TPS65295 [TI]

4.5V 至 18V 输入电压完整 DDR4 存储器电源解决方案;
TPS65295
型号: TPS65295
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 18V 输入电压完整 DDR4 存储器电源解决方案

双倍数据速率 存储
文件: 总39页 (文件大小:1908K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
TPS65295 完整 DDR4 存储器电源解决方案  
1 特性  
3 说明  
1
同步降压转换器 (VDDQ)  
TPS65295 器件能够以最低的总成本和最小的空间为  
DDR4 存储器系统提供完整的电源解决方案。它符合  
JEDEC 标准中的 DDR4 加电和断电顺序要求。  
TPS65295 将两个同步降压转换器(VPP VDDQ)  
1A 灌电流和拉电流跟踪 LDO (VTT) 以及缓冲低噪  
声基准 (VTTREF) 集成在一起。TPS65295 采用耦合  
600kHz 开关频率的 D-CAP3™模式,此模式可在无  
需外部补偿电路的情况下实现易于使用的快速瞬变并支  
持陶瓷输出电容器。  
输入电压范围:4.5V 18V  
输出电压固定为 1.2V  
D-CAP3™模式控制,用于快速瞬态响应  
持续输出电流:8A  
高级 Eco-mode™脉冲跳跃  
集成 22mΩ 8.6mΩ RDS(on) 内部电源开关  
600kHz 开关频率  
内部软启动:1.6ms  
逐周期过流保护  
VTTREF 跟踪 ½ VDDQ 的精度优于 0.8%VTT 可同  
时提供 1A 持续灌电流和拉电流功能,而仅需 10μF 的  
陶瓷输出电容。  
锁存输出 OV UV 保护  
同步降压转换器 (VPP)  
输入电压范围:3V 5.5V  
输出电压固定为 2.5V  
TPS65295 可提供丰富的功能和卓越的电源性能。它  
支持灵活功耗状态控制,将 VTT 置于高阻抗状态(处  
S3)并在 S4/S5 状态下对 VDDQVTT 和  
VTTREF 进行放电。另外还提供 OVPUVPOCP、  
UVLO 和热关断保护。此器件采用热增强型 18 引脚  
HotRod™VQFN 封装,额定结温范围为 –40°C 至  
125°C。  
D-CAP3™模式控制,用于快速瞬态响应  
持续输出电流:1A  
高级 Eco-mode™脉冲跳跃  
集成 150mΩ 120mΩ RDS(on) 内部电源开关  
580kHz 开关频率  
内部软启动:1ms  
器件信息(1)  
逐周期过流保护  
器件型号  
TPS65295  
封装  
VQFN (18)  
封装尺寸(标称值)  
锁存输出 OV UV 保护  
3.00mm × 3.00mm  
1A LDO (VTT)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
1A 持续灌电流和拉电流  
仅需 10μF 的陶瓷输出电容  
S3 状态下支持高阻态输出  
±30mV VTT 输出精度(直流 + 交流)  
典型应用  
L_VPP  
VPP  
SW_VPP  
PVIN  
PVIN  
Cout_VPP  
VPPSNS  
缓冲基准 (VTTREF)  
PVIN_VPP  
C-bst  
L_VDDQ  
BST  
SW  
经缓冲的低噪声 ±10mA 功能  
0.8% 输出精度  
VCC_5V  
VLDOIN  
5V  
VDDQ  
Cout_VDDQ  
TPS65295  
VDDQSNS  
VDDQ  
低静态电流:150µA  
VTT  
Cout_VTT  
VTT  
PGOOD  
SLP_S4  
电源正常指示器  
VTTSNS  
VTT_REF  
Cout_VTTREF  
输出放电功能  
VTTREF  
VTT_CNTL  
AGND  
加电和断电排序控制  
PGND_VPP  
PGND  
非锁存 OT UVLO 保护  
18 引脚 3.0mm × 3.0mm HotRod™VQFN 封装  
2 应用  
1
DDR4 存储器电源  
笔记本电脑、台式机和服务器  
超极本、平板电脑  
单板计算机、模块化计算机  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDK5  
 
 
 
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 18  
Power Supply Recommendations...................... 25  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 17  
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持 ............................................................... 27  
11.2 接收文档更新通知 ................................................. 27  
11.3 社区资源................................................................ 27  
11.4 ....................................................................... 27  
11.5 静电放电警告......................................................... 27  
11.6 术语表 ................................................................... 27  
12 机械、封装和可订购信息....................................... 27  
12.1 Package Option Addendum .................................. 28  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 2 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
5 Pin Configuration and Functions  
RJE Package  
18-Pin VQFN  
Top View  
SW PGND_VPP  
BST  
1
18  
16  
15  
SW_VPP  
VLDOIN  
2
14  
13  
12  
11  
VTT  
PVIN_VPP  
VCC_5V  
17  
3
AGND  
VTTSNS  
VPPSNS  
4
5
7
9
SLP_S4  
VDDQSNS  
8
6
10  
VTTREF  
VTT_CNTL  
PVIN PGOOD PGND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VLDOIN  
VTT  
NO.  
1
P
O
G
I
Power supply input for VTT LDO. Connect VDDQ in typical application.  
2
VTT 1-A LDO output. Recommend to connect to 10-μF or larger capacitance for stability.  
Signal ground.  
AGND  
VTTSNS  
3
4
VTT output voltage feedback.  
VDDQSNS  
VTTREF  
PVIN  
5
I
VDDQ output voltage feedback.  
6
O
P
Buffered VTT reference output. Recommend to connect to 0.22-μF or larger capacitance for stability.  
Input power supply for VDDQ buck.  
7
Power good signal open-drain output. PGOOD goes high when VPP and VDDQ output voltage are within  
the target range.  
PGOOD  
8
O
PGND  
9
G
I
Power ground for VDDQ buck.  
VTT_CNTL  
10  
VTT_CNTL signal input for VTT LDO enable control. For detail control setup, please refer to1.  
SLP_S4 signal input for VDDQ buck and VPP buck enable control. For detail control setup, please refer to  
1.  
SLP_S4  
11  
I
VPPSNS  
VCC_5V  
PVIN_VPP  
SW_VPP  
PGND_VPP  
SW  
12  
13  
14  
15  
16  
17  
I
VPP output voltage feedback.  
P
P
O
G
O
Power supply for VPP and VDDQ buck converter control logic circuit.  
Input power supply for VPP buck.  
VPP switching node connection to the inductor and bootstrap capacitor.  
Power ground for VPP buck.  
VDDQ switching node connection to the inductor and bootstrap capacitor.  
High-side MOSFET gate driver bootstrap voltage input for VDDQ buck. Connect a capacitor between the  
BST pin and the SW pin.  
BST  
18  
I
Copyright © 2019, Texas Instruments Incorporated  
3
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
20  
UNIT  
PVIN  
V
V
V
VBST  
25  
VBST-SW  
6
Input voltage  
VTT_CNTL, SLP_S4, VCC_5V, PVIN_VPP,  
VLDOIN, VDDQSNS, VTTSNS, VPPSNS  
–0.3  
6
V
PGND, AGND,PGND_VPP  
SW DC  
–0.3  
–0.3  
–3  
0.3  
20  
22  
7
V
V
SW (20-ns transient)  
SW_VPP DC  
V
Output voltage  
–0.3  
–3  
V
SW_VPP (20-ns transient)  
PGOOD, VTT,VTTREF  
8
V
–0.3  
–40  
–55  
6
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22- V C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
PVIN  
18  
23  
V
V
V
VBST  
–0.3  
–0.3  
VBST-SW  
5.5  
Input voltage  
VTT_CNTL, SLP_S4, VCC_5V, PVIN_VPP,  
VLDOIN, VDDQSNS, VTTSNS, VPPSNS  
–0.3  
5.5  
V
PGND, AGND,PGND_VPP  
SW DC  
–0.3  
–0.3  
–3  
0.3  
18  
V
V
SW (20-ns transient)  
SW_VPP DC  
20  
V
Output voltage  
–0.3  
–3  
5.5  
6.5  
5.5  
8
V
SW_VPP (20-ns transient)  
PGOOD, VTT,VTTREF  
V
–0.3  
V
IVDDQOUT  
TJ  
VDDQ Output current  
A
Operating junction temperature  
–40  
125  
°C  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
6.4 Thermal Information  
TPS65295  
THERMAL METRIC(1)  
RJE (VQFN)  
18 PINS  
58.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.1  
17.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
17.7  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
TJ=-40oC to 125oC, VPVIN=12V, VPVIN_VPP=5V (unless otherwise noted)  
PARAMETER  
INPUT SUPPLY VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSLP_S4 = VVTT_CNTL = 0 V  
5
µA  
µA  
VSLP_S4 = 5 V, VVTT_CNTL = 0 V, no  
load  
IVCC_5V  
VCC_5V supply current  
PVIN input voltage range  
110  
150  
VSLP_S4 = VVTT_CNTL = 5 V, no load  
µA  
V
VIN  
4.5  
3.3  
18  
UVLO  
Wake up VCC_5V voltage  
Shut down VCC_5V voltage  
Hysteresis VCC_5V voltage  
4.1  
3.6  
500  
4.5  
V
V
UVLO  
VCC_5V under-voltage lockout  
mV  
VDDQ  
VVDDQSNS  
IVDDQSNS  
VDDQ sense voltage  
1.188  
1.2  
40  
1.212  
2.65  
V
VDDQSNS input current  
VVDDQSNS =1.2 V  
µA  
VSLP_S4 = VVTT_CNTL = 0 V,  
VVDDQSNS = 0.5 V  
IVDDQDIS  
VDDQ discharge current  
12  
mA  
tVDDQSS  
VDDQ soft-start time  
1.6  
2
ms  
ms  
tVDDQDLY  
VDDQ ramp up delay time  
TJ = 25°C, VPVIN = 19V, VVCC_5V  
5V  
=
=
RDSONH  
RDSONL  
High-side switch resistance  
Low-side switch resistance  
22  
mΩ  
mΩ  
TJ = 25°C, VPVIN = 19V, VVCC_5V  
5V  
8.6  
IVDDQOCL  
fsw  
Low-side valley current limited  
VDDQ switching freqency  
Minimum off time  
VOUT = 1.2 V, L = 0.68 µH  
8.2  
9.8  
600  
198  
11.5  
A
kHz  
ns  
tOFF(MIN)  
PGOOD (VDDQ, VPP)  
VDDQSNS / VPPSNS falling (Fault)  
VDDQSNS / VPPSNS rising (Good)  
VDDQSNS / VPPSNS rising (Fault)  
VDDQSNS / VPPSNS falling (Good)  
87  
93  
%
%
%
%
VTHPG  
PGOOD threshold  
115  
110  
VPGOOD =0.5V, VSLP_S4 =VVTT_CNTL  
= 5 V, no load  
IPGMAX  
PG sink current  
46  
1
mA  
ms  
tPGDLY  
VPP  
PG start-up delay  
PG from low to high  
VVPPSNS =2.5 V  
VVPPSNS  
IVPPSNS  
VPP sense voltage  
2.45  
2.5  
20  
2.55  
V
VPPSNS input current  
µA  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ=-40oC to 125oC, VPVIN=12V, VPVIN_VPP=5V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
UNIT  
mA  
VSLP_S4 = VVTT_CNTL = 0 V, VVPPSNS  
= 0.5 V  
IVPPDIS  
tVPPSS  
VPP discharge current  
VPP soft-start time  
1 .0  
150  
2
ms  
TJ = 25°C, VPVIN_VPP = 5V, VVCC_5V  
= 5V  
RDSONH  
High-side switch resistance  
mΩ  
TJ = 25°C, VPVIN_VPP=5V, VVCC_5V  
5V  
=
RDSONL  
Low-side switch resistance  
120  
mΩ  
IVPPOCL  
fsw  
tOFF(MIN)  
tOOA  
Low-side valley current limited  
VPP switching frequency  
Minimum off time  
VOUT = 2.5 V, L = 4.7 µH  
1.05  
1.6  
580  
195  
31  
2.1  
A
kHz  
ns  
OOA mode operation period  
VVPPSNS =2.5 V  
µs  
OVP AND UVP (VDDQ, VPP)  
VOVP  
OVP threshold voltage  
OVP detect voltage  
UVP detect voltage  
120  
55  
125  
60  
130  
65  
%
%
VUVP1  
tOVPDLY  
tUVPDLY  
UVP threshold voltage  
OVP delay  
20  
µs  
µs  
UVP delay  
250  
VTTREF OUTPUT  
1/2*  
VVDDQSNS  
VVTTREF Output voltage  
V
TJ = 25°C, |IVTTREF| 100 µA,  
VVDDQSNS = 1.2 V  
49.2  
49  
50.8  
51  
%
VVTTREF  
Output voltage tolerance to VDDQ  
TJ = 25°C, |IVTTREF| 10mA,  
VVDDQSNS = 1.2 V  
IVTTREFOCLSRC Source current limit  
VVDDQSNS = 1.2 V, VVTTREF= 0 V  
VVDDQSNS = 1.2 V, VVTTREF= 1.2 V  
10  
10  
18  
18  
mA  
mA  
IVTTREFOCLSnk  
Sink current limit  
TJ = 25°C, VSLP_S4 = VVTT_CNTL = 0  
V, VVTTREF = 0.5 V  
IVTTREFDIS  
VTTREF discharge current  
0.8  
1.3  
mA  
VTT OUTPUT  
VVTT  
Output voltage  
VVTTREF  
V
|IVTT| 10 mA, VVDDQSNS = 1.2 V,  
IVTTREF= 0 A  
–20  
–30  
1
20  
30  
VVTTTOL  
Output voltage tolerance  
mV  
TJ = 25°C,|IVTT| 1A, VVDDQSNS  
=
1.2 V, IVTTREF= 0 A  
VVDDQSNS = 1.2 V, VVTT= VVTTSNS  
0.5 V, IVTTREF=0 A  
=
=
IVTTOCLSRC  
IVTTOCLSnk  
IVTTLK  
Source current limit  
Sink current limit  
1.7  
1.7  
A
A
VVDDQSNS = 1.2 V, VVTT= VVTTSNS  
0.7 V, IVTTREF=0 A  
1
TJ = 25°C, VSLP_S4 = 5 V, VVTT_CNTL  
= 5 V, VVTT =VVTTREF  
Leakage current  
5
0.5  
1
VSLP_S4 = 5 V, VVTT_CNTL = 5 V,  
VVTT =VVTTREF  
IVTTSNSBIAS  
IVTTSNSLK  
IVTTDLY  
VTTSNS input bias current  
VTTSNS leakage current  
–0.5  
–1  
0
0
µA  
VSLP_S4 = 5 V, VVTT_CNTL = 0 V,  
VVTT =VVTTREF  
VTT output delay relative to  
VTT_CNTL  
35  
us  
TJ = 25°C, VSLP_S4 = VVTT_CNTL = 0  
V, VVDDQSNS = 1.2 V, VVTT =0.5V,  
IVTTREF =0 A  
IVTTDIS  
VTT discharge current  
5.7  
mA  
SLP_S4, VTT_CNTL LOGIC THRESHOLD  
SLP_S4/VTT_CNTL high-level  
voltage  
VIH  
1.6  
V
6
Copyright © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
Electrical Characteristics (continued)  
TJ=-40oC to 125oC, VPVIN=12V, VPVIN_VPP=5V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SLP_S4/VTT_CNTL low-level  
voltage  
VIL  
0.5  
V
SLP_S4/VTT_CNTL resistance to  
GND  
RTOGND  
500  
kΩ  
THERMAL PROTECTION  
TOTP  
OTP trip threshold  
OTP hysteresis  
150  
20  
°C  
°C  
TOTPHSY  
版权 © 2019, Texas Instruments Incorporated  
7
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
190  
180  
170  
160  
150  
140  
130  
120  
5.6  
5.4  
5.2  
5
4.8  
4.6  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
VSLP_S4 = 5 V  
VVTT_CNTL = 5 V  
VSLP_S4 = 0 V  
VVTT_CNTL = 0 V  
1. VCC_5V Supply Current vs Junction Temperature  
1.21  
2. VCC_5V Shutdown Current vs Temperature  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
1.206  
1.202  
1.198  
1.194  
1.19  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
3. VDDQ Output Voltage vs Junction Temperature  
4. VPP Output Voltage vs Junction Temperature  
1.14  
1.12  
1.1  
1.05  
1
0.95  
0.9  
1.08  
1.06  
1.04  
1.02  
1
0.85  
0.8  
0.75  
0.7  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D007  
5. Enable On Voltage (SLP_S4) vs Junction Temperature  
6. Enable Off Voltage (SLP_S4) vs Junction Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
Typical Characteristics (接下页)  
1.12  
1
0.95  
0.9  
1.1  
1.08  
1.06  
1.04  
1.02  
1
0.85  
0.8  
0.75  
0.7  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D006  
D008  
7. Enable On Voltage (VTT_CNTL) vs Junction  
8. Enable Off Voltage (VTT_CNTL) vs Junction  
Temperature  
Temperature  
35  
30  
25  
20  
15  
10  
12  
11  
10  
9
8
7
6
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
9. VDDQ High-Side RDS(on) vs Junction Temperature  
200  
10. VDDQ Low-Side RDS(on) vs Junction Temperature  
150  
140  
130  
120  
110  
100  
90  
180  
160  
140  
120  
100  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D011  
D012  
11. VPP High-Side RDS(on) vs Junction Temperature  
12. VPP Low-Side RDS(on) vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
9
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
130  
64  
63  
62  
61  
60  
59  
58  
128  
126  
124  
122  
120  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D013  
D014  
13. VDDQ OVP Threshold vs Junction Temperature  
129  
14. VDDQ UVP Threshold vs Junction Temperature  
64  
63  
62  
61  
60  
59  
58  
128  
127  
126  
125  
124  
123  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D015  
D016  
15. VPP OVP Threshold vs Junction Temperature  
16. VPP UVP Threshold vs Junction Temperature  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D017  
D018  
17. VDDQSNS Discharge Current vs Junction  
18. VPPSNS Discharge Current vs Junction Temperature  
Temperature  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
Typical Characteristics (接下页)  
6.5  
1.35  
1.3  
6
5.5  
5
1.25  
1.2  
4.5  
1.15  
4
1.1  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (oC)  
Junction Temperature (oC)  
D019  
D036  
19. VTTSNS Discharge Current vs Junction Temperature  
20. VTTREF Discharge Current vs Junction Temperature  
11  
1.65  
10.6  
10.2  
9.8  
9.4  
9
1.6  
1.55  
1.5  
1.45  
1.4  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D020  
D021  
21. VDDQ Valley Current Limit vs Junction Temperature  
22. VPP Valley Current Limit vs Junction Temperature  
1.8  
1.2  
1.75  
1.7  
1.16  
1.12  
1.08  
1.04  
1
1.65  
1.6  
1.55  
1.5  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D022  
D023  
23. VDDQ Soft-Start Time vs Junction Temperature  
24. VPP Soft-Start Time vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
11  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
800  
700  
600  
500  
400  
300  
200  
800  
700  
600  
500  
400  
300  
200  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
4
6
8
10  
PVIN (V)  
12  
14  
16  
18  
PVIN_VPP(V)  
D025  
D024  
IOUT = 1 A  
IOUT = 8 A  
26. VPP Switching Frequency vs Input Voltage  
25. VDDQ Switching Frequency vs Input Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
VPVIN=7.4V  
VPVIN=12V  
VPVIN=19V  
VPVIN_VPP=3.3V  
VPVIN_VPP=5V  
0
1
2
3
4
5
6
7
8
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
I-Load (A)  
1
I-Load (A)  
D026  
D027  
27. VDDQ Switching Frequency vs Load Current  
28. VPP Switching Frequency vs Load Current  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
7 Detailed Description  
7.1 Overview  
The TPS65295 integrates two synchronous step-down buck converters and two LDOs to support complete DDR4  
power solution. The VDDQ buck converter has the fixed 1.2-V output and supports continuous 8-A output  
current, and it can operate from 4.5-V to 18-V PVIN input voltage. The VPP buck converter has the fixed 2.5-V  
output and supports continuous 1-A output current, and can operate from 3-V to 5.5-V PVIN_VPP input voltage.  
The VTTREF LDO tracks the ½ VDDQ output and has about 10-mA both sink and source current capability. The  
VTT LDO tracks the VTTREF output and has continuous 1-A both sink and source current capability.  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
PG high threshold  
VPP  
+
+
VPPSNS  
PG low threshold  
VPP  
PGOOD  
Logic  
PG high threshold  
VDDQ  
PGOOD  
+
+
UV threshold  
VDDQ  
+
+
UV  
OV  
PG low threshold  
VDDQ  
OV threshold  
VDDQ  
+
VCC_5V  
0.8 V  
VCC_5V OK  
Control Logic  
4.1 V /  
3.6 V  
+
Error  
+
Amp  
PWM  
VDDQSNS  
+
+
BST  
Discharge  
control  
PVIN  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
Light load PSM  
OVP/UVP/OCP  
TSD  
Soft-Start  
Discharge  
PGOOD  
Disable/Enable  
Sequence Control  
VDDQ  
Internal Ramp  
VDDQ  
Ripple injection  
VDDQ  
Softstart  
SW  
XCON  
SW  
PGND  
VDDQ One Shot  
+
OCL  
SLP_S4 Threshold  
+
+
ZC  
SLP_S4  
+
NOCL  
THOK  
+
150°C /20°C  
VCC_5V  
PVIN_VPP  
UV threshold  
VPP  
UV  
OV  
AGND  
+
+
OV threshold  
VPP  
SW_VPP  
XCON  
0.8 V  
+
PGND_VPP  
+
Error Amp  
PWM  
VPPSNS  
+
+
+
OCL  
Discharge  
control  
VPP  
+
ZC  
Internal Ramp  
VPP  
Ripple injection  
VPP  
Softstart  
+
NOCL  
SW_VPP  
+
VTT_CNTL  
VPP One Shot  
VTT_CNTL  
threshold  
VTTREF  
VDDQSNS  
VLDOIN  
Discharge  
control  
+
+
+
VTT  
+
Discharge  
control  
VTTSNS  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3™ Control  
The main control loop of the two bucks is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary DCAP3™ mode control. The DCAP3™ mode control combines adaptive on-time control  
with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration  
with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS65295 also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the converter input voltage, VIN, and is  
inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage for emulating the output ripple, this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for DCAP3™ control topology.  
Both VDDQ buck and VPP buck include an error amplifier that makes the output voltage very accurate. For any  
control topology that is compensated internally, there is a range of the output filter it can support. The output filter  
used with the TPS65295 is a low-pass L-C circuit. This L-C filter has a double-pole frequency described in 公式  
1.  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the internal output set-point resistor divider network and the  
internal gain of the TPS65295. The low-frequency L-C double pole has a 180 degree in phase. At the output filter  
frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB per  
decade and increases the phase to 90 degree one decade above the zero frequency. The internal ripple injection  
high-frequency zero is related to the switching frequency. The inductor and capacitor selected for the output filter  
must be such that the double pole is placed close enough to the high-frequency zero, so that the phase boost  
provided by this high-frequency zero provides adequate phase margin for the stability requirement. The  
crossover frequency of the overall system should usually be targeted to be less than one-fifth of the switching  
frequency (FSW).  
7.3.2 Advanced Eco-mode™ Control  
The VDDQ buck and VPP buck are designed with advanced Eco-mode™ control schemes to maintain high light  
load efficiency. As the output current decreases from heavy load conditions, the inductor current is also reduced  
and eventually comes to a point where the rippled valley touches zero level, which is the boundary between  
continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero  
inductor current is detected. As the load current further decreases, the converter runs into discontinuous  
conduction mode. The on-time is kept almost the same as it was in the continuous conduction mode, so that it  
takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage.  
This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency  
high. The light load current where the transition to Eco-mode™ operation happens ( IOUT(LL) ) can be calculated  
from 公式 2.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(2)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(max) (peak current in the application). It is  
also important to size the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Soft Start and Prebiased Soft Start  
The VDDQ buck has an internal 1.6-ms soft start and VPP buck has an internal 1-ms soft start. Provide the  
voltage supply to PVIN, PVIN_VPP and VCC_5V before asserting SLP_S4 to be high, when the SLP_S4 pin  
becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage. This scheme ensures that the converters  
ramp up smoothly into regulation point.  
7.3.4 Power Good  
The Power Good (PGOOD) pin is an open-drain output. Once the VDDQSNS and VPPSNS pins voltage are  
between 90% and 110% of the target output voltage, the PGOOD is deasserted and floats after a 1-ms de-glitch  
time. A pullup resistor of 100 kΩ is recommended to pull the voltage up to VCC_5V. The PGOOD pin is pulled  
low when:  
the VDDQSNS pin voltage or VPPSNS pin voltage is lower than 85% or greater than 115% of the target  
output voltage  
in an OVP, UVP, or thermal shutdown event  
during the soft-start period.  
7.3.5 Overcurrent Protection and Undervoltage Protection  
Both VDDQ and VPP bucks have the overcurrent protection and undervoltage protection, and the implementation  
is same. The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit.  
The switch current is monitored during the OFF state by measuring the low-side FET drain to source voltage.  
This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. When the load current is higher  
than the overcurrent threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the current is being limited, the output voltage tends to drop because the load demand is higher than what the  
converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, the output will be discharged and latched after a wait time of 256 µs. When the overcurrent condition is  
removed, the output voltage is latched till the SLP_S4 is toggled or repower the VCC_5V power input.  
7.3.6 Overvoltage Protection  
Both VDDQ and VPP bucks have the overvoltage protection feature and have the same implementation. When  
the output voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high, and  
then the output will be discharged and latched after a wait time of 20 µs. When the over current condition is  
removed, the output voltage is latched till the SLP_S4 is toggled or repower the VCC_5V power input.  
7.3.7 UVLO Protection  
Undervoltage Lockout protection (UVLO) monitors the VCC_5V power input. When the voltage is lower than  
UVLO threshold voltage, the device is shut off and outputs are discharged. This is a non-latch protection.  
7.3.8 Output Voltage Discharge  
The VPP buck, VDDQ buck, VTT LDO, and VTTREF LDO block all have the discharge function by using internal  
MOSFETs, which are connected to the corresponding output terminals VPPSNS, VDDQSNS, VTT, and  
VTTREF. The discharge is slow due to the lower current capability of these MOSFETs.  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
Feature Description (接下页)  
7.3.9 Thermal Shutdown  
The TPS65295 monitors the internal die temperature. If the temperature exceeds the threshold value (typically  
150°C), the device is shut off and the output will be discharged. This is a non-latch protection. The device  
restarts switching when the temperature goes below the thermal shutdown recover threshold.  
7.4 Device Functional Modes  
7.4.1 Light Load Operation for VDDQ Buck and VPP Buck  
When the load is light on the VDDQ or VPP output, the buck enters pulse skip mode after the inductor current  
crosses zero. This is the Eco-mode™ which improves the efficiency at light load with a lower switching  
frequency. Each switching cycle is followed by a period of energy saving sleep time. The sleep time ends when  
the VDDQSNS or VPPSNS voltage falls below the Eco-mode™ threshold voltage. As the output current  
decreases, the period time between switching pulses increases.  
7.4.2 Output State Control  
The TPS65295 has two enable input pins, SLP_S4 and VTT_CNTL, to provide simple control scheme of output  
state. All of VPP, VDDQ, VTTREF and VTT are turned on at S0 state (SLP_S4=VTT_CNTL=high). In S3 state  
(VTT_CNTL=low, SLP_S4=high), VPP, VDDQ, and VTTREF voltages are kept on while VTT is turned off and left  
at high impedance state (high-Z). The VTT output floats and does not sink or source current in this state. In  
S4/S5 states (SLP_S4=VTT_CNTL =low), all of the three outputs are turned off and discharged to GND. Each  
state code represents as follow: S0 = full ON, S3 = suspend to RAM (STR), S4 = suspend to disk (STD), S5 =  
soft OFF (see 1).  
1. VTT_CNTL and SLP_S4 Control for Output State  
STATE  
S0  
VTT_CNTL  
SLP_S4  
HI  
VPP  
ON  
VDDQ  
ON  
VTTREF  
ON  
VTT  
ON  
HI  
LO  
LO  
S3  
HI  
ON  
ON  
ON  
OFF (High-Z)  
OFF (discharge)  
S5/S4  
LO  
OFF (discharge)  
OFF (discharge)  
OFF (discharge)  
7.4.3 Output Sequence Control  
There are specific sequencing requirements for the DDR4 VDDQ and VPP rails. The TPS65295 follows the  
DDR4 power rail sequence requirements as shown in 29 and 30. VPP is greater than VDDQ at all times  
during ramp up, operating, and ramp down. The VTT output ramp and stable within 35 µs after VTT_CNTL  
asserted.  
SLP_S4  
SLP_S4  
T4  
VTT_CNTL  
T1  
VPP  
VTT  
T2  
T
VDDQ  
T3  
High-Z  
High-Z  
T1: 1 ms  
T2: 2.0 ms  
T3: 1.6 ms  
T4: 30 ms to 60 ms  
T<35 us  
29. Power Sequence, VPP and VDDQ vs SLP_S4  
30. Power Sequence, VTT vs VTT_CNTL  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 31 shows a typical application for TPS65295. For VDDQ buck, the PVIN supports 4.5-V to  
18-V input range with 1.2-V VDDQ output, the continuous current capability is 8 A. Usually the PVIN_VPP and  
VCC_5V can share one 5-V power input and supports 2.5-V VPP output with 1-A continuous current capability,  
of course the PVIN_VPP can be lowered down to a 3.3-V power supply. The VLDOIN power input usually is  
connected to VDDQ output, while also it can be connected to external 1.2-V power supply input. The VTTREF  
output voltage will follow the ½ VDDQSNS voltage, and VTT output voltage will follow the VTTREF output  
voltage, this is required by DDR4 power supply standard.  
8.2 Typical Application  
31. Application Schematic  
8.2.1 Design Requirements  
2 lists the design parameters for this example.  
2. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDDQ OUTPUT  
VOUT  
Output voltage  
1.2  
8
V
A
IOUT  
Output current  
ΔVOUT  
VIN  
Transient response  
Input voltage  
8-A load step  
±60  
12  
mV  
V
4.5  
18  
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
40  
mV(P-P)  
kHz  
600  
VPP OUTPUT  
VOUT  
Output voltage  
Output current  
Transient response  
Input voltage  
2.5  
1
V
A
IOUT  
ΔVOUT  
VIN  
1-A load step  
±125  
5
mV  
V
3
5.5  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
Typical Application (接下页)  
2. Design Parameters (接下页)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
40  
MAX  
UNIT  
mV(P-P)  
kHz  
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
580  
OTHERS  
Internal  
UVLO  
Start VCC_5V input voltage  
Stop VCC_5V input voltage  
VCC_5V Input voltage rising  
VCC_5V Input voltage falling  
V
V
VVCC_5V  
Internal  
UVLO  
Light load operating mode  
Ambient temperature  
ECO  
25  
TA  
°C  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 3 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 公式 3 and 公式 4. It is important that  
the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(3)  
(4)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient and short-circuit conditions, the inductor current can increase up to the current limit of the device  
so it is safe to choose an inductor with a saturation current higher than the peak current under current limit  
condition.  
8.2.2.1.2 Output Capacitor Selection  
After selecting the inductor the output capacitor needs to be optimized. In DCAP3, the regulator reacts within one  
cycle to the change in the duty cycle so the good transient performance can be achieved without needing large  
amounts of output capacitance. The recommended output capacitance range is given in 3.  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
.
3. Recommended Component Values  
VOUT (V)  
Fsw (kHz)  
600  
LOUT (µH)  
0.68  
0.56  
0.47  
6.8  
COUT(min) (µF)  
COUT(max) (µF)  
88  
88  
88  
20  
20  
20  
132  
132  
132  
66  
1.2  
600  
600  
580  
2.5  
580  
4.7  
66  
580  
3.3  
66  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
 
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
For VTT output, high quality X5R or X7R 10-µF capacitor is recommended and a 0.47 µF is recommended for  
VTTREF output.  
8.2.2.1.3 Input Capacitor Selection  
The TPS65295 requires input decoupling capacitors on both power supply input PVIN and PVIN_VPP, and the  
bulk capacitors are needed depending on the application. The minimum input capacitance required is given in 公  
5.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(5)  
TI recommends using a high-quality X5R or X7R input decoupling capacitors of 30 µF on the VDDQ buck input  
voltage pin PVIN, and 10 µF on the VPP buck input voltage pin PVIN_VPP. The voltage rating on the input  
capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating  
greater than the maximum input current ripple of the application. The input ripple current is calculated by 公式 6:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(6)  
An additional 0.1-µF capacitor from PVIN to ground and from PVIN_VPP to ground is optional to provide  
additional high frequency filtering. One ceramic capacitor of 10 µF is recommended for the decoupling capacitor  
on VLDOIN pin for providing stable power on VTT LDO block. A 1-µF ceramic capacitor is needed for the  
decoupling capacitor on VCC_5V input.  
8.2.2.1.4 Bootstrap Capacitor and Resistor Selection  
A 0.1-µF ceramic capacitor serialized with a 5.1-resistor is recommended between the BST and SW pin for  
proper operation. TI recommends using a ceramic capacitor.  
8.2.3 Application Curves  
32 through 60 apply to the circuit of 31. VIN = 12 V. TA = 25°C unless otherwise specified.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VPVIN=7.4V,VOUT=1.2V  
VPVIN=12V, VOUT=1.2V  
VPVIN=19V, VOUT=1.2V  
VPVIN_VPP=3.3V,VOUT=2.5V  
VPVIN_VPP=5V , VOUT=2.5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
I-Load (A)  
I-Load (A)  
D029  
D028  
32. VDDQ Efficiency Curve, VOUT = 1.2 V  
33. VPP Efficiency Curve, VOUT = 2.5 V  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
2.55  
2.54  
2.53  
2.52  
2.51  
2.5  
1.19  
1.18  
1.17  
1.16  
2.49  
2.48  
2.47  
2.46  
2.45  
VPVIN=7.4V  
VPVIN=12V  
VPVIN=19V  
VPVIN_VPP=3.3V  
VPVIN_VPP=5V  
1.15  
0
1
2
3
4
5
6
7
8
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
I-Load (A)  
I-Load (A)  
D030  
D031  
34. VDDQ Load Regulation, VOUT = 1.2 V  
35. VPP Load Regulation, VOUT = 2.5 V  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
0.59  
0.58  
0.57  
0.56  
0.55  
0.59  
0.58  
0.57  
0.56  
0.55  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
I-Load (A)  
I-Load (mA)  
D034  
D035  
36. VTT Load Regulation, VOUT = 0.6 V  
37. VTTREF Load Regulation, VOUT = 0.6 V  
2.55  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
2.54  
2.53  
2.52  
2.51  
2.5  
2.49  
2.48  
2.47  
2.46  
2.45  
1.18  
1.16  
1.14  
1.12  
IOUT=0A  
IOUT=1A  
IOUT=0A  
IOUT=8A  
1.1  
4
3.25 3.5 3.75  
4
4.25 4.5 4.75  
PVIN_VPP (V)  
5
5.25 5.5  
6
8
10  
PVIN (V)  
12  
14  
16  
18  
D033  
D032  
39. VPP Line Regulation, VOUT = 2.5 V  
38. VDDQ Line Regulation,VOUT = 1.2 V  
版权 © 2019, Texas Instruments Incorporated  
21  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
VDDQ=50mV/div  
Io=500mA/div  
VPP=50mV/div  
Io=500mA/div  
40ms/div  
10ms/div  
40. VDDQ Output Voltage Ripple, IOUT = 0 A  
41. VPP Output Voltage Ripple, IOUT = 0 A  
VDDQ=10mV/div  
VPP=10mV/div  
Io=500mA/div  
Io=5A/div  
1us/div  
1us/div  
42. VDDQ Output Voltage Ripple, IOUT = 8 A  
43. VPP Output Voltage Ripple, IOUT = 1 A  
SLP_S4=2V/div  
VPP=2V/div  
SLP_S4=2V/div  
VPP=2V/div  
VDDQ=1V/div  
PGOOD=5V/div  
VDDQ=1V/div  
PGOOD=5V/div  
2ms/div  
2ms/div  
44. Start-Up Through SLP_S4, IVPPOUT = 0 A, IVDDQOUT  
=
45. Start-Up Through SLP_S4, IVPPOUT = 1 A, IVDDQOUT =  
0 A  
8 A  
22  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
SLP_S4=2V/div  
VPP=2V/div  
SLP_S4=2V/div  
VPP=2V/div  
VDDQ=1V/div  
PGOOD=5V/div  
VDDQ=1V/div  
PGOOD=5V/div  
20ms/div  
20ms/div  
46. Shutdown Through SLP_S4, IVPPOUT = 0 A, IVDDQOUT  
47. Shutdown Through SLP_S4, IVPPOUT = 1 A, IVDDQOUT  
= 0 A  
= 8 A  
SLP_S4=2V/div  
SLP_S4=2V/div  
VTT_CTRL=2V/div  
VTT_CTRL=2V/div  
VDDQ=1V/div  
VDDQ=1V/div  
VTT=500mV/div  
VTT=500mV/div  
2ms/div  
2ms/div  
IVDDQOUT = 0 A  
IVTT = 0 A  
IVTTREF = 0 A  
IVDDQOUT = 8 A  
49. VTT Start-Up Through VTT_CNTL  
SLP_S4=2V/div  
IVTT = 1 A  
IVTTREF = 10m A  
48. VTT Start-Up Through VTT_CNTL  
SLP_S4=2V/div  
VTT_CTRL=2V/div  
VTT_CTRL=2V/div  
VDDQ=1V/div  
VDDQ=1V/div  
VTT=500mV/div  
VTT=500mV/div  
4ms/div  
IVTT = 1 A  
10ms/div  
IVTT = 0 A  
IVDDQOUT = 8 A  
IVTTREF = 10 mA  
IVDDQOUT = 0 A  
IVTTREF = 0 A  
51. VTT Shutdown Through VTT_CNTL  
50. VTT Shutdown Through VTT_CNTL  
版权 © 2019, Texas Instruments Incorporated  
23  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
SLP_S4=2V/div  
SLP_S4=2V/div  
VDDQ=1V/div  
VDDQ=1V/div  
VTT=500mV/div  
VTT=500mV/div  
VTT_REF=500mV/div  
VTT_REF=500mV/div  
4ms/div  
IVTT = 0 A  
4ms/div  
IVTT = 1 A  
IVDDQOUT = 0 A  
IVTTREF = 0 A  
IVDDQOUT = 8 A  
IVTTREF = 10 mA  
52. VTT Start-Up Through SLP_S4  
53. VTT Start-Up Through SLP_S4  
SLP_S4=2V/div  
VDDQ=1V/div  
SLP_S4=2V/div  
VDDQ=1V/div  
VTT=500mV/div  
VTT=500mV/div  
VTT_REF=500mV/div  
VTT_REF=500mV/div  
10ms/div  
IVTT = 0 A  
4ms/div  
IVTT = 1 A  
IVDDQOUT = 0 A  
IVTTREF = 0 A  
IVDDQOUT = 8 A  
IVTTREF = 10 mA  
54. VTT Shutdown Through SLP_S4  
55. VTT Shutdown Through SLP_S4  
VPP=100mV/div  
VDDQ=50mV/div  
Io=5A/div  
Io=1A/div  
400us/div  
400us/div  
Slew Rate=2.5A/us  
Slew Rate=2.5A/us  
56. VPP Transient Response, 0 A to 1 A  
57. VDDQ Transient Response, 1.6 A to 8 A  
24  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
VDDQ=50mV/div  
SW=5V/div  
VPP=2V/div  
Io=5A/div  
IL=1A/div  
400us/div  
100us/div  
Slew Rate=2.5A/us  
58. VDDQ Transient Response, 0.1 A to 6.4 A  
59. VPP Normal Operation to Output Hard Short  
SW=5V/div  
IL=5A/div  
VDDQ=500mV/div  
100us/div  
60. VDDQ Normal Operation to Output Hard Short  
9 Power Supply Recommendations  
TPS65295 is designed for DDR4 complete power solution. PVIN is the power input for VDDQ buck, PVIN_VPP is  
the power input for VPP buck, VLDOIN input is for VTT LDO power supply, VCC_5V is power supply for internal  
control logic. Below lists the power on sequence scenarios.  
SLP_S4 is high before PVIN or PVIN_VPP has the power input, VCC_5V power supply must be provided  
after or same time with PVIN or PVIN_VPP, otherwise the output will be latched, this latch can be recovered  
by toggling the SLP_S4 pin or re-power the VCC_5V  
SLP_S4 is low before PVIN and PVIN_VPP has the power input, then there is no power supply input  
sequence requirement for VCC_5V, PVIN and PVIN_VPP.  
版权 © 2019, Texas Instruments Incorporated  
25  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Recommend a four-layer PCB for good thermal performance and with maximum ground plane. 3-inch × 3-  
inch, four-layer PCB with 2-oz. copper used as example.  
Place the decoupling capacitors right across PVIN, PVIN_VPP, and VLDOIN as close as possible.  
Place output inductors and capacitors with IC at the same layer, SW routing should be as short as possible to  
minimize EMI, and should be a width plane to carry big current, enough vias should be added to the PGND  
connection of output capacitor and also as close to the output pin as possible. Reserve some space between  
VDDQ choke and VPP choke, just minimize radiation crosstalk.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane, >15 mil width trace  
is recommended to reduce line parasitic inductance.  
VPPSNS/VDDQSNS/VTTSNS could be 10 mil and must be routed away from the switching node, BST node  
or other high efficiency signal.  
PVIN and PVIN_VPP trace must be wide to reduce the trace impedance and provide enough current  
capability.  
Output capacitors for VTT and VTTREF should be put as close as output pin.  
10.2 Layout Example  
61 shows the recommended top-side layout. Component reference designators are the same as the circuit  
shown in 31.  
PVIN  
VDDQ  
SW  
PGND_VPP  
PGND  
VPP  
61. Top-Side Layout  
26  
版权 © 2019, Texas Instruments Incorporated  
 
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
D-CAP3, Eco-mode, HotRod, DCAP3, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
27  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
TPS65295RJER  
TPS65295RJET  
Status  
Pins  
18  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking(5)(6)  
PRE_PRO  
D
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1  
YEAR  
VQFN-HR  
RJE  
RJE  
3000  
250  
CU NIPDAU  
CU NIPDAU  
65295  
65295  
PRE_PRO  
D
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1  
YEAR  
VQFN-HR  
18  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
28  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
12.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS65295RJER  
TPS65295RJET  
VQFN-HR  
VQFN-HR  
RJE  
RJE  
18  
18  
3000  
250  
330  
180  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8
8
12  
12  
Q2  
Q2  
版权 © 2019, Texas Instruments Incorporated  
29  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
TPS65295RJER  
TPS65295RJET  
VQFN-HR  
VQFN-HR  
RJE  
RJE  
18  
18  
367  
210  
367  
185  
35  
35  
30  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RJE0018B  
PLASTIC QUAD FLATPACK- NO LEAD  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
C
2X 0.45  
0.25  
0.15  
0.5  
0.3  
4X  
4X  
0.6  
0.4  
(0.1) TYP  
0.48  
0.28  
4X  
9
7
6
10  
6X 0.5  
2.09  
1.99  
3X  
PKG  
2X  
1.5  
2X  
2.5  
0.3  
0.2  
8X  
15  
0.1  
C A B  
1
0.3  
0.2  
16  
4X  
18  
0.5  
0.3  
0.05  
C
10X  
4X  
0.25  
0.15  
2X  
2X 0.65  
0.33  
0.23  
PKG  
0.1  
C A B  
2X 2.48  
0.05  
C
4223865 / B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2019, Texas Instruments Incorporated  
31  
TPS65295  
ZHCSJF4 FEBRUARY 2019  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
RJE0018B  
PLASTIC QUAD FLATPACK- NO LEAD  
4X (1.24)  
18  
2X (0.65)  
6X (0.2)  
8X (0.6)  
4X (0.58)  
16  
15  
1
8X (0.25)  
4X  
(1.25)  
(2.243)  
6X (0.5)  
PKG  
(2.83)  
(0.58)  
(R0.05) TYP  
4X (0.25)  
2X  
(2.238)  
10  
6
(0.7)  
4X (0.6)  
9
7
PKG  
(2.8)  
4X (0.28)  
2X (0.45)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223865 / B 02/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
32  
版权 © 2019, Texas Instruments Incorporated  
TPS65295  
www.ti.com.cn  
ZHCSJF4 FEBRUARY 2019  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
RJE0018B  
PLASTIC QUAD FLATPACK- NO LEAD  
4X (1.23)  
18  
2X (0.65)  
9X (0.2)  
8X (0.6)  
4X (0.58)  
16  
4X (0.225)  
15  
1
8X (0.25)  
4X  
(1.24)  
3X (1.19)  
6X (0.5)  
PKG  
2X  
(1.022)  
(2.83)  
2X (0.028)  
(0.034)  
(R0.05) TYP  
(1.35)  
3X  
EXPOSED METAL  
4X  
(1.019)  
6
10  
9
(0.7)  
7
PKG  
(2.8)  
4X (0.25)  
4X (0.6)  
2X (0.45)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 6, 10 &15: 93% & PADS 7-9,17:89%  
SCALE: 20X  
4223865 / B 02/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
版权 © 2019, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65295RJER  
TPS65295RJET  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RJE  
RJE  
18  
18  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
65295  
65295  
Samples  
Samples  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 0.45  
0.25  
0.5  
0.3  
4X  
4X  
0.6  
0.4  
(0.1) TYP  
0.48  
0.28  
0.15  
4X  
9
7
6
10  
6X 0.5  
2.14  
1.94  
3X  
PKG  
2X  
1.5  
2X  
2.5  
0.3  
0.2  
8X  
15  
0.1  
C A B  
C
1
0.3  
0.2  
16  
4X  
18  
0.5  
0.3  
0.05  
10X  
4X  
0.25  
0.15  
2X  
2X 0.65  
0.33  
0.23  
PKG  
0.1  
C A B  
C
2X 2.48  
0.05  
4223865 / C 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
4X (1.24)  
18  
2X (0.65)  
6X (0.2)  
8X (0.6)  
4X (0.58)  
16  
15  
1
8X (0.25)  
4X  
(1.25)  
(2.243)  
6X (0.5)  
PKG  
(2.83)  
(0.58)  
2X  
(R0.05) TYP  
4X (0.25)  
(2.238)  
10  
6
(0.7)  
9
7
PKG  
(2.8)  
4X (0.28)  
4X (0.6)  
2X (0.45)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223865 / C 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0018B  
4X (1.23)  
18  
2X (0.65)  
9X (0.2)  
8X (0.6)  
4X (0.58)  
16  
4X (0.225)  
15  
1
8X (0.25)  
4X  
(1.24)  
3X (1.19)  
6X (0.5)  
PKG  
2X  
(1.022)  
(2.83)  
2X (0.028)  
(0.034)  
(R0.05) TYP  
(1.35)  
3X  
EXPOSED METAL  
4X  
(1.019)  
6
10  
(0.7)  
9
7
PKG  
(2.8)  
4X (0.25)  
4X (0.6)  
2X (0.45)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 6, 10 &15: 93% & PADS 7-9,17:89%  
SCALE: 20X  
4223865 / C 03/2020  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65295RJER

4.5V 至 18V 输入电压完整 DDR4 存储器电源解决方案 | RJE | 18 | -40 to 125
TI

TPS65295RJET

4.5V 至 18V 输入电压完整 DDR4 存储器电源解决方案 | RJE | 18 | -40 to 125
TI

TPS65296

4.5V 至 18V 输入电压、完整 LPDDR4 和 LPDDR4X 存储器电源解决方案
TI

TPS65296RJER

4.5V 至 18V 输入电压、完整 LPDDR4 和 LPDDR4X 存储器电源解决方案 | RJE | 18 | -40 to 125
TI

TPS65300-Q1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65300QPWPRQ1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65300QRHFRQ1

3-MHz Step-Down Regulator and Triple Linear Regulators
TI

TPS65301-Q1

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器
TI

TPS65301QPWPRQ1

具有 3 个 LDO 和受保护传感器电源的汽车类 5.6V 至 40V、1.2A 降压转换器 | PWP | 24 | -40 to 125
TI

TPS65310A-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65310AQRVJQ1

IC POWER SUPPLY MANAGEMENT CKT, Power Management Circuit
TI

TPS65310AQRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI