TPS65642AYFFR [TI]

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85;
TPS65642AYFFR
型号: TPS65642AYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85

PC CD 监视器 开关
文件: 总79页 (文件大小:4044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
LCD Bias With Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors  
Check for Samples: TPS65642A  
1 Introduction  
1.1 Features  
123  
• 2.6 V to 6 V Input Voltage Range  
• Synchronous Boost Converter (AVDD  
• Panel Discharge Signal (XAO)  
• System Reset Signal (RST)  
)
• Non-Synchronous Boost Converter With  
Temperature Compensation (VGH  
• Synchronous Buck Converter (VCORE  
• Synchronous Buck Converter (VIO1  
• Low Dropout Linear Regulator (VIO2  
• 14-Channel, 10-Bit Programmable Gamma  
Voltage Correction  
• On-Chip EEPROM with Write Protect  
• I2C™ Interface  
)
)
)
)
• Thermal Shutdown  
• Programmable VCOM Calibrator With Two  
Integrated Buffer Amplifiers  
• Gate Voltage Shaping  
• Supports GIP and Non-GIP Displays  
• 56-Ball, 3,16-mm × 3,45-mm 0,4-mm Pitch  
DSBGA  
1.2 Applications  
Notebook PCs  
Tablet PCs  
Monitors  
1.3 Description  
The TPS65642A device is a compact LCD bias solution primarily intended for use in notebook and tablet  
PCs. The device comprises two boost converters to supply the source driver and gate driver, or level  
shifter, of the LCD panel; two buck converters and a low-dropout (LDO) linear regulator to supply the  
system logic voltages; a programmable VCOM generator with two high-speed amplifiers; 14-channel  
gamma-voltage correction; and a gate-voltage shaping function.  
VIN  
Boost Converter 1  
Buck Converter 1  
Buck Converter 2  
LDO Regulator  
AVDD  
VCORE  
VIO1  
VIO1  
VIO2  
AVDD  
VGH  
Boost Converter 2  
Reset Generator  
RST  
XAO  
VGH  
Gate Voltage Shaping  
VGHM  
VGAM  
VCOM  
Programmable  
Gamma Voltages  
14  
2
Programmable  
VCOM + Buffers  
I2C  
I2C Interface  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Excel is a registered trademark of Microsoft Corporation.  
2
3
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
2 Electrical Specifications  
2.1 ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VIN, SW2, VCORE, SW3, VIO1, VIO2 RSET, COMP, SCL, SDA,  
EN, FLK, WP, TCOMP, XAO, RST  
–0.3  
7
V
AVDD, SW1, OUT1, OUT2, OUTA-OUTN  
SW4  
–0.3  
–0.3  
–0.3  
12  
36(2)  
12(3)  
2
40(5)  
2000  
200  
700  
85  
V
V
Pin  
voltage  
POS1, NEG1, POS2, NEG2  
|POS1-NEG1|(4), |POS2-NEG2|(4)  
VGH, VGHM, RE  
V
V
–0.3  
V
Human Body Model  
V
ESD  
Rating  
Machine Model  
V
Charged Device Model  
Ambient temperature  
V
TA  
–40  
–40  
–65  
°C  
°C  
°C  
°C  
TJ  
Junction temperature  
150  
150  
300  
TSTG  
Storage temperature  
Lead temperature (soldering, 10 seconds)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VGH supplies up to 40 V can be generated, but require an external cascode transistor or charge pump.  
(3) For supply voltages less than 12 V, the absolute maximum input voltage is equal to the supply voltage.  
(4) Differential input voltage.  
(5) The combination of low temperatures and high VGH voltages can cause increased leakage current through the RE pin. In GIP  
applications that do not use the gate-voltage shaping function it is recommended to leave the RE pin open to minimize this effect.  
2.2 THERMAL INFORMATION(1)  
TPS65642A  
THERMAL METRIC  
YFF  
56 PINS  
45  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.2  
6.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
6.1  
θJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2.3 RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
2.6  
6
V
BOOST CONVERTER 1  
AVDD  
Boost converter 1 output voltage range  
7
10.1  
V
IAVDD  
Boost converter 1 output current when 6 V VIN 4 V  
700(1)  
400(1)  
mA  
mA  
Boost converter 1 output current when 3.63 V VIN 2.64 V  
(1) This figure includes the current that must be supplied to the input of boost converter 2.  
Electrical Specifications  
2
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
RECOMMENDED OPERATING CONDITIONS (continued)  
MIN  
2.2  
10  
TYP  
MAX  
UNIT  
µH  
L
Boost converter 1 inductor range  
4.7  
10  
COUT  
Boost converter 1 output capacitance  
µF  
BOOST CONVERTER 2  
AVDD  
VGH  
IGH  
Input voltage range  
7
8.4  
24  
15  
15  
4.7  
10  
10.1(2)  
40(3)  
40  
V
V
Output voltage range  
Output current  
16  
mA  
µH  
µF  
kΩ  
L
Inductor  
10  
1
COUT  
RNTC  
Output capacitance  
Thermistor resistance at 25°C  
BUCK CONVERTER 1 (VCORE  
)
VCORE  
ICORE  
L
Output voltage  
Output current  
Inductor  
1
1.1  
1.3  
600  
4.7  
22  
V
mA  
µH  
µF  
1
2.2  
10  
COUT  
Output capacitance  
4.7  
BUCK CONVERTER 2 (VIO1  
)
VIO1  
IIO1  
L
Output voltage  
Output current  
Inductor  
1.7  
2.5  
200(4)  
4.7  
V
mA  
µH  
µF  
1
2.2  
10  
COUT  
Output capacitance  
4.7  
22  
LDO Regulator (VIO2  
)
VIO2  
IIO  
Output voltage  
1.7  
1.8  
200  
10  
V
Output current  
mA  
µF  
COUT  
Output capacitance  
4.7  
50  
PROGRAMMABLE VCOM  
ISET Programmable VCOM set current  
PROGRAMMABLE GAMMA CORRECTION  
µA  
IGAM  
Output current per channel  
Output capacitance  
–100  
100  
50  
µA  
pF  
CGAM  
(2)  
VGHAVDD must be greater than 9 V.  
(3) Output voltages greater than 36 V require an external cascode transistor.  
(4) This figure includes the current supplied to the input of the linear regulator.  
2.4 ELECTRICAL CHARACTERISTICS  
VIN= 3.3 V, VCORE= 1.1 V, VIO1= 1.7 V, VIO2= 1.8 V(1), AVDD= 8.4 V, VGH= 24 V, TA= 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
POWER SUPPLY  
Supply current into VIN pins  
Supply current into AVDD pins  
Supply current into VGH  
Converters not switching  
1.9  
0.1  
4.3  
4.0  
0.1  
3
1
Pin G5.  
IIN  
Pin B7. No load on gamma reference outputs  
Pin F4. No load on op-amp outputs  
No load on VGHM  
6
mA  
7.5  
1
mA  
UNDERVOLTAGE LOCKOUT  
Undervoltage lockout threshold  
Hysteresis  
VIN rising  
VIN falling  
2.3  
2.1  
2.42  
2.19  
0.23  
2.5  
2.4  
VUVLO  
V
(1) When VIO1 = 1.7 V or 1.8 V, the LDO regulator is disabled. When VIO1 = 2.5 V, the LDO regulator is enabled.  
Electrical Specifications  
Copyright © 2013, Texas Instruments Incorporated  
3
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VIN= 3.3 V, VCORE= 1.1 V, VIO1= 1.7 V, VIO2= 1.8 V(1), AVDD= 8.4 V, VGH= 24 V, TA= 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL PINS (EN, FLK, WP)  
VIN = 2.64 V  
1
1.8  
1.8  
1.8  
VIH  
EN high-level input voltage threshold EN rising  
VIN = 3.3 V  
VIN = 6 V  
1.1  
1.7  
0.9  
1
V
VIN = 2.64 V  
VIN = 3.3 V  
VIN = 6 V  
0.7  
0.7  
VIL  
EN low-level input voltage threshold  
EN falling  
V
0.7  
1.6  
IIH  
IIL  
EN high-level input current  
EN low-level input current  
EN = 2.5 V  
EN = 0 V  
–100  
–100  
100  
100  
1.8  
1.8  
1.8  
nA  
nA  
VIN = 2.64 V  
VIN = 3.3 V  
VIN = 6 V  
0.9  
1
VIH  
FLK high-level input voltage threshold FLK rising  
FLK low-level input voltage threshold FLK falling  
V
V
1.4  
0.8  
0.9  
1.3  
VIN = 2.6 V  
VIN = 3.3 V  
VIN = 6 V  
0.6  
0.6  
VIL  
0.6  
IIH  
IIL  
FLK high-level input current  
FLK-low-level input current  
FLK = 2.5 V  
FLK = 0 V  
–100  
–100  
100  
100  
1.8  
1.8  
1.8  
nA  
nA  
VIN = 2.64 V  
VIN = 3.3 V  
VIN = 6 V  
1
VIH  
WP high-level input voltage threshold WP rising  
1.1  
1.7  
0.9  
1
V
VIN = 2.64 V  
VIN = 3.3 V  
VIN = 6 V  
0.7  
0.7  
0.7  
30  
VIL  
WP low-level input voltage threshold  
WP internal pullup resistance  
WP falling  
V
1.6  
52  
RPULL-UP  
75  
kΩ  
BOOST CONVERTER 1 (AVDD  
)
Output voltage range  
Tolerance  
7
10.1  
1%  
AVDD  
V
–1%  
% of  
AVDD  
VUVP  
VSCP  
Undervoltage protection threshold  
Short-circuit threshold  
AVDD falling  
AVDD falling  
65  
25  
70  
30  
75  
35  
% of  
AVDD  
ILK  
Switch leakage current  
Switch ON resistance  
Switch current limit  
VSW = VIN = 3.3 V, EN = 0 V, TJ = –40°C to 85°C  
ISW = 1 A  
10  
µA  
mΩ  
A
rDS(ON)  
ILIM  
114  
3
250  
3.5  
400  
2.5  
rDS(ON)  
Rectifier ON resistance  
ISW = 1 A  
242  
750  
1200  
76  
mΩ  
FREQ = 0  
FREQ = 1  
IAVDD = 10 mA  
fSW  
Switching frequency  
kHz  
rDS(ON)  
Discharge ON resistance  
100  
Ω
BUCK CONVERTER 1 (VCORE  
)
Output voltage  
VCORE  
1
1.1  
1.3  
3%  
V
Tolerance  
–3%  
% of  
VCORE  
VUVP  
Undervoltage protection threshold  
VCORE falling  
VCORE falling  
65  
70  
30  
75  
35  
% of  
VCORE  
VSCP  
ILIMA  
rDS(ON)  
Short-circuit threshold  
Switch current limit  
25  
ISW ramps from 0 A to 2 A  
High-side, ISW = ILIM  
Low-side, ISW = 1 A  
VIN = 3.3 V  
0.8  
1
1.2  
310  
150  
480  
750  
A
183  
95  
Switch ON resistance  
Off time  
mΩ  
260  
380  
370  
560  
tOFF  
ns  
VIN = 5 V  
4
Electrical Specifications  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
VIN= 3.3 V, VCORE= 1.1 V, VIO1= 1.7 V, VIO2= 1.8 V(1), AVDD= 8.4 V, VGH= 24 V, TA= 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BUCK CONVERTER 2 (VIO1  
)
Output voltage  
Tolerance  
1.7  
1.8  
2.5  
3%  
VIO1  
V
–3%  
% of  
VIO1  
VUVP  
Undervoltage protection threshold  
Short-circuit threshold  
VIO1 falling  
VIO1 falling  
65  
70  
30  
75  
35  
% of  
VIO1  
VSCP  
ILIM  
25  
High-side switch current limit  
High-side switch ON resistance  
Low-side switch ON resistance  
High-side, ISW ramps from 0 A to 2 A  
ISW = ILIM  
0.8  
1
1.2  
350  
400  
330  
500  
50  
A
183  
255  
250  
370  
15  
rDS(ON)  
mΩ  
ISW = 1 A  
VIN = 3.3 V  
170  
250  
tOFF  
Off time  
ns  
VIN = 5 V  
rDS(ON)  
Discharge ON resistance  
Measured with 10 mA  
Ω
(2)  
LINEAR REGULATOR (VIO2  
)
Output voltage  
1.7  
–3%  
65  
1.8  
3%  
75  
VIO2  
IIO2 = 1 mA  
VIO2 falling  
V
Tolerance  
VUVP  
VSCP  
Undervoltage protection threshold  
70  
30  
% of  
VIO2  
Short circuit threshold  
VIO2 falling  
25  
35  
% of  
VIO2  
BOOST CONVERTER 2 (VGH  
)
Output voltage range  
Tolerance  
16  
–3%  
65  
40(3)  
3%  
75  
35  
10  
1
VGH  
V
VUVP  
VSCP  
ILK  
Undervoltage protection threshold  
Short-circuit threshold  
Switch leakage current  
Switch ON resistance  
Maximum tON time  
tOFF time  
VGH falling  
70  
30  
% of VGH  
VGH falling  
25  
% of VGH  
VEN = 0 V; VSW4 = 36 V  
ISW = 1 A  
µA  
Ω
rDS(ON)  
tON(MAX)  
tOFF  
0.41  
1.67  
2.11  
1
2.5  
3
µs  
µs  
1.5  
48  
85°C  
25°C  
54  
ITCOMP  
Thermistor reference current  
ISET = 50 μA, VTCOMP = 1 V  
µA  
50  
RESET (RST)  
Reset pulse duration range  
2
16  
30%  
0.5  
1
Measured from end of VCORE ramp to 50% of RST rising  
edge with a 10k pullup resistor  
tRESET  
ms  
Tolerance  
–20%  
VOL  
IOH  
Low output voltage  
High output current  
IRST = 1 mA (sinking)  
VRST = 2.5 V  
0.27  
V
–1  
µA  
PROGRAMMABLE GAMMA CORRECTION  
Code = 1023; load = 10 µA, sourcing  
Code = 1023; load = 100 µA, sourcing  
Code = 0; load = 10 µA, sinking  
5.6  
100  
200  
100  
200  
25  
VDROPH  
High-side output voltage drop  
Low-side output voltage drop  
mV  
mV  
44.2  
49.1  
65.5  
VDROPL  
Code = 0; load = 100 µA, sinking  
Code = 512  
Offset  
–25  
–3.6  
–1  
mV  
LSB  
LSB  
INL  
Integral nonlinearity  
Differential nonlinearity  
No load, VGAMH = AVDD – 0.25 V, VGAML = 0.25 V  
No load, VGAMH = AVDD – 0.25 V, VGAML = 0.25 V  
5.9  
1.5  
DNL  
PROGRAMMABLE VCOM CALIBRATOR  
SETZSE  
SETFSE  
VRSET  
DNL  
Set zero-scale error  
Set full-scale error  
–1  
–7  
1
7
LSB  
LSB  
V
Voltage on RSET pin  
Differential nonlinearity  
IRSET = 50 µA  
–2%  
–1  
1.25  
2%  
1.5  
LSB  
(2) LDO is enabled, when VIO1 = 2.5 V.  
(3) Output voltages greater than 36 V require an external cascode transistor or charge pump circuit.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Electrical Specifications  
5
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VIN= 3.3 V, VCORE= 1.1 V, VIO1= 1.7 V, VIO2= 1.8 V(1), AVDD= 8.4 V, VGH= 24 V, TA= 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCM = AVDD / 2, VOUT1 = 2 V, VOUT2 = AVDD –2 V, RL = ∞  
VCM = AVDD / 2, VOUT = AVDD / 2  
MIN  
70  
TYP  
MAX  
UNIT  
dB  
AVOL  
VIO  
IB  
Open loop gain  
91  
Input offset voltage  
Input bias current  
–15  
–150  
15  
mV  
nA  
VCM = AVDD / 2, VOUT = AVDD / 2  
150  
VPOS = AVDD / 2, VNEG = AVDD / 2 – 1 V,  
IOUT = 10 mA sourcing  
VDROPH  
VDROPL  
High-side voltage drop  
Low-side voltage drop  
0.05  
0.03  
0.1  
0.1  
V
V
VPOS = AVDD / 2, VNEG = AVDD / 2 + 1 V,  
IOUT = 10 mA sinking  
High-side peak output current  
Low-side peak output current  
Common-mode rejection ratio  
Power supply rejection ratio  
200  
294  
–349  
78  
VCM = AVDD / 2, VSIGNAL = 2 VPP, open-loop,  
RL = , CL = 1 µF  
IPK  
mA  
–200  
CMRR  
PSRR  
VCM1 = 2 V, VCM2 = AVDD –2 V, VOUT = AVDD / 2  
40  
40  
18  
25  
dB  
dB  
AVDD1 = 7 V, AVDD2 = 10.1 V, VCM = 3 V, VOUT = 3 V  
110  
30  
TA = –40°C  
Open-loop,  
SR  
Slew rate  
V/μs  
VPOS = AVDD / 2 ±1 V  
TA = 25°C to 85°C  
38  
GATE VOLTAGE SHAPING  
VGH to VGHM ON resistance  
VGH = 24 V, IGHM = 10 mA, FLK = 2.5 V  
VGHM = 24 V, IGHM = 10 mA, FLK = 0 V  
VGHM = 6 V, IGHM = 10 mA, FLK = 0 V  
12  
12  
12  
25  
25  
25  
rDS(ON)  
Ω
VGHM to RE ON resistance  
VGHM rising, 2.5 V, 50% thresholds, COUT = 150 pF, RE  
0 Ω  
=
tPLH  
tPHL  
PANEL RESET / LCD BIAS READY (XAO)  
72  
81  
175  
200  
Propagation delay  
ns  
VGHM falling, 2.5 V, 50% thresholds, COUT = 150 pF, RE  
0 Ω  
=
VOL  
IOH  
Low output voltage  
High output current  
XAO threshold voltage  
Tolerance  
IXAO = 1 mA (sinking)  
VXAO = 2.5 V  
0.23  
0.5  
1
V
µA  
2.2  
–2.5%  
3%  
3.9  
XAO falling  
XAO rising  
VDET  
2.5%  
11%  
V
Hysteresis  
6.3%  
TIMING  
Boost converter 1 delay range  
Tolerance  
0
70  
tDLY1  
ms  
ms  
ms  
–20%  
30%  
Gate voltage shaping; LCD bias-  
ready delay range  
0
35  
tDLY6  
Tolerance  
–20%  
0.5  
30%  
4
Soft-start ramp time  
Tolerance  
tSS1  
VCORE, VIO1, VIO2  
–20%  
4
30%  
7.5  
30%  
65  
Soft-start ramp time  
Tolerance  
tSS2  
tUVP  
AVDD, VGH  
ms  
ms  
–20%  
40  
Undervoltage protection timeout  
50  
I2C INTERFACE  
Configuration parameters slave  
address  
74h  
4Fh  
ADDR  
Programmable VCOM slave address  
Low level input voltage  
High level input voltage  
Hysteresis  
VIL  
Rising edge, standard and fast mode  
Rising edge, standard and fast modes  
Applicable to fast mode only  
Sinking 3 mA  
0.75  
V
V
VIH  
VHYS  
VOL  
CI  
1.75  
125  
mV  
mV  
pF  
Low level output voltage  
Input capacitance  
500  
10  
Standard mode  
Fast mode  
100  
400  
fSCL  
Clock frequency  
Clock low period  
kHz  
µs  
Standard mode  
Fast mode  
4.7  
1.3  
tLOW  
6
Electrical Specifications  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
VIN= 3.3 V, VCORE= 1.1 V, VIO1= 1.7 V, VIO2= 1.8 V(1), AVDD= 8.4 V, VGH= 24 V, TA= 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX  
UNIT  
Standard mode  
Fast mode  
tHIGH  
Clock high period  
µs  
0.6  
4.7  
1.3  
4
Standard mode  
Fast mode  
Bus free time between a STOP and a  
START condition  
tBUF  
µs  
µs  
µs  
ns  
µs  
Standard mode  
Fast mode  
Hold time for a repeated START  
condition  
thd:STA  
tsu:STA  
tsu:DAT  
thd:DAT  
0.6  
4
Standard mode  
Fast mode  
Set-up time for a repeated START  
condition  
0.6  
250  
100  
0.05  
0.05  
Standard mode  
Fast mode  
Data set-up time  
Data hold time  
Standard mode  
Fast mode  
3.45  
0.9  
20 +  
0.1CB  
Standard mode  
Fast mode  
1000  
1000  
1000  
300  
Rise time of SCL after a repeated  
START condition and after an ACK  
bit  
tRCL1  
tRCL  
tFCL  
tRDA  
tFDA  
ns  
ns  
ns  
ns  
ns  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
Rise time of SCL  
Fall time of SCL  
Rise time of SDA  
Fall time of SDA  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
300  
20 +  
0.1CB  
300  
20 +  
0.1CB  
Standard mode  
Fast mode  
1000  
300  
20 +  
0.1CB  
20 +  
0.1CB  
Standard mode  
Fast mode  
300  
20 +  
0.1CB  
300  
Standard mode  
Fast mode  
4
tsu:STO  
Set-up time for STOP condition  
Capacitive load on SDA and SCL  
µs  
pF  
0.6  
Standard mode  
Fast mode  
400  
400  
CB  
EEPROM  
NWRITE  
tWRITE  
Number of write cycles  
Write time  
1000  
100  
100  
180  
ms  
Data retention  
Storage temperature = 150°C  
1000 hrs  
THERMAL SHUTDOWN  
(4)  
TSD  
Thermal shutdown threshold  
120  
150  
°C  
(4) Once triggered, thermal shutdown will remain in the shutdown state until the device is powered down.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Terminal Description  
7
Product Folder Links: TPS65642A  
 
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
3 Terminal Description  
3.1 Pin Assignment  
NEG2  
OUT2  
OUT1  
OUTD  
OUTC  
OUTB  
OUTA  
VIO1  
AVDD  
AVDD  
OUTH  
OUTG  
OUTF  
OUTE  
RST  
SW1  
GND  
GND  
WP  
GND  
SW4  
GND  
VGH  
SW4  
GND  
VGH  
VGHM  
RE  
GND  
GND  
GND  
WP  
SW1  
AVDD  
AVDD  
OUTH  
OUTG  
OUTF  
OUTE  
OUT2  
OUT1  
OUTD  
OUTC  
OUTB  
OUTA  
NEG2  
H3  
G3  
F3  
E3  
D3  
C3  
B3  
A3  
H5  
G5  
F5  
E5  
D5  
C5  
B5  
A5  
H6  
H2  
G2  
F2  
E2  
D2  
C2  
B2  
A2  
H4  
G4  
F4  
E4  
D4  
H7  
G7  
F7  
E7  
D7  
C7  
B7  
A7  
H1  
G1  
F1  
E1  
D1  
C1  
B1  
A1  
GND  
SW1  
EN  
EN  
SW1  
GND  
NEG1  
POS2  
POS1  
RSET  
G6  
F6  
E6  
D6  
C6  
B6  
A6  
NEG1  
AVDD  
COMP  
COMP  
AVDD  
OUTK  
OUTJ  
OUTI  
POS2  
OUTN  
OUTM  
OUTL  
VIN  
SCL  
VGHM  
SCL  
OUTK  
OUTJ  
OUTI  
OUTN  
OUTM  
OUTL  
SDA  
RE  
SDA  
POS1  
RSET  
AVDD  
GND  
FLK  
GND  
GND  
TCOMP  
SW2  
FLK  
C4  
B4  
A4  
VCORE  
VCORE  
TCOMP  
VIN  
VIO1  
AVDD  
XAO  
XAO  
RST  
SW3  
VIO2  
GND  
SW3  
GND  
GND  
SW2  
VIN  
GND  
VIO2  
GND  
VIN  
TOP VIEW  
BOTTOM VIEW  
3.2 Pin Assignment  
Table 3-1. PIN DESCRIPTIONS  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
SW2  
NO.  
A1  
A2  
A3  
A4  
A5  
A7  
A6  
B1  
B2  
B3  
B4  
B5  
P
O
P
O
P
P
O
I
Ground  
Buck converter 1 (VCORE) switch pin  
Supply voltage  
VIN  
SW3  
Buck converter 2 (VIO1) switch pin  
Ground  
GND  
GND  
VIO2  
VCORE  
TCOMP  
VIN  
Ground  
Linear regulator (VIO2) output and output sense  
Buck converter 1 (VCORE) output sense  
Boost converter 2 (VGH) thermistor network connection  
Supply voltage  
I
P
O
O
XAO  
Panel discharge  
RST  
System reset  
Buck converter 2 (VIO1) output sense. (Internally connected as supply voltage for LDO  
regulator.)  
VIO1  
B6  
B7  
I
I
Boost converter 1 (AVDD) output sense. (Internally connected as supply voltage for  
programmable gamma correction.)  
AVDD  
FLK  
GND  
OUTL  
C1  
C2  
C3  
I
Gate voltage shaping flicker clock  
Ground  
P
O
Gamma correction  
8
Terminal Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Table 3-1. PIN DESCRIPTIONS (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
OUTI  
OUTE  
OUTA  
RSET  
RE  
NO.  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
O
O
O
O
O
I/O  
O
O
O
O
I
Gamma correction  
Gamma correction  
Gamma correction  
Reference current-setting resistor connection  
Gate voltage shaping discharge resistor connection  
I2C serial data  
SDA  
OUTM  
OUTJ  
OUTF  
OUTB  
POS1  
VGHM  
SCL  
Gamma correction  
Gamma correction  
Gamma correction  
Gamma correction  
VCOM 1 non-inverting input  
Gate voltage shaping output  
I2C serial clock  
O
I/O  
O
O
O
O
I
OUTN  
OUTK  
OUTG  
OUTC  
POS2  
Gamma correction  
Gamma correction  
Gamma correction  
Gamma correction  
VCOM2 non-inverting input.  
Boost converter 2 (VGH) output sense. (Internally connected as supply voltage for the gate  
voltage shaping.)  
VGH  
F1  
I
COMP  
WP  
F2  
F3  
F4  
F5  
F6  
F7  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
O
I
Boost converter 1 (AVDD) compensation network connection  
EEPROM write protect  
VCOM1 and VCOM2 supply voltage  
Gamma correction  
AVDD  
OUTH  
OUTD  
NEG1  
GND  
EN  
I
O
O
I
Gamma correction  
VCOM1 inverting input  
P
I
Ground.  
Boost converter 1 (AVDD) enable  
Ground.  
GND  
SW1  
P
O
O
O
P
O
P
P
O
O
O
I
Boost converter 1 (AVDD) switch pin  
Boost converter 1 (AVDD) rectifier output  
VCOM1 output  
AVDD  
OUT1  
GND  
SW4  
Ground.  
Boost converter 2 (VGH) switch pin  
Ground  
GND  
GND  
SW1  
Ground  
Boost converter 1 (AVDD) switch pin  
Boost converter 1 (AVDD) rectifier output  
VCOM2 output  
AVDD  
OUT2  
NEG2  
VCOM2 inverting input  
Copyright © 2013, Texas Instruments Incorporated  
Terminal Description  
Submit Documentation Feedback  
9
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
4 Typical Characteristics  
4.1 Table of Graphs  
FUNCTIONAL BLOCK  
PARAMETER  
TEST CONDITIONS  
FIGURE  
Boost Converter 1 (AVDD  
)
Efficiency  
AVDD = 7 V, 8.4 V, 9.4 V, 10.1 V, IAVDD = 1 mA to 500 mA  
VIN = 3.3 V  
VIN = 5 V  
Figure 4-1  
Figure 4-2  
Figure 4-3  
Figure 4-4  
Figure 4-5  
Figure 4-6  
Figure 4-7  
Figure 4-8  
Figure 4-9  
Figure 4-10  
Figure 4-11  
Figure 4-12  
Figure 4-13  
Figure 4-14  
Figure 4-15  
Figure 4-16  
Figure 4-17  
Figure 4-18  
Figure 4-19  
Figure 4-20  
Figure 4-21  
Figure 4-22  
Figure 4-23  
Figure 4-24  
Figure 4-25  
Figure 4-26  
Figure 4-27  
Figure 4-28  
Figure 4-29  
Figure 4-30  
Figure 4-31  
Figure 4-32  
Figure 4-33  
Figure 4-34  
Figure 4-35  
Figure 4-35  
Figure 4-35  
Figure 4-38  
Figure 4-39  
Figure 4-40  
Figure 4-41  
Line Regulation  
VIN = 2.6 V to 6 V, AVDD = 8.4 V, IAVDD = 100 mA  
VIN = 3.3 V, 5 V, AVDD = 8.4 V, IAVDD = 1 mA to 500 mA  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), AVDD = 8.4 V  
Load Regulation  
Line Transient Response  
RL = 82 Ω  
RL = 33 Ω  
VIN = 3.3 V  
VIN = 5 V  
Load Transient Response  
Output Voltage Ripple  
Switching Waveforms  
AVDD = 8.4 V, IAVDD = 20 mA – 200 mA  
AVDD = 8.4 V, RL = 82 Ω  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V, AVDD = 8.4 V  
RL = 820 Ω  
RL = 82 Ω  
RL = 82 Ω  
VIN = 3.4 V  
VIN = 5 V  
Switching Frequency  
Efficiency  
VIN = 2.6 V to 6 V, AVDD = 7 V, 8.4 V, 10.1 V  
Buck Converter 1 (VCORE  
)
VCORE = 1 V, 1.1 V, 1.2 V, 1.3 V, ICORE = 1 mA to 500 mA  
Line Regulation  
VIN = 2.6 V to 6 V, VCORE = 1.1 V, ICORE = 300 mA  
Load Regulation  
VIN = 3.4 V, 5 V, VCORE= 1.1 V, ICORE = 1 mA to 500 mA  
Line Transient Response  
Load Transient Response  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), VCORE= 1.1 V, Load = 3.9 Ω  
VCORE = 1.1 V, ICORE = 50 mA - 200 mA  
VCORE = 1.1 V, RL = 3.9 Ω  
VIN = 3.3 V  
VIN = 5 V  
Output Voltage Ripple  
Switching Waveforms  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V, VCORE = 1.1 V  
RL = 120 Ω  
RL = 3.9 Ω  
RL = 12 Ω  
VIN = 3.3 V  
VIN = 5 V  
Switching Frequency  
Efficiency  
VIN = 2.6 V to 6 V, VCORE = 1.1 V  
Buck Converter 2 (VIO1  
)
VIO1 = 1.7 V, 1.8 V, 2.5 V, IIO1 = 1 mA to 500 mA  
Line Regulation  
VIN = 2.6 V to 6 V, VIO1 = 1.7 V, IIO1 = 100 mA  
VIN = 3.4 V, 5 V, VIO1 = 1.7 V, IIO1 = 1 mA to 500 mA  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), VIO1 = 1.7 V, RL = 27 Ω  
VIO1 = 1.7 V, IIO1 = 50 mA - 100 mA  
Load Regulation  
Line Transient Response  
Load Transient Response  
VIN = 3.3 V  
VIN = 5 V  
Output Voltage Ripple  
Switching Waveforms  
VIO1 = 1.7 V, RL = 27 Ω  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V, VIO1 = 1.7 V  
RL = 270 Ω  
RL = 27 Ω  
RL = 27 Ω  
Switching Frequency  
Load Regulation  
VIN = 2.6 V to 6 V, VIO1 = 1.7 V  
LDO Regulator (VIO2  
)
VIO1 = 2.5 V, VIO2 = 1.8 V, IIO2 = 1 mA to 100 mA  
Line Transient Response  
Load Transient Response  
Output Voltage Ripple  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), VIO1 = 2.5 V, VIO2 = 1.8 V, RL = 27 Ω  
VIN = 3.3 V, VIO1 = 2.5 V, VIO2 = 1.8 V, IIO2 = 50 mA - 100 mA  
VIN = 3.3 V, VIO1 = 2.5 V, VIO2 = 1.8 V, RL = 27 Ω  
10  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
FUNCTIONAL BLOCK  
PARAMETER  
Efficiency  
TEST CONDITIONS  
VIN = 3.7 V, AVDD = 8.4 V, VGH = 16 V, 24 V, 31 V  
FIGURE  
Boost Converter 2 (VGH  
)
Figure 4-42  
Figure 4-43  
Figure 4-44  
Figure 4-45  
Figure 4-46  
Line Regulation  
VIN = 3.7 V, AVDD = 7 V to 10.1 V, VGH = 24 V, IGH = 10 mA  
VIN = 3.7 V, AVDD = 8.4 V, VGH = 24 V, IGH = 1 mA to 50 mA  
Load Regulation  
Line Transient Response  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), AVDD = 8.4 V (RL = 82  
Ω), VGH = 24 V  
RL = 4.8 kΩ  
RL = 1.2 kΩ  
Load Transient Response  
Output Voltage Ripple  
Switching Waveforms  
VIN = 3.3V V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V  
VIN = 3.3 V, AVDD = 8.4 V(RL = 82 Ω), VGH = 24 V  
VIN = 3.3 V, AVDD = 7 V, 8.4 V, 10.1 V, VGH = 16 V to 31 V  
IGH = 5 mA - 10 mA  
IGH = 10 mA - 30 mA  
RL = 4.8 kΩ  
Figure 4-47  
Figure 4-48  
Figure 4-49  
Figure 4-50  
Figure 4-51  
Figure 4-52  
Figure 4-53  
Figure 4-54  
RL = 1.2 kΩ  
RL = 4.8 kΩ  
RL = 1.2 kΩ  
Switching Frequency  
VIN, VIO1, VIO2, VCORE  
Power-Up Behavior  
VIN = 3.3 V, tSS1 = 0.5 ms, VIO1 = 2.5 V, VIO2 = 1.8 V, VCORE  
1.1 V  
=
RL = 3.9 Ω  
EN, AVDD, VGH  
VIN = 3.3 V, tSS2 = 4 ms, AVDD = 8.1 V (RL = 33 Ω), VGH = 24 tDLY1 = 0 ms  
Figure 4-55  
Figure 4-56  
Figure 4-57  
Figure 4-58  
Figure 4-49  
Figure 4-60  
Figure 4-61  
Figure 4-62  
Figure 4-63  
Figure 4-64  
Figure 4-65  
Figure 4-66  
Figure 4-67  
V (RL = 1.2 kΩ)  
tDLY1 = 10 ms  
XAO, AVDD, VGH, VGHM  
XAO, AVDD, VGH, VGHM  
VIN = 3.3 V, AVDD = 8.1 V (RL = 33 Ω), VGH = 24 V (RL = 1.2  
kΩ), GIP = 0  
tDLY6 = 0 ms  
tDLY6 = 10 ms  
tDLY6 = 0 ms  
tDLY6 = 10 ms  
VIN = 3.3 V, AVDD = 8.1 V (RL = 33 Ω), VGH = 24 V (RL = 1.2  
kΩ), GIP = 1  
AVDD, VGH, VCOM, VGAMA  
RST, VIO1, VIO2, VCORE  
VIN = 3.3 V, AVDD = 8.1 V, VGH = 24 V, VCOM = 4.05 V, VGAMA = 4.05 V  
Power-Down Behavior  
VDET = 2.5 V  
RMODE = 0  
RMODE = 1  
VIN, XAO, AVDD, VGHM  
GIP = 0  
AVDD, VGH, VCOM, VGAMA  
SMODE = 0  
SMODE = 1  
Gate Voltage Shaping  
Op-Amp  
FLK, VGHM  
VIN = 3.3 V, RE = 1 kΩ, CL = 10 nF, AVDD = 8.4 V (RL = 33 Ω), VGH = 24 V (RL = 1.2  
kΩ)  
Large-Signal Response  
Small-Signal Bandwidth  
Gain Bandwidth  
AVDD = 8.4 V, VPOS = 3.8 V ±0.5 V  
Figure 4-68  
Figure 4-69  
Figure 4-70  
Figure 4-71  
Figure 4-72  
Figure 4-73  
AVDD = 8.4 V, VPOS = 4 V + 65 mVPP, AV = +1, RF = 0 Ω  
AVDD = 8.4 V, VPOS = 4 V + 65 mVPP, AV = +1, RF = 0 Ω  
VIN = 3.3 V, AVDD = 8.4 V, RL = 2 kΩ to AVDD / 2, CL = 1 μF  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), AVDD = 8.4 V, VCOM = 4 V, RL = ∞  
Peak Output Current  
Line Transient Response  
Output Voltage Ripple and VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VCOM = 4 V, RL = ∞  
Noise  
Programmable Gamma  
Dynamic Response  
AVDD = 8.4 V, RL = 909 k, CL = 55 pF  
GAMA = 0x0ff to  
0x2ff  
Figure 4-74  
Figure 4-75  
GAMA = 0x2ff to  
0x0ff  
Line Transient Response  
VIN = 3 V to 4.8 V (dV/dt = 7.5 V/ms), AVDD = 8.4 V (RL = 82  
Ω)  
GAMA = 0x0ff  
GAMA = 0x1ff  
GAMA = 0x2ff  
GAMA = 0x1ff  
Figure 4-76  
Figure 4-77  
Figure 4-78  
Figure 4-79  
Output Voltage Ripple and VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω)  
Noise  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Boost Converter 1 — Efficiency  
Boost Converter 1 — Efficiency  
VIN = 3.3 V, AVDD = 7 V, 8.4 V, 9.4 V, 10.1 V  
VIN = 5 V, AVDD = 7 V, 8.4 V, 9.4 V, 10.1 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AVDD = 7.0 V  
AVDD = 7.0 V  
AVDD = 8.4 V  
AVDD = 9.4 V  
AVDD = 8.4 V  
AVDD = 9.4 V  
AVDD = 10.1 V  
L=Toko 1269AS-H-4R7M  
L=Toko 1269AS-H-4R7M  
AVDD = 10.1 V  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Iout - Output Current - mA  
Iout - Output Current - mA  
G401  
G402  
Figure 4-1.  
spacer  
Figure 4-2.  
spacer  
Boost Converter 1 — Line Regulation  
Boost Converter 1 — Load Regulation  
VIN = 2.6 V to 6 V, AVDD = 8.4 V, IAVDD = 100 mA  
8.55  
VIN = 3.3 V, 5 V, AVDD = 8.4 V, IAVDD = 1 mA to 500 mA  
8.55  
8.50  
8.45  
8.40  
8.35  
8.30  
8.25  
8.50  
8.45  
8.40  
8.35  
8.30  
VIN = 3.3 V  
L=Toko 1269AS-H-4R7M  
L=Toko 1269AS-H-2R2M  
VIN = 5.0 V  
8.25  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
0
50 100 150 200 250 300 350 400 450 500  
VIN - Input Voltage - V  
IAVDD - Output Current - mA  
G403  
G404  
Figure 4-3.  
spacer  
Figure 4-4.  
spacer  
Boost Converter 1 — Line Transient Response  
Boost Converter 1 — Line Transient Response  
VIN = 3 V to 4.8 V, AVDD = 8.4 V, RL = 82 Ω  
VIN = 3 V to 4.8 V, AVDD = 8.4 V, RL= 33 Ω  
Figure 4-5.  
Figure 4-6.  
12  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Boost Converter 1 — Load Transient Response  
Boost Converter 1 — Load Transient Response  
VIN = 3.3 V, AVDD = 8.4 V, IAVDD = 20 mA - 200 mA  
VIN = 5 V, AVDD = 8.4 V, IAVDD = 20 mA - 200 mA  
Figure 4-7.  
spacer  
Figure 4-8.  
spacer  
Boost Converter 1 — Output Voltage Ripple  
Boost Converter 1 — Output Voltage Ripple  
VIN = 3.3 V, AVDD = 8.4 V, RL = 82 Ω  
VIN = 5 V, AVDD = 8.4 V, RL = 82 Ω  
Figure 4-9.  
spacer  
Figure 4-10.  
spacer  
Boost Converter 1 — Switching Waveforms  
Boost Converter 1 — Switching Waveforms  
VIN = 3.3 V, AVDD = 8.4 V, RL = 820 Ω  
VIN = 3.3 V, AVDD = 8.4 V, RL = 82 Ω  
Figure 4-11.  
spacer  
Figure 4-12.  
spacer  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
13  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Buck Converter 1 — Efficiency  
Boost Converter 1 — Switching Frequency  
VIN = 3.4 V, VCORE = 1 V, 1.1 V, 1.2 V, 1.3 V, ICORE = 1 mA to 500  
VIN = 2.6 V to 6 V, AVDD = 7 V, 8.4 V, 10.1 V, RL = 82 Ω  
mA  
100  
1,500  
90  
80  
70  
60  
50  
40  
30  
1,300  
1,100  
900  
700  
VCORE = 1.0 V  
AVDD=7.0V  
20  
VCORE = 1.1 V  
500  
AVDD=8.4V  
10  
VCORE = 1.2 V  
L=Toko 1269AS-H-4R7M  
L=Toko 1269AS-H-2R2M  
AVDD=10.1V  
VCORE = 1.3 V  
300  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
50 100 150 200 250 300 350 400 450 500  
VIN - Input Voltage - V  
ICORE - Output Current - mA  
G413  
G416  
Figure 4-13.  
spacer  
Figure 4-14.  
spacer  
Buck Converter 1 — Efficiency  
Buck Converter 1 — Line Regulation  
VIN = 5 V, VCORE = 1 V, 1.1 V, 1.2 V, 1.3 V, ICORE = 1 mA to 500 mA  
VIN = 2.6 V to 6 V, VCORE = 1.1 V, ICORE = 300 mA  
1.15  
100  
90  
80  
70  
60  
50  
40  
30  
1.14  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
VCORE = 1.0 V  
20  
VCORE = 1.1 V  
10  
VCORE = 1.2 V  
L=Toko 1269AS-H-2R2M  
L=Toko 1269AS-H-4R7M  
VCORE = 1.3 V  
0
0
50 100 150 200 250 300 350 400 450 500  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
ICORE - Output Current - mA  
VIN - Input Voltage - V  
G417  
G416  
Figure 4-15.  
spacer  
Figure 4-16.  
spacer  
Buck Converter 1 — Load Regulation  
Buck Converter 1 — Line Transient Response  
VIN = 3.4 V, 5 V, VCORE = 1.1 V, ICORE = 0 mA to 500 mA  
VIN = 3 V to 4.8 V, VCORE = 1.1 V, RL = 3.9 Ω  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
VIN = 3.4 V  
VIN = 5.0 V  
L=Toko 1269AS-H-2R2M  
0
50 100 150 200 250 300 350 400 450 500  
ICORE - Output Current - mA  
G419  
Figure 4-17.  
spacer  
Figure 4-18.  
14  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Buck Converter 1 — Load Transient Response  
Buck Converter 1 — Load Transient Response  
VIN = 3.3 V, VCORE = 1.1 V, ICORE = 50 mA - 200 mA  
VIN = 5 V, VCORE = 1.1 V, ICORE = 50 mA - 200 mA  
Figure 4-19.  
Figure 4-20.  
spacer  
Buck Converter 1 — Output Voltage Ripple  
Buck Converter 1 — Output Voltage Ripple  
VIN = 3.3 V, VCORE = 1.1 V, RL = 3.9 Ω  
VIN = 5 V, VCORE = 1.1 V, RL = 3.9 Ω  
Figure 4-21.  
spacer  
Figure 4-22.  
spacer  
Buck Converter 1 — Switching Waveforms  
Buck Converter 1 — Switching Waveforms  
VIN = 3.3 V, VCORE = 1.1 V, RL = 120 Ω  
VIN = 3.3 V, VCORE = 1.1 V, RL = 3.9 Ω  
Figure 4-23.  
spacer  
Figure 4-24.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Buck Converter 1 — Switching Frequency  
VCORE = 1.1 V, RL = 12 Ω  
Buck Converter 2 — Efficiency  
VIN = 3.3 V, VIO1 = 1.7 V, 1.8 V, 2.5 V, IIO1 = 1 mA to 500 mA  
1,700  
1,500  
1,300  
1,100  
900  
100  
90  
80  
70  
60  
50  
40  
30  
700  
20  
VIO1 = 1.7 V  
500  
10  
0
VIO1 = 1.8 V  
VIO1 = 2.5 V  
L=Toko 1269AS-H-2R2M  
L=Toko 1269AS-H-2R2M  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
50 100 150 200 250 300 350 400 450 500  
VIN - Input Voltage - V  
IIO1 - Output Current - mA  
G425  
G428  
Figure 4-25.  
Figure 4-26.  
spacer  
Buck Converter 2 — Efficiency  
Buck Converter 2 — Line Regulation  
VIN = 5 V, VIO1 = 1.7 V, 1.8 V, 2.5 V, IIO1 = 1 mA to 500 mA  
VIN = 2.6 V to 6 V, VIO1 = 1.7 V, IIO1 = 100 mA  
1.80  
100  
90  
80  
70  
60  
50  
40  
30  
1.78  
1.76  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
1.62  
1.60  
20  
VIO1 = 1.7 V  
10  
0
VIO1 = 1.8 V  
VIO1 = 2.5 V  
L=Toko 1269AS-H-2R2M  
L=Toko 1269AS-H-2R2M  
0
50 100 150 200 250 300 350 400 450 500  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
IIO1 - Output Current - mA  
VIN - Input Voltage - V  
G429  
G428  
Figure 4-27.  
spacer  
Figure 4-28.  
spacer  
Buck Converter 2 — Load Regulation  
Buck Converter 2 — Line Transient Response  
VIN = 3.4 V, 5 V, VIO1 = 1.7 V, IIO1 = 1 mA to 500 mA  
1.80  
VIN = 3 V to 4.8 V, VIO1 = 1.7 V, RL = 27 Ω  
1.78  
1.76  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
VIN = 3.4 V  
1.62  
L=Toko 1269AS-H-2R2M  
VIN = 5.0 V  
1.60  
0
50 100 150 200 250 300 350 400 450 500  
IIO1 - Output Current - mA  
G431  
Figure 4-29.  
spacer  
Figure 4-30.  
16  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Buck Converter 2 — Load Transient Response  
Buck Converter 2 — Load Transient Response  
VIN = 3.3 V, VIO1 = 1.7 V, IIO1 = 50 mA - 100 mA  
VIN = 5 V, VIO1 = 1.7 V, IIO1 = 50 mA - 100 mA  
Figure 4-31.  
Figure 4-32.  
spacer  
Buck Converter 2 — Output Voltage Ripple  
Buck Converter 2 — Output Voltage Ripple  
VIN = 3.3 V, VIO1 = 1.7 V, RL = 27 Ω  
VIN = 5 V, VIO1 = 1.7 V, RL = 27 Ω  
Figure 4-33.  
spacer  
Figure 4-34.  
spacer  
Buck Converter 2 — Switching Waveforms  
Buck Converter 2 — Switching Waveforms  
VIN = 3.3 V, VIO1 = 1.7 V, RL = 270 Ω  
VIN = 3.3 V, VIO1 = 1.7 V, RL = 27 Ω  
Figure 4-35.  
spacer  
Figure 4-36.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Buck Converter 2 — Switching Frequency  
VIN = 2.6 V to 6 V, VIO1 = 1.7 V, RL = 27 Ω  
LDO Regulator — Load Regulation  
VIO1 = 2.5 V, VIO2 = 1.8 V, IIO2 = 1 mA to 100 mA  
1.85  
2,000  
1,900  
1,800  
1,700  
1,600  
1,500  
1,400  
1,300  
1,200  
1,100  
1,000  
1.83  
1.81  
1.79  
1.77  
1.75  
L=Toko 1269AS-H-2R2M  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
VIN - Input Voltage - V  
IIO2 - Output Current - mA  
G437  
G438  
Figure 4-37.  
Figure 4-38.  
spacer  
LDO Regulator — Line Transient Response  
LDO Regulator — Load Transient Response  
VIN = 3 V to 4.8 V, VIO1 = 2.5 V, VIO2 = 1.8 V, RL = 27 Ω  
VIN = 3.3 V, VIO1 = 2.5 V, VIO2 = 1.8 V, IIO2 = 50 mA - 100 mA  
Figure 4-39.  
Figure 4-40.  
Boost Converter 2 — Efficiency  
(AVDD losses are excluded)  
LDO Regulator — Output Voltage Ripple  
VIN =3.3 V, VIO1 = 2.5 V, VIO2 = 1.8 V, RL = 27 Ω  
VIN = 3.7 V, AVDD = 8.4 V, VGH = 16 V, 24 V, 31 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VGH = 16 V  
VGH = 24 V  
10  
L=Murata LQH3NPN150NG0  
VGH = 31 V  
0
0
10  
20  
30  
40  
50  
IGH - Output Current - mA  
G444  
Figure 4-41.  
Figure 4-42.  
18  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Boost Converter 2 — Line Regulation  
Boost Converter 2 — Load Regulation  
VIN = 3.7 V, AVDD = 7 V to 10.1 V, VGH = 24 V, IGH = 10 mA  
VIN = 3.7 V, AVDD = 8.4 V, VGH = 24 V, IGH = 1 mA to 50 mA  
24.20  
24.20  
24.15  
24.10  
24.05  
24.00  
23.95  
23.90  
23.85  
24.15  
24.10  
24.05  
24.00  
23.95  
23.90  
23.85  
L=Murata LQH3NPN150NG0  
L=Murata LQH3NPN150NG0  
23.80  
23.80  
7
7.5  
8
8.5  
9
9.5  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
AVDD - Input Voltage - V  
IGH - Output Current - mA  
G443  
G446  
Figure 4-43.  
spacer  
Figure 4-44.  
spacer  
Boost Converter 2 — Line Transient Response  
Boost Converter 2 — Line Transient Response  
VIN = 3 V to 4.8 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 4.8k VIN = 3 V to 4.8 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 1.2k  
Figure 4-45.  
spacer  
Figure 4-46.  
Boost Converter 2 — Load Transient Response  
Boost Converter 2 — Load Transient Response  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, IGH = 5 mA - 10 VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, IGH = 10 mA - 30  
mA  
mA  
Figure 4-47.  
Figure 4-48.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
19  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Boost Converter 2 — Output Voltage Ripple  
Boost Converter 2 — Output Voltage Ripple  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 4.8k  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 1.2k  
Figure 4-49.  
Figure 4-50.  
Boost Converter 2 — Switching Waveforms  
Boost Converter 2 — Switching Waveforms  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 4.8k  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VGH = 24 V, RL = 1.2k  
Figure 4-51.  
Figure 4-52.  
Boost Converter 2 — Switching Frequency  
AVDD = 7 V, 8.4 V, 10.1 V, VGH = 16 V to 31 V, RL = 4.8 kΩ  
Power-Up Sequencing  
VIN, VIO1, VIO2, VCORE  
550  
500  
450  
400  
350  
AVDD=7.0V  
300  
AVDD=8.4V  
L=Murata LQH3NPN150NG0  
AVDD=10.1V  
250  
16  
18  
20  
22  
24  
26  
28  
30  
VGH - Output Voltage - V  
G453  
Figure 4-53.  
Figure 4-54.  
20  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Power-Up Sequencing  
Power-Up Sequencing  
EN, AVDD, VGH (tDLY1 = 0 ms)  
EN, AVDD, VGH (tDLY1 = 10 ms)  
Figure 4-55.  
Figure 4-56.  
Power-Up Sequencing — GIP = 0  
XAO, AVDD, VGH, VGHM, tDLY6 = 0 ms  
Power-Up Sequencing — GIP = 0  
XAO, AVDD, VGH, VGHM, tDLY6 = 10 ms  
Figure 4-57.  
Figure 4-58.  
Power-Up Sequencing — GIP = 1  
XAO, AVDD, VGH, VGHM, tDLY6 = 0 ms  
Power-Up Sequencing — GIP = 1  
XAO, AVDD, VGH, VGHM, tDLY6 = 10 ms  
Figure 4-59.  
Figure 4-60.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
21  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Power-Up Sequencing  
AVDD, VGH, VCOM, VGAMA  
Power-Down Sequencing — RMODE = 0  
VDET = 2.5 V, RST, VIO1, VIO2, VCORE  
Figure 4-61.  
Figure 4-62.  
Power-Down Sequencing – RMODE = 1  
VDET = 2.5 V, RST, VIO1, VIO2, VCORE  
Power-Down Sequencing — GIP = 0  
VIN, XAO, AVDD, VGHM  
Figure 4-63.  
Figure 4-64.  
Power-Down Sequencing — SMODE = 0  
AVDD, VGH, VCOM, VGAMA  
Power-Down Sequencing — SMODE = 1  
AVDD, VGH, VCOM, VGAMA  
Figure 4-65.  
Figure 4-66.  
22  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Gate Voltage Shaping — FLK, VGHM  
VIN = 3.3 V, AVDD = 8.4 V (RL = 33 Ω), VGH = 24 V (RL = 1.2 kΩ), RE  
= 1 kΩ, CL = 10 nF  
VCOM Buffer — Large Signal Response  
AVDD = 8.4 V, RL = 82 Ω, VPOS = 3.8 V + 0.5 Vpp  
Figure 4-67.  
Figure 4-68.  
VCOM Buffer — Small-Signal Bandwidth  
AVDD = 8.4 V, VPOS = 4 V + 65 mVpp  
VCOM Buffer — Gain-Bandwidth Product  
AVDD = 8.4 V, VPOS = 4 V + 65 mVpp  
Figure 4-69.  
Figure 4-70.  
VCOM Buffer — Peak Output Current  
VCOM Buffer — Line Transient Response  
VIN = 3.3 V, AVDD = 8.4 V, RL = 2k to AVDD / 2, CL = 1 μF  
VIN = 3 V to 4.8 V, AVDD = 8.4 V, RL = 82 Ω, VCOM = 4 V, RL = ∞  
Figure 4-71.  
Figure 4-72.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
VCOM Buffer — Output Voltage Ripple and Noise  
Programmable GAMMA — Dynamic Response  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), VCOM = 4 V, RL = ∞  
GAMA = 0x0ff to 0x2ff, RL = 909 kΩ, CL = 55 pF  
Figure 4-73.  
Figure 4-74.  
GAMMA Voltage — Dynamic Response  
Programmable GAMMA — Line Transient Response  
GAMA = 0x2ff to 0x0ff, RL= 909 kΩ, CL= 55 pF  
VIN = 3 V to 4.8 V, AVDD = 8.4 V (RL = 82 Ω), GAMA = 0x0ff  
Figure 4-75.  
Figure 4-76.  
Programmable GAMMA — Line Transient Response  
Programmable GAMMA — Line Transient Response  
VIN = 3 V to 4.8 V, AVDD = 8.4 V (RL = 82 Ω), GAMA = 0x1ff  
VIN = 3 V to 4.8 V, AVDD = 8.4 V (RL = 82 Ω), GAMA = 0x2ff  
Figure 4-77.  
Figure 4-78.  
24  
Typical Characteristics  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Programmable GAMMA — Output Voltage Ripple and Noise  
VIN = 3.3 V, AVDD = 8.4 V (RL = 82 Ω), GAMA = 0x1ff  
Figure 4-79.  
Copyright © 2013, Texas Instruments Incorporated  
Typical Characteristics  
25  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5 Detailed Description  
Figure 5-1 shows an internal block diagram of the TPS65642A device.  
EN  
Internal  
VUVLO  
+
XAO  
RST  
Sequencing  
VDET  
+
SW2  
VIN  
Buck 1  
Buck 2  
VCORE  
SW3  
VIO1  
LDO  
VIO2  
SW1  
Boost 1  
Boost 2  
COMP  
AVDD  
SW4  
VGH  
Temperature  
Compensation  
TCOMP  
VGHM  
RE  
Gate Voltage  
Shaping  
FLK  
AVDD  
RSET  
OUTA  
OUTN  
Programmable  
Gamma  
Programmable  
VCOM  
AVDD  
OUT1  
POS1  
NEG1  
+
POS2  
NEG2  
+
OUT2  
SCL  
SDA  
WP  
I2C  
Interface  
Internal  
Figure 5-1. Internal Block Diagram  
26  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.1 BOOST CONVERTER 1 (AVDD)  
Boost converter 1 is synchronous and uses a virtual current mode topology that:  
Achieves high efficiencies  
Allows the converter to work in continuous-conduction mode under all operating conditions, which  
simplifies compensation  
Provides a better drive signal for the negative charge pump connected to the switch node (because the  
converter always runs in continuous-conduction mode, even at low output currents)  
Provides true input-output isolation when the boost converter is disabled  
VIN  
AVDD  
VIN  
SW1  
Q1B  
AVDD  
AVDD  
FREQ  
PWM  
VREF  
+
Control  
AVDD  
SMODE  
UVLO  
&
Q1A  
Q2  
GND  
COMP  
Figure 5-2. Boost Converter 1 Internal Block Diagram  
5.1.1 Switching Frequency (Boost Converter 1)  
The nominal switching frequency of boost converter 1 can be programmed to 750 kHz or 1200 kHz using  
the FREQ bit in the MISC register. The factory default value is 1200 kHz.  
5.1.2 Compensation (Boost Converter 1)  
Boost converter 1 uses an external compensation network connected to the COMP pin to stabilize its  
feedback loop. A simple series R-C network connected between the COMP pin and ground is sufficient to  
achieve good performance, in effect, stable and with good transient response. Good starting values, which  
will work for most applications, are 100 kΩ and 1 nF for 1200 MHz AVDD switching frequency and 56 kΩ  
and 1.5 nF for 750 kHz AVDD switching frequency.  
In some applications (for example, those using electrolytic output capacitors), it may be necessary to  
include a second compensation capacitor between the COMP pin and ground. This has the effect of  
adding an additional pole in the frequency response of the feedback loop, which cancels the zero  
introduced by the ESR of the output capacitor.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
The COMP pin is directly connected to the input current comparator of the converter, which means that  
any noise present on this pin can directly affect converter operation. In practical applications the most  
likely source of noise is the switch pin on the converter, and for proper operation it is essential that the  
stray capacitance between the SW1 and the COMP pins is minimized. This can be ensured using good  
PCB layout practices, namely:  
Locating the compensation components close to the COMP pin  
Removing the GND plane from underneath the SW1 PCB tracks (to prevent this high dV/dt signal from  
inducing currents locally in the GND plane)  
Connecting the ground side of the compensation components to a noise-free GND location, in effect,  
away from noisy power ground signals  
NOTE  
For the most robust operation TI recommends to ensure that the parasitic capacitance  
between the SW1 and COMP is below 0.1 pF.  
5.1.3 Power Up (Boost Converter 1)  
Boost converter 1 starts tDLY1 milliseconds after EN or RST goes high, whichever occurs later. Delay time  
tDLY1 can be programmed from 0 ms to 70 ms using the DLY1 register. Once asserted, the EN signal must  
remain high to ensure normal device operation. Once disabled (EN = 0), boost converter 1 remains  
disabled until the device is powered down (even if EN is re-asserted).  
To minimize inrush current during start-up, boost converter 1 ramps its output voltage in tSS2 milliseconds.  
Start-up time tSS2 can be programmed from 4 ms to 7.5 ms using the SS2 register. Longer soft-start times  
generate lower inrush currents.  
The same ramp rate is also used for boost converter 2 – changing the SS2 register affects both boost  
converters.  
The soft-start function is not implemented if the output voltage of boost converter 1 is re-programmed  
during operation. During normal operation (when AVDD remains constant) the non-implementation of soft-  
start is not a problem, however, it may cause problems during production if AVDD is changed while the  
converter is enabled. Problems can occur under such conditions because, without a soft-start, the  
converter draws a high inrush current when the output voltage of the converter is changed. If the converter  
is supplied from a high-impedance source, this inrush current can, under certain circumstances, pull VIN  
below the UVLO threshold, disabling the IC and interrupting the writing of the configuration parameters.  
Use one or more of the following recommendations to ensure trouble-free configuration during production:  
Program the configuration parameters before the IC is soldered to the PCB  
Supply the PCB with a voltage high enough to ensure that the voltage on the VIN pin remains above  
the UVLO threshold when the value of AVDD is changed  
Ensure that the supply impedance is low enough to ensure that the voltage on the VIN pin remains  
above the UVLO threshold when the value of AVDD is changed  
Disable boost converter 1 while the value of AVDD is changed  
5.1.4 Power Down (Boost Converter 1)  
Boost converter 1 is disabled when EN = 0 or VIN<VUVLO. When disabled, boost converter 1 actively  
discharges AVDD by turning on Q2. The active discharge feature is disabled by setting SMODE = 1 in the  
CONFIG register. Once disabled (EN = 0), boost converter 1 remains disabled until the device powers  
down (even if EN is re-asserted).  
5.1.5 Isolation (Boost Converter 1)  
The synchronous topology of boost converter 1 ensures that AVDD is fully isolated from VIN when the  
converter is disabled.  
28  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.1.6 Output Voltage (Boost Converter 1)  
The output voltage of boost converter 1 can be programmed from 7 V to 10.1 V in 100 mV steps using the  
AVDD register. The factory default setting is 8.4 V.  
5.1.7 Input Supply Characteristics  
Boost converter 1 exhibits a fast response with excellent line transient performance. Its fast reaction to  
changes in input voltage means that excessive input impedance can cause the converter to become  
unstable. This can happen, for example, if VIN is supplied via an excessively long cable, in which case the  
parasitic inductance of the cable forms a resonant circuit with the input capacitance of the IC. The  
following guidelines help avoid such problems and ensure proper operation:  
Minimize supply cable inductance  
Minimize supply cable resistance  
Maximize input capacitance  
Avoid using ceramic types for the bulk input capacitance  
Capacitors with higher ESR help to damp any tendency to ring on the part of the input cable  
5.2 BUCK CONVERTER 1 (VCORE  
)
Buck converter 1 is synchronous and uses a constant off-time topology that offers high efficiency, fast  
transient response, and constant ripple-current amplitude under all operating conditions. The output  
voltage VCORE can be programmed by the user. The off-time of the converter is inversely proportional to  
the output voltage, and therefore is constant when the converter is in regulation. Thus, for a given VIN, the  
converter operates at a constant frequency that changes temporarily when the converter reacts to load  
changes.  
VIN  
VCORE  
VIN  
Q1A  
Q1B  
GND  
PWM  
Control  
SW2  
VREF  
VCORE  
+
VCORE  
Figure 5-3. Buck Converter 1 Block Diagram  
5.2.1 Output Voltage (Buck Converter 1)  
The output voltage of buck converter 1 can be programmed from 1 V to 1.3 V in 100 mV steps. The  
factory default setting is 1.1 V.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.2.2 Power Up (Buck Converter 1)  
Buck converter 1 starts as soon as VIN > VUVLO (the same time buck converter 2 and LDO regulator  
starts).  
To minimize inrush current during start-up, buck converter 1 ramps VCORE from zero to the final value in  
tSS1 milliseconds. Soft-start time tSS1 can be programmed from 0.5 ms to 4 ms using the SS1 register.  
The same ramp rate is used for buck converter 2 and the linear regulator. Changing SS1 affects all three  
regulators.  
5.2.3 Power Down (Buck Converter 1)  
Buck converter 1 is disabled when VIN< VUVLO. The output of buck converter 1 is not actively discharged.  
5.3 BUCK CONVERTER 2 (VIO1  
)
Buck converter 2 is a low-power synchronous-buck converter that in typical applications generates the I/O  
supply voltage for the timing controller and source drivers. Buck converter 2 is essentially the same as  
buck converter 1: the output voltage VIO1 can be programmed by the user, but the output is actively  
discharged during power-down.  
VIN  
VIO1  
VIN  
Q2  
UVLO  
Q1A  
Q1B  
GND  
PWM  
Control  
SW3  
VREF  
VIO1  
+
VIO1  
Figure 5-4. Buck Converter 2 Internal Block Diagram  
5.3.1 Output Voltage (Buck Converter 2)  
The output voltage of buck converter 2 can be programmed to 1.7 V, 1.8 V, or 2.5 V using the VIO  
register. The factory default setting is 1.7 V. When VIO1 = 1.7 V or 1.8 V, the LDO regulator is disabled.  
5.3.2 Power-Up (Buck Converter 2)  
Buck converter 2 starts as soon as VIN > VUVLO (the same time buck converter 1 and LDO regulator  
starts), and implements the same voltage ramping as buck converter 1.  
5.3.3 Power-Down (Buck Converter 2)  
Buck converter 2 is disabled and actively discharges its output when VIN < VUVLO  
.
30  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.4 LDO REGULATOR (VIO2  
)
In applications in which the timing controller and source drivers use different I/O voltages, the low-dropout  
(LDO) regulator can be used to generate the lower I/O supply voltage VIO2. The LDO regulator is supplied  
from the VIO1 pin, which is the output of buck converter 2.  
VIO1  
VIO2  
+
DAC  
VIO2  
Figure 5-5. Linear Regulator Block Diagram  
5.4.1 Output Voltage (LDO Regulator)  
When VIO1 = 2.5 V, the output voltage of the LDO regulator can be programmed to 1.7 V or 1.8 V using  
the VIO register. When VIO1= 1.7 V or 1.8 V, the LDO regulator is disabled (factory default setting). Once  
the device is powered up, the EN signal must remain high, to ensure reliable LDO programming.  
5.4.2 Power-Up (LDO Regulator)  
At power up, the LDO regulator starts as soon as VIN > VUVLO (the same time buck converter 1 and buck  
converter 2 starts). The LDO regulator ramps the output linearly from zero to VIO2 in tSS1 milliseconds.  
Soft-start time tSS1 can be programmed from 0.5 ms to 4 ms using the SS1 register.  
The same ramp rate is used for both buck converters and the LDO regulator. Changing the SS1 register  
affects all three regulators.  
When the LDO is turned on or turned off during normal device operation (that is: programming VIO1 from  
1.7 V to 2.5 V or vice versa), the ramp or discharge characteristic is defined by the load connected to the  
LDO.  
5.4.3 Power-Down (LDO Regulator)  
The LDO regulator is supplied from the VIO1 pin, which is actively discharged during power-down. The  
output of the LDO regulator therefore discharges through the body diode of transistor Q1 as long as VIO2  
is high enough to forward bias the body diode. Thereafter, VIO2 continues to discharge through the load  
connected to it.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.5 BOOST CONVERTER 2 (VGH)  
Boost converter 2 is non-synchronous, and uses a constant off-time topology. The switching frequency of  
the converter is not constant, but automatically adjusts for best performance according to VIN and VGH  
.
Boost converter 2 uses peak current control and is designed to operate permanently in discontinuous-  
conduction mode (DCM), thereby allowing the internal compensation circuit to achieve stable operation  
over a wide range of output voltages and currents, such as when temperature compensation is used.  
Figure 5-6 shows a simplified block diagram of boost converter 2.  
AVDD  
VGH  
VGH  
AVDD  
SW4  
PWM  
Control  
Q1  
+
27:1  
Temperature  
Compensation  
VGHCOLD  
VGHHOT  
TCOMP  
RT1  
GND  
RNTC  
RT2  
Figure 5-6. Boost Converter 2 Block Diagram  
Boost converter 2 can be temperature compensated, allowing the output voltage to transition from a  
higher voltage at low temperatures VGH(COLD) to a lower voltage at high temperatures VGH(HOT) (see  
Figure 5-7 and Figure 5-8). The values of VGH(HOT) and VGH(COLD) are programmed using the VGHHOT and  
VGHCOLD registers. The values of THOT and TCOLD are programmed by selecting the appropriate resistor  
values for the thermistor network connected to the TCOMP pin.  
VGH  
VGH(COLD)  
VGH(HOT)  
TCOLD  
THOT  
Temperature  
Figure 5-7. Boost Converter 2 Temperature Compensation Characteristic  
32  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
1.429V  
DAC1  
TCOMP  
RT1  
+
A1  
Q1  
ISET  
0.893V  
1.107V  
DAC2  
RNTC  
RT2  
R1  
R2  
+
A2  
PWM  
Controller  
0.571V  
VGH  
R4  
R3  
R2= 2∙R1  
R4= 27∙R3  
Figure 5-8. Boost Converter 2 Temperature Compensation Block Diagram  
With proper selection of the external components RT1, RT2 and RNTC, temperatures THOT and TCOLD can be  
configured to suit the characteristics of each display. A Microsoft Excel® spreadsheet allowing easy  
calculation of component values is available from Texas Instruments free of charge.  
5.5.1 Power-Up (Boost Converter 2)  
When AVDD is finished ramping up, boost converter 2 enables. To minimize inrush current during start-up,  
boost converter 2 ramps VGH linearly to the programmed value in tSS2 seconds. Soft-start time tSS2 can be  
programmed from 4 ms to 7.5 ms using the SS2 register. The same ramp rate is also used for boost  
converter 1. Changing SS2 affects both boost converters.  
5.5.2 Power-Down (Boost Converter 2)  
Boost converter 2 is disabled when EN = 0 or VIN< VUVLO. The output of the converter is not actively  
discharged when the converter is disabled. Once disabled (EN = 0), boost converter 2 remains disabled  
until the device is powered down (even if EN is re-asserted).  
5.5.3 Setting the Output Voltage (Boost Converter 2)  
(1)  
The output voltage of boost converter 2 at cold temperatures can be programmed from 25 V to 40 V  
using the VGHCOLD register. The output voltage of boost converter 2 at hot temperatures can be  
programmed from 16 V to 31 V using the VGHHOT register.  
In applications that do not require temperature compensation, the TCOMP pin must be tied to ground and  
the VGHHOT register must set the voltage of VGH  
.
See Figure 5-8 and note that between VGHHOT and VGHCOLD, the output voltage of boost converter 2 is  
given by Equation 1.  
V
= 28 ´ V  
(
+ 3 ´ V  
(
- V  
)
)
GH  
DAC2  
TCOMP DAC2  
(1)  
Equation 1 calculates the voltage required on the TCOMP pin at temperatures THOT and TCOLD  
.
V
GHHOT  
V
=
TCOMPHOT  
28  
(2)  
(3)  
2 ´ V  
+ V  
GHCOLD  
GHHOT  
V
=
TCOMPCOLD  
84  
(1) Output voltages greater than 36 V require an external cascode transistor.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Equation 4 calculates the appropriate value for RT2  
-b ± b2 - 4ac  
RT2  
=
2a  
where  
V
- V  
TCOMPCOLD  
TCOMPHOT  
a = R  
- R  
-
NTCCOLD  
NTCHOT  
I
SET  
æ V  
ç
- V  
ö
÷
ø
TCOMPCOLD  
TCOMPHOT  
b = R  
(
+ R  
´
)
NTCCOLD  
NTCHOT  
I
è
SET  
æ V  
ç
- V  
ö
TCOMPCOLD  
TCOMPHOT  
c = R  
(
´ R  
´
)
÷
NTCCOLD  
NTCHOT  
I
è
SET  
ø
RNTCCOLD is the resistance of the thermistor at temperature TCOLD  
RNTCHOT is the resistance of the thermistor at temperature THOT  
(4)  
Once the value of RT2 has been calculated, use Equation 5 to calculate the appropriate value of RT1.  
æ V  
ç
ö
÷
ø
æ R  
ç
´ R  
ö
TCOMPCOLD  
NTCCOLD  
T2  
R
= ´  
-
÷
RT1  
I
R
+ R  
è
SET  
è
NTCCOLD  
T2 ø  
(5)  
5.5.4 Protection (AVDD, VCORE, VIO1, VIO2, VGH)  
Each voltage regulator is protected against short-circuits and undervoltage conditions. An undervoltage  
condition is detected if a regulator output falls below 70% of the programmed voltage for longer than 50  
ms, in which case the IC is disabled. To recover normal operation following an undervoltage condition, the  
cause of the error condition must be removed and the supply voltage, VIN, must be cycled. A short-circuit  
condition is detected if a regulator output falls below 30% of its programmed voltage, in which case the IC  
is disabled immediately. To recover normal operation following a short-circuit condition, the cause of the  
error must be removed and the supply voltage,VIN, must be cycled.  
5.6 RESET GENERATOR  
The RST pin generates an active-low reset signal for the timing controller. During power up, the reset  
timer starts when VCORE has finished ramping. The reset pulse duration tRESET can be programmed from 2  
ms to 16 ms using the RESET register. The RST signal is latched when it goes high and is not taken low  
again until the device is powered down (even if VCORE temporarily falls out of regulation). The active  
power-down threshold (VUVLO or VDET) can be selected using the RMODE bit in the CONFIG register.  
The RST output is an open-drain type that requires an external pullup resistor. Pullup-resistor values in  
the range 10 kΩ to 100 kΩ are recommended for most applications.  
34  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.7 GATE VOLTAGE SHAPING  
The gate-voltage shaping function reduces image sticking in LCD panels by modulating the gate ON  
voltage (VGH) of the LCD panel. Figure 5-9 shows a block diagram of the gate voltage shaping function  
and Figure 5-10 shows the typical waveforms during operation.  
VGH  
VGH  
Q1  
FLK  
VGHM  
Control  
Logic  
VGHM  
FLK  
Q2  
RE  
RE  
Figure 5-9. Gate-Voltage Shaping Block Diagram  
VPG4  
VIO2  
FLK  
Don’t Care  
VGH  
tDLY6  
VGHM  
Figure 5-10. Gate-Voltage Shaping Waveforms  
Gate-voltage shaping is controlled by the FLK input. When FLK is high, Q1 is on, Q2 is off, and VGHM is  
equal to VGH. When FLK is low, Q1 is turned off, Q2 is turned on, and the LCD-panel load connected to  
the VGHM pin discharges through the external resistor connected to the RE pin. This resistor is typically  
connected to GND or AVDD  
.
During power-up Q2 is held permanently on and Q1 permanently off, regardless of the state of the FLK  
signal, until tDLY6 milliseconds after boost converter 2 (VGH) has finished ramping. The value of tDLY6 can  
be programmed from 0 ms to 35 ms using the DLY6 register.  
During power-down Q1 is held permanently on and Q2 permanently off, regardless of the state of the FLK  
signal.  
Non-GIP or Non-ASG panels that do not use the gate-voltage shaping function must leave the RE pin  
floating and connect the FLK pin to GND.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.8 PANEL RESET / LCD BIAS READY (XAO)  
The TPS65642A device provides an output signal through the XAO pin that is used to reset a level-shifter  
or gate-driver IC during power up and power down. The GIP bit in the CONFIG register defines whether  
the XAO pin works in GIP mode or non-GIP mode.  
The primary purpose of the XAO signal in non-GIP applications is to drive the outputs of the display-panel  
gate-driver IC high during power down by generating an active-low signal. When the GIP = 0, the XAO pin  
is pulled low whenever VIN < VDET. The VDET threshold voltage can be configured using the VDET register.  
When the GIP = 1, the XAO output is used to delay the start of level-shifter activity during power up. The  
delay time tDLY6 starts when VGH is done ramping up, and can be configured using the DLY6 register.  
The XAO output is an open-drain type and requires an external pull up, typically in the range 10 kΩ to 100  
kΩ.  
5.9 PROGRAMMABLE VCOM CALIBRATOR  
The programmable VCOM calibrator uses a digital-to-analog converter (DAC) to generate an offset current  
IDAC for an external resistor divider connected to AVDD (see Figure 5-11 and Figure 5-12). Higher values of  
the 7-bit digital word N written to the DAC generate higher IDAC sink currents, and therefore lower VCOM  
voltages.  
Figure 5-11 shows the recommended circuit for the most commonly used application, when the LCD panel  
requires only one VCOM supply voltage. The second op-amp is shown wired as a unity-gain buffer with an  
input tied to GND (the recommended configuration if a second op-amp is not used), however, using a  
second op-amp for other purposes, such as generating a half-AVDD supply rail, is acceptable.  
AVDD  
R3  
IDAC  
POS1  
POS1  
NEG1  
VCOM  
DAC  
+
OUT1  
VCOM1  
R5  
ISET  
SMODE  
&
VIN < VUVLO  
VFB1  
VREF  
+
POS2  
NEG2  
+
OUT2  
VCOM2  
RSET  
RSET  
Figure 5-11. Single-Programmable VCOM Supply  
36  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
The external resistor RSET generates a reference current ISET for the DAC. Since this reference current is  
also used by the temperature compensation function of boost converter 2, care must be taken to ensure  
that a suitable value is chosen. For most applications, a value of 24.9 kΩ is recommended, which  
generates a reference current given by Equation 6.  
V
REF  
I
=
SET  
R
SET  
1.25 V  
I
=
= 50.2mA  
SET  
24.9 W  
(6)  
(7)  
The output current IDAC sunk by the DAC is given by Equation 7.  
N + 1 ´I  
(
)
SET  
I
=
DAC  
128  
where  
N is the 7-bit word written to the DAC, and ranges from 0 to 127  
Equation 8 and Equation 9 can calculate appropriate values for R3 and R5.  
128 ´ DVCOM ´ AVDD  
R3 =  
ISET ´ 127 ´ V  
+ DVCOM  
)
(
COM(MAX)  
(8)  
(9)  
128 ´ DV  
´ R3  
COM  
R5 =  
127 ´ I  
(
´R3 - 128 ´ DV  
) (  
COM  
)
SET  
Figure 5-12 shows the recommended connection for the case when two VCOM supplies VCOM1 and VCOM2  
are to be generated.  
AVDD  
R3  
IDAC  
POS1  
POS1  
NEG1  
VCOM  
DAC  
+
OUT1  
VCOM1  
ISET  
SMODE  
&
VIN < VUVLO  
R4  
VFB1  
VREF  
+
POS2  
NEG2  
+
OUT2  
VCOM2  
R5  
RSET  
RSET  
VFB2  
Figure 5-12. Dual-Programmable VCOM Supplies  
In Figure 5-12, the voltage VCOM2 generated by the second op-amp is slightly lower than VCOM1. If two  
identical VCOM supplies are required, these can be generated by setting R4 = 0.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
 
 
 
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Equation 10 through Equation 12 calculate the correct values for R3 through R5 for the case when two  
(slightly different) VCOM voltages are required.  
128 ´ DVCOM ´ AVDD  
R3 =  
ISET ´ 127 ´ VCOM1(MAX) + DVCOM  
(
)
(10)  
(11)  
(12)  
æ
ö
æ
÷´  
ç
V
ö
128 ´ DV  
´ R3  
COM2(MAX)  
COM  
R4 = ç  
÷
÷
ø
ç
è
÷ ç  
V
127 ´ I ´ R3 - 128 ´ DV  
) (  
SET COM  
(
)
COM1(MAX)  
è
ø
æ
ö
V
- V  
æ
ö
128 ´ DV  
´R3  
COM1(MAX)  
COM2(MAX)  
COM  
R5 = ç  
÷ ´  
÷
ø
ç
ç
è
÷
÷
ø
ç
è
V
127 ´ I ´ R3 - 128 ´ DV  
( ) (  
SET COM  
)
COM1(MAX)  
A Microsoft Excel spreadsheet is available free of charge that calculates the values of R3, R4 and R5 —  
contact a local TI sales representative for a copy.  
5.9.1 Operational Amplifier Performance  
Like most operation amplifiers (op amps), the VCOM op amps are not designed to drive purely capacitive  
loads, so TI does not recommend to connect a capacitor directly to the outputs of the op amps in an  
attempt to increase performance; however, the amplifiers are capable of delivering high peak currents that  
make such capacitors unnecessary.  
High-speed op amps such as those in the TPS65642A device require care when using them. The most  
common problem is when parasitic capacitance at the inverting input creates a pole with the feedback  
resistor, reducing amplifier stability. Two things can minimize the likelihood of this happening which work  
by shifting the pole (which can never be completely eliminated) to a frequency outside the bandwidth of  
the op amp, where it has no effect.  
1. Reduce the value of the feedback resistor. In applications where no feedback from the panel is used,  
the feedback resistor can be made zero. In applications where a non-zero feedback resistor has to be  
used, a small capacitor (10 pF – 100 pF) across the feedback resistor will minimize ringing.  
2. Minimize the parasitic capacitance at the op amp's inverting input. This is achieved by using short PCB  
traces between the feedback resistor and the inverting input, and by removing ground planes and other  
copper areas above and below this PCB trace.  
5.9.2 Power Up (Programmable VCOM)  
The programmable VCOM is enabled when AVDD > 3 V.  
5.9.3 Power Down (Programmable VCOM)  
The programmable VCOM supports two kinds of power-down behavior, and the SMODE bit in the CONFIG  
register determines which behavior is active (see Figure 5-41 and Figure 5-42).  
If SMODE = 0, the active discharge transistor Q1 is permanently disabled; during power-down, VCOM  
tracks AVDD until VCOM is too low to support operation. If SMODE = 1, Q1 turns on when VIN < VUVLO  
,
actively pulling VCOM low.  
5.10 PROGRAMMABLE GAMMA-VOLTAGE GENERATOR  
The gamma-voltage correction supplies 14 reference voltages that can be used by the system source  
driver IC to match the LCD-panel luminance characteristics more closely to the response of the human  
eye.  
The gamma-correction voltages can be programmed individually using the I2C interface. During power up,  
the default gamma voltage for each channel is loaded from EEPROM into the corresponding DAC.  
38  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
During operation, the output voltages of the DAC can be changed by programming new values via the I2C  
interface. Values programmed to the DACs but not transferred to EEPROM are lost when power is  
removed from the device. The next time the device is powered up, the DACs are programmed with  
whatever values are stored in the EEPROM. The current DAC settings can be transferred to EEPROM  
(thereby becoming the new default values used during power-up) at any time by sending the appropriate  
command to the Control Register through the I2C interface.  
AVDD  
AVDD  
OUTA  
GAMA  
DAC  
OUTN  
GAMN  
DAC  
Figure 5-13. Gamma Correction Block Diagram  
The output stages of the gamma correction block are capable of extending close to the supply rails (AVDD  
and ground); however, they can only achieve this rail-to-rail performance with the specified accuracy if the  
outputs are lightly loaded. The gamma reference outputs are only intended to drive high impedance loads  
such as those presented by a gamma buffer or a high impedance source driver input.  
The output voltage VGAM of each channel is given by:  
N
VGAM  
=
×AVDD  
1024  
where  
N is the 10-bit digital word programmed to the gamma register and ranges from 0 to 1023  
(13)  
Any non-used output can be left open and, to save power, must be programmed to the maximum voltage  
(approximately 180-µA saving per output).  
5.11 CONFIGURATION  
The TPS65642A device divides the configuration parameters into two categories:  
1. VCOM  
2. all other configuration parameters  
In typical applications, all configuration parameters except VCOM are programmed by the subcontractor  
during PCB assembly, and VCOM is programmed by the display manufacturer during display calibration.  
5.11.1 RAM, EEPROM, and Write Protect  
Configuration parameters are changed by writing the desired values to the appropriate RAM register(s).  
The RAM registers are volatile and their contents are lost when power is removed from the device. By  
writing to the Control Register, storing the active configuration in non-volatile EEPROM is possible; during  
power up, the contents of the EEPROM are copied into the RAM registers and used to configure the  
device.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
An active-high Write Protect (WP) pin prevents the configuration parameters from being changed by  
accident. This pin is internally pulled high and must be actively pulled low to access to the EEPROM or  
RAM registers. Note that the WP pin disables all I2C traffic to and from the TPS65642A device, and must  
also be pulled low during read operations. This is to ensure that noise present on the I2C lines does not  
erroneously overwrite the active configuration stored in RAM (which would not be protected by a simple  
EEPROM write-protect scheme).  
5.11.2 Configuration Parameters (Excluding VCOM)  
Table 5-1 shows the memory map of the configuration parameters.  
Table 5-1. Configuration Memory Map  
REGISTER  
ADDRESS  
FACTORY  
DEFAULT  
REGISTER NAME  
DESCRIPTION  
00h  
01h  
02h  
03h  
04h  
05h  
CONFIG  
AVDD  
00h  
0Eh  
00h  
00h  
00h  
05h  
Sets miscellaneous configuration bits  
Sets the output voltage of boost converter 1  
VGHHOT  
VGHCOLD  
VIO  
Sets the output voltage of boost converter 2 at high temperatures  
Sets the output voltage of boost converter 2 at low temperatures  
Sets the output voltage of buck converter 2 and the LDO regulator  
Sets the output voltage of buck converter 1 (VCORE) and the switching  
MISC  
frequency of boost converter 1 (AVDD  
)
06h  
SS1  
03h  
Sets the soft-start time for buck converters 1 and 2 and the linear  
regulator  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
SS2  
RESET  
DLY1  
DLY6  
VDET  
00h  
01h  
02h  
04h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
02h  
00h  
Sets the soft-start time for boost converters 1 and 2  
Sets the reset pulse duration  
Sets the boost converter 1 start-up delay  
Sets the gate voltage shaping and LCD ready start-up delay  
Sets the threshold of the /RST and /XAO signals  
Contains the 2 MSBs of the 10-bit gamma voltage A  
Contains the 8 LSBs of the 10-bit gamma voltage A  
Contains the 2 MSBs of the 10-bit gamma voltage B  
Contains the 8 LSBs of the 10-bit gamma voltage B  
Contains the 2 MSBs of the 10-bit gamma voltage C  
Contains the 8 LSBs of the 10-bit gamma voltage C  
Contains the 2 MSBs of the 10-bit gamma voltage D  
Contains the 8 LSBs of the 10-bit gamma voltage D  
Contains the 2 MSBs of the 10-bit gamma voltage E  
Contains the 8 LSBs of the 10-bit gamma voltage E  
Contains the 2 MSBs of the 10-bit gamma voltage F  
Contains the 8 LSBs of the 10-bit gamma voltage F  
Contains the 2 MSBs of the 10-bit gamma voltage G  
Contains the 8 LSBs of the 10-bit gamma voltage G  
Contains the 2 MSBs of the 10-bit gamma voltage H  
Contains the 8 LSBs of the 10-bit gamma voltage H  
Contains the 2 MSBs of the 10-bit gamma voltage I  
Contains the 8 LSBs of the 10-bit gamma voltage I  
Contains the 2 MSBs of the 10-bit gamma voltage J  
Contains the 8 LSBs of the 10-bit gamma voltage J  
Contains the 2 MSBs of the 10-bit gamma voltage K  
Contains the 8 LSBs of the 10-bit gamma voltage K  
Contains the 2 MSBs of the 10-bit gamma voltage L  
Contains the 8 LSBs of the 10-bit gamma voltage L  
GAMMA-A  
GAMMA-B  
GAMMA-C  
GAMMA-D  
GAMMA-E  
GAMMA-F  
GAMMA-G  
GAMMA-H  
GAMMA-I  
GAMMA-J  
GAMMA-K  
GAMMA-L  
40  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
Table 5-1. Configuration Memory Map (continued)  
REGISTER  
ADDRESS  
FACTORY  
DEFAULT  
REGISTER NAME  
DESCRIPTION  
24h  
02h  
Contains the 2 MSBs of the 10-bit gamma voltage M  
Contains the 8 LSBs of the 10-bit gamma voltage M  
Contains the 2 MSBs of the 10-bit gamma voltage N  
Contains the 8 LSBs of the 10-bit gamma voltage N  
GAMMA-M  
25h  
00h  
26h  
02h  
GAMMA-N  
Control  
27h  
00h  
FFh  
00h  
Controls whether read and write operations access RAM or EEPROM  
registers  
5.11.3 CONFIG (00h)  
Figure 5-14. CONFIG Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
RMODE  
R/W-0  
SMODE  
R/W-0  
GIP  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-2. CONFIG Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not implemented.  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2
1
0
RMODE  
SMODE  
GIP  
Configures the RST power-down threshold voltage.  
VUVLO threshold used.  
0
1
VDET Threshold used.  
Configures the power-down behavior of AVDD and VCOM  
AVDD is actively discharged (but not VCOM).  
VCOM is actively discharged (but not AVDD).  
.
0
1
This bit configures the device for use with either GIP or non-GIP LCD panels.  
0
The device operates in non-GIP mode, and XAO functions as a panel reset during power-  
down.  
1
The device operates in GIP mode, and the XAO functions as an enable for the panel level shifter  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.4 AVDD (01h)  
Figure 5-15. AVDD Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
AVDD  
R/W-1  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-3. AVDD Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–4  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
4–0  
AVDD  
These bits configure boost converter 1's output voltage (AVDD).  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
7.0 V  
7.1 V  
7.2 V  
7.3 V  
7.4 V  
7.5 V  
7.6 V  
7.7 V  
7.8 V  
7.9 V  
8.0 V  
8.1 V  
8.2 V  
8.3 V  
8.4 V  
8.5 V  
8.6 V  
8.7 V  
8.8 V  
8.9 V  
9.0 V  
9.1 V  
9.2 V  
9.3 V  
9.4 V  
9.5 V  
9.6 V  
9.7 V  
9.8 V  
9.9 V  
10.0 V  
10.1 V  
42  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.5 VGHHOT (02h)  
Figure 5-16. VGHHOT Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VGHHOT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-4. VGHHOT Register Field Descriptions  
Bit  
Field  
Value Description  
7–4  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
3–0  
VGHHOT  
These bits configure boost converter 2's output voltage (VGH) of at high temperatures.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
16 V  
17 V  
18 V  
19 V  
20 V  
21 V  
22 V  
23 V  
24 V  
25 V  
26 V  
27 V  
28 V  
29 V  
30 V  
31 V  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.6 VGHCOLD (03h)  
Figure 5-17. VGHCOLD Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VGHCOLD  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-5. VGHCOLD Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–4  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
3–0  
VGHCOLD  
These bits configure boost converter 2's output voltage (VGH) at low temperatures.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
25 V  
26 V  
27 V  
28 V  
29 V  
30 V  
31 V  
32 V  
33 V  
34 V  
35 V  
36 V  
37 V  
38 V  
39 V  
40 V  
44  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.7 VIO (04h)  
Figure 5-18. VIO Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VIO  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-6. VIO Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–2  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
1–0  
VIO  
These bits configure the output voltage of buck converter 2 (VIO1) and the LDO regulator (VIO2).  
Once the device is powered up, the EN signal must remain high, to ensure reliable LDO  
programming.  
0h  
1h  
2h  
3h  
VIO1 = 1.7 V, LDO regulator disabled.  
VIO1 = 1.8 V, LDO regulator disabled.  
VIO1 = 2.5 V, VIO2 = 1.7 V.  
VIO1 = 2.5 V, VIO2 = 1.8 V.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.8 MISC (05h)  
Figure 5-19. MISC Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
FREQ  
R/W-1  
VCORE  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-7. MISC Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2
FREQ  
This bit configures boost converter 1's (AVDD) switching frequency.  
0h  
750 kHz  
1h  
1200 kHz  
1–0  
VCORE  
These bits configure buck converter 1's (VCORE) output voltage.  
0h  
1h  
2h  
3h  
1 V  
1.1 V  
1.2 V  
1.3 V  
46  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.9 SS1 (06h)  
Figure 5-20. SS1 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
SS1  
R/W-0  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-8. SS1 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2–0  
SS1  
These bits configure the soft-start time for buck converter 1 (VCORE), buck converter 2 (VIO1) and  
the LDO linear regulator (VIO2).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0.5 ms  
1 ms  
1.5 ms  
2 ms  
2.5 ms  
3 ms  
3.5 ms  
4 ms  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.10 SS2 (07h)  
Figure 5-21. SS2 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
SS2  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-9. SS2 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented N/A 0 1 These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2–0  
SS2  
These bits configure the soft-start time for boost converter 1 (AVDD) and boost converter 2 (VGH).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
4 ms  
4.5 ms  
5 ms  
5.5 ms  
6 ms  
6.5 ms  
7 ms  
7.5 ms  
48  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.11 RESET (08h)  
Figure 5-22. RESET Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
RESET  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-10. RESET Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–2  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
1–0  
RESET  
These bits configure the duration of the reset pulse during start-up.  
0h  
1h  
2h  
3h  
2 ms  
4 ms  
8 ms  
16 ms  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.12 DLY1 (09h)  
Figure 5-23. DLY1 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY1  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-11. DLY1 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2–0  
DLY1  
These bits configure the start-up delay for boost converter 1 (AVDD).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0 ms  
10 ms  
20 ms  
30 ms  
40 ms  
50 ms  
60 ms  
70 ms  
50  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.13 DLY6 (0Ah)  
Figure 5-24. DLY6 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY6  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-12. DLY6 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2–0  
DLY6  
These bits configure the delay between VGH reaching its final value and gate voltage shaping or  
XAO being enabled.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.14 VDET (0Bh)  
Figure 5-25. VDET Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VDET  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-13. VDET Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–3  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
2–0  
VDET  
These bits configure the threshold for XAO and RST (if RMODE is "1" in the CONFIG register).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
2.2 V  
2.3 V  
2.4 V  
2.5 V  
3.6 V  
3.7 V  
3.8 V  
3.9 V  
52  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.15 GAMxHI (0Ch, 0Eh…26h)  
Figure 5-26. GAMxHI Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
GAMxHI  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-14. GAMxHI Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–2  
Not Implemented  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
1–0  
GAMxHI  
0h–3h These bits form the two most significant bits of the 10-bit GAMx value used to program the gamma  
correction voltage for channel x.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.16 GAMxLO (0Dh, 0Fh…27h)  
Figure 5-27. GAMxLO Register Bit Allocation  
7
6
5
4
3
2
1
0
GAMxLO  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-15. GAMxLO Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–0  
GAMxLO  
00h–FF These bits form the least significant eight bits of the 10-bit value used to program the gamma  
correction voltage for channel x.  
h
54  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.17 Control (FFh)  
Figure 5-28. CONTROL Register Bit Allocation  
7
6
5
4
3
2
1
0
WED  
R/W-0  
Not Implemented  
RED  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-16. CONTROL Register Field Descriptions  
Bit  
Field  
Value  
Description  
7
WED  
Setting this bit forces the contents of all DAC registers to be copied to the EEPROM, thereby  
making them the default values during power-up.  
0
1
Not used. This bit is automatically reset to 0 when the contents of the DAC registers have  
been copied to EEPROM.  
The contents of all DAC registers are copied to the EEPROM, making them the new default values  
following power-up.  
6–1  
0
Not Implemented  
RED  
N/A  
These bits are not implemented in hardware. During write operations data for these bits is ignored,  
and during read operations 0 is returned.  
This bit configures the data returned by read operations.  
Read operations return the contents of the DAC registers.  
Read operations return the content of the EEPROM registers.  
0
1
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.18 Example – Writing to a Single RAM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of RAM register (00h)  
5. TPS65642A acknowledges  
6. Bus master sends data to be written  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
74h  
00h  
DATA  
RAM Register Address  
RAM Register Data  
7-Bit Slave Address  
P
S
0
A
A
A
Figure 5-29. Writing to a Single RAM Register  
56  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.19 Example – Writing to Multiple RAM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65642A acknowledges  
4. Bus master sends address of first RAM register to be written to (00h)  
5. TPS65642A acknowledges  
6. Bus master sends data to be written to first RAM register  
7. TPS65642A acknowledges  
8. Bus master sends data to be written to RAM register at next higher address (auto-increment)  
9. TPS65642A acknowledges  
10. Steps (8) and (9) repeated until data for final RAM register has been sent  
11. TPS65642A acknowledges  
12. Bus master sends STOP condition  
74h  
00h  
DATA  
DATA  
RAM Register Address (n)  
RAM Register Data (n)  
RAM Register Data (n+1)  
7-Bit Slave Address  
S
0
A
A
A
A
DATA  
RAM Register Data (Last)  
P
A
Figure 5-30. Writing to Multiple RAM Registers  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.20 Example – Saving Contents of all RAM Registers to EEPROM  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65642A acknowledges  
6. Bus master sends data to be written to the Control Register (80h)  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
74h  
FFh  
80h  
Control Register Address  
Control Register Data  
7-Bit Slave Address  
P
S
0
A
A
A
Figure 5-31. Saving Contents of all RAM Registers to E2PROM  
58  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.21 Example – Reading from a Single RAM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65642A acknowledges  
6. Bus master sends data for Control Register (00h)  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65642A acknowledges  
12. Bus master sends address of RAM register (00h)  
13. TPS65642A acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65642A acknowledges  
17. TPS65642A sends RAM register data  
18. Bus master does not acknowledge  
19. Bus master sends STOP condition  
74h  
FFh  
00h  
Control Register Address  
Control Register Data  
7-Bit Slave Address  
S
0
A
A
A
P
R/W  
0
74h  
00h  
74h  
DATA  
RAM Register Address  
RAM Register Data  
7-Bit Slave Address  
7-Bit Slave Address  
S
A
A
Sr  
1
A
A
P
Figure 5-32. Reading from a Single RAM Register  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.22 Example – Reading from a Single EEPROM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65642A acknowledges  
6. Bus master sends data for Control Register (01h)  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65642A acknowledges  
12. Bus master sends address of EEPROM register (00h)  
13. TPS65642A acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65642A acknowledges  
17. TPS65642A sends EEPROM register data  
18. Bus master does not acknowledge  
19. Bus master sends STOP condition  
74h  
FFh  
01h  
Control Register Address  
Control Register Data  
S
7-Bit Slave Address  
0
A
A
A
P
74h  
00h  
74h  
DATA  
EEPROM Register Address  
EEPROM Register Data  
S
7-Bit Slave Address  
0
A
A
Sr  
7-Bit Slave Address  
1
A
A
P
Figure 5-33. Reading from a Single EEPROM Register  
60  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.23 Example – Reading from Multiple RAM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65642A acknowledges  
6. Bus master sends data for Control Register (00h)  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65642A acknowledges  
12. Bus master sends address of first register to be read (00h)  
13. TPS65642A acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65642A acknowledges  
17. TPS65642A sends contents of first RAM register to be read  
18. Bus master acknowledges  
19. TPS65642A sends contents of second RAM register to be read  
20. Bus master acknowledges  
21. TPS65642A sends contents of third (last) RAM register to be read  
22. Bus master does not acknowledge  
23. Bus master sends STOP condition  
74h  
FFh  
00h  
7-Bit Slave Address  
Control Register Address  
Control Register Data  
S
0
A
A
A
P
R/W  
0
74h  
00h  
74h  
DATA  
RAM Register Address (n)  
RAM Register Data (n)  
7-Bit Slave Address  
7-Bit Slave Address  
S
A
A
Sr  
1
A
A
DATA  
DATA  
RAM Register Data (n+1)  
RAM Register Data (Last)  
A
A
P
Figure 5-34. Reading from Multiple RAM Registers  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.24 Example – Reading from Multiple EEPROM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65642A acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65642A acknowledges  
6. Bus master sends data for Control Register (01h)  
7. TPS65642A acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65642A acknowledges  
12. Bus master sends address of first EEPROM register to be read (00h)  
13. TPS65642A acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65642A acknowledges  
17. TPS65642A sends contents of first EEPROM register to be read  
18. Bus master acknowledges  
19. TPS65642A sends contents of second EEPROM register to be read  
20. Bus master acknowledges  
21. TPS65642A sends contents of third (last) EEPROM register to be read  
22. Bus master does not acknowledge  
23. Bus master sends STOP condition  
74h  
FFh  
01h  
Control Register Address  
Control Register Data  
7-Bit Slave Address  
S
0
A
A
A
P
R/W  
0
74h  
00h  
74h  
DATA  
EEPROM Register Data (n)  
EEPROM Register Addr (n)  
7-Bit Slave Address  
7-Bit Slave Address  
S
A
A
Sr  
1
A
A
DATA  
DATA  
EEPROM Register Data (Last)  
EEPROM Register Data (n+1)  
A
P
A
Figure 5-35. Reading from Multiple EEPROM Registers  
62  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.25 Configuration Parameter VCOM  
Figure 5-36. VCOM Register Bit Allocation  
7
6
5
4
3
2
1
0
VCOM  
R/W-0  
P
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-17. VCOM Register Field Descriptions  
Bit  
Field  
Value  
Description  
7–1  
VCOM  
During write operations these bits contain the data to be written. During read operations these bits  
contain the contents of the EEPROM register.  
00h–7F  
h
V
VCOM + 1  
REF  
I
=
´
OUT  
R
128  
SET  
0
P
During write operations this bit configures the destination for data.  
Data is written to the DAC register and EEPROM.  
Data is written to the DAC register only.  
0
1
During read operations this bit indicates whether the contains of the RAM register and EEPROM  
are the same or not.  
0
1
DAC register and EEPROM contents are the same.  
DAC register and EEPROM contents are different.  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.26 Example – Writing a VCOM Value of 77h to RAM Register Only  
1. Bus master sends a START condition.  
2. Bus master sends 9E hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65642A slave acknowledges.  
4. Bus master sends EF hexadecimal (data to be written plus LSB = 1).  
5. TPS65642A slave acknowledges.  
6. Bus master sends a STOP condition.  
4Fh  
77h  
7-Bit Slave Address  
Data to be Written  
S
0
A
1
A
P
Figure 5-37. Writing a VCOM Value of 77h to RAM Only  
5.11.27 Example – Writing a VCOM Value of 77h to EEPROM and RAM  
1. Bus master sends a START condition.  
2. Bus master sends 9E hexadecimal (7-bit slave address plus low R/W bit).  
3. TPS65642A slave acknowledges.  
4. Bus master sends EE hexadecimal (data to be written plus LSB = 0).  
5. TPS65642A slave acknowledges.  
6. Bus master sends a STOP condition.  
4Fh  
77h  
7-Bit Slave Address  
Data to be Written  
S
0
A
0
A
P
Figure 5-38. Writing a VCOM Value of 77h to EEPROM and RAM  
64  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.11.28 Example — Reading a VCOM Value of 77h from EEPROM When RAM Contents are  
Identical  
1. Bus master sends a START condition.  
2. Bus master sends 9F hexadecimal (7-bit slave address plus high R/W bit).  
3. TPS65642A slave acknowledges.  
4. TPS65642A sends EE hexadecimal from EEPROM (data to be read plus LSB = '0').  
5. Bus master does not acknowledge.  
6. Bus master sends a STOP condition.  
4Fh  
77h  
S
7-Bit Slave Address  
1
A
Data to be Read  
0
A
P
Figure 5-39. Reading 77h from EEPROM when RAM Contents are Identical  
5.11.29 Example —Reading a VCOM Value of 77h from EEPROM When RAM Contents are  
Different  
1. Bus master sends a START condition.  
2. Bus master sends 9F hexadecimal (7-bit slave address plus high R/W bit).  
3. TPS65642A slave acknowledges.  
4. TPS65642A sends EF hexadecimal from RAM (data to be read plus LSB = '0').  
5. Bus master does not acknowledge.  
6. Bus master sends a STOP condition.  
4Fh  
77h  
S
7-Bit Slave Address  
1
A
Data to be Read  
1
A
P
Figure 5-40. Reading 77h from EEPROM when RAM Contents are Different  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
5.11.30 I2C Interface  
Configuration parameters and the VCOM voltage setting are programmed through an industry standard I2C  
serial interface. The TPS65642A device always works as a slave device and supports standard (100 kbps)  
and fast (400 kbps) modes of operation. During write operations, all further attempts to access the slave  
addresses are ignored until the current write operation is complete.  
NOTE  
The I2C interface contains a known bug. If a new start condition appears on the bus  
before transfer of the slave address byte from a previously initiated read/write  
operation is complete, the I2C interface may hang. Normal operation is recovered after  
cycling VIN.  
5.12 POWER SEQUENCING  
1. Buck converter 1 (VCORE), Buck converter 2 (VIO1), and the linear regulator (VIO2) start as soon as VIN  
VUVLO  
>
.
2. The reset generator holds RST low until tRESET seconds after VCORE has reached power good status.  
3. Boost converter 1 starts tDLY1 milliseconds after EN goes high (or RST has gone high, whichever  
occurs later). Once asserted, the EN signal must remain high to ensure normal device operation. Once  
disabled (EN = 0), boost converter 1 remains disabled until the device is powered down (even if EN is  
re-asserted).  
4. Boost converter 2 starts as soon as AVDD has reached power-good status.  
5. In non-GIP mode, VGHM is held at high impedance until tDLY6 milliseconds after VGH reaches power-  
good status; XAO goes high when VIN > VDET and low when VIN < VDET  
.
6. In GIP mode, XAO is held low until tDLY6 milliseconds after VGH reaches power-good status.  
Figure 5-41 and Figure 5-42 show the typical power-up or down characteristics of the TPS65642A device  
66  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
EN  
VIN > VDET  
VIN < VDET  
VIN > VUVLO  
VIN < VUVLO  
VIN  
tSS1  
Actively  
discharged  
VIO1  
Actively discharged  
through backgate diode  
VIO2  
enabled  
Discharged  
through load  
VCORE  
tRESET  
RST  
RMODE=0  
Pulled low  
Pulled low  
tRESET  
RST  
RMODE=1  
tDLY1  
AVDD  
SMODE=0  
Actively  
discharged  
tSS2  
AVDD  
SMODE=1  
Discharged  
through load  
tSS2  
Discharged  
through load  
VGH  
Discharged  
through load  
VGL  
Held high as long  
as possible  
tDLY6  
VGHM  
(tracks VGH  
)
Held high as long  
as possible  
XAO  
GIP=1  
XAO  
GIP=0  
Pulled low  
VCOM  
SMODE=0  
Remains active  
(tracks AVDD)  
VCOM  
SMODE=1  
POS pin  
pulled low  
VGAM  
AVDD=3V  
Pulled low  
Figure 5-41. Power-Up or Power-Down Sequencing With EN Connected to VIN  
Copyright © 2013, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
EN  
VIN > VDET  
VIN > VUVLO  
VIN < VDET  
VIN < VUVLO  
VIN  
tSS1  
Actively  
discharged  
VIO1  
Actively discharged  
through backgate diode  
VIO2  
enabled  
Discharged  
through load  
VCORE  
tRESET  
RST  
RMODE=0  
Pulled low  
Pulled low  
tRESET  
RST  
RMODE=1  
tDLY1  
AVDD  
SMODE=0  
Actively  
discharged  
tSS2  
AVDD  
SMODE=1  
Discharged  
through load  
tSS2  
Discharged  
through load  
VGH  
Discharged  
through load  
VGL  
Held high as long  
as possible  
tDLY6  
VGHM  
(tracks VGH  
)
Held high as long  
as possible  
XAO  
GIP=1  
XAO  
GIP=0  
Pulled low  
VCOM  
SMODE=0  
Remains active  
(tracks AVDD)  
VCOM  
SMODE=1  
POS pin  
pulled low  
VGAM  
AVDD=3V  
Pulled low  
Figure 5-42. Power-Up or Power-Down Sequencing With EN Connected to T-CON Ready  
68  
Detailed Description  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
5.13 UNDERVOLTAGE LOCKOUT  
An undervoltage lockout function disables the TPS65642A device when the supply voltage is too low for  
proper operation.  
6 Application Information  
6.1 External Component Selection  
Care must be applied to the choice of external components because these components greatly affect  
overall performance. The TPS65642A device was developed with the two goals of high performance and  
small or low-profile solution size. Because these two goals are often in direct opposition to one another  
(for example, larger inductors tend to achieve higher efficiencies), some trade-off is always necessary.  
Inductors must have adequate current capability so that the inductors do not saturate under worst-case  
conditions. For high efficiency, inductors must also have low DC resistance (DCR).  
Capacitors must have adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. MLCC capacitors typically exhibit only a fraction of the nominal capacitance  
under real-world conditions and this must be taken into consideration when selecting capacitors. This  
problem is especially acute in low profile capacitors, in which the dielectric field strength is higher than in  
taller components. In general, the capacitance values shown in the circuit diagrams in this data sheet refer  
to the effective capacitance after DC bias effects have been taken into consideration. Reputable capacitor  
manufacturers provide capacitance-versus-DC-bias curves that greatly simplify component selection.  
Table 6-1, Table 6-2,Table 6-3, Table 6-4, and Table 6-5 list some components suitable for use with the  
TPS65642A device. The list is not exhaustive — other components may exist that are equally suitable (or  
better), however, these components have been proven to work well and were used extensively during the  
development of the TPS65642A device.  
Table 6-1. Boost Converter 1 External Components  
REF.  
L
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
THICKNESS  
Chip Inductor, 4.7 μH, ±20%  
1269AS-H-4R7N  
Toko  
< 1 mm  
CIN  
Ceramic Capacitor, X5R, 10 µF, 16 V,  
±20%  
GRM319R61H475MA12  
Murata  
< 0,85 mm  
COUT  
Table 6-2. Buck Converter 1 External Component Recommendations  
REF.  
L
DESCRIPTION  
PART NUMBER  
1269AS-H-2R2N  
MANUFACTURER  
Toko  
THICKNESS  
< 1 mm  
Chip Inductor  
COUT  
Ceramic Capacitor, X5R, 10 = µF, 6.3 V,  
±20%  
GRM319R61H475MA12  
Murata  
< 0,85 mm  
Table 6-3. Buck Converter 2 External Component Recommendations  
REF.  
L
DESCRIPTION  
PART NUMBER  
1269AS-H-2R2  
MANUFACTURER  
Toko  
THICKNESS  
< 1 mm  
Chip Inductor  
COUT  
Ceramic Capacitor, X5R, 10 µF, 6.3 V,  
±20%  
GRM319R61H475MA12  
Murata  
< 0,85 mm  
Table 6-4. LDO Regulator External Component Recommendations  
REF.  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
THICKNESS  
COUT  
Ceramic Capacitor, X5R, 10 µF,6.3 V,  
±20%  
GRM319R61H475MA12  
Murata  
< 0,85 mm  
Copyright © 2013, Texas Instruments Incorporated  
Application Information  
69  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
 
 
 
 
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
Table 6-5. Boost Converter 2 External Components  
REF.  
DESCRIPTION  
Wirewound Inductor, 15 μH, ±20%  
PART NUMBER  
1156AS-150M  
MANUFACTURER  
THICKNESS  
L
L
Toko  
< 1 mm  
< 1 mm  
Wirewound Inductor, 15 μH, ±20%  
LQH3NPN150NG0  
GRM319R61H475MA12  
Murata  
Murata  
COUT  
Ceramic Capacitor, X5R, 4.7 µF, 50 V,  
±20%  
< 0,85 mm  
D
Switching Diode, 150 mA, 75 V, 350  
mW  
BAS16W  
Infineon  
< 1 mm  
6.2 Typical Application Circuit  
Figure 6-1 and Figure 6-2 show the recommended application circuits for non-GIP and GIP displays  
respectively. Minor changes may be required to optimize the circuit for a specific application, however, the  
basic circuit is unlikely to change significantly.  
70  
Application Information  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
www.ti.com  
SLVSC21 OCTOBER 2013  
470nF  
BAV99  
VGL  
2.2µF  
4.7R  
4.7µH  
VIN  
AVDD  
20µF  
10µF  
SW1 AVDD  
AVDD  
VIN  
1.5nF  
56k  
10µF  
VIO1  
COMP  
BOOST  
CONVERTER 1  
EN  
From T-CON  
10k  
To Level Shifter  
To T-CON  
RST  
CONTROL  
XAO  
VIO2  
VIO2  
LDO REGULATOR  
10µF  
AVDD  
BOOST  
15µH  
TCOMP  
CONVERTER 2  
VGH  
SW4  
BAS16W  
2.2µF  
2.2µH  
VCORE  
20µF  
SW2  
BUCK  
CONVERTER 1  
VCORE  
2.2µH  
VIO1  
10µF  
SW3  
VIO1  
BUCK  
CONVERTER 2  
GATE  
From T-CON  
AVDD  
FLK  
RE  
VGH  
VOLTAGE  
SHAPING  
VGHM  
VGHM  
1k  
VGAMH  
VGAMI  
VGAMA  
OUTA  
OUTB  
OUTC  
OUTD  
OUTE  
OUTF  
OUTG  
AVDD  
OUTH  
OUTI  
VGAMB  
VGAMJ  
VGAMK  
VGAML  
VGAMM  
VGAMC  
VGAMD  
VGAME  
VGAMF  
OUTJ  
OUTK  
OUTL  
OUTM  
OUTN  
GAMMA  
REF  
VGAMN  
VGAMG  
AVDD  
1µF  
AVDD  
SCL  
SDA  
To/From  
T-CON  
2
I C INTERFACE  
WP  
From T-CON  
100nF  
12.7k  
1k  
POS1  
VCOM1 Feedback  
NEG1  
OUT1  
191R  
11.8k  
7.5k  
VCOM1  
PROGRAMMABLE  
VCOM  
POS2  
RSET  
1k  
100nF  
VCOM2 Feedback  
24.9k  
NEG2  
OUT2  
7.5k  
VCOM2  
PGND  
AGND  
Figure 6-1. Typical Application Circuit for Non-GIP Displays  
Copyright © 2013, Texas Instruments Incorporated  
Application Information  
71  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
TPS65642A  
SLVSC21 OCTOBER 2013  
www.ti.com  
470nF  
BAV99  
VGL  
2.2µF  
4.7R  
4.7µH  
VIN  
AVDD  
20µF  
10µF  
SW1 AVDD  
AVDD  
VIN  
1.5nF  
56k  
10µF  
VIO1  
COMP  
BOOST  
CONVERTER 1  
EN  
From T-CON  
10k  
To Level Shifter  
To T-CON  
RST  
CONTROL  
XAO  
VIO2  
VIO2  
LDO REGULATOR  
10µF  
AVDD  
10k@25°C  
10.4k  
BOOST  
15µH  
TCOMP  
CONVERTER 2  
VGH  
SW4  
10.2k  
BAS16W  
2.2µF  
2.2µH  
VCORE  
SW2  
BUCK  
CONVERTER 1  
VCORE  
20µF  
2.2µH  
VIO1  
10µF  
SW3  
VIO1  
BUCK  
CONVERTER 2  
GATE  
VGH  
FLK  
RE  
VGH  
VOLTAGE  
SHAPING  
VGHM  
VGAMH  
VGAMI  
VGAMA  
VGAMB  
OUTA  
OUTB  
OUTC  
OUTD  
OUTE  
OUTF  
OUTG  
AVDD  
OUTH  
OUTI  
VGAMJ  
VGAMK  
VGAML  
VGAMM  
VGAMC  
VGAMD  
VGAME  
VGAMF  
OUTJ  
OUTK  
OUTL  
OUTM  
OUTN  
GAMMA  
REF  
VGAMN  
VGAMG  
AVDD  
1µF  
AVDD  
SCL  
SDA  
To/From  
T-CON  
2
I C INTERFACE  
WP  
From T-CON  
100nF  
12.7k  
1k  
POS1  
VCOM1 Feedback  
NEG1  
OUT1  
191R  
11.8k  
7.5k  
VCOM1  
PROGRAMMABLE  
VCOM  
POS2  
RSET  
1k  
100nF  
VCOM2 Feedback  
24.9k  
NEG2  
OUT2  
7.5k  
VCOM2  
PGND  
AGND  
Figure 6-2. Typical Application Circuit for GIP Displays  
72  
Application Information  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65642A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65642AYFFR  
ACTIVE  
DSBGA  
YFF  
56  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
TPS65642A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65642AYFFR  
DSBGA  
YFF  
56  
3000  
330.0  
12.4  
3.0  
3.55  
0.81  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFF 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
335.0 335.0 25.0  
TPS65642AYFFR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0056  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
2
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
2.4 TYP  
SYMM  
H
G
D: Max = 3.478 mm, Min =3.418 mm  
E: Max = 3.146 mm, Min =3.086 mm  
F
E
D
C
SYMM  
2.8  
TYP  
0.3  
0.2  
56X  
B
A
0.015  
C A  
B
0.4 TYP  
1
2
3
4
5
6
7
0.4 TYP  
4219481/A 10/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
56X ( 0.23)  
(0.4) TYP  
2
4
5
6
7
1
A
B
C
D
E
F
SYMM  
G
H
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219481/A 10/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
56X ( 0.25)  
(R0.05) TYP  
1
2
3
4
5
6
7
A
(0.4)  
TYP  
B
METAL  
TYP  
C
D
E
F
SYMM  
G
H
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219481/A 10/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TPS65642YFF

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
TI

TPS65642YFFR

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642YFFT

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65651-1/2/3

TPS65400-Q1 4.5- to 18-V Input Flexible Power Management Unit With PMBus/I2C Interface
TI

TPS65653-Q1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器
TI

TPS6565342RHDRQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI

TPS6565342RHDTQ1

具有集成开关的汽车类 4MHz、双路 3A 降压转换器 | RHD | 28 | -40 to 125
TI

TPS65680

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器
TI

TPS65680RSNR

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器 | RSN | 32 | -40 to 85
TI

TPS65680RSNT

用于 GOA/GIP 显示并具有 OCP 的 2 路输入、18 通道可配置电平转换器 | RSN | 32 | -40 to 85
TI

TPS657051

PMU for Embedded Camera Module
TI

TPS657051YZHR

PMU for Embedded Camera Module
TI