TPS65982BB [TI]

带集成 5V 负载开关且适用于 USB-PD 设备的双 USB 告示板;
TPS65982BB
型号: TPS65982BB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带集成 5V 负载开关且适用于 USB-PD 设备的双 USB 告示板

开关 光电二极管
文件: 总44页 (文件大小:1225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
TPS65982BB Dual USB Billboard for USB-PD Devices with Integrated 5-V Load Switch  
1 Features  
2 Applications  
1
Port-power switch  
Docking systems  
Charger adapters  
5-V, 3-A integrated switch to VBUS  
Over-current limiter, over-voltage protector  
Slew-rate control  
USB PD devices  
USB PD–enabled bus-powered devices  
DisplayPort, Thunderbolt  
USB low-speed endpoint  
I2C-update capable billboard strings  
3 Description  
Integrated USB mux supports two Type-C  
ports  
The TPS65982BB device provides a USB billboard  
endpoint for USB-PD devices implementing alternate  
modes. The integrated internal USB multiplexor  
allows the TPS65982BB to support up to two USB  
Type-C ports. The TPS65982BB communicates with  
USB-PD port controllers using an I2C interface to  
enable the billboard as well as update stored  
billboard strings. An integrated 5-V load switch  
provides VBUS protection for an optional USB Type-  
A port.  
I2C control  
Power management  
Power supply from 3.3-V  
NFBGA package  
0.5-mm pitch  
Through-hole via compatible for all pins  
Device Information(1)  
PART  
NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPS65982BB NFBGA (96)  
6.00 mm × 6.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Diagram  
D+/-  
2
USB  
Type-C  
Connector  
5 V  
VBUS  
3 A  
TPS65982BB  
3.3 V  
USB  
Type-C  
Connector  
USB PA  
USB PB  
PD  
Controller  
I2C  
Interface  
Billboard  
D+/-  
2
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Power Supply Characteristics ................................... 8  
6.6 Power Supervisor Characteristics............................. 9  
6.7 Power Consumption Characteristics......................... 9  
6.8 Port-Power Switch Characteristics............................ 9  
6.9 Port-Data Multiplexer Characteristics ..................... 10  
6.10 Port-Data Multiplexer Clamp Characteristics........ 10  
7
8
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 24  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Application .................................................. 29  
9
10 Power Supply Recommendations ..................... 31  
10.1 3.3-V Power .......................................................... 31  
10.2 1.8-V Core Power ................................................. 31  
10.3 VDDIO................................................................... 32  
11 Layout................................................................... 33  
11.1 Layout Guidelines ................................................. 33  
11.2 Layout Example .................................................... 33  
12 Device and Documentation Support ................. 37  
12.1 Documentation Support ........................................ 37  
12.2 Receiving Notification of Documentation Updates 37  
12.3 Support Resources ............................................... 37  
12.4 Trademarks........................................................... 37  
12.5 Electrostatic Discharge Caution............................ 37  
12.6 Glossary................................................................ 37  
6.11 Port-Data Multiplexer Signal Monitoring Pullup and  
Pulldown Characteristics.......................................... 10  
6.12 USB Endpoint Characteristics............................... 11  
6.13 Input/Output (I/O) Characteristics ......................... 11  
6.14 I2C Slave Characteristics ...................................... 12  
6.15 Thermal Shutdown Characteristics ....................... 13  
6.16 Oscillator Characteristics ...................................... 13  
6.17 SPI Master Switching Characteristics................... 13  
6.18 Typical Characteristics.......................................... 14  
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 37  
4 Revision History  
Changes from Original (November 2018) to Revision A  
Page  
First public release as a catalog device ................................................................................................................................ 1  
2
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
5 Pin Configuration and Functions  
ZBH Package  
96-Pin NFBGA  
Transparent Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
G
H
J
GND  
LDO_1V8D  
SPI_CLK  
SPI_MISO  
I2C2_SDA  
GND  
GND  
GND  
NC  
SENSE  
PP_5V0  
VDDIO  
I2C1_IRQz  
I2C1_SDA  
LDO_BMC  
I2C_ADDR  
LDO_3V3  
VIN_3V3  
GND  
NC  
NC  
SPI_SSz  
SPI_MOSI  
I2C2_SCL  
I2C2_IRQz  
GND  
GND  
NC  
SENSE  
PP_5V0  
PP_5V0  
PP_5V0  
NC  
NC  
I2C1_SCL  
GND  
GND  
GND  
GND  
GND  
HRESET  
NC  
GND  
GND  
GND  
SS  
GND  
GND  
GND  
GND  
GND  
NC  
NC  
GND  
GND  
NC  
NC  
NC  
GND  
VIN_3V3  
BB_EN  
GND  
VBUS  
NC  
NC  
R_OSC  
VOUT_3V3  
GND  
NC  
GND  
PP_5V0_EN  
GND  
CONFIG  
VBUS  
VBUS  
K
L
LDO_1V8A BB_PLUG_PB BB_BOOT_OK  
GND  
GND  
USB_RP_N  
USB_RP_P  
PA_USB_P  
PA_USB_N  
PB_USB_P  
PB_USB_N  
GND  
GND  
NC  
NC  
VBUS  
GND  
BB_PLUG_PA  
BB_SRST  
NC  
NC  
Not to scale  
Pin Functions  
PIN  
POR  
STATE  
TYPE  
DESCRIPTION  
NAME  
NO.  
A11, B11,  
C11, D11  
5-V supply for VBUS. Bypass with capacitance CPP_5V0 to GND. Tie pin to GND when  
unused.  
PP_5V0  
VBUS  
Power  
Power  
H11, J10,  
J11, K11  
5-V output from PP_5V0. Bypass with capacitance CVBUS to GND.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Pin Functions (continued)  
PIN  
POR  
STATE  
TYPE  
DESCRIPTION  
NAME  
NO.  
H1, F10  
B1  
VIN_3V3  
VDDIO  
Power  
Power  
Supply for core circuitry and I/O. Bypass with capacitance CVIN_3V3 to GND.  
VDD for I/O.  
Output of supply switched from VIN_3V3. Bypass with capacitance COUT_3V3 to GND.  
Float pin when unused.  
VOUT_3V3  
LDO_3V3  
H2  
G1  
Power  
Power  
Output of the VBUS to 3.3 V LDO or connected to VIN_3V3 by a switch. Main internal  
supply rail. Used to power optional external flash memory. Bypass with capacitance  
CLDO_3V3 to GND.  
Output of the 3.3-V or 1.8-V LDO for core analog circuits. Bypass with capacitance  
CLDO_1V8A to GND.  
LDO_1V8A  
LDO_1V8D  
K1  
A2  
Power  
Power  
Output of the 3.3-V or 1.8-V LDO for core digital circuits. Bypass with capacitance  
CLDO_1V8D to GND.  
LDO_BMC  
PA_USB_P  
PA_USB_N  
PB_USB_P  
PB_USB_N  
E1  
K6  
L6  
K7  
L7  
Power  
Output of the 1.1V output level LDO. Bypass with capacitance CLDO_BMC to GND.  
Port A USB D+ connection.  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Port A USB D- connection.  
Port B USB D+ connection.  
Port B USB D- connection.  
System-side USB2.0 high-speed connection to port multiplexer. Ground pin with between 1-  
kΩ and 5-MΩ resistance when unused.  
USB_RP_P  
USB_RP_N  
L5  
K5  
Analog I/O  
Analog I/O  
Hi-Z  
Hi-Z  
System-side USB2.0 high-speed connection to port multiplexer. Ground pin with between 1-  
kΩ and 5-MΩ resistance when unused.  
SENSE  
SENSE  
B10  
A10  
Analog input  
Analog input  
Analog input  
Analog input  
Short pin to VBUS.  
Short pin to VBUS.  
Analog  
output  
SS  
H7  
G2  
Driven low  
Hi-Z  
Soft Start. Tie pin to capacitance CSS to ground.  
External resistance setting for oscillator accuracy. Connect R_OSC to GND through  
resistance RR_OSC.  
R_OSC  
Analog I/O  
PP_5V0_EN  
CONFIG  
G11  
H6  
Digital I/O  
Hi-Z  
Hi-Z  
Input enable signal for PP_5V0 power path.  
Boot Configuration pin. Tie directly to ground.  
Analog input  
Output. Driven high once the TPS65982BB has completed its boot and configuration  
routines.  
BB_BOOT_OK  
K3  
Digital I/O  
Hi-Z  
BB_EN  
G10  
L3  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Input. When driven high enables billboard output on PA_USB_P and PA_USB_N.  
Input. When asserted high, initiates a soft reset of the TPS65982BB.  
BB_SRST  
BB_PLUG_PB  
BB_PLUG_PA  
K2  
L2  
Input. Signals the TPS65982BB to enable the USB billboard on the PA_USB pins.  
Input. Signals the TPS65982BB to enable the USB billboard on the PB_USB pins.  
Active high hardware reset input. Assertion causes a reboot sequence. Ground pin when  
HRESET functionality will not be used.  
HRESET  
D6  
D1  
D2  
C1  
A5  
B5  
Digital Input  
Digital I/O  
Digital I/O  
Hi-Z  
I2C port 1 serial data. Open-drain output. Tie pin to LDO_3V3 or VDDIO (depending on  
configuration) through a 10-kΩ resistance when used or unused.  
I2C_SDA1  
I2C_SCL1  
I2C_IRQ1Z  
I2C_SDA2  
I2C_SCL2  
Digital input  
Digital input  
Hi-Z  
I2C port 1 serial clock. Open-drain output. Tie pin to LDO_3V3 or VDDIO (depending on  
configuration) through a 10-kΩ resistance when used or unused.  
I2C port 1 interrupt. Active low. Implement externally as an open drain with a pullup  
resistance. Float pin when unused.  
Digital  
output  
I2C port 2 serial data. Open-drain output. Tie pin to LDO_3V3 or VDDIO (depending on  
configuration) through a 10-kΩ resistance when used or unused.  
Digital I/O  
Digital I/O  
Digital input  
Digital input  
I2C port 2 serial clock. Open-drain output. Tie pin to LDO_3V3 or VDDIO (depending on  
configuration) through a 10-kΩ resistance when used or unused.  
I2C port 2 interrupt. Active low. Implement externally as an open drain with a pullup  
resistance. Float pin when unused.  
Digital  
output  
I2C_IRQ2Z  
I2C_ADDR  
SPI_CLK  
B6  
F1  
A3  
Hi-Z  
Sets the I2C address for both I2C ports.  
Analog I/O  
Analog input  
Digital input  
Digital  
output  
SPI serial clock. Ground pin when unused  
Digital  
output  
SPI_MOSI  
SPI_MISO  
B4  
A4  
Digital input  
Digital input  
SPI serial master output to slave. Ground pin when unused.  
SPI serial master input from slave. This pin is used during boot sequence to determine if  
the optional flash memory is valid. Refer to the Device Functional Modes section for more  
details. Ground pin when unused.  
Digital input  
4
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Pin Functions (continued)  
PIN  
POR  
STATE  
TYPE  
DESCRIPTION  
NAME  
NO.  
Digital  
output  
SPI_SSZ  
B3  
Digital input  
SPI slave select. Ground pin when unused.  
A1, A6, A7,  
A8, B7, B8,  
D5, D8, E4,  
E5, E6, E7,  
E8, F5, F6,  
F7, F8, G5,  
G6, G7, G8,  
H4, H5, H8,  
H10, J1, J2,  
K4, K8, L1,  
L4, L8  
GND  
Ground  
NA  
Ground. Connect all balls to ground plane.  
A9, B2, B9,  
C2, C10,  
D7, D10,  
E2, E10,  
E11, F2, F4,  
F11, G4,  
NC  
Blank  
NA  
Populated Ball that must remain unconnected.  
K9, K10, L9,  
L10, L11  
C3, C4, C5,  
C6, C7, C8,  
C9, D3, D4,  
D9, E3, E9,  
F3, F9, G3,  
G9, H3, H9,  
J3, J4, J5,  
J6, J7, J8,  
J9  
No Ball  
Blank  
NA  
Unpopulated Ball for A1 marker and unpopulated inner ring.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
PP_5V0  
VIN_3V3  
6
3.6  
VI  
Input voltage(2)  
V
SENSE  
6
VDDIO  
LDO_3V3 + 0.3  
LDO_1V8A, LDO_1V8D, LDO_BMC  
2
VIO Output voltage(2)  
LDO_3V3  
3.45  
V
V
VOUT_3V3, I2C _IRQ1Z, I2C_IRQ2Z, SPI_MOSI, SPI_CLK, SPI_SSZ, I2C_ADDR  
VBUS  
LDO_3V3 + 0.3  
6
I2C_SDA1, I2C_SCL1, SPI_MISO, I2C_SDA2, I2C_SCL2, USB_RP_P, USB_RP_N,  
CONFIG, PP_5V0_EN, BB_BOOT_OK, BB_SRST, BB_PLUG_PB, BB_PLUG_PA  
–0.3  
LDO_3V3 + 0.3  
2
VIO I/O voltage(2)  
R_OSC  
–0.3  
-0.3  
–2  
HRESET  
LDO_1V8D + 0.3  
PA_USB_P, PA_USB_N, PB_USB_P, PB_USB_N (Switches Open)  
PA_USB_P, PA_USB_N, PB_USB_P, PB_USB_N (Switches Closed)  
6
–0.3  
–10  
–55  
6
TJ  
Operating junction temperature  
125  
150  
°C  
°C  
Tstg Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.85  
4.75  
1.7  
MAX  
3.45  
5.5  
UNIT  
VIN_3V3  
Input voltage(1) PP_5V0  
VI  
V
VDDIO  
3.45  
5.5  
VBUS  
4
VIO  
I/O voltage(1)  
V
PA_USB_P, PA_USB_N, PB_USB_P, PB_USB_N  
–2  
5.5  
TA  
TB  
TJ  
Ambient operating temperature  
Operating board temperature  
Operating junction temperature  
–10  
–10  
–10  
85  
°C  
°C  
°C  
100  
125  
(1) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.  
6.4 Thermal Information  
TPS65982BB  
THERMAL METRIC(1)  
ZBH (NFBGA)  
UNIT  
96 PINS  
42.4  
12.4  
13  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
ψJB  
13  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
6.5 Power Supply Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL  
VIN_3V3  
VBUS  
Input 3.3-V supply  
2.85  
4
3.3  
5
3.45  
5.5  
V
V
Output DC bus voltage.  
5-V supply input to power VBUS. This supply  
does not power the TPS65982BB  
PP_5V0  
4.75  
1.7  
5
5.5  
V
V
VDDIO(1)  
Optional supply for I/O cells  
3.45  
INTERNAL  
DC 3.3 V generated internally by either a switch  
from VIN_3V3, an LDO from PP_CABLE, or an  
LDO from VBUS  
VLDO_3V3  
2.7  
3.3  
3.45  
V
VLDO_1V8D  
VLDO_1V8A  
DC 1.8 V generated for internal digital circuitry  
DC 1.8 V generated for internal analog circuitry  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DC voltage generated on LDO_BMC. Setting for  
USB-PD.  
VLDO_BMC  
IOUT_3V3  
1.05 1.125  
1.2  
V
External DC current supplied by VOUT_3V3  
100  
mA  
DC current supplied by LDO_1V8D. This is  
intended for internal loads only but small external  
loads may be added  
ILDO_1V8D  
50  
5
mA  
mA  
mA  
ILDO_1V8DEX External DC current supplied by LDO_1V8D  
DC current supplied by LDO_1V8A. This is  
intended for internal loads only but small external  
loads may be added  
ILDO_1V8A  
20  
ILDO_1V8AEX External DC current supplied by LDO_1V8A  
5
5
mA  
mA  
mA  
mV  
DC current supplied by LDO_BMC. This is  
ILDO_BMC  
intended for internal loads only  
ILDO_BMCEX  
VFWD_DROP  
External DC current supplied by LDO_BMC  
0
Forward voltage drop across VIN_3V3 to  
LDO_3V3 switch  
ILOAD = 50 mA  
25  
60  
1.1  
90  
Input switch resistance from VIN_3V3 to  
LDO_3V3  
RIN_3V3  
VVIN_3V3 – VLDO_3V3 > 50 mV  
0.5  
1.75  
0.7  
Ω
Ω
Output switch resistance from VIN_3V3 to  
VOUT_3V3  
ROUT_3V3  
TR_OUT3V3  
0.35  
10-90% rise time on VOUT_3V3 from switch  
enable  
CVOUT_3V3 = 1 μF  
35  
120  
µs  
(1) I/O buffers are not fail-safe to LDO_3V3. Therefore, VDDIO may power-up before LDO_3V3. When VDDIO powers up before LDO_3V3,  
the I/Os shall not be driven high. When VDDIO is low and LDO_3V3 is high, the I/Os may be driven high.  
8
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
6.6 Power Supervisor Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Undervoltage threshold for LDO_3V3. Locks out 1.8-V  
LDOs  
UV_LDO3V3  
LDO_3V3 rising  
2.2  
2.325  
2.45  
V
UVH_LDO3V3  
UV_5V0  
Undervoltage hysteresis for LDO_3V3  
Undervoltage threshold for PP_5V0  
Undervoltage hysteresis for PP_P5V0  
Overvoltage threshold for VBUS.  
LDO_3V3 falling  
PP_5V0 rising  
PP_5V0 falling  
VBUS rising  
20  
3.5  
20  
5
80  
3.725  
80  
150  
3.95  
150  
24  
mV  
V
UVH_5V0  
OV_VBUS  
mV  
V
Overvoltage threshold step for VBUS. This value is the  
LSB of the programmable threshold  
OVLSB_VBUS  
VBUS rising  
328  
mV  
OVH_VBUS  
UV_VBUS  
Overvoltage hysteresis for VBUS  
Undervoltage threshold for VBUS.  
VBUS falling, % of OV_VBUS  
VBUS falling  
0.9%  
2.5  
1.3%  
1.7%  
18.21  
V
Undervoltage threshold step for VBUS. This value is the  
LSB of the programmable threshold  
UVLSB_VBUS  
UVH_VBUS  
VBUS falling  
249  
mV  
Undervoltage hysteresis for VBUS  
VBUS rising, % of UV_VBUS  
0.9%  
1.3%  
1.7%  
6.7 Power Consumption Characteristics  
Recommended operating conditions; TA = 25°C (Room temperature) unless otherwise noted(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN_3V3 = VDDIO = 3.45 V, VBUS = 0, 100-kHz  
oscillator running  
IVIN_3V3 in sleep  
71  
µA  
VIN_3V3 = VDDIO = 3.45 V, VBUS=0, 100-kHz  
oscillator running,  
IVIN_3V3 idle  
2.2  
mA  
48-MHz oscillator running  
VIN_3V3 = VDDIO = 3.45 V, VBUS = 0, 100-kHz  
Oscillator running,  
IVIN_3V3 active  
5.3  
mA  
48-MHz oscillator running  
(1) Application code can result in other power consumption measurements by adjusting enabled circuitry and clock rates. Application code  
also provisions the wake-up mechanisms (for example, I2C activity and GPIO activity).  
6.8 Port-Power Switch Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
60  
UNIT  
mΩ  
mA  
μA  
RPP5V  
PP_5V0 to VBUS power switch resistance  
Active quiescent current from PP_5V0  
Shutdown quiescent current from PP_5V0  
PP_5V0 current limit  
50  
IPP5VACT  
IPP5VSD  
ILIMPP5V  
1
100  
3.69  
3.019  
1.95  
3.355  
3
I = 100 mA, reverse current  
blocking disabled  
4.05  
A/V  
IPP5V_ACC(2)  
PP_5V0 current sense accuracy  
I = 200 mA  
I = 500 mA  
I 1 A  
2.4  
2.64  
2.7  
3
3
3
3.6  
3.36  
3.3  
A/V  
A/V  
A/V  
Configured as a source or as a  
sink with soft start disabled.  
PP_5V0 = 5 V, CVBUS = 10 μF,  
ILOAD = 100 mA  
PP_5V0 path turn on time from enable to  
VBUS = 95% of PP_5V0 voltage  
TON_5V  
2.5  
ms  
Reverse-current blocking voltage threshold for  
PP_5V0 switches  
VREV5V0  
VSAFE0V  
2
0
6
10  
mV  
V
Voltage that is a safe 0 V per USB-PD  
Specifications  
0.8  
(1) Maximum capacitance on VBUS when configured as a source must not exceed 12 µF.  
(2) The current sense in the ADC does not accurately read below the current VREV5V0/RPP5V or VREVHV/RPPHV because of the  
reverse blocking behavior. When reverse blocking is disabled, the values given for accuracy are valid.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
6.9 Port-Data Multiplexer Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB_RP MULTIPLEXER PATH(1)(2)  
Vi = 3 V, IO = 20 mA  
4.5  
3
10  
7
USB_RON  
On resistance of USB_RP to Px_USB_P/N  
Ω
Ω
Vi = 400 mV, IO = 20 mA  
On-resistance difference between P and N paths of  
USB_RP to Px_USB_P/N  
USB_ROND  
Vi = 0.4 V to 3 V, IO = 20 mA  
–0.15  
0.15  
150  
15  
Time from enable bit with charge  
pump off  
USB_TON  
Switch-on time from enable of USB USB_RP path  
µs  
Time from enable bit at charge-  
pump steady state  
Time from disable bit at charge-  
pump steady state  
USB_TOFF  
USB_BW  
Switch-off time from disable of USB_RP path  
3-dB bandwidth of USB_RP path  
500  
ns  
MHz  
dB  
CL = 10 pF  
850  
RL = 50 Ω, VI = 800 mV, f = 240  
MHz  
USB_ISO  
USB_XTLK  
Off isolation of USB_RP path  
–19  
–26  
Channel-to-channel crosstalk of USB_RP path  
RL = 50 Ω, f = 240 MHz  
dB  
(1) All RON specified maximums are the maximum of either of the switches in a pair. All ROND specified maximums are the maximum  
difference between the two switches in a pair. ROND does not add to RON.  
(2) See the USB Endpoint Characteristics table for the USB_EP specifications.  
6.10 Port-Data Multiplexer Clamp Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
3.8  
10  
TYP  
MAX UNIT  
VCLMP_IND  
ICLMP_IND  
Clamp voltage triggering indicator to the digital core  
Clamp current at VCLMP_IND  
3.95  
4.1  
V
250  
μA  
Time from clamp-current crossing ICLMP_IND to  
interrupt signal assertion  
TCLMP_PRT(1)  
I ICLMP_IND rising  
0
4
μs  
V = LDO_3V3  
250  
15  
nA  
ICLMP  
USB_EP and USB_RP port-clamp current  
V = VCLMP_IND + 500 mV  
3.5  
mA  
(1) The TCLMP_PRT time includes the time through the digital synchronizers. When the clock speed is reduced, the signal assertion time  
can be longer.  
6.11 Port-Data Multiplexer Signal Monitoring Pullup and Pulldown Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
LDO_3V3 = 3.3 V  
MIN  
350  
3.5  
70  
TYP  
500  
5
MAX UNIT  
RPU05  
RTPU5  
RPU100  
500-Ω pullup and pulldown resistance  
5-kΩ pullup and pulldown resistance  
100-kΩ pullup and pulldown resistance  
650  
6.5  
Ω
LDO_3V3 = 3.3 V  
LDO_3V3 = 3.3 V  
kΩ  
kΩ  
100  
130  
10  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
6.12 USB Endpoint Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRANSMITTER(1)  
T_RISE_EP  
Rising transition time  
Low-speed (1.5 Mbps) data rate only  
Low-speed (1.5 Mbps) data rate only  
Low-speed (1.5 Mbps) data rate only  
75  
75  
300  
300  
25%  
2
ns  
ns  
T_FALL_EP  
Falling transition time  
T_RRM_EP  
Rise and fall time matching  
Output crossover voltage  
–20%  
1.3  
V_XOVER_EP  
V
Source resistance of driver including 2nd-stage port-  
data multiplexer  
RS_EP  
34  
Ω
DIFFERENTIAL RECEIVER(1)  
VOS_DIFF_EP  
VIN_CM_EP  
RPU_EP  
Input offset  
–100  
0.8  
100  
2.5  
mV  
V
Common-mode range  
D– bias resistance  
Receiving  
1.425  
1.575  
kΩ  
SINGLE ENDED RECEIVER(1)  
VTH_SE_EP  
Single ended threshold  
Single ended threshold hysteresis  
Signal rising or falling  
Signal falling  
0.8  
2
V
VHYS_SE_EP  
200  
mV  
(1) The USB endpoint PHY is functional across the entire VIN_3V3 operating range, but parameter values are only verified by design for  
VIN_3V3 3.135 V  
6.13 Input/Output (I/O) Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SPI  
SPI_VIH  
SPI_VIL  
SPI_HYS  
SPI_ILKG  
High-level input voltage  
Low-level input voltage  
Input hysteresis voltage  
Leakage current  
LDO_3V3 = 3.3 V  
2
V
V
LDO_3V3 = 3.3 V  
0.8  
1
LDO_3V3 = 3.3 V  
0.2  
–1  
V
Output is Hi-Z, VIN = 0 to LDO_3V3  
IO = –8 mA, LDO_3V3=3.3 V  
IO = –15 mA, LDO_3V3=3.3 V  
IO = 10 mA  
μA  
2.9  
2.5  
SPI_VOH  
SPI output high voltage  
SPI output low voltage  
V
V
0.4  
0.8  
SPI_VOL  
IO = 20 mA  
GPIO, MRESET  
GPIO_VIH  
LDO_3V3 = 3.3 V  
VDDDIO = 1.8 V  
LDO_3V3 = 3.3 V  
VDDIO = 1.8 V  
2
High-level input voltage  
Low-level input voltage  
Input hysteresis voltage  
V
V
V
1.25  
0.8  
GPIO_VIL  
0.63  
LDO_3V3 = 3.3 V  
VDDIO = 1.8 V  
0.2  
0.09  
–1  
GPIO_HYS  
GPIO_ILKG  
GPIO_RPU  
GPIO_RPD  
GPIO_DG  
I/O leakage current  
Pullup resistance  
INPUT = 0 V to VDD  
Pullup enabled  
1
150  
150  
μA  
kΩ  
kΩ  
ns  
50  
100  
100  
20  
Pulldown resistance  
Digital input path deglitch  
Pulldown enabled  
50  
IO = –2 mA, LDO_3V3 = 3.3 V  
IO = –2 mA, VDDIO = 1.8 V  
IO = 2 mA, LDO_3V3 = 3.3 V  
IO = 2 mA, VDDIO = 1.8 V  
2.9  
GPIO_VOH  
GPIO_VOL  
GPIO output high voltage  
GPIO output low voltage  
V
V
1.35  
0.4  
0.45  
HRESET  
HRESET_VIH  
HRESET_VIL  
HRESET_HYS  
HRESET_ILKG  
High-level input voltage  
Low-level input voltage  
Input hysteresis Voltage  
I/O leakage current  
1.25  
V
V
0.63  
1
0.09  
–1  
V
INPUT = 0 V to LDO_1V8D  
μA  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Input/Output (I/O) Characteristics (continued)  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
0.6  
TYP  
MAX  
UNIT  
HRESET_THIGH  
HRESET_TLOW  
HRESET minimum high time to assert a reset condition.  
HRESET minimum low time to deassert a reset condition.  
ms  
0.6  
I2C_IRQ1Z, I2C_IRQ2Z  
OD_VOL  
OD_LKG  
Low-level output voltage  
Leakage current  
IOL = 2 mA  
0.4  
1
V
Output is Hi-Z, VIN = 0 to LDO_3V3  
–1  
μA  
6.14 I2C Slave Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SDA and SCL COMMON CHARACTERISTICS  
ILEAK  
Input leakage current  
Voltage on pin = LDO_3V3  
IOL = 3 mA, LDO_3V3 = 3.3 V  
IOL = 3 mA, VDDIO = 1.8 V  
VOL = 0.4 V  
-3  
3
0.4  
μA  
VOL  
SDA output low voltage  
V
0.36  
3
6
IOL  
SDA maximum output-low current  
Input low signal  
mA  
V
VOL = 0.6 V  
LDO_3V3 = 3.3 V  
VDDIO = 1.8 V  
0.99  
0.54  
VIL  
LDO_3V3 = 3.3 V  
VDDIO = 1.8 V  
2.31  
1.26  
0.17  
0.09  
VIH  
Input high signal  
V
LDO_3V3 = 3.3 V  
VDDIO = 1.8 V  
VHYS  
Input hysteresis  
V
I2C pulse width suppressed  
Pin Capacitance  
TSP  
CI  
50  
10  
ns  
pF  
SDA and SCL STANDARD MODE CHARACTERISTICS  
I2C clock frequency  
FSCL  
0
4
100  
kHz  
μs  
I2C clock high time  
THIGH  
I2C clock low time  
TLOW  
4.7  
250  
0
μs  
I2C serial data-setup time  
TSUDAT  
ns  
ns  
μs  
I2C serial data-hold time  
THDDAT  
I2C valid data time  
TVDDAT  
SCL low to SDA output valid  
3.4  
3.4  
ACK signal from SCL low to SDA  
(out) low  
I2C valid data time of ACK condition  
TVDACK  
μs  
I2C output fall time  
TOCF  
10 pF to 400 pF bus  
250  
ns  
μs  
μs  
μs  
μs  
I2C bus free time between stop and start  
TBUF  
4.7  
4.7  
4
I2C start or repeated start condition setup time  
TSTS  
I2C start or repeated start condition hold time  
TSTH  
I2C stop-condition setup time  
TSPS  
4
SDA and SCL FAST MODE CHARACTERISTICS  
I2C clock frequency  
FSCL  
0
0.6  
1.3  
100  
0
400  
kHz  
μs  
I2C clock high time  
THIGH  
I2C clock low time  
TLOW  
μs  
I2C serial data-setup time  
TSUDAT  
ns  
ns  
μs  
I2C serial data-hold time  
THDDAT  
I2C valid data time  
TVDDAT  
SCL low to SDA output valid  
0.9  
0.9  
ACK signal from SCL low to SDA  
(out) low  
I2C valid data time of ACK condition  
TVDACK  
μs  
10 pF to 400 pF bus, VDD = 3.3 V  
10 pF to 400 pF bus, VDD = 1.8 V  
12  
6.5  
1.3  
250  
250  
I2C output fall time  
TOCF  
ns  
I2C bus free time between stop and start  
TBUF  
μs  
12  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
I2C Slave Characteristics (continued)  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
0.6  
0.6  
0.6  
TYP  
MAX  
UNIT  
μs  
I2C start or repeated start condition setup time  
I2C start or repeated start condition hold time  
I2C stop-condition setup time  
TSTS  
TSTH  
TSPS  
μs  
μs  
6.15 Thermal Shutdown Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
160  
20  
MAX UNIT  
TSD_MAIN  
TSDH_MAIN  
TSD_PWR  
TSDH_PWR  
TSD_DG  
Thermal shutdown temperature of the main thermal shutdown Temperature rising  
145  
175  
165  
0.1  
°C  
°C  
°C  
°C  
ms  
Thermal shutdown hysteresis of the main thermal shutdown  
Thermal shutdown temperature of the power-path block  
Thermal shutdown hysteresis of the power-path block  
Programmable thermal shutdown detection deglitch time  
Temperature falling  
Temperature rising  
Temperature falling  
135  
150  
37  
6.16 Oscillator Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
48-MHz oscillator  
FOSC_100K 100-kHz oscillator  
TEST CONDITIONS  
MIN  
47.28  
95  
TYP  
MAX UNIT  
FOSC_48M  
48 48.72  
MHz  
kHz  
100  
105  
14.98  
5
15.01  
5
RR_OSC  
External oscillator set resistance (0.2%)  
15  
kΩ  
6.17 SPI Master Switching Characteristics  
Recommended operating conditions; TA = –10 to +85°C unless otherwise noted  
PARAMETER  
Frequency of SPI_CLK  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
FSPI  
11.82  
12 12.18  
MHz  
ns  
TPER  
Period of SPI_CLK (1/F_SPI)  
82.1 83.33  
84.6  
TWHI  
SPI_CLK high width  
30  
30  
30  
160  
–5  
21  
0
ns  
TWLO  
SPI_CLK low width  
ns  
TDACT  
TDINACT  
TDMOSI  
TSUMISO  
THDMSIO  
SPI_SZZ falling to SPI_CLK rising delay time  
SPI_CLK falling to SPI_SSZ rising delay time  
SPI_CLK falling to SPI_MOSI Valid delay time  
SPI_MISO valid to SPI_CLK falling setup time  
SPI_CLK falling to SPI_MISO invalid hold time  
50  
180  
5
ns  
ns  
ns  
ns  
ns  
10% to 90%, CL = 5 pF to 50 pF,  
LDO_3V3 = 3.3 V  
TRSPI  
TFSPI  
SPI_SSZ/CLK/MOSI rise time  
SPI_SSZ/CLK/MOSI fall time  
0.1  
0.1  
8
8
ns  
ns  
90% to 10%, CL = 5 pF to 50 pF,  
LDO_3V3 = 3.3 V  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
6.18 Typical Characteristics  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
-10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature (èC)  
D001  
Figure 1. PP_5V0 Switch On-Resistance vs Temperature  
7 Parameter Measurement Information  
t
f
t
r
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
cont.  
cont.  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
SCL  
t
HD;STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD;ACK  
t
t
t
t
SU;STO  
SU;STA  
HD;STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
002aac938  
Figure 2. I2C Slave Interface Timing  
14  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Parameter Measurement Information (continued)  
t
t
t
wlow  
per  
whigh  
SPI_SSZ  
SPI_CLK  
t
t
dact  
dinact  
t
t
dmosi  
dmosi  
SPI_MOSI  
SPI_MISO  
Valid Data  
t
sumiso  
Valid Data  
t
hdmiso  
Figure 3. SPI Master Timing  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TPS65982BB is a USB billboard controller for USB Type-C systems. The integrated USB2 data multiplexer  
allows the billboard controller to be switched between two USB Type-C ports or allows a USB2 device controller  
to be passed through to the ports.  
The TPS65982BB includes an integrated 5V load switch that may be used to supply VBUS power to an  
additional USB Type-A receptacle. See the Port-Power Switches section for a high-level block diagram of the  
port power switch, a description of the features, and more detailed circuitry.  
The port-data multiplexer connects various input pairs to the system port through the PA_USB_P, PA_USB_N,  
PB_USB_P, PB_USB_N pins. For a high-level block diagram of the port-data multiplexer, a description of the  
features, and more detailed circuitry, refer to the USB Port-Data Multiplexer section.  
The power-management circuitry receives and provides power to the TPS65982BB internal circuitry and to the  
VOUT_3V3 and LDO_3V3 outputs. See the Power Management section for a high-level block diagram of the  
power management circuitry, a description of the features, and more detailed circuitry.  
The digital core provides the engine for handling control of all other TPS65982BB functionality. A portion of the  
digital core contains ROM memory which contains all the firmware required to execute USB billboard behavior. In  
addition, a section of the ROM, called boot code, is capable of initializing the TPS65982BB device, loading of  
device configuration information, and loading any code patches into volatile memory in the digital core. See the  
Digital Core section for a description of the features, and more detailed circuitry.  
The TPS65982BB is an I2C slave to be controlled by a host processor (see the I2C Slave Interface section), and  
an SPI master to write to and read from an optional external flash memory (see the SPI Master Interface  
section).  
The TPS65982BB device also integrates a thermal shutdown mechanism (see the Thermal Shutdown section)  
and runs off of accurate clocks provided by the integrated oscillators (see the Oscillators section).  
16  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
8.2 Functional Block Diagram  
PP_5V0  
VBUS  
3A  
VDDIO  
VIN_3V3  
VOUT_3V3  
HRESET  
SS  
LDO_3V3  
LDO_1V8A  
LDO_1V8D  
LDO_BMC  
Power & Supervisor  
R_OSC  
I2C_ADDR  
CONFIG  
BB_BOOT_OK  
BB_SRST  
BB_PLUG_PA  
BB_PLUG_PB  
PP_5V0_EN  
3
3
4
I2C_SDA/SCL/IRQ1Z  
I2C_SDA/SCL/IRQ2Z  
SPI_MOSI/MISO/SSZ/CLK  
Digital Core  
2
2
PA_USB_P/N  
PB_USB_P/N  
2
USB_RP_P/N  
Port Mux & Endpoint  
GND  
8.3 Feature Description  
8.3.1 Port-Power Switches  
Fast  
current  
limit  
3A  
PP_5V  
VBUS  
Gate Control and Sense  
Figure 4. Port-Power Paths  
8.3.1.1 5-V Power Delivery  
The TPS65982BB device provides a power switch to VBUS from PP_5V0. The switch path provides 5 V at up to  
3 A to from PP_5V0 to VBUS. Figure 4 shows a simplified circuit for the switch from PP_5V0 to VBUS.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Feature Description (continued)  
8.3.1.2 5-V Power Switch  
The PP_5V0 path is unidirectional, only sourcing power from PP_5V0 to VBUS. When the switch is on, the  
protection circuitry limits reverse current from VBUS to PP_5V0. Figure 5 shows the I-V characteristics of the  
reverse-current protection feature. Figure 5 and the reverse-current limit can be approximated using Equation 1.  
IREV5V0 = VREV5V0/RPP5V  
(1)  
I
1/RPP5V  
VREV5V0  
V
IREV5V0  
Figure 5. 5V Switch I-V Curve  
8.3.1.3 PP_5V0 Current Limit  
The current through PP_5V0 to VBUS is limited to ILIMPP5V and is controlled automatically by the digital core.  
When the current exceeds ILIMPP5V, the current-limit circuit activates. Depending on the severity of the  
overcurrent condition, the transient response reacts in one of two ways: and Figure 7 show the approximate  
response time and clamping characteristics of the circuit for a hard short while Figure 8 shows the shows the  
approximate response time and clamping characteristics for a soft short with a load of 2 Ω.  
12  
10  
8
6
5
4
3
2
1
0
I VBUS  
VBUS  
6
4
2
0
-2  
-1  
Time (5 ms/div)  
D004  
Figure 6. PP_5V0 Current Limit With a Hard Short  
12  
10  
8
6
5
4
3
2
1
0
I VBUS  
VBUS  
6
4
2
0
-2  
-1  
Time (200 ms/div)  
D005  
Figure 7. PP_5V0 Current Limit With a Hard Short (Extended Time Base)  
18  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
 
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Feature Description (continued)  
6
5
4
3
2
1
0
6
I VBUS  
VBUS  
5
4
3
2
1
0
Time (200 ms/div)  
D006  
Figure 8. PP_5V0 Current Limit With a Soft Short (2 Ω)  
8.3.1.4 VBUS Transition to VSAFE0V  
When VBUS transitions to almost 0 V (VSAFE0V), the pulldown circuit in Figure 9 turns on until VBUS reaches  
VSAFE0V. This transition occurs within the time, TSAFE0V.  
PP_5V0 Gate Control  
and Current Limit  
PP_5V0  
VBUS  
Fast  
current  
limit  
VHVDISPD  
Slew Rate  
Controlled  
Pulldown  
Figure 9. PP_5V0 Slew-Rate Control  
8.3.2 USB Port-Data Multiplexer  
The includes a USB2 data multiplexor capable of connecting the integrated USB billboard or USB_RP  
passthrough to the USB2 D+ and D- pins of up to two USB Type-C connectors. The multiplexor connection state  
is determined by the state of the BB_PLUG_PB and BB_PLUG_PA GPIO inputs. PA_USB_P, PA_USB_N  
connect to the D+ and D- pins of the "Port A" type-c connector and PB_USB_P, PB_USB_N connect to the D+  
and D- pins of the "Port B" type-c connector.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Feature Description (continued)  
PA_USB_P  
PA_USB_N  
USB_RP_P/N  
PB_USB_P  
PA_USB_N  
USB_EP_P/N  
Figure 10. Port-Data Multiplexers  
8.3.2.1 Port Multiplexer Clamp  
Each input to the multiplexer is clamped to prevent voltages on the port from exceeding the safe operating  
voltage of circuits attached to the system side of the port data multiplexer. Figure 11 shows the simplified  
clamping circuit. When a path through the multiplexer is closed, the clamp is connected to the one of the port  
pins (PA_USB_P/N, PB_USB_P/N). When a path through the multiplexer is not closed, then the port pin is not  
clamped. As the pin voltage rises above the VCLMP_IND voltage, the clamping circuit activates, and sinks  
current to ground, preventing the voltage from rising further.  
2nd Stage Mux Input  
VREF  
Figure 11. Port Mux Clamp  
8.3.2.2 USB2.0 Low-Speed Endpoint  
The USB low-speed endpoint is a USB 2.0 low-speed (1.5 Mbps) interface used to support HID class-based  
accesses. The TPS65982BB device supports control of endpoint EP0. This endpoint enumerates to a USB 2.0  
bus to provide USB-Billboard information to a host system as defined in the USB Type-C standard. EP0 is used  
for advertising the Billboard Class. When a host is connected to a device that provides Alternate Modes that  
cannot be supported by the host, the Billboard class allows a means for the host to report back to the user  
without any silent failures.  
Figure 12 shows the physical layer of the USB endpoint. The physical layer consists of the analog transceiver,  
the serial interface engine, and the endpoint FIFOs. The physical layer supports low-speed operation.  
20  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Feature Description (continued)  
USB_EP  
LDO_3V3  
PA_USB_P  
USB_RP  
RPU_EP  
PA_USB_N  
RS_EP  
RS_EP  
EP_TX_DP  
EP_TX_DN  
EP0/EP1  
TX/RX  
FIFO  
32  
To M0+  
USB_EP  
EP_RX_RCV  
Serial  
Interface  
Engine  
PB_USB_P  
USB_RP  
RX/TX  
Status  
Control  
Digital Core  
Interrupts  
& Control  
PB_USB_N  
EP_RX_DP  
EP_RX_DN  
Transceiver  
Figure 12. USB Endpoint PHY  
The transceiver is made up of a fully-differential output driver, a differential to single-ended receive buffer and  
two single-ended receive buffers on the D+/D– independently. The output driver drives the D+/D– of the selected  
output of the port multiplexer. The signals pass through the port-data multiplexer to the port pins. When driving,  
the signal is driven through a source resistance RS_EP. RS_EP is shown as a single resistor in the USB  
endpoint PHY but this resistance also includes the resistance of the port-data multiplexer defined in the Port-  
Data Multiplexer Characteristics table. RPU_EP is disconnected during transmit mode of the transceiver.  
When the endpoint is in receive mode, the resistance RPU_EP is connected to the D– pin of the A or B port  
(PA_USB_N or PB_USB_N) depending on the detected orientation of the cable. The RPU_EP resistance  
advertises low-speed mode only.  
8.3.3 Power Management  
The TPS65982BB power management block receives power and generates voltages to provide power to the  
TPS65982BB internal circuitry. These generated power rails are LDO_3V3, LDO_1V8A, and LDO_1V8D. The  
LDO_3V3 power rail is also a low power output to load an optional external flash memory. The VOUT_3V3  
power rail is a low-power output that does not power internal circuitry that is controlled by the application code  
and can be used to power other ICs in some applications. Figure 13 shows the power-supply path.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Feature Description (continued)  
VIN_3V3  
VOUT_3V3  
VREF  
To Digital Core  
LDO_3V3  
VREF  
EN  
LDO_1V8D  
LDO  
LDO_1V8A_EN  
VREF  
EN  
LDO_1V8A  
LDO  
LDO_1V8D_EN  
Figure 13. Power Supply Path  
The TPS65982BB device is powered from VIN_3V3. Current flows from VIN_3V3 to LDO_3V3 to power the core  
3.3-V circuitry and the 3.3-V I/Os. A second LDO steps the voltage down from LDO_3V3 to LDO_1V8D and  
LDO_1V8A to power the 1.8-V core digital circuitry and 1.8-V analog circuits.  
8.3.3.1 Power-On and Supervisory Functions  
A power-on-reset (POR) circuit monitors each supply. This POR allows the active circuitry to turn on only when a  
good supply is present. In addition to the POR and supervisory circuits for the internal supplies, a separate  
programmable voltage supervisor monitors the VOUT_3V3 voltage.  
8.3.4 Digital Core  
8.3.5 Power Reset-Control Module (PRCM)  
The PRCM implements all clock management, reset control, and sleep-mode control.  
8.3.6 Interrupt Monitor  
The interrupt control module handles all interrupt from the external GPIO as well as interrupts from internal  
analog circuits.  
22  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Feature Description (continued)  
8.3.7 I2C Slave  
Two I2C interfaces provide interface to the digital core from the system. These interfaces operate as a slave and  
support low-speed and full-speed signaling. See the I2C Slave Interface section for more information.  
8.3.8 SPI Master  
The SPI master provides a serial interface to an optional, external flash memory. The optional flash memory can  
be used to store code patches and or device configurations. The recommended memory is the W25X05CL (64  
KB) serial-flash memory. A memory of at least (24 KB) is required for the TPS65982BB device (shared or  
unshared) if device configuration and patch memory features are used. See the SPI Master Interface section for  
more information.  
8.3.9 Thermal Shutdown  
The TPS65982BB device has both a central thermal shutdown to the chip and a local thermal shutdown for the  
power-path block. The central thermal shutdown monitors the temperature of the center of the die and disables  
all functions except for supervisory circuitry. This shutdown also halts digital core when die temperature goes  
above a rising temperature of TSD_MAIN. The temperature shutdown has a hysteresis of TSDH_MAIN and  
when the temperature falls back below this value, the device resumes normal operation. The power-path block  
has a local thermal-shutdown circuit to detect an overtemperature condition because of overcurrent, and quickly  
turns off the power switches. The power-path thermal shutdown values are TSD_PWR and TSDH_PWR. The  
output of the thermal shutdown circuit is deglitched by TSD_DG before triggering. The thermal shutdown circuits  
generate interrupt events to the digital core.  
8.3.10 Oscillators  
The TPS65982BB device has two independent oscillators for generating internal clock domains. A 48-MHz  
oscillator generates clocks for the core during normal operation and clocks for the USB 2.0 endpoint physical  
layer. An external resistance is placed on the R_OSC pin to set the oscillator accuracy. A 100-kHz oscillator  
generates clocks for various timers and clocking the core during low-power states.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 SPI Master Interface  
The TPS65982BB device loads any ROM patch, configuration or both from flash memory during the sequence.  
The SPI master electrical characteristics are defined in SPI Master Switching Characteristics and timing  
characteristics are defined in Figure 3. The TPS65982BB device is designed to power the flash from LDO_3V3,  
and therefore pullup resistors used for the flash memory must be tied to LDO_3V3. The flash memory IC must  
support a 12-MHz SPI clock frequency. The size of the flash must be at least 24 KB to hold the maximum ROM  
patch and configuration code outlined in the section. The SPI master of the TPS65982BB device supports SPI  
Mode 0. For Mode 0, data delay is defined such that data is output on the same cycle as the chip select  
(SPI_SSZ pin) becomes active. The chip select polarity is active-low. The clock phase is defined such that data  
(on the SPI_MISO and SPI_MOSI pins) is shifted out on the falling edge of the clock (SPI_CLK pin) and data is  
sampled on the rising edge of the clock. The clock polarity for chip select is defined such that when data is not  
being transferred the SPI_CLK pin is held (or idling) low. The minimum erasable sector size of the flash must be  
4 KB. The W25X05CL device or similar is recommended.  
8.4.2 I2C Slave Interface  
The TPS65982BB device has two I2C interface ports. I2C port 1 is comprised of the I2C_SDA1, I2C_SCL1, and  
I2C_IRQ1Z pins. I2C port 2 is comprised of the I2C_SDA2, I2C_SCL2, and I2C_IRQ2Z pins. These interfaces  
provide general-status information about the TPS65982BB device and about the ability to control the  
TPS65982BB behavior.  
8.4.2.1 I2C Interface Description  
The TPS65982BB device supports standard and fast mode I2C interface. The bidirectional I2C bus consists of the  
serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pullup  
resistor. The data transfer can only be initiated when the bus is not busy.  
A master sending a start condition (a high-to-low transition on the SDA I/O) while the SCL input is high initiates  
I2C communication. After the Start Condition, the device address byte is sent, most significant bit (MSB) first,  
including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA I/O  
during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred during each clock  
pulse. The data on the SDA line must remain stable during the high pulse of the clock period as changes in the  
data line at this time are interpreted as control conditions (START or STOP). The master sends a Stop Condition,  
a low-to-high transition on the SDA I/O while the SCL input is high.  
Any number of data bytes can be transferred from the transmitter to receiver between the start and the stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges, must pull down the SDA line during the ACK  
clock pulse, so that the SDA line remains low during the high pulse of the ACK-related clock period. When a  
slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must  
generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to  
ensure proper operation  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. The master receiver holding the SDA line high does this. In this  
event, the transmitter must release the data line to enable the master to generate a stop condition.  
Figure 14 shows the start and stop conditions of the transfer. Figure 15 shows the SDA and SCL signals for  
transferring a bit. Figure 16 shows a data transfer sequence with the ACK or NACK at the last clock pulse.  
24  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
Device Functional Modes (continued)  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 14. I2C Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Change  
Figure 15. I2C Bit Transfer  
Data Output  
by Transmitter  
Nack  
Data Output  
by Receiver  
SCL From  
Master  
Ack  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
Start  
Condition  
Figure 16. I2C Acknowledgment  
8.4.2.2 I2C Clock Stretching  
The TPS65982BB device features clock stretching for the I2C protocol. The TPS65982BB slave I2C port can hold  
the clock line (SCL) low after receiving (or sending) a byte, indicating that the slave is not yet ready to process  
more data. The master communicating with the slave must not finish the transmission of the current bit and must  
wait until the clock line actually goes high. When the slave is clock stretching, the clock line remains low.  
The master must wait until it observes the clock line transitioning high plus an additional minimum time (4 μs for  
standard 100 kbps I2C) before pulling the clock low again.  
Any clock pulse can be stretched but typically it is the interval before or after the acknowledgment bit.  
8.4.2.3 I2C Address Setting  
The boot code sets the hardware configurable unique I2C address of the TPS65982BB device before the port is  
enabled to respond to I2C transactions. For the I2C1 interface, the unique I2C address is determined by the  
analog level set by the analog I2C_ADDR strap pin (three bits) as listed in Table 1.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Device Functional Modes (continued)  
Table 1. I2C Default Unique Address I2C1(1)  
Bit 7  
0
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
Bit 2  
Bit 1  
Bit 0  
R/W  
I2C_ADDR_DECODE[2:0]  
(1) Any bit is maskable for each port independently providing firmware override of the I2C address.  
For the I2C2 interface, the unique I2C address is determined by the analog level set by the analog I2C_ADDR  
strap pin (three bits) as listed in Table 2.  
Table 2. I2C Default Unique Address I2C2(1)  
Bit 7  
0
Bit 6  
1
Bit 5  
0
Bit 4  
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
R/W  
I2C_ADDR_DECODE[2:0]  
(1) ny bit is maskable for each port independently, providing firmware override of the I2C address.  
8.4.2.4 Unique-Address Interface  
The unique-address interface allows for complex interaction between an I2C master and a single TPS65982BB  
device. The I2C slave sub-address is used to receive or respond to the protocol commands of the host interface.  
Figure 17 and Figure 18 show the write and read protocol for the I2C slave interface. Figure 19 provides a key to  
explain the terminology used. The key to the protocol diagrams is in the SMBus specification and is repeated  
here in part.  
1
7
1
1
8
1
8
1
8
1
Unique Address  
Register Number  
Byte Count = N  
Data Byte 1  
S
Wr  
A
A
A
A
8
1
8
1
Data Byte 2  
Data Byte N  
A
A
P
Figure 17. I2C Unique Address-Write Register Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
S
Unique Address  
Wr  
A
Register Number  
A
Sr  
Unique Address  
Rd  
A
Byte Count = N  
A
8
1
8
1
8
1
A
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte N  
P
Figure 18. I2C Unique Address-Read Register Protocol  
26  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
 
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
1
7
1
1
A
x
8
1
A
x
1
S
Slave Address  
Wr  
Data Byte  
P
S
Start Condition  
SR  
Rd  
Wr  
x
Repeated Start Condition  
Read (bit value of 1)  
Write (bit value of 0)  
Field is required to have the value x  
Acknowledge (this bit position may be 0 for an ACK or  
1 for a NACK)  
A
P
Stop Condition  
Master-to-Slave  
Slave-to-Master  
Continuation of protocol  
Figure 19. I2C Read/Write Protocol Key  
8.4.2.5 I2C Pin Address Setting  
To enable the setting of multiple I2C addresses using a single TPS65982BB pin, a resistance is placed externally  
on the I2C_ADDR pin. The internal ADC then decodes the address from this resistance value. Figure 20 shows  
the decoding.  
5µA  
I2C_ADDR  
ADC  
R_I2C  
Figure 20. I2C Address Decode  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Table 3 lists the external resistance required to set bits [3:1] of the I2C unique address.  
Table 3. I2C Address Resistance  
TPS65982BB  
DEVICE  
EXTERNAL  
RESISTANCE (1%)  
I2C UNIQUE  
ADDRESS [3:1]  
Device 0  
Device 7  
Device 6  
Device 5  
Device 4  
Device 3  
Device 2  
Device 1  
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
38.3k  
84.5k  
140k  
205k  
280k  
374k  
Open  
28  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS65982BB is controlled through I2C and GPIO to perform the billboard function for two USB Type-C ports.  
The external flash is connected through SPI to the TPS65982BB and contains the firmware to execute the  
billboard function. Alternatively, an embedded controller (EC) or PD controller is capable of loading the firmware  
to the TPS65982BB through I2C. Generally the PD controller is used to control the TPS65982BB through GPIO  
and I2C as the PD controller is managing the USB Type-C ports.  
9.2 Typical Application  
U2  
VBUS  
G11  
J10  
J11  
H11  
K11  
PP_5V0_EN  
VBUS  
VBUS  
VBUS  
VBUS  
PP_5V0_EN  
LDO_3V3  
C10  
1uF  
C9 22uF  
SYS_5V0  
D11  
C11  
B11  
A11  
PP_5V0  
PP_5V0  
PP_5V0  
PP_5V0  
C11  
0.1uF  
R5  
3.3k  
R6  
3.3k  
R7  
3.3k  
R8  
3.3k  
U3  
VCC  
8
1
6
5
2
3
7
GND  
A10  
B10  
DI/IO0  
SENSE  
SENSE  
GND  
DO/IO1  
WP/IO2  
HOLD/IO3  
CS  
CLK  
L2  
L5  
K5  
BB_PLUG_PA  
USB_RP_P  
USB_RP_N  
BB_PLUG_PA  
USB_RP_P  
USB_RP_N  
GND  
4
K6  
L6  
GND  
PA_USB_P  
PA_USB_N  
PA_USB_P  
PA_USB_N  
K3  
L3  
BB_BOOT_OK  
BB_SRST  
BB_BOOT_OK  
BB_SRST  
W25Q80DVSNIG  
D6  
R9  
15.0k  
HRESET  
HRESET  
GND  
K7  
L7  
PB_USB_P  
PB_USB_N  
PB_USB_P  
PB_USB_N  
H7  
G2  
H6  
B1  
F10  
H1  
H2  
G1  
K1  
C12  
0.22 µF  
15.0k  
0
SS  
R_OSC  
R10  
15.0k  
K2  
R11  
R12  
BB_PLUG_PB  
BB_PLUG_PB  
A3  
B4  
A4  
B3  
SPI_CLK  
CONFIG  
SPI_CLK  
SPI_SSZ  
SPI_MOSI  
SPI_MISO  
SPI_SSZ  
SPI_MOSI  
SPI_MISO  
SYS_3V3  
GND  
VDDIO  
VIN_3V3  
VIN_3V3  
VOUT_3V3  
LDO_3V3  
LDO_1V8A  
LDO_1V8D  
LDO_BMC  
B5  
A5  
B6  
I2C2_SCL  
I2C2_SDA  
I2C2_IRQZ  
EC_I2C_SCL2  
EC_I2C_SDA2  
EC_I2C_IRQ2  
C13  
4.7uF  
LDO_3V3  
D2  
D1  
C1  
LDO_3V3  
I2C1_SCL  
I2C1_SDA  
I2C1_IRQZ  
PD_CONTROLLER_I2C_SCL1  
PD_CONTROLLER_I2C_SDA1  
PD_CONTROLLER_I2C_IRQ1  
C14  
C15  
C16  
C17  
10uF  
4.7uF  
4.7uF  
4.7uF  
R13  
3.3k  
R14  
F1  
I2C_ADDR  
3.3k  
R15  
3.3k  
A2  
E1  
EC_I2C_SCL2  
EC_I2C_SDA2  
EC_I2C_IRQ2  
R16  
0
L10  
A9  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B2  
B9  
LDO_3V3  
A1  
A6  
A7  
A8  
B7  
B8  
D5  
D8  
E4  
E5  
E6  
E7  
E8  
F5  
F6  
F7  
F8  
G5  
G6  
G7  
G8  
H4  
H5  
H8  
H10  
J1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C2  
C10  
D7  
D10  
E2  
GND  
R17  
3.3k  
R18  
GND  
3.3k  
R19  
3.3k  
PD_CONTROLLER_I2C_SCL1  
PD_CONTROLLER_I2C_SDA1  
PD_CONTROLLER_I2C_IRQ1  
E10  
E11  
F2  
F4  
F11  
G4  
G10  
K9  
K10  
L9  
L11  
J2  
K4  
K8  
L1  
L4  
L8  
TPS65982BBZBHR  
GND  
Figure 21. Example Schematic  
9.2.1 VBUS Load Switch  
The load switch is capable of providing up to 3A for multiple USB Type-A receptacles. The 22uF capacitance on  
PP_5V0 is for the local PP_5V0 pins. There should be additional capacitance on the SYS_5V0 that should be  
able to support load transients for the number of ports used in the system. The VBUS side capacitance should  
be less than PP_5V0 to optimize the over current protection.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Typical Application (continued)  
9.2.2 HRESET  
HRESET is the hardware reset on the TPS65982BB and it is a 1.8V (Max) pin. Most PD Controllers and ECs will  
drive to 3.3V and will require a resistor divider to drive the HRESET pin.  
9.2.3 Dual Port Billboard Support  
The TPS65982BB will route the USB2 paths from two USB Type-C ports and provide VBUS with over current  
protection to a USB Type-A receptacle or a USB Hub. The TPS65982BB implements a “first come – first serve”  
with the two USB2 paths, where the USB2 connection to the USB Type-A or USB Hub is connected to the USB  
Type-C port that was connected first. The device will maintain that connection until all connections are removed.  
When the PD controller fails to enter an alternate mode, the PD controller will communicate to the TPS65982BB  
through I2C to enable the billboard function. Upon receiving the I2C command, the TPS65982BB will connect its  
USB endpoint to the connected Type-C port and will be able to send the proper billboard message. The block  
diagram below shows the system application for billboard support for two Type-C ports.  
Figure 22. Application Block Diagram  
30  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
10 Power Supply Recommendations  
10.1 3.3-V Power  
10.1.1 1VIN_3V3 Input Switch  
The VIN_3V3 input is the main supply to the TPS65982BB device. The VIN_3V3 switch (S1 in Figure 13) is a  
unidirectional switch from VIN_3V3 to LDO_3V3, not allowing current to flow backwards from LDO_3V3 to  
VIN_3V3. This switch is on when 3.3 V is available. See Table 4 for the recommended external capacitance on  
the VIN_3V3 pin.  
10.1.2 VOUT_3V3 Output Switch  
The VOUT_3V3 output switch (S2 in Figure 13) enables a low-current auxiliary supply to an external element.  
This switch is controlled by and is off by default. See Table 4 for the recommended external capacitance on the  
VOUT_3V3 pin.  
10.2 1.8-V Core Power  
The internal circuitry is powered from 1.8 V. Two LDOs step the voltage down from LDO_3V3 to 1.8 V. One LDO  
powers the internal digital circuits. The other LDO powers the internal low-voltage analog circuits.  
10.2.1 1.8-V Digital LDO  
The 1.8-V digital LDO provides power to all internal low-voltage digital circuits which includes the digital core,  
memory, and other digital circuits. See Table 4 for the recommended external capacitance on the LDO_1V8D  
pin.  
10.2.2 1.8-V Analog LDO  
The 1.8-V analog LDO provides power to all internal low-voltage analog circuits. See Table 4 for the  
recommended external capacitance on the LDO_1V8A pin.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
10.3 VDDIO  
The VDDIO pin provides a secondary input allowing some I/Os to be powered by a source other than LDO_3V3.  
The default state is power from LDO_3V3. The memory stored in the flash configures the I/Os to use LDO_3V3  
or VDDIO as a source. The application code automatically scales the input and output voltage thresholds of the  
I/O buffer accordingly. See the section for more information on the I/O buffer circuitry. See Table 4 for the  
recommended external capacitance on the VDDIO pin.  
10.3.1 Recommended Supply Load Capacitance  
Table 4 lists the recommended board capacitances for the various supplies. The typical capacitance is the  
nominally rated capacitance that must be placed on the board as close to the pin as possible. The maximum  
capacitance must not be exceeded on pins for which it is specified. The minimum capacitance is minimum  
capacitance allowing for tolerances and voltage derating ensuring proper operation.  
Table 4. Recommended Supply Load Capacitance  
CAPACITANCE  
VOLTAGE  
RATING  
MIN  
(ABS  
MIN)  
TYP  
(TYP  
PLACED)  
PARAMETER  
DESCRIPTION  
MAX  
(ABS MAX)  
CVIN_3V3  
Capacitance on VIN_3V3  
Capacitance on LDO_3V3  
6.3 V  
6.3 V  
6.3 V  
4 V  
5 µF  
5 µF  
10 μF  
10 µF  
1 μF  
CLDO_3V3  
CVOUT_3V3  
CLDO_1V8D  
CLDO_1V8A  
CLDO_BMC  
25 µF  
2.5 μF  
12 µF  
12 µF  
4 µF  
Capacitance on VOUT_3V3  
Capacitance on LDO_1V8D  
Capacitance on LDO_1V8A  
Capacitance on LDO_BMC  
0.1 μF  
500 nF  
500 nF  
1 µF  
2.2 µF  
2.2 µF  
2.2 µF  
4 V  
4 V  
Capacitance on VDDIO. When shorted to LDO_3V3, the  
CLDO_3V3 capacitance may be shared.  
CVDDIO  
6.3 V  
0.1 µF  
1 µF  
CVBUS  
CPP_5V0  
CSS  
Capacitance on VBUS  
25 V  
10 V  
6.3 V  
0.5 µF  
2.5 µF  
1 µF  
12 µF  
Capacitance on PP_5V0  
Capacitance on soft start pin  
4.7 µF  
220 nF  
32  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
 
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
11 Layout  
11.1 Layout Guidelines  
Proper placement and routing will maintain signal integrity for the high speed signals and power integrity for the  
VBUS power switch. The following guidelines show the recommended methodology to properly route all required  
signals. Board manufacturing capabilities must be taken into account with any layout to guarantee  
manufacturability.  
11.2 Layout Example  
The layout example is based on the schematic below. Other system components are not shown as they have  
their own layout recommendations.  
U1  
VBUS  
G11  
J10  
J11  
H11  
K11  
PP_5V0_EN  
VBUS  
VBUS  
VBUS  
VBUS  
PP_5V0_EN  
C2  
1uF  
C1 22uF  
SYS_5V0  
D11  
C11  
B11  
A11  
PP_5V0  
PP_5V0  
PP_5V0  
PP_5V0  
GND  
A10  
B10  
SENSE  
SENSE  
GND  
L2  
L5  
K5  
BB_PLUG_PA  
USB_RP_P  
USB_RP_N  
BB_PLUG_PA  
USB_RP_P  
USB_RP_N  
K6  
L6  
PA_USB_P  
PA_USB_N  
PA_USB_P  
PA_USB_N  
K3  
L3  
BB_BOOT_OK  
BB_SRST  
HRESET  
BB_BOOT_OK  
BB_SRST  
HRESET  
D6  
K7  
L7  
PB_USB_P  
PB_USB_N  
PB_USB_P  
PB_USB_N  
H7  
G2  
H6  
B1  
F10  
H1  
H2  
G1  
K1  
C3  
0.22 µF  
SS  
R_OSC  
K2  
R1  
15.0k  
BB_PLUG_PB  
BB_PLUG_PB  
LDO_3V3  
DNP  
A3  
B4  
A4  
B3  
CONFIG  
CONFIG  
R2  
SPI_CLK  
CONFIG  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
SPI_SSZ  
SYS_3V3  
SPI_MOSI  
SPI_MISO  
SPI_SSZ  
R3  
0
VDDIO  
VIN_3V3  
VIN_3V3  
VOUT_3V3  
LDO_3V3  
LDO_1V8A  
LDO_1V8D  
LDO_BMC  
B5  
A5  
B6  
I2C2_SCL  
I2C2_SDA  
I2C2_IRQZ  
I2C2_SCL  
I2C2_SDA  
I2C2_IRQ  
C4  
4.7uF  
GND  
D2  
D1  
C1  
LDO_3V3  
I2C1_SCL  
I2C1_SDA  
I2C1_IRQZ  
I2C1_SCL  
I2C1_SDA  
I2C1_IRQ  
C5  
C6  
C7  
C8  
10uF  
4.7uF  
4.7uF  
4.7uF  
F1  
I2C_ADDR  
A2  
E1  
R4  
0
L10  
A9  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B2  
B9  
A1  
A6  
A7  
A8  
B7  
B8  
D5  
D8  
E4  
E5  
E6  
E7  
E8  
F5  
F6  
F7  
F8  
G5  
G6  
G7  
G8  
H4  
H5  
H8  
H10  
J1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C2  
GND  
C10  
D7  
D10  
E2  
GND  
E10  
E11  
F2  
F4  
F11  
G4  
G10  
K9  
K10  
L9  
L11  
J2  
K4  
K8  
L1  
L4  
L8  
TPS65982BBZBHR  
GND  
Figure 23. Layout Example Schematic  
11.2.1 Component Placement  
The recommended placement is to have the TPS65982BB on the Top Layer and have all of the passive  
components on the opposite layer of the PCB. This will significantly reduce solution size and allows for more  
clearance for the high speed and interface signals. The figures below show the top and bottom placement.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Layout Example (continued)  
Figure 24. Top Placement  
Figure 25. Bottom Placement  
11.2.2 Recommended Via Size and Trace Widths  
For all LDO voltages, GPIO, Interface (I2C/SPI) and VIN_3V3 a single via connection to the pads on the  
TPS65982BB is sufficient. For PP_5V0 and VBUS it is recommended to use 4 vias to reduce inductance through  
the VBUS switch and to have low resistive connection to the bulk cap on the opposite layer. The recommended  
via is a 16mil diameter / 8mil hole that is filled (epoxy fill or Cu fill) and tented on both sides of the PCB. The  
tenting will help reduce solder from wicking and lifting the BGA package. The figure below shows the  
recommended via size.  
Figure 26. Recommended Via Size  
The table below shows the minimum trace widths. It is recommended to take into account any losses that may  
be present such as resistance from system supplies to input supply pins (VIN_3V3).  
Table 5. Minimum Trace Widths  
Signal  
VIN_3V3 (H1, B1)  
Minimum Width (mil)  
6
6
4
8
LDO_3V3, LDO_1V8A, LDO_1V8D, LDO_BMC  
GPIO, VIN_3V3 (F10)  
Component GND  
34  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
11.2.3 USB2 Routing  
It is important to reduce the number of vias use when routing USB2 signals from the two Type-C receptacles and  
to the USB Type-A receptacle or USB hub. Routing on the top and bottom layers only will reduce the amount of  
antenna created when using a through hole via to connect an outer layer to an inner layer. When fanning out the  
BGA it is recommended to use 4mil traces to get enough clearance to route the width and gap requirements for  
impedance matching. Follow the USB2 specification and USB Hub requirements for complete routing rules.  
11.2.4 Oval Pad for BGA Fanout  
The footprint below uses an oval footprint for the outer pads of the BGA. This allows for routing the inner pads  
through the outer pads. The figure below shows the pad size for the out oval pads.  
Figure 27. Example Footprint  
Figure 28. Oval Pad Sizing  
11.2.5 Top and Bottom Layer Complete Routing  
The figures below incorporate the guidelines to route all of the required TPS65982BB signals on the top and  
bottom layer only. For GND and the VBUS switch (PP_5V0 & VBUS) they are connected all with planes/pours.  
Follow the amount of vias used and placement to ensure proper grounding and heat dissipation. All vias must be  
connected to a GND plane.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TPS65982BB  
TPS65982BB  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
www.ti.com  
Figure 29. Top Layer Routing  
Figure 30. Bottom Layer Routing  
36  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS65982BB  
TPS65982BB  
www.ti.com  
SLVSER3A NOVEMBER 2018REVISED APRIL 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
NSR20F30NXT5G data sheet, Schottky Barrier Diode,  
http://www.onsemi.com/PowerSolutions/product.do?id=NSR20F30NX  
USB Power Delivery Specification Revision 3.0, V2.0 (August 2019)  
USB Type-C Specification Release 2.0 (August 2019)  
Billboard Device Class Spec Revision 1.21 (September 2016)  
USB Battery Charging Specification Revision 1.2 (December 7th, 2010)  
W25X05CL data sheet, 2.5 / 3 / 3.3 V 512K-Bit Serial Flash Memory With 4KB Sectors and Dual I/O SPI,  
www.winbond.com/hq/product/code-storage-flash-memory/serial-nor-flash/?__locale=en&partNo=W25X05CL  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
E2E is a trademark of Texas Instruments.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: TPS65982BB  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65982BBZBHR  
ACTIVE  
NFBGA  
ZBH  
96  
2500 RoHS & Green  
Call TI  
Level-3-260C-168 HR  
-10 to 85  
TPS65982BB  
BH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65982BBZBHR  
NFBGA  
ZBH  
96  
2500  
330.0  
16.4  
6.3  
6.3  
2.1  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZBH 96  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 31.8  
TPS65982BBZBHR  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZBH0096A  
NFBGA - 1 mm max height  
SCALE 2.000  
PLASTIC BALL GRID ARRAY  
6.1  
5.9  
B
A
BALL A1 CORNER  
INDEX AREA  
6.1  
5.9  
(0.65)  
C
1 MAX  
SEATING PLANE  
0.08 C  
BALL TYP  
5
0.25  
TYP  
0.19  
TYP  
SYMM  
(0.5) TYP  
L
K
J
(0.5) TYP  
H
G
F
SYMM  
96X  
5
TYP  
E
D
C
0.35  
0.25  
0.15  
0.05  
C A  
C
B
B
A
0.5 TYP  
1
2
3
4
5
6
7
8
9 10 11  
0.5 TYP  
4221754/B 09/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZBH0096A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
96X ( 0.25)  
(0.5) TYP  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
(0.5) TYP  
C
D
E
F
G
H
J
SYMM  
K
L
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.25)  
METAL  
(
0.25)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221754/B 09/2018  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZBH0096A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
96X ( 0.25)  
(0.5) TYP  
(R0.05) TYP  
7
1
2
3
5
8
9
4
6
10  
11  
A
B
(0.5) TYP  
C
D
E
F
G
H
J
METAL  
TYP  
SYMM  
K
L
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4221754/B 09/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPS65982BBZBHR

带集成 5V 负载开关且适用于 USB-PD 设备的双 USB 告示板 | ZBH | 96 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65982DMC

坞站管理控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65982DMCZBHR

坞站管理控制器 | ZBH | 96 | -10 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65987D

具有集成电源开关的 USB Type-C® 和 USB PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65987DDHRSHR

具有集成电源开关的 USB Type-C® 和 USB PD 控制器 | RSH | 56 | -10 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65987DDK

适用于 USB4 器件且具有集成电源开关的 USB Type-C® 和 USB PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65987DDKRSHR

适用于 USB4 器件且具有集成电源开关的 USB Type-C® 和 USB PD 控制器 | RSH | 56 | -10 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65988

具有集成电源开关的双端口 USB Type-C™ 和 USB PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65988DHRSHR

具有集成电源开关的双端口 USB Type-C™ 和 USB PD 控制器 | RSH | 56 | -10 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65988DK

适用于 USB4 器件且具有集成电源开关的双端口 USB Type-C® 和 USB PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65988DKRSHR

适用于 USB4 器件且具有集成电源开关的双端口 USB Type-C® 和 USB PD 控制器 | RSH | 56 | -10 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65994AD

具有集成电源开关的双端口 USB Type-C® 和 USB PD 控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI