz  
7-20. Buck1, Load Regulation  
1.52  
1.82  
1.81  
1.8  
PSM Mode, VIN = 12 V  
PWM Mode, VIN = 12 V  
PSM Mode, VIN = 12 V  
PWM Mode, VIN = 12 V  
1.51  
1.5  
1.79  
1.78  
1.49  
1.48  
0
0.2 0.4 0.6 0.8  
1
Output Current (A)  
1.2 1.4 1.6 1.8  
2
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D022  
D021  
7-22. Buck3, Load Regulation  
7-21. Buck2, Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
12  
Submit Document Feedback  
Product Folder Links: TPS65265  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8 Detailed Description  
8.1 Overview  
The TPS65265 is a monolithic triple synchronous step-down (buck) converter with 5-A/3-A/2-A output currents. A  
wide 4.5-V to 17-V input supply voltage range encompasses most intermediate bus voltages operating off 5-V, 9-  
V, 12-V, or 15-V power bus. The feedback voltage reference for each buck is 0.6 V. Each buck is independent  
with dedicated enable, soft-start and loop compensation pins.  
The TPS65265 implements a constant frequency, peak current mode control that simplifies external loop  
compensation. The wide switching frequency of 250 kHz to 2.3 MHz allows optimizing system efficiency, filtering  
size and bandwidth. The switching frequency can be adjusted with an external resistor connecting between  
ROSC pin and ground. The switching clock is 120° out-of-phase operation from the clocks of buck1, buck2, and  
buck3 channels to reduce input current ripple, input capacitor size and power supply induced noise.  
The TPS65265 has been designed for safe monotonic startup into pre-biased loads. The default start up is when  
VIN is typically 3.8 V. The ENx pin also can be used to adjust the input voltage undervoltage lockout (UVLO) with  
an external resistor divider. In addition, the ENx pin has an internal 2.9µA current source, so the EN pin can be  
floating for automatically powering up the converters.  
The TPS65265 reduces the external component count by integrating the bootstrap circuit. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor between the BST and LX pins. A UVLO circuit  
monitors the bootstrap capacitor voltage VBST-VLX in each buck. When VBST-VLX voltage drops to the  
threshold, LX pin is pulled low to recharge the bootstrap capacitor. The TPS65265 can operate at 100% duty  
cycle as long as the bootstrap capacitor voltage is higher than the BOOT-LX UVLO threshold which is typically  
2.2 V.  
The TPS65265 features PGOOD pin to supervise each output voltage of buck converters. The TPS65265 has  
power good comparators with hysteresis, which monitor the output voltages through feedback voltages. When all  
bucks are in regulation range and power sequence is done, PGOOD is asserted to high after the adjustable  
delay time.  
The TPS65265 operates in PSM with connecting PSM pin to high or leaving float and operates in force  
continuous current mode (FCC) with driving PSM pin to GND.  
The TPS65265 is protected from overload and over temperature fault conditions. The converter minimizes  
excessive output overvoltage transients by taking advantage of the power good comparator. When the output is  
over, the high-side MOSFET is turned off until the internal feedback voltage is lower than 105% of the 0.6V  
reference voltage. The TPS65265 implements both high-side MOSFET overload protection and bidirectional low-  
side MOSFET overload protections to avoid inductor current runaway. If the overcurrent condition has lasted for  
more than the OC wait time (256 clock cycle), the converter will shut down and restart after the hiccup time  
(8192 clock cycles). The TPS65265 shuts down if the junction temperature is higher than thermal shutdown trip  
point. When the junction temperature drops 20°C typically below the thermal shutdown trip point, the TPS65265  
will be restarted under control of the soft start circuit automatically.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8.2 Functional Block Diagram  
ROSC  
V7V  
V3V  
OSC/Phase Shift  
V7V LDO  
Bias  
V7V  
VIN  
clk  
PVIN2  
BST2  
LX2  
V7V  
VIN  
clk  
VIN  
en_buck2  
enable  
PVIN1  
BST1  
VIN  
enable  
en_buck1  
BST  
LX  
psm  
mode  
BUCK2  
BST  
LX  
psm  
BUCK1  
seq_dly  
LX1  
mode  
PGND2  
PGND  
Comp  
vfb  
seq_dly  
PGND1  
PGND  
Comp  
vfb  
FB2  
FB1  
COMP1  
-
1.5 V  
COMP2  
3 µA  
1 µA  
PG_DLY  
PGOOD  
+
Power  
Good  
1.4 V  
clk  
V7V  
VIN  
PSM  
FB1  
FB2  
FB3  
PVIN3  
BST3  
LX3  
en_buck3  
enable  
VIN  
-
0.75 V  
BST  
LX  
psm  
mode  
BUCK3  
+
+
3 µA  
mode  
psm  
seq_dly  
SEQ_DLY  
PGND3  
PGND  
Comp  
vfb  
seq_dly  
-
1.5 V  
2.6 V  
-
State  
Machine  
FB3  
en_buck1  
en_buck2  
en_buck3  
+
MODE  
-
COMP3  
AGND  
+
0.16 V  
OT  
Over  
Temp  
2.9 µA  
3.1 µA  
EN1(EN2, EN3)  
6.3 V  
1.15 V  
2 k  
8.3 Feature Description  
8.3.1 Adjusting the Output Voltage  
The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. TI  
recommends to use 1% tolerance or better resistors.  
VOUT  
R1  
FB  
COMP  
0.6V  
R2  
8-1. Voltage Divider Circuit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
14  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
0 .6  
œ 0 .6  
R 2 = R 1  
ì
V
o u t  
(1)  
To improve efficiency at light loads consider using larger value resistors. If the values are too high, the regulator  
is more sensitive to noise. The recommended resistor values are shown in 8-1.  
8-1. Output Resistor Divider Selection  
OUTPUT VOLTAGE  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
1
10  
10  
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
5
15  
10  
20  
10  
31.6  
45.3  
22.6  
73.2  
36.5  
10  
10  
4.99  
10  
5
4.99  
8.3.2 Mix PGOOD, PG_DLY Functions  
The PGOOD pin is an open drain output and withstands voltage higher to 17 V. After feedback voltage of each  
buck is between 95% (rising) and 105% (falling) of the internal voltage reference and PG_DLY pin voltage overs  
1.5 V, the PGOOD pin pull-down is deasserted and the pin floats. TI recommends to use a pullup resistor  
between the values of 10 kand 100 kto a voltage source that is below 17 V.  
The PGOOD pin is pulled low when any feedback voltage of buck is lower than 92.5% (falling), greater than  
107.5% (rising) of the nominal internal reference voltage, or PG_DLY pin voltage is below 1.5V (typical). Also,  
the PGOOD is pulled low, if the input voltage is under-voltage locked up, thermal shutdown is asserted, the EN  
pin is pulled low or the converter is in soft-start period.  
Different combinations of PGOOD, PG_DLY can implement different functions.  
8.3.2.1 Programmable PGOOD DELAY  
An internal 3-µA pullup current source is connected to PG_DLY pin. The PGOOD delay time can be  
programmed by connecting a capacitor between PG_DLY pin and ground. The delay time can be calculated as  
方程2.  
VP G _ D L Y ì C 1  
tp g o o d _ d e la y  
=
Ip  
(2)  
where  
VPG_DLY = 1.5 V  
Ip = 3 µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
VDD_1.8V  
3 µA  
PGOOD  
PG_DLY  
Power  
Good  
Logic  
C1  
1.5 V  
State Machine  
BUCK1,2,3  
PG_DLY  
PGOOD deglitch time 256 cycles  
1.5 V  
tpgood_delay = 1.5 V × C1 / 3 µA  
PGOOD  
8-2. Power Good Delay Timing Diagram  
8.3.2.2 Relay Control  
PGOOD pin can implement one buck outputs relay control through an N-MOSFET, circuit as in 8-3.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
BUCKx  
PVIN_12V  
Q1  
3 µA  
R1  
C2  
PGOOD  
PG_DLY  
C1  
Power  
Good  
Logic  
1.5 V  
Relay_BUCKx  
State Machine  
BUCK1,2,3  
PG_DLY  
PGOOD deglitch time 256 cycles  
1.5 V  
tpgood_delay = 1.5 V × C1 / 3 µA  
Q1 gate threshold  
PGOOD  
Determined by R1 and C2  
Relay_BUCKx  
8-3. Relay Control Circuit  
8.3.3 Enable and Adjusting UVLO  
The EN1/2/3 pin provides electrical on/off control of the device. After the EN1/2/3 pin voltage exceeds the  
threshold voltage, the device starts operation. If each ENx pin voltage is pulled below the threshold voltage, the  
regulator stops switching and enters low Iq state.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device. If  
an application requires controlling the EN pin, use open drain or open collector output logic to interface with the  
pin.  
The device implements internal UVLO circuitry on the PVIN1 pin. The device is disabled when the PVIN1 pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 600  
mV. If an application requires a higher UVLO threshold on the PVIN1, in split-rail applications, then the ENx pin  
can be configured as shown in 8-4. When using the external UVLO function TI recommends to set the  
hysteresis to be greater than 500 mV.  
The EN pin has a small pullup current Ip which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. The UVLO thresholds can be  
calculated using 方程3 and 方程4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
«
÷
VE N F A L L IN G  
VE N R IS IN G  
V
œ V  
S T O P  
S T A R T  
R 1  
=
÷
VE N F A L L IN G  
I
1 œ  
+ I  
h
P
VE N R IS IN G  
«
(3)  
(4)  
R 1 ì VE N F A L L IN G  
+ R  
R 2  
=
V
œ
V
I
+ I  
h P  
(
)
S T O P  
E N F A L L IN G  
1
where  
Ih = 3.1µA  
Ip = 2.9 µA  
VENRISING = 1.15 V  
VENFALLING = 1.12 V  
PVIN  
ih  
R1  
R2  
ip  
EN  
8-4. Adjustable PVIN UVLO, PVIN > 4.5 V  
8.3.4 Soft-Start Time  
TPS65265 has fixed 2.4-ms (typical) soft-start time.  
8.3.5 Power-Up Sequencing  
TPS65265 features a comprehensive sequencing circuit for the three bucks. If MODE pin was tied to HIGH or  
tied to GND and at the same time EN1 or EN2 (or both) was (were) pulled high, the automatic power-up and  
power-down sequence function is active. If MODE pin was left floating, three Buck on/off were separately  
controlled by three enable pin.  
8.3.5.1 External Power Sequencing  
The TPS65265 has dedicated enable pin and soft-start pin for each converter. The converter enable pins are  
biased by a current source that allows for easy sequencing by the addition of an external capacitor. Disabling the  
converter with an active pulldown transistor on the ENx pin allows for a predictable powerdown timing operation.  
The 8-5 shows the timing diagram of a typical buck power-up sequence with connecting a capacitor at ENx  
pin.  
A typical 1.4-µA current is charging ENx pin from input supply. When ENx pin voltage rise to typical 0.4 V, the  
internal V7V LDO turns on. A 2.9-µA pullup current is sourcing ENx. After ENx pin voltage reaches to ENx  
enabling threshold, 3.1-µA hysteresis current sources to the pin to improve noise sensitivity. After soft start time  
of 2.4 ms (typical), PGOOD monitor is enabled. If all output voltages are in the regulation and after PGOOD  
delay time, PGOOD is asserted.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
18  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
VIN  
V7V  
EN Threshold  
EN Threshold  
ENx Rise Time  
Dictated by CEN  
Charge CEN  
with 6 µA  
ENx  
Pre-Bias Startup  
PGOOD Delay Time  
VOUTx  
2.4 ms  
t = CENx × (1.2 œ 0.4) V / 2.9 µA  
t = CENx × 0.4 V / 1.4 µA  
PGOOD  
8-5. Startup Power Sequence  
8.3.5.2 Automatic Power Sequencing  
The TPS65265 starts with a predefined power-up and power-down sequence when MODE pin ties HIGH or ties  
to GND. As shown in 8-2, the sequence is determined by the different combinations of EN1 and EN2 status.  
EN3 is used to start and stop the converters. 8-6 shows the power sequencing when MODE ties to GND,  
EN1, and EN2 are tied to HIGH.  
An internal 3-µA pullup current source is connected to SEQ_DLY pin. The interval time between bucks can be  
programmed by connecting a capacitor between SEQ_DLY pin and ground. The interval time can be calculated  
with 方程5.  
V1 ì C 1  
t1  
=
ip  
(5)  
(6)  
V
œ
V1 ì C  
(
)
2
1
t2  
=
ip  
where  
V1 = 0.75 V  
V2 = 1.5 V  
Ip = 3 µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8-2. Power Sequencing  
START  
SEQUENCING  
SHUTDOWN  
SEQUENCING  
MODE  
Connect to GND  
EN1  
EN2  
EN3  
buck1 buck2 →  
buck3 buck2 →  
High  
Low  
High  
High  
Low  
High  
High  
Low  
High  
High  
buck3  
buck1  
buck2 buck1 →  
buck3 buck1 →  
Connect to GND  
Connect to GND  
buck3  
buck2  
buck2 buck3 →  
buck1 buck3 →  
Used to start and  
stop bucks in  
sequence  
buck1  
buck2  
Connect to high or  
float  
buck1 buck3 →  
buck2 buck3 →  
Automatic  
Power  
Sequencing  
buck2  
buck1  
Connect to high or  
float  
buck3 buck1 →  
buck2 buck1 →  
buck2  
buck3  
Connect to high or  
float  
buck3 buck2 →  
buck1 buck2 →  
High  
Low  
Low  
Low  
Low  
Low  
buck1  
buck3  
Connect to GND  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Connect to high or  
float  
Externally  
Controlled  
Sequencing  
Used to start Used to start  
Used to start and  
stop buck3  
Floating  
and stop  
buck1  
and stop  
buck2  
x
x
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
20  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
High or Low  
MODE  
High or Low  
High or Low  
EN1  
EN2  
1.5 V  
EN3  
State Machine  
3uA  
SEQ_DLY  
C1  
0.75 V  
Example  
MODE(Low)  
EN1(High)  
EN2(High)  
EN3  
V2 = 1.5 V  
V1 = 0.75 V  
SEQ_DLY  
t1 = 0.75 V × C1 / 3 µA  
Buck1  
Buck2  
Buck3  
t2 = (1.5 V œ 0.75 V) × C1 / 3 µA  
t1  
t2  
t3  
t4  
t1 = t2 = t3 = t4  
8-6. Automatic Power Sequencing  
8.3.6 V7V Low Dropout Regulator and Bootstrap  
Power for the high-side and low-side MOSFET drivers and most other internal circuitry is derived from the V7V  
pin. The internal built-in low dropout linear regulator (LDO) supplies 6.1 V (typical) from PVIN1 to V7V. A 10-µF  
ceramic capacitor must be connected from V7V pin to power ground.  
If the input voltage, PVIN1, decreases to UVLO threshold voltage, the UVLO comparator detects V7V pin voltage  
and forces the converter off.  
Each high-side MOSFET driver is biased from the floating bootstrap capacitor CB, shown in 8-7, which is  
normally recharged during each cycle through an internal low-side MOSFET or the body diode of low-side  
MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less  
than PVIN and BST-LX voltage is below regulation. The recommended value of this ceramic capacitor is 47 nF.  
A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10V or higher is recommended  
because of the stable characteristics over temperature and voltage. Each low-side MOSFET driver is powered  
from V7V pin directly.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
To improve dropout, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage  
is greater than the BST-LX UVLO threshold, which is typically 2.2 V. When the voltage between BST and LX  
drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on allowing the boot capacitor to be recharged.  
PVIN1  
PVINx  
LDO  
+
(VBSTx-VLXx)  
+2.2 V  
nBootUV  
V7V  
BSTx  
High-side  
MOSFET  
Vbias  
10 µF  
CB  
UVLO  
Bias  
Buck Controller  
nBootUV  
Gate Driver  
PWM  
LXx  
Low-side MOSFET  
nBootUV  
PWM  
BootUV  
Protection  
Gate Driver  
Clk  
8-7. V7V Linear Dropout Regulator and Bootstrap Voltage Diagram  
8.3.7 Out of Phase Operation  
To reduce input ripple current, three switching clocks are 120° out-of-phase. This enables the system having less  
input current ripple to reduce input capacitorssize, cost, and EMI.  
8.3.8 Output Overvoltage Protection (OVP)  
The device incorporates an output OVP circuit to minimize output voltage overshoot. When the output is  
overloaded, the error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin  
voltage is lower than the internal reference voltage for a considerable time, the output of the error amplifier  
demands maximum output current. After the condition is removed, the regulator output rises and the error  
amplifier output transitions to the steady state voltage. In some applications with small output capacitance, the  
load can respond faster than the error amplifier. This leads to the possibility of an output overshoot. Each buck  
compares the FB pin voltage to the OVP threshold. If the FB pin voltage is greater than the OVP threshold, the  
high-side MOSFET is turned off preventing current from flowing to the output and minimizing output overshoot.  
When the FB voltage drops lower than the OVP threshold, the high-side MOSFET turns on at the next clock  
cycle.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
22  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8.3.9 PSM  
The TPS65265 can enter high-efficiency PSM operation at light load current when PSM pin connects to high or  
leave floating.  
When a controller is enabled for PSM operation, the peak inductor current is sensed and compared with 180 mA  
current typically. Because the integrated current comparator catches the peak inductor current only, the average  
load current entering PSM varies with the applications and external output filters. In PSM, the sensed peak  
inductor current is clamped at 180 mA.  
When a controller operates in PSM, the inductor current is not allowed to reverse. The reverse current  
comparator turns off the low-side MOSFET when the inductor current reaches zero, preventing it from reversing  
and going negative.  
Due to the delay in the circuit and current comparator tdly (typical 50 ns at PVIN = 12 V), the real peak inductor  
current threshold to turn off high-side power MOSFET must shift higher depending on inductor inductance and  
input/output voltages. The threshold of peak inductor current to turn off high-side power MOSFET can be  
calculated by 方程7.  
Vin  
œ Vo u t  
IL P E A K = 1 8 0 m A  
+
ì td ly  
L
(7)  
After the charge accumulated on Vout capacitor is more than loading need, COMP pin voltage drops to low  
voltage driven by error amplifier. There is an internal comparator at COMP pin. If comp voltage is lower than 0.35  
V, power stage stops switching to save power.  
180 mA  
Turn off  
high-side Power MOSFET  
+
œ
Inductor Current  
Peak Current  
Sensing  
Current Comparator  
Delay: tdly  
x1  
IL_Peak  
Inductor Peak Current  
8-8. PSM Current Comparator  
8.3.10 Slope Compensation  
To prevent the sub-harmonic oscillations when the device operates at duty cycles greater than 50%, the device  
adds built-in slope compensation, which is a compensating ramp to the switch current signal.  
8.3.11 Overcurrent Protection  
The device is protected from over current conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET.  
8.3.11.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle by cycle basis. Each cycle the switch current  
and the current reference generated by the COMP pin voltage are compared, when the peak switch current  
intersects the current reference, the high-side switch is turned off.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8.3.11.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During  
normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are  
off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than  
the hiccup wait time which is programmed for 256 switching cycles shown in 8-9, the device will shut down  
itself and restart after the hiccup time of 8192 cycles. The hiccup mode helps to reduce the device power  
dissipation under severe overcurrent condition.  
OCP peak inductor current threshold  
OC limiting (waiting) time  
256 cycles  
Hiccup time  
8192 cycles  
Soft-start time  
2.4-ms typical  
Output overloading  
iL  
Inductor Current  
Output hard short circuit  
OC fault removed, soft-start, and output recovery  
Vout  
Output Voltage  
8-9. Overcurrent Protection  
8.3.12 Adjustable Switching Frequency  
The ROSC pin can be used to set the switching frequency by connecting a resistor to GND. The switching  
frequency of the device is adjustable from 250 kHz to 2.3 MHz.  
To determine the switching frequency for a given ROSC resistance, use 方程式 8 or the curve in 8-10. To  
reduce the solution size one must set the switching frequency as high as possible, but tradeoffs of the supply  
efficiency and minimum controllable on time must be considered.  
ƒosc (kHz) = 30975 × Rosc (kΩ)0.889  
(8)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
24  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Oscillator Resistance (kW)  
D023  
8-10. Switching Frequency versus ROSC  
When an external clock applies to ROSC pin, the internal phase locked loop (PLL) has been implemented to  
allow internal clock synchronizing to an external clock between 250 kHz and 2.3 MHz. To implement the clock  
synchronization feature, connect a square wave clock signal to the ROSC pin with a duty cycle between 20% to  
80%. The clock signal amplitude must transition lower than 0.4 V and higher than 2.0 V. The start of the  
switching cycle is synchronized to the falling edge of ROSC pin.  
In applications where both resistor mode and synchronization mode are needed, the device can be configured  
as shown in 8-11. Before an external clock is present, the device works in resistor mode and ROSC resistor  
sets the switching frequency. When an external clock is present, the synchronization mode overrides the resistor  
mode. The first time the ROSC pin is pulled above the ROSC high threshold (2.0 V), the device switches from  
the resistor mode to the Synchronization mode and the ROSC pin becomes high impedance as the PLL starts to  
lock onto the frequency of the external clock. TI does not recommend to switch from the synchronization mode  
back to the resistor mode because the internal switching frequency drops to 100 kHz first before returning to the  
switching frequency set by ROSC resistor.  
Mode  
Selection  
IC  
ROSC  
ROSC  
8-11. Works With Resistor Mode and Synchronization Mode  
8.3.13 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 140°C  
typically.  
8.4 Device Functional Modes  
8.4.1 Operation With VIN < 4 V (Minimum VIN)  
The device operates with input voltages above 4 V. The maximum UVLO voltage is 4 V and will operate at input  
voltages above 4 V. The typical UVLO voltage is 3.8 V and the device can operate at input voltages above that  
point. The device also can operate at lower input voltages, the minimum UVLO voltage is 3.6V (rising) and 3V  
(falling). At input voltages below the UVLO minimum voltage, the devices will not operate.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
8.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.08 V minimum and 1.22 V maximum. With EN held below that  
voltage the device is disabled and switching is inhibited. The IC quiescent current is reduced in this state. When  
input voltage is above the UVLO threshold and the EN voltage is increased above the rising edge threshold, the  
device becomes active. Switching is enabled, and the internal soft-start sequence is initiated as shown in 8-7  
to 9-5.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
26  
Submit Document Feedback  
Product Folder Links: TPS65265  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The device is triple synchronous step down dc/dc converter. It is typically used to convert a higher dc voltage to  
lower dc voltages with continuous available output current of 5 A/3 A/2 A. .  
9.2 Typical Application  
The following design procedure can be used to select component values for the TPS65265. This section  
presents a simplified discussion of the design process  
C15  
22pF  
C26  
82pF  
R153  
10k  
R263  
10k  
R262  
10k  
R152 20k  
C231  
C181  
2.7nF  
2.7nF  
R20  
82.5k  
C232  
22pF  
R23  
10k  
R18  
6.8k  
C182  
22pF  
C24  
10nF  
C17  
10nF  
R16  
0
R25  
0
16  
25  
BST3  
BST1  
C25  
47nF  
C16  
47nF  
VOUT3  
1.8V  
15  
26  
27  
28  
PGND1  
PGND1  
LX1  
PGND3  
LX3  
L3  
4.7µH  
Max. 2A  
VOUT1  
14  
13  
1.2V  
Max. 5A  
L1  
C152  
22µF  
C151  
22µF  
Vin  
C12  
PVIN3  
PVIN2  
LX2  
2.2uH  
C13  
10µF  
TPS65265  
10µF  
C261 C262  
22µF 22µF  
C263  
22µF  
29  
30  
12  
11  
LX1  
L2  
4.7µH  
C101  
22µF  
C102  
22µF  
Vin  
PVIN1  
PVIN1  
PSM  
C29  
22µF  
VOUT2  
1.5V  
Max. 3A  
10  
9
31  
32  
PGND2  
BST2  
C9  
47nF  
R9  
0
0
DNI  
R29  
R7  
6.8k  
0
C72  
22pF  
DNI  
C5  
R2  
10µF  
C71  
2.7nF  
100K  
R102 15k  
R103  
10k  
C10  
22pF  
9-1. Typical Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9.2.1 Design Requirements  
This example details the design of triple synchronous step-down converter. A few parameters must be known to  
start the design process. These parameters are typically determined at the system level. For this example, start  
with the following known parameters shown in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
Vout1  
Iout1  
Vout2  
Iout2  
Vout3  
Iout3  
1.2 V  
5 A  
1.5 V  
3 A  
1.8 V  
2 A  
Transient response 1-A load step  
Input voltage  
±5%  
12-V normal, 4.5 V to 17 V  
±1%  
Output voltage ripple  
Switching frequency  
610 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 9. LIR is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for  
the majority of applications.  
V
- VOUT  
VOUT  
VIN max ´ ƒSW  
IN max  
L =  
´
IO ´LIR  
(9)  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS and peak inductor current can be found from 方程11 and 方程12.  
V
- VOUT  
´
VOUT  
VIN max ´ ƒSW  
IN max  
Iripple  
=
L
(10)  
æ
ö2  
VOUT ´ V  
- VOUT  
(
)
IN max  
ç
ç
÷
÷
VIN max ´L ´ ƒSW  
2
è
ø
ILrms  
= IO +  
12  
(11)  
(12)  
Iripple  
I
Lpeak= IOUT  
+
2
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
28  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9.2.2.2 Output Capacitor Selection  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in  
load current. The output capacitance needs to be selected based on the most stringent of these three criteria.  
The desired response to a large change in the load current is the first criteria. The output capacitor needs to  
supply the load with current when the regulator cannot. This situation must occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change  
in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be  
sized to supply the extra current to the load until the control loop responds to the load change. The output  
capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a  
tolerable amount of droop in the output voltage. 方程式 13 shows the minimum output capacitance necessary to  
accomplish this.  
2´ DIOUT  
CO  
=
ƒSW ´ DVOUT  
(13)  
where  
• ΔIout is the change in output current  
• ƒsw is the regulators switching frequency  
• ΔVout is the allowable change in the output voltage.  
方程14 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
1
1
CO  
>
´
VOripple  
8 ´ ƒSW  
IOripple  
(14)  
where  
• ƒsw is the switching frequency.  
Vripple is the maximum allowable output voltage ripple.  
Iripple is the inductor ripple current.  
方程式 15 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification.  
VOripple  
<
Resr  
IOripple  
(15)  
Additional capacitance de-ratings for aging, temperature and DC bias must be factored in which increases this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some  
capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. 方程式 16 can  
be used to calculate the RMS ripple current the output capacitor needs to support.  
VOUT ´ V  
- VOUT  
(
12 ´ VIN max ´L ´ ƒSW  
)
IN max  
ILrms  
=
(16)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
 
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9.2.2.3 Input Capacitor Selection  
The TPS65265 requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10 µF of  
effective capacitance on the PVIN input voltage pins. In some applications additional bulk capacitance can also  
be required for the PVIN input. The effective capacitance includes any DC bias effects. The voltage rating of the  
input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current  
rating greater than the maximum input current ripple of The TPS65265. The input ripple current can be  
calculated using 方程17.  
V
IN min ´ VOUT  
VOUT  
(
)
I
= IOUT  
´
´
INrms  
V
V
IN min  
IN min  
(17)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple  
voltage of the regulator. The input voltage ripple can be calculated using 方程18.  
IOUTmax ´0.25  
DV  
=
IN  
CIN ´ ƒSW  
(18)  
9.2.2.4 Loop Compensation  
The TPS65265 incorporates a peak current mode control scheme. The error amplifier is a trans-conductance  
amplifier with a gain of 350 µS. A typical type II compensation circuit adequately delivers a phase margin  
between 30 and 90 degrees. Cb adds a high frequency pole to attenuate high frequency noise when needed. To  
calculate the external compensation components, follow the following steps.  
1. Select switching frequency fsw that is appropriate for application depending on L and C sizes, output ripple,  
EMI, and so forth. Switching frequency between 600 kHz to 1 MHz gives best trade-off between  
performance and cost. To optimize efficiency, lower switching frequency is desired.  
2. Set up crossover frequency, ƒc, which is typically between 1/5 and 1/20 of ƒsw.  
3. RC can be determined by  
2 p ì ƒ c ì Vo ì C o  
R C  
=
G m  
ì Vre f ì G m _ P S  
_ E A  
(19)  
where  
Gm_EA is the error amplifier gain (350 µS).  
Gm_PS is the power stage voltage to current conversion gain (12 A/V).  
1
ƒ p  
=
C o ì R L ì 2 p  
4. Calculate CC by placing a compensation zero at or before the dominant pole (  
).  
R L ì C o  
C c  
=
R C  
(20)  
(21)  
5. Optional Cb can be used to cancel the zero from the ESR associated with CO.  
R E S R ì C o  
C b  
=
R C  
6. Type III compensation can be implemented with the addition of one capacitor, C1. This allows for slightly  
higher loop bandwidths and higher phase margins. If used, C1 is calculated from 方程22.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
30  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
1
C 1  
=
2 p ì R ì ƒ  
1
c
(22)  
LX  
VOUT  
iL  
RESR  
Current  
Sense I/V  
Converter  
Gm_PS = 12 A / V  
RL  
Co  
C1  
R1  
Vfb  
EA  
FB  
COMP  
Vref = 0.6 V  
Gm_EA = 350  
Rc  
s
Cb  
Cc  
GND  
9-2. DC-DC Loop Compensation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9.2.3 Application Curves  
TA = 25°C, VIN = 12 V, VOUT1 = 1.2 V, VOUT2 = 1.5 V, VOUT3 = 1.8 V FSW = 610 kHz (unless otherwise noted)  
9-3. Buck1, PSM Mode, Soft-Start, Iout = 0 A  
9-4. Buck1, FCC Mode, Soft-Start, Iout = 0 A  
9-5. Buck1, PSM Mode, Soft-Start, Iout = 5 A  
9-6. Buck1, FCC Mode, Soft-Start, Iout = 5 A  
9-7. Buck2, PSM Mode, Soft-Start, Iout = 0 A  
9-8. Buck2, FCC Mode, Soft-Start, Iout = 0 A  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-9. Buck2, PSM Mode, Soft-Start, Iout = 3 A  
9-10. Buck2, FCC Mode, Soft-Start, Iout = 3 A  
9-12. Buck3, FCC Mode, Soft-Start, Iout = 0 A  
9-14. Buck3, FCC Mode, Soft-Start, Iout = 2 A  
9-11. Buck3, PSM Mode, Soft-Start, Iout = 0 A  
9-13. Buck3, PSM Mode, Soft-Start, Iout = 2 A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-15. Buck1, PSM Mode, Output Ripple, Light  
9-16. Buck1, FCC Mode, Iout = 0 A  
Load  
9-17. Buck1, Output Ripple, Iout = 5 A  
9-18. Buck2, PSM Mode, Output Ripple, Light  
Load  
9-19. Buck2, FCC Mode, Iout = 0 A  
9-20. Buck2, Output Ripple, Iout = 3 A  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-21. Buck3, PSM Mode, Output Ripple, Light  
9-22. Buck3, FCC Mode, Iout = 0 A  
Load  
9-23. Buck3, Output Ripple, Iout = 2 A  
9-24. Buck1, Load Transient, 1.25 A to 2.5 A, SR  
0.25 A/µs  
9-25. Buck1, Load Transient, 2.5 A to 3.75 A, SR 9-26. Buck2, Load Transient, 0.75 A to 1.5 A, SR  
0.25 A/µs  
0.25 A/µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-27. Buck2, Load Transient, 1.5 A to 2.25 A, SR  
9-28. Buck3, Load Transient, 0.5 A to 1 A, SR  
0.25 A/µs  
0.25 A/µs  
9-29. Buck3, Load Transient, 1 A to 1.5 A, SR  
9-30. Buck1, Hiccup and Recovery  
0.25 A/µs  
9-31. Buck2, Hiccup and Recovery  
9-32. Buck3, Hiccup and Recovery  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-33. Automatic Power Sequencing, MODE =  
9-34. Automatic Power Sequencing, MODE =  
LOW, EN1 = HIGH, EN2 = HIGH  
LOW, EN1 = LOW, EN2 = HIGH  
9-35. Automatic Power Sequencing, MODE =  
9-36. Automatic Power Sequencing, MODE =  
LOW, EN1 = HIGH, EN2 = LOW  
HIGH, EN1 = HIGH, EN2 = HIGH  
9-37. Automatic Power Sequencing, MODE =  
9-38. Automatic Power Sequencing, MODE =  
HIGH, EN1 = LOW, EN2 = HIGH  
HIGH, EN1 = HIGH, EN2 = LOW  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9-39. 120° Out of Phase for Buck1, Buck2,  
9-40. PGOOD Delay, CPG_DLY = 10 nF  
Buck3  
9.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 4.5 V and 17 V. This input power  
supply must be well regulated. If the input supply is located more than a few inches from the TPS65265  
converter additional bulk capacitance can be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 47 μF is a typical choice.  
9.4 Layout  
9.4.1 Layout Guidelines  
The TPS65265 can be layout on 2-layer PCB, illustrated 9-41.  
Layout is a critical portion of good power supply design. See 9-41 for a PCB layout example. The top contains  
the main power traces for PVIN, VOUT, and LX. Also on the top layer are connections for the remaining pins of  
the TPS65265 and a large top side area filled with ground. The top layer ground area must be connected to the  
bottom layer ground using vias at the input bypass capacitor, the output filter capacitor and directly under the  
TPS65265 device to provide a thermal path from the exposed thermal pad land to ground. The bottom layer acts  
as ground plane connecting analog ground and power ground.  
For operation at full rated load, the top-side ground area together with the bottom side ground plane must  
provide adequate heat dissipating area. There are several signals paths that conduct fast changing currents or  
voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power  
supplies performance. To help eliminate these problems, the PVIN pin must be bypassed to ground with a low-  
ESR ceramic bypass capacitor with X5R or X7R dielectric. Take care to minimize the loop area formed by the  
bypass capacitor connections, the PVIN pins, and the ground connections. The PVIN pin must also be bypassed  
to ground using a low-ESR ceramic capacitor with X5R or X7R dielectric.  
Because the LX connection is the switching node, the output inductor must be located close to the LX pins, and  
the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor  
ground must use the same power ground trace as the PVIN input bypass capacitor. Try to minimize this  
conductor length while maintaining adequate width. The small signal components must be grounded to the  
analog ground path.  
The FB and COMP pins are sensitive to noise so the resistors and capacitors must be located as close as  
possible to the IC and routed with minimal lengths of trace. The additional external components can be placed  
approximately as shown.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
38  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
9.4.2 Layout Example  
VOUT1  
VOUT3  
BST1  
PGND1  
PGND1  
LX1  
BST3  
PGND3  
LX3  
PVIN3  
PVIN2  
LX2  
VIN  
LX1  
PVIN1  
PVIN1  
PSM  
VIN  
PGND2  
BST2  
VOUT2  
TOPSIDE  
GROUND  
AREA  
0.010 in. Diameter  
Thermal VIA to Ground Plane  
VIA to Ground Plane  
9-41. PCB Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS65265  
English Data Sheet: SLVSD86  
 
TPS65265  
www.ti.com.cn  
ZHCSEL9B DECEMBER 2015 REVISED MAY 2023  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSD86  
40  
Submit Document Feedback  
Product Folder Links: TPS65265  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65265RHBR  
TPS65265RHBT  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TPS  
65265  
Samples  
Samples  
ACTIVE  
RHB  
NIPDAU  
TPS  
65265  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65265RHBR  
TPS65265RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65265RHBR  
TPS65265RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65265RHBT

4.5V 至 17V 输入电压、5A/3A/2A 输出电流、三路降压转换器 | RHB | 32 | -40 to 85
TI

TPS65266

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器
TI

TPS65266-1

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器
TI

TPS65266-1RHBR

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器 | RHB | 32 | -40 to 85
TI

TPS65266-1RHBT

2.7V 至 6.5V 输入、3A/2A/2A 三路降压转换器 | RHB | 32 | -40 to 85
TI

TPS65266RHBR

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85
TI

TPS65266RHBT

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85
TI

TPS65268-Q1

4V 至 8V、3A、2A 三路同步降压转换器
TI

TPS65268QRHBRQ1

4V 至 8V、3A、2A 三路同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65268QRHBTQ1

4V 至 8V、3A、2A 三路同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65270

具有 4.5V 至 16V 输入电压的 2 个降压转换器,2A/3A 输出电流
TI

TPS65270PWPR

具有 4.5V 至 16V 输入电压的 2 个降压转换器,2A/3A 输出电流 | PWP | 24 | -40 to 85
TI