TPS7A4701QRGWTQ1 [TI]

具有使能功能的汽车类、1A、36V、低噪声、高 PSRR、低压降稳压器 | RGW | 20 | -40 to 125;
TPS7A4701QRGWTQ1
型号: TPS7A4701QRGWTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类、1A、36V、低噪声、高 PSRR、低压降稳压器 | RGW | 20 | -40 to 125

稳压器
文件: 总31页 (文件大小:2160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
TPS7A47-Q1 35V1A4.2µVRMS 射频 LDO 电压稳压器  
1 特性  
2 应用  
1
符合汽车应用 要求  
符合 AEC-Q100 标准,其中包括以下内容:  
电压控制振荡器 (VCO)  
RxTx PA 电路  
汽车信息娱乐系统与组合仪表  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
用于运算放大器、  
DACADC 和其他高精度模拟电路的电源轨  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C4A  
3 说明  
输入电压范围:3V 35V  
TPS7A47-Q1 器件是一款正电压 (35V)、超低噪声  
(4.2µVRMS) 低压降线性稳压器 (LDO),具有 1A 负载电  
流灌入能力。  
工作结温范围:  
–40°C +145°C  
输出电压噪声:  
4.2µVRMS (10Hz–100kHz)  
TPS7A47-Q1 输出电压可通过用户可编程印刷电路板  
(PCB) 布局(高达 20.5V)进行配置,也可以使用外部  
反馈电阻器进行调节。  
电源抑制比:  
82dB (100Hz)  
55dB (10Hz–10MHz)  
TPS7A47-Q1 采用双极技术进行设计,主要用于高精  
度、高精密仪表 应用 ,在这些应用中干净的电压轨对  
于最大程度地提高系统性能而言至关重要。此特性使得  
该器件非常适用于为运算放大器、模数转换器  
(ADC)、数模转换器 (DAC) 和其他高性能模拟电路供  
电。  
两个输出电压模式:  
ANY-OUT™版本(经由 PCB 布局进行配置的  
用户可编程输出):  
输出电压范围:1.4V 20.5V  
可调节运行:  
输出电压范围:1.4V 34V  
输出电流:1A  
此外,TPS7A47-Q1 还非常适用于后置直流/直流转换  
器稳压。通过滤除直流/直流开关转换所固有的输出电  
压纹波,可确保在灵敏仪表、音频和射频 应用中实现  
最高的系统性能。  
热阻:θJA = 31.1°C/W  
压差:1A 时为 307mV  
CMOS 逻辑电平兼容的使能引脚  
内置固定电流限制和  
热关断  
器件信息(1)  
器件型号  
封装  
VQFN (20)  
封装尺寸(标称值)  
TPS7A47-Q1  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
8 V  
VIN  
IN  
5 V  
OUT  
EN1  
EN  
TPS7A47-Q1  
VCC1  
High-Performance DAC  
VIN  
EN1  
IN  
3.3 V  
VDD  
EN  
OUT  
TPS7A47-Q1  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS118  
 
 
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 19  
9.1 Power Dissipation (PD)............................................ 19  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 12  
7.5 Programming........................................................... 12  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
10.3 Thermal Protection................................................ 21  
10.4 Estimating Junction Temperature ......................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 文档支持................................................................ 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
日期  
修订版本  
说明  
2017 8 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
5 Pin Configuration and Functions  
RGW Package  
5-mm × 5-mm, 20-Pin VQFN  
Top View  
OUT  
NC  
1
2
15  
14  
13  
12  
11  
IN  
NR  
PowerPAD  
3
SENSE/FB  
6P4V2  
EN  
4
5
0P1V  
0P2V  
6P4V1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
When connected to GND, this pin adds 0.1 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
0P1V  
12  
I
I
I
I
I
I
I
I
When connected to GND, this pin adds 0.2 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
0P2V  
0P4V  
0P8V  
1P6V  
3P2V  
6P4V1  
6P4V2  
11  
10  
9
When connected to GND, this pin adds 0.4 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
When connected to GND, this pin adds 0.8 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
When connected to GND, this pin adds 1.6 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
8
When connected to GND, this pin adds 3.2 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
6
When connected to GND, this pin adds 6.4 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
5
When connected to GND, this pin adds 6.4 V to the nominal output voltage of the regulator.  
Do not connect any voltage other than GND to this pin. If not used, leave this pin floating.  
4
Enable pin. The device is enabled when the voltage on this pin exceeds the maximum  
enable voltage, VEN(HI). If enable is not required, tie EN to IN.  
EN  
13  
7
I
GND  
Ground  
Input supply. A capacitor greater than or equal to 1 µF must be tied from this pin to ground to  
assure stability.  
IN  
15, 16  
I
A 10-µF capacitor is recommended to be connected from IN to GND (as close to the device  
as possible) to reduce circuit sensitivity to printed circuit board (PCB) layout, especially when  
long input traces or high source impedances are encountered.  
NC  
NR  
2, 17-19  
14  
This pin can be left open or tied to any voltage between GND and IN.  
Noise-reduction pin. When a capacitor is connected from this pin to GND, RMS noise can be  
reduced to very low levels. A capacitor greater than or equal to 10 nF must be tied from this  
pin to ground to assure stability. A 1-µF capacitor is recommended to be connected from NR  
to GND (as close to the device as possible) to maximize ac performance and minimize noise.  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Regulator output. A capacitor greater than or equal to 10 µF must be tied from this pin to  
ground to assure stability. A 47-µF ceramic output capacitor is highly recommended to be  
connected from OUT to GND (as close to the device as possible) to maximize ac  
performance.  
OUT  
1, 20  
O
Control-loop error amplifier input.  
This pin is the SENSE pin if the device output voltage is programmed using ANY-OUT (no  
external feedback resistors). This pin must be connected to OUT. Connect this pin to the  
point of load to maximize accuracy.  
This pin is the FB pin if the device output voltage is set using external resistors. See the  
Adjustable Operation Adjustable Operation section for more details.  
SENSE/FB  
PowerPAD  
3
I
Connect the PowerPAD to a large-area ground plane. The PowerPAD™ is internally  
connected to GND.  
Pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)(1)  
MIN  
–0.4  
–0.4  
–36  
MAX  
36  
36  
0.4  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
UNIT  
IN pin to GND pin  
EN pin to GND pin  
EN pin to IN pin  
OUT pin to GND pin  
NR pin to GND pin  
SENSE/FB pin to GND pin  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
–0.4  
0P1V pin to GND pin  
Voltage(2)  
V
0P2V pin to GND pin  
0P4V pin to GND pin  
0P8V pin to GND pin  
1P6V pin to GND pin  
3P2V pin to GND pin  
6P4V1 pin to GND pin  
6P4V2 pin to GND pin  
Current  
Peak output  
Internally limited  
Operating virtual junction, TJ  
Storage, Tstg  
–40  
–65  
145  
150  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2500  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
6.3 Recommended Operating Conditions  
over junction temperature range (unless otherwise noted)  
MIN  
3.0  
1.4  
10  
0
NOM  
MAX  
35.0  
34.0  
UNIT  
V
VI  
Input voltage  
VO  
Output voltage  
Output capacitor  
Enable pin voltage  
Output current  
V
COUT  
VEN  
IO  
µF  
V
VIN  
1.0  
0
A
6.4 Thermal Information  
TPS7A47-Q1  
RGW (VQFN)  
20 PINS  
31.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
21.1  
10.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.2  
RθJC(bot)  
1.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
at –40°C TJ 145°C; VI = VO(nom) + 1.0 V or VI = 3.0 V (whichever is greater); VEN = VI; IO = 0 mA; CIN = 10 µF; COUT = 10  
µF; CNR = 10 nF; SENSE/FB tied to OUT; and 0P1V, 0P2V, 0P4V, 0P8V, 1P6V, 3P2V, 6P4V1, 6P4V2 pins open (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VI  
Input voltage range  
3
35  
V
VI rising  
2.67  
2.5  
VUVLO  
Undervoltage lockout threshold  
V
VI falling  
V(REF)  
Reference voltage  
V(REF) = V(FB)  
,
1.4  
V
VUVLO(HYS)  
Under-voltage lockout hysteresis  
177  
VOUT  
1.4  
mV  
Using ANY-OUT option  
VNR  
Noise reduction pin voltage  
Output voltage range  
V
V
In adjustable mode only  
COUT = 20 µF, using ANY-OUT option  
COUT = 20 µF, using adjustable option  
TJ = 25°C, COUT = 20 µF  
1.4  
1.4  
20.5  
34  
VO  
Nominal VO accuracy  
Overall VO accuracy  
–1.0  
1.0  
%VO  
%VO  
VO(nom) + 1.0 V VI 35 V,  
0 mA IO 1 A, COUT = 20 µF  
–2.5  
2.5  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
Line regulation  
Load regulation  
VO(nom) + 1.0 V VI 35 V  
0 mA IO 1 A  
VI = 95% VO(nom), IO = 0.5 A  
VI = 95% VO(nom), IO = 1 A  
VO = 90% VO(nom)  
IO = 0 mA  
0.092  
0.3  
%VO  
%VO  
216  
V(DO)  
I(CL)  
Dropout voltage  
Current limit  
mV  
A
307  
450  
1.0  
1
1.26  
0.58  
6.1  
I(GND)  
Ground pin current  
mA  
IO = 1 A  
VEN = VI  
0.78  
0.81  
2.55  
3.04  
2
2
I(EN)  
Enable pin current  
µA  
µA  
VI = VEN = 35 V  
VEN = 0.4 V  
8
I(SHDN)  
Shutdown supply current  
VEN = 0.4 V, VI = 35 V  
60  
VI  
V+EN(HI)  
V+EN(LO)  
I(FB)  
Enable high-level voltage  
Enable low-level voltage  
Feedback pin current  
2.0  
0
V
V
0.4  
350  
78  
nA  
VI = 16 V, VO(nom) = 15 V, COUT = 50 µF,  
IO = 500 mA, CNR = 1 µF, f = 1 kHz  
PSRR  
Power-supply rejection ratio  
dB  
VI = 3 V, VO(nom) = 1.4 V, COUT = 50 µF,  
CNR = 1 µF, BW = 10 Hz to 100 kHz  
4.17  
4.67  
Vn  
Output noise voltage  
µVRMS  
VIN = 6 V, VO(nom) = 5 V, COUT = 50 µF,  
CNR = 1 µF, BW = 10 Hz to 100 kHz  
Shutdown, temperature increasing  
Reset, temperature decreasing  
170  
150  
Tsd  
TJ  
Thermal shutdown temperature  
Operating junction temperature  
°C  
°C  
–40  
145  
6
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
6.6 Typical Characteristics  
at TJ = 25°C; VI = VO(nom) + 1.0 V or VI = 3.0 V (whichever is greater); VEN = VI; IO = 0 mA; CIN = 10 µF; COUT = 10 µF; CNR  
=
1 µF; SENSE/FB tied to OUT; and 0P1V, 0P2V, 0P4V, 0P8V, 1P6V, 3P2V, 6P4V1, 6P4V2 pins open (unless otherwise  
noted)  
VOUT = 1.4 V, VNOISE = 4.17 mVRMS  
VOUT = 5 V, VNOISE = 4.67 mVRMS  
VOUT = 10 V, VNOISE = 7.25 mVRMS  
VOUT = 15 V, VNOISE = 12.28 mVRMS  
−40°C  
0°C  
3
2
+25°C  
+85°C  
+125°C  
10  
1
1
0
−1  
−2  
−3  
−4  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (Hz)  
Input Voltage (V)  
IOUT = 500 mA, COUT = 50 µF, CNR = 1 µF,  
BWRMSNOISE (10 Hz, 100 kHz)  
Figure 1. Noise vs Output Voltage  
Figure 2. Line Regulation  
−40°C  
0°C  
UVLO Threshold Off  
UVLO Threshold On  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
3
2
+25°C  
+85°C  
+125°C  
1
0
−1  
−2  
−3  
−4  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 3. Load Regulation  
Figure 4. Input Voltage Threshold vs Temperature  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
800  
600  
400  
200  
0
−40°C  
0°C  
+25°C  
+105°C  
+125°C  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
IOUT = 0 µA  
Figure 5. Enable Voltage Threshold vs Temperature  
Figure 6. Quiescent Current vs Input Voltage  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TJ = 25°C; VI = VO(nom) + 1.0 V or VI = 3.0 V (whichever is greater); VEN = VI; IO = 0 mA; CIN = 10 µF; COUT = 10 µF; CNR  
=
1 µF; SENSE/FB tied to OUT; and 0P1V, 0P2V, 0P4V, 0P8V, 1P6V, 3P2V, 6P4V1, 6P4V2 pins open (unless otherwise  
noted)  
−40°C  
0°C  
1.8  
1.6  
1.4  
1.2  
1
+25°C  
+85°C  
+125°C  
1
0.8  
0.6  
0.4  
0.2  
0
−40°C  
0°C  
+25°C  
+85°C  
+125°C  
0.1  
1
10  
100  
1000  
0
5
10  
15  
20  
25  
30  
35  
40  
Output Current (mA)  
Input Voltage (V)  
Figure 7. Ground Current vs Output Current  
Figure 8. Enable Current vs Input Voltage  
−40°C  
0°C  
+25°C  
9
8
7
6
5
4
3
2
1
0
2.5  
2
+105°C  
+125°C  
1.5  
1
−40°C  
0°C  
+25°C  
+85°C  
+125°C  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
4
8
12  
16  
20  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 90% VOUT(NOM)  
Figure 9. Shutdown Current vs Input Voltage  
Figure 10. Current Limit vs Input Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CNR = 0.01 mF  
CNR = 0.1 mF  
CNR = 1 mF  
CNR = 0.01 mF  
CNR = 0.1 mF  
CNR = 1 mF  
CNR = 2.2 mF  
CNR = 2.2 mF  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
IOUT = 1 A, COUT = 50 µF, VIN = 3 V, VOUT = 1.4 V  
IOUT = 0.5 A, COUT = 50 µF, VIN = 3 V, VOUT = 1.4 V  
Figure 11. Power-Supply Rejection Ratio vs  
Frequency and CNR  
Figure 12. Power-Supply Rejection Ratio vs  
Frequency and CNR  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
Typical Characteristics (continued)  
at TJ = 25°C; VI = VO(nom) + 1.0 V or VI = 3.0 V (whichever is greater); VEN = VI; IO = 0 mA; CIN = 10 µF; COUT = 10 µF; CNR  
=
1 µF; SENSE/FB tied to OUT; and 0P1V, 0P2V, 0P4V, 0P8V, 1P6V, 3P2V, 6P4V1, 6P4V2 pins open (unless otherwise  
noted)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 0 mA  
VDO = 200 mV  
VDO = 300 mV  
VDO = 500 mV  
VDO = 1 V  
IOUT = 50 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CNR = 1 µF, COUT = 50 µF, VIN = 3 V, VOUT = 1.4 V  
VOUT = 3.3 V, CNR = 1 µF, COUT = 50 µF, IOUT = 50 mA  
Figure 13. Power-Supply Rejection Ratio vs  
Frequency and IO  
Figure 14. Power-Supply Rejection Ratio vs  
Frequency and VDO  
VDO = 200 mV  
VDO = 200 mV  
VDO = 300 mV  
VDO = 500 mV  
VDO = 1 V  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDO = 300 mV  
VDO = 500 mV  
VDO = 1 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 3.3 V, CNR = 1 µF, COUT = 50 µF, IOUT = 500 mA  
VOUT = 3.3 V, CNR = 1 µF, COUT = 50 µF, IOUT = 1 A  
Figure 15. Power-Supply Rejection Ratio vs  
Frequency and VDO  
Figure 16. Power-Supply Rejection Ratio vs  
Frequency and VDO  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
VOUT = 1.4 V  
VOUT = 3.3 V  
VOUT = 1.4 V  
VOUT = 3.3 V  
VOUT = 5 V  
30  
VOUT = 5 V  
VOUT = 10 V  
VOUT = 15 V  
20  
10  
0
VOUT = 10 V  
VOUT = 15 V  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CNR = 1 µF, COUT = 50 µF, IOUT = 500 mA  
CNR = 1 µF, COUT = 50 µF, IOUT = 1000 mA  
Figure 17. Power-Supply Rejection Ratio vs  
Frequency and VOUT  
Figure 18. Power-Supply Rejection Ratio vs  
Frequency and VOUT  
Copyright © 2017, Texas Instruments Incorporated  
9
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TJ = 25°C; VI = VO(nom) + 1.0 V or VI = 3.0 V (whichever is greater); VEN = VI; IO = 0 mA; CIN = 10 µF; COUT = 10 µF; CNR  
=
1 µF; SENSE/FB tied to OUT; and 0P1V, 0P2V, 0P4V, 0P8V, 1P6V, 3P2V, 6P4V1, 6P4V2 pins open (unless otherwise  
noted)  
VIN  
IOUT  
(10 V/div)  
(1 A/div)  
VOUT  
VOUT  
(10 mV/div)  
(10 mV/div)  
Time (500 ms/div)  
Time (5 ms/div)  
VIN = 5 V, VOUT = 3.3 V, IOUT = 10 mA to 845 mA  
VIN = 5 V to 15 V, VOUT = 3.3 V, IOUT = 845 mA  
Figure 19. Load Transient  
Figure 20. Line Transient  
IOUT = 50 mA, VNOISE = 5 mVRMS  
IOUT = 20 mA, VNOISE = 5.9 mVRMS  
VEN  
10  
1
(2 V/div)  
VOUT  
(2 V/div)  
IOUT  
(200 mA/div)  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
Time (50 ms/div)  
Frequency (Hz)  
Startup time = 65 ms, VIN = 6 V, VOUT = 5V, IOUT = 500 mA,  
CIN = 10 µF, COUT = 50 µF  
VOUT = 4.7 V, COUT = 10 µF, CNR = 1 µF, BWRMSNOISE (10 Hz,  
100 kHz)  
Figure 21. Startup  
Figure 22. Noise vs Output Current  
10  
Copyright © 2017, Texas Instruments Incorporated  
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
7 Detailed Description  
7.1 Overview  
The TPS7A47-Q1 is a positive voltage (35 V), ultralow-noise (4.2 µVRMS) LDO capable of sourcing a 1-A load.  
The TPS7A47-Q1 is designed with bipolar technology primarily for high-accuracy, high-precision instrumentation  
applications where clean voltage rails are critical to maximize system performance. This feature makes the  
device ideal for powering operational amplifiers, analog-to-digital converters (ADCs), digital-to-analog converters  
(DACs), and other high-performance analog circuitry.  
7.2 Functional Block Diagram  
IN  
IN  
OUT  
OUT  
Thermal  
Shutdown  
UVLO  
CIN  
COUT  
Current  
Limit  
100 kW  
Band  
Gap  
265.5 kW  
SENSE/FB  
3.2 MW  
0P1V  
0P2V  
0P4V  
0P8V  
1.6 MW  
800 kW  
400 kW  
1.572 MW  
Fast  
Charge  
Enable  
EN  
TI Device  
1P6V 3P2V 6P4V 6P4V  
NR  
CNR  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Internal Current Limit (ICL  
)
The internal current limit circuit is used to protect the LDO against high-load current faults or shorting events. The  
LDO is not designed to operate at a steady-state current limit. During a current-limit event, the LDO sources  
constant current. Therefore, the output voltage falls when load impedance decreases. Also, when a current limit  
occurs while the resulting output voltage is low, excessive power is dissipated across the LDO, which results in a  
thermal shutdown of the output.  
7.3.2 Enable (EN) And Undervoltage Lockout (UVLO)  
The TPS7A47-Q1 only turns on when both EN and UVLO are above the respective voltage thresholds. The  
UVLO circuit monitors input voltage (VI) to prevent device turn-on before VI rises above the lockout voltage. The  
UVLO circuit also causes a shutdown when VI falls below lockout. The EN signal allows independent logic-level  
turn-on and shutdown of the LDO when the input voltage is present. EN can be connected directly to VI if  
independent turn-on is not needed.  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Soft-Start And Inrush Current  
Soft-start refers to the ramp-up characteristic of the output voltage during LDO turn-on after EN and UVLO have  
achieved the threshold voltage. The noise-reduction capacitor serves a dual purpose of both governing output  
noise reduction and programming the soft-start ramp during turn-on.  
Inrush current is defined as the current through the LDO from IN to OUT during the time of the turn-on ramp up.  
Inrush current then consists primarily of the sum of load and charge current to the output capacitor. Use  
Equation 1 to estimate in-rush current:  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VO ramp  
RLOAD is the resistive load impedance  
(1)  
7.4 Device Functional Modes  
The TPS7A47-Q1 has the following functional modes:  
1. Enabled: when EN goes above V+EN(HI), the device is enabled.  
2. Disabled: when EN goes below V+EN(LO), the device is disabled. During this time, OUT is high impedance,  
and the current into IN does not exceed I(SHDN)  
.
7.5 Programming  
7.5.1 ANY-OUT Programmable Output Voltage  
For ANY-OUT operation, do not use external resistors to set the output voltage, but use device pins 4, 5, 6, 8, 9,  
10, 11, and 12 to program the regulated output voltage. Each pin is either connected to ground (active) or is left  
open (floating). The ANY-OUT programming is set by Equation 2 as the sum of the internal reference voltage  
(V(REF) = 1.4 V) plus the accumulated sum of the respective voltages assigned to each active pin; that is, 100 mV  
(pin 12), 200 mV (pin 11), 400 mV (pin 10), 800 mV (pin 9), 1.6 V (pin 8), 3.2 V (pin 6), 6.4 V (pin 5), or 6.4 V  
(pin 4). Table 1 summarizes these voltage values associated with each active pin setting for reference. By  
leaving all program pins open, or floating, the output is thereby programmed to the minimum possible output  
voltage equal to V(REF)  
.
VOUT = VREF + (S ANY-OUT Pins to Ground)  
(2)  
Table 1. ANY-OUT Programmable Output Voltage  
ANY-OUT PROGRAM PINS (Active Low)  
Pin 4 (6P4V2)  
ADDITIVE OUTPUT VOLTAGE LEVEL  
6.4 V  
6.4 V  
Pin 5 (6P4V1)  
Pin 6 (3P2)  
3.2 V  
Pin 8 (1P6)  
1.6 V  
Pin 9 (0P8)  
800 mV  
400 mV  
200 mV  
100 mV  
Pin 10 (0P4)  
Pin 11 (0P2)  
Pin 12 (0P1)  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
Table 2 shows a list of the most common output voltages and the corresponding pin settings. The voltage setting  
pins have a binary weight; therefore, the output voltage can be programmed to any value from 1.4 V to 20.5 V in  
100-mV steps.  
Table 2. Common Output Voltages and Corresponding Pin Settings  
PIN NAMES AND VOLTAGE PER PIN  
0P1V  
(100 mV)  
0P2V  
(200 mV)  
0P4V  
(400 mV)  
0P8V  
(800 mV)  
1P6V  
(1.6 V)  
3P2V  
(3.2 V)  
6P4V1  
(6.4 V)  
6P4V2  
(6.4 V)  
VO (V)  
1.4  
1.5  
1.8  
2.5  
3
Open  
GND  
Open  
GND  
Open  
GND  
GND  
Open  
Open  
Open  
Open  
Open  
GND  
Open  
Open  
Open  
GND  
Open  
GND  
GND  
Open  
GND  
GND  
Open  
GND  
GND  
Open  
Open  
GND  
Open  
Open  
Open  
GND  
GND  
GND  
Open  
Open  
GND  
GND  
Open  
Open  
Open  
GND  
Open  
Open  
GND  
Open  
Open  
GND  
GND  
Open  
GND  
Open  
Open  
Open  
Open  
GND  
GND  
GND  
Open  
GND  
Open  
Open  
Open  
GND  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
GND  
Open  
GND  
Open  
GND  
GND  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
GND  
GND  
GND  
GND  
GND  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
GND  
GND  
GND  
3.3  
4.5  
5
10  
12  
15  
18  
20.5  
7.5.2 Adjustable Operation  
The TPS7A47-Q1 has an output voltage range of 1.4 V to 34 V. For adjustable operation, set the nominal output  
voltage of the device (as shown in Figure 23) using two external resistors.  
VIN  
VOUT  
OUT  
IN  
CIN  
R1  
R2  
TPS7A4701-Q1  
10 mF  
EN  
NR  
FB  
COUT  
47 mF  
GND  
CNR/SS  
1 mF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. Adjustable Operation for Maximum AC Performance  
R1 and R2 can be calculated for any output voltage within the operational range. The current through feedback  
resistor R2 must be at least 5 µA to ensure stability. Additionally, the current into the FB pin (I(FB), typically  
350 nA) creates an additional output voltage offset that depends on the resistance of R1. For high-accuracy  
applications, select R2 such that the current through R2 is at least 35 µA to minimize any effects of I(FB) variation  
on the output voltage; 10 kΩ is recommended. Equation 3 calculates R1.  
VOUT - VREF  
R1 =  
VREF  
IFB  
+
R2  
where  
VREF = 1.4 V  
IFB = 350 nA  
(3)  
Use 0.1% tolerance resistors to minimize the effects of resistor inaccuracy on the output voltage.  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
 
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Table 3 shows the resistor combinations to achieve some standard rail voltages with commercially available 1%  
tolerance resistors. The resulting output voltages yield a nominal error of < 0.5%.  
Table 3. Suggested Resistors for Common Voltage Rails  
VOUT  
1.4 V  
1.8 V  
3.3 V  
5 V  
R1, CALCULATED  
0 Ω  
R1, CLOSEST 1% VALUE  
R2  
0 Ω  
2.782 kΩ  
2.8 kΩ  
13.3 kΩ  
25.5 kΩ  
76.8 kΩ  
102 kΩ  
118 kΩ  
165 kΩ  
9.76 kΩ  
9.76 kΩ  
10 kΩ  
10.2 kΩ  
10.5 kΩ  
10 kΩ  
10.2 kΩ  
13.213 kΩ  
25.650 kΩ  
77.032 kΩ  
101.733 kΩ  
118.276 kΩ  
164.238 kΩ  
12 V  
15 V  
18 V  
24 V  
To achieve higher nominal accuracy, two resistors can be used in the place of R1. Select the two resistor values  
such that the sum results in a value as close as possible to the calculated R1 value.  
There are several alternative ways to set the output voltage. The program pins can be pulled low using external  
general-purpose input/output pins (GPIOs), or can be hardwired by the given layout of the printed circuit board  
(PCB) to set the ANY-OUT voltage. The TPS7A4701 evaluation module (EVM), available for purchase from the  
TI eStore, allows the output voltage to be programmed using jumpers.  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A47-Q1 is a high-voltage, low-noise, 1-A LDO. Low-noise performance makes this LDO ideal for  
providing rail voltages to noise-sensitive loads, such as PLLs, oscillators, and high-speed ADCs.  
8.2 Typical Application  
As shown in Figure 24, output voltage is set by grounding the appropriate control pins. When grounded, all  
control pins add a specific voltage on top of the internal reference voltage (V(REF) = 1.4 V). For example, when  
grounding pins 0P1V, 0P2V, and 1P6V, the voltage values 0.1 V, 0.2 V, and 1.6 V are added to the 1.4-V  
internal reference voltage for VO(nom) equal to 3.3 V, as described in the Programming section.  
VIN = 5 V  
VOUT = 3.3 V  
IN  
OUT  
10 mF  
47 mF  
EN  
NR  
SENSE  
GND  
Load  
TPS7A4701-Q1  
1 mF  
0P1V  
0P2V  
0P4V 0P8V 1P6V 3P2V 6P4V1 6P4V2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. Typical Application, VOUT = 3.3 V  
8.2.1 Design Requirements  
PARAMETER  
Input voltage  
Output voltage  
Output current  
DESIGN REQUIREMENT  
5.0 V, ±10%  
3.3 V, ±3%  
500 mA  
Peak-to-peak noise, 10 Hz to 100 kHz  
50 µVPP  
8.2.2 Detailed Design Procedure  
8.2.2.1 Capacitor Recommendations  
This LDO is designed to be stable using low equivalent series resistance (ESR), ceramic capacitors at the input,  
output, and at the noise-reduction pin (NR, pin 14). Multilayer ceramic capacitors have become the industry  
standard for these types of applications and are recommended here, but must be used with good judgment.  
Ceramic capacitors that employ X7R-, X5R-, and COG-rated dielectric materials provide relatively good  
capacitive stability across temperature, but the use of Y5V-rated capacitors is discouraged precisely because the  
capacitance varies so widely. In all cases, ceramic capacitance varies a great deal with operating voltage and the  
design engineer must be aware of these characteristics. TI recommends applying a 50% derating of the nominal  
capacitance in the design.  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
Attention must be given to the input capacitance to minimize transient input droop during load current steps  
because the TPS7A47-Q1 has a very fast load transient response. Large input capacitors are necessary for good  
transient load response, and have no detrimental influence on the stability of the device. However, using large  
ceramic input capacitances can also cause unwanted ringing at the output if the input capacitor, in combination  
with the wire lead inductance, creates a high-Q peaking effect during transients. For example, a 5-nH lead  
inductance and a 10-µF input capacitor form an LC filter with a resonance frequency of 712 kHz at the edge of  
the control loop bandwidth. Short, well-designed interconnect leads to the up-stream supply minimize this effect  
without adding damping. Damping of unwanted ringing can be accomplished by using a tantalum capacitor, with  
a few hundred milliohms of ESR, in parallel with the ceramic input capacitor.  
8.2.2.1.1 Input and Output Capacitor Requirements  
The TPS7A47-Q1 is designed and characterized for operation with ceramic capacitors of 10 µF or greater at the  
input and output. Optimal noise performance is characterized using a total output capacitor value of 50 µF. Input  
and output capacitances must be located as near as practical to the respective input and output pins.  
8.2.2.1.2 Noise-Reduction Capacitor (CNR  
)
The noise-reduction capacitor, connected to the NR pin of the LDO, forms an RC filter for filtering out noise that  
might ordinarily be amplified by the control loop and appear on the output voltage. Larger capacitances, up to  
1 µF, affect noise reduction at lower frequencies and also tend to further reduce noise at higher frequencies. CNR  
also serves a secondary purpose in programming the turn-on rise time of the output voltage and thereby controls  
the turn-on surge current.  
8.2.2.2 Dropout Voltage (VDO  
)
Generally speaking, the dropout voltage often refers to the voltage difference between the input and output  
voltage (V(DO) = VI – VO). However, in the Electrical Characteristics V(DO) is defined as the VI – VO voltage at the  
rated current (I(RATED)), where the main current pass-FET is fully on in the Ohmic region of operation and is  
characterized by the classic RDS(on) of the FET. V(DO) indirectly specifies a minimum input voltage above the  
nominal programmed output voltage at which the output voltage is expected to remain within its accuracy  
boundary. If the input falls below this V(DO) limit (VI < VO + V(DO)), then the output voltage decreases in order to  
follow the input voltage.  
Dropout voltage is always determined by the RDS(on) of the main pass-FET. Therefore, if the LDO operates below  
the rated current, then V(DO) is directly proportional to the output current and can be reduced by the same factor.  
Use Equation 4 to calculate RDS(on) for the TPS7A47-Q1:  
VDO  
RDS(ON)  
=
IRATED  
(4)  
8.2.2.3 Output Voltage Accuracy  
The output voltage accuracy specifies minimum and maximum output voltage error, relative to the expected  
nominal output voltage stated as a percent. This accuracy error typically includes the errors introduced by the  
internal reference and the load and line regulation across the full range of rated load and line operating  
conditions over temperature, unless otherwise specified by the Electrical Characteristics. Output voltage  
accuracy also accounts for all variations between manufacturing lots.  
8.2.2.4 Startup  
The startup time for the TPS7A47-Q1 depends on the output voltage and the capacitance of the CNR capacitor.  
Equation 5 calculates the startup time for a typical device.  
V + 5  
R
tSS = 100,000 CNR ln  
«
÷
5
where  
CNR = capacitance of the CNR capacitor  
VR = VO voltage if using the ANY-OUT configuration, or 1.4 V if using the adjustable configuration  
(5)  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
 
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
8.2.2.5 AC Performance  
AC performance of the LDO is typically understood to include power-supply rejection ratio, load step transient  
response, and output noise. These metrics are primarily a function of open-loop gain and bandwidth, phase  
margin, and reference noise.  
8.2.2.5.1 Power-Supply Rejection Ratio (PSRR)  
PSRR is a measure of how well the LDO control loop rejects ripple noise from the input source to make the dc  
output voltage as noise-free as possible across the frequency spectrum (usually 10 Hz to 10 MHz). Equation 6  
gives the PSRR calculation as a function of frequency where input noise voltage [VS(IN)(f)] and output noise  
voltage [VS(OUT)(f)] are understood to be purely ac signals.  
VS(IN)(f)  
PSRR (dB) = 20 Log10  
VS(OUT)(f)  
(6)  
Noise that couples from the input to the internal reference voltage for the control loop is also a primary  
contributor to reduced PSRR magnitude and bandwidth. This reference noise is greatly filtered by the noise-  
reduction capacitor at the NR pin of the LDO in combination with an internal filter resistor (RSS) for optimal  
PSRR.  
The LDO is often employed not only as a dc/dc regulator, but also to provide exceptionally clean power-supply  
voltages that are free of noise and ripple to power-sensitive system components. This usage is especially true for  
the TPS7A47-Q1.  
8.2.2.5.2 Load Step Transient Response  
The load step transient response is the output voltage response by the LDO to a step change in load current  
whereby output voltage regulation is maintained. The worst-case response is characterized for a load step of  
10 mA to 1 A (at 1 A per microsecond) and shows a classic, critically-damped response of a very stable system.  
The voltage response shows a small dip in the output voltage when charge is initially depleted from the output  
capacitor and then the output recovers as the control loop adjusts itself. The depth of the charge depletion  
immediately after the load step is directly proportional to the amount of output capacitance. However, to some  
extent, the speed of recovery is inversely proportional to that same output capacitance. In other words, larger  
output capacitances act to decrease any voltage dip or peak occurring during a load step but also decrease the  
control-loop bandwidth, thereby slowing response.  
The worst-case, off-loading step characterization occurs when the current step transitions from 1 A to 0 mA.  
Initially, the LDO loop cannot respond fast enough to prevent a small increase in output voltage charge on the  
output capacitor. Because the LDO cannot sink charge current, the control loop must turn off the main pass-FET  
to wait for the charge to deplete, thus giving the off-load step its typical monotonic decay (which appears  
triangular in shape).  
8.2.2.5.3 Noise  
The TPS7A47-Q1 is designed, in particular, for system applications where minimizing noise on the power-supply  
rail is critical to system performance. This scenario is the case for phase-locked loop (PLL)-based clocking  
circuits for instance, where minimum phase noise is all important, or in-test and measurement systems where  
even small power-supply noise fluctuations can distort instantaneous measurement accuracy. Because the  
TPS7A47-Q1 is also designed for higher voltage industrial applications, the noise characteristic is well designed  
to minimize any increase as a function of the output voltage.  
LDO noise is defined as the internally-generated intrinsic noise created by the semiconductor circuits alone. This  
noise is the sum of various types of noise (such as shot noise associated with current-through-pin junctions,  
thermal noise caused by thermal agitation of charge carriers, flicker or 1/f noise that is a property of resistors and  
dominates at lower frequencies as a function of 1/f, burst noise, and avalanche noise).  
To calculate the LDO RMS output noise, a spectrum analyzer must first measure the spectral noise across the  
bandwidth of choice (typically 10 Hz to 100 kHz in units of µV/Hz). The RMS noise is then calculated in the  
usual manner as the integrated square root of the squared spectral noise over the band, then averaged by the  
bandwidth.  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
8.2.3 Application Curves  
VOUT (10 µV/DIV)  
VEN (2 V/DIV)  
VOUT (1 V/DIV)  
ILOAD (500 mA/DIV)  
Figure 25. Startup With EN Pin Rising  
(10 ms per Division)  
Figure 26. Output Noise Voltage, 10 Hz to 100 kHz  
(10 ms per Division)  
18  
Copyright © 2017, Texas Instruments Incorporated  
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range of 3 V to 35 V. If the input supply is noisy,  
additional input capacitors with low ESR can help improve the output noise performance.  
9.1 Power Dissipation (PD)  
Power dissipation must be considered in the PCB design. In order to minimize risk of device operation above  
145°C, use as much copper area as available for thermal dissipation. Do not locate other power-dissipating  
devices near the LDO.  
Power dissipation in the regulator depends on the input to output voltage difference and load conditions.  
Equation 7 calculates PD:  
PD = (VOUT - VIN) ´ IOUT  
(7)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. Proper selection allows the minimum input voltage necessary for output regulation to be obtained.  
The primary heat conduction path for the VQFN (RGW) package is through the PowerPAD to the PCB. The  
PowerPAD must be soldered to a copper pad area under the device. Thermal vias are recommended to improve  
the thermal conduction to other layers of the PCB.  
The maximum power dissipation determines the maximum allowable junction temperature (TJ) for the device.  
According to Equation 8, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (θJA) of the combined PCB and device package and the temperature of the ambient  
air (TA).  
TJ = TA + (qJA ´ PD)  
(8)  
Unfortunately, this thermal resistance (θJA) depends primarily on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
spreading planes. The θJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB,  
and copper-spreading area and is to be used only as a relative measure of package thermal performance. For a  
well-designed thermal layout, θJA is actually the sum of the VQFN package junction-to-case (bottom) thermal  
resistance (θJCbot) plus the thermal resistance contribution by the PCB copper. By knowing θJCbot, the minimum  
amount of appropriate heat sinking can be used with Figure 27 to estimate θJA. θJCbot can be found in the  
Thermal Information table.  
120  
100  
80  
60  
qJA (RGW)  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
Board Copper Area (in2)  
NOTE: θJA value at a board size of 9-in2 (that is, 3-in × 3-in) is a JEDEC standard.  
Figure 27. θJA vs Board Size  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
 
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, all circuit components are recommended to be located on the same side of the  
circuit board and as near as practical to the respective LDO pin connections. Ground return connections to the  
input and output capacitor, and to the LDO ground pin, must also be as close to each other as possible and  
connected by a wide, component-side, copper surface. The use of vias and long traces to create LDO circuit  
connections is strongly discouraged and negatively affects system performance. This grounding and layout  
scheme minimizes inductive parasitics and thereby reduces load-current transients, minimizes noise, and  
increases circuit stability.  
A ground reference plane is also recommended. This reference plane serves to assure accuracy of the output  
voltage, shield noise, and behaves similar to a thermal plane to spread (or sink) heat from the LDO device when  
connected to the PowerPAD. In most applications, this ground plane is necessary to meet thermal requirements.  
Use the TPS7A4701 evaluation module (EVM), available for purchase from the TI eStore, as a reference for  
layout and application design.  
10.2 Layout Example  
Signal Ground  
10  
6
11  
5
R1  
R2  
Use R1 and R2  
with adjustable  
operation  
SN/FB  
NC  
1
EN  
NR  
15  
CNR  
Connect if  
ANYOUT  
operation is  
used.  
16  
20  
Power  
Ground  
Input  
Output  
COUT  
CIN  
Orient input and output capacitors  
vertically, so that the grounds are  
separated.  
Figure 28. Layout Example  
20  
Copyright © 2017, Texas Instruments Incorporated  
TPS7A47-Q1  
www.ti.com.cn  
ZHCSGI7 AUGUST 2017  
10.3 Thermal Protection  
The TPS7A47-Q1 contains a thermal shutdown protection circuit to turn off the output current when excessive  
heat is dissipated in the LDO. Thermal shutdown occurs when the thermal junction temperature (TJ) of the main  
pass-FET exceeds 170°C (typical). Thermal shutdown hysteresis assures that the LDO again resets (turns on)  
when the temperature falls to 145°C (typical). Because the TPS7A47-Q1 is capable of supporting high input  
voltages, a great deal of power can be expected to be dissipated across the device at low output voltages, which  
causes a thermal shutdown. The thermal time-constant of the semiconductor die is fairly short, and thus the  
output oscillates on and off at a high rate when thermal shutdown is reached until power dissipation is reduced.  
For reliable operation, the junction temperature must be limited to a maximum of 145°C. To estimate the thermal  
margin in a given layout, increase the ambient temperature until the thermal protection shutdown is triggered  
using worst-case load and highest input voltage conditions. For good reliability, thermal shutdown must be  
designed to occur at least 45°C above the maximum expected ambient temperature condition for the application.  
This configuration produces a worst-case junction temperature of 145°C at the highest expected ambient  
temperature and worst-case load.  
The internal protection circuitry of the TPS7A47-Q1 is designed to protect against thermal overload conditions.  
The circuitry is not intended to replace proper heat sinking. Continuously running the TPS7A47-Q1 into thermal  
shutdown degrades device reliability.  
10.4 Estimating Junction Temperature  
JEDEC standards recommend the use of PSI thermal metrics to estimate the junction temperatures of the LDO  
when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal resistances,  
but rather offer practical and relative means of estimating junction temperatures. These PSI metrics are  
determined to be significantly independent of copper-spreading area. The key thermal metrics (ΨJT and ΨJB) are  
given in the Thermal Information table and are used in accordance with Equation 9.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in Equation 7  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(9)  
版权 © 2017, Texas Instruments Incorporated  
21  
 
TPS7A47-Q1  
ZHCSGI7 AUGUST 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
TPS7A33 –36V1A、超低噪声负电压稳压器》  
TPS7A47XXEVM-094 评估模块用户指南》  
《使用前馈电容器和低压降稳压器的优缺点》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到所有的  
产品更改信息每周摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
ANY-OUT, PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
22  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A4701QRGWRQ1  
TPS7A4701QRGWTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGW  
RGW  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
7A4701Q  
7A4701Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7A4701QRGWRQ1  
TPS7A4701QRGWTQ1  
VQFN  
VQFN  
RGW  
RGW  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7A4701QRGWRQ1  
TPS7A4701QRGWTQ1  
VQFN  
VQFN  
RGW  
RGW  
20  
20  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGW 20  
5 x 5, 0.65 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227157/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.15±0.1  
2X 2.6  
(0.1) TYP  
10  
6
16X 0.65  
5
11  
SYMM  
21  
2X  
2.6  
15  
1
0.36  
0.26  
20X  
PIN1 ID  
(OPTIONAL)  
0.1  
C A B  
C
20  
16  
0.05  
SYMM  
0.65  
0.45  
20X  
4219039/A 06/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
3.15)  
(2.6)  
(
20  
16  
16X (0.65)  
15  
1
(1.325)  
21  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
(Ø0.2) VIA  
6
10  
TYP  
(1.325)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219039/A 06/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
4X ( 1.37)  
2X (0.785)  
16  
20  
16X (0.65)  
21  
1
15  
2X (0.785)  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
METAL  
TYP  
6
10  
SYMM  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219039/A 06/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7A4701RGWR

具有使能功能的 1A、36V、低噪声、高 PSRR、低压降稳压器 | RGW | 20 | -40 to 125
TI

TPS7A4701RGWT

具有使能功能的 1A、36V、低噪声、高 PSRR、低压降稳压器 | RGW | 20 | -40 to 125
TI

TPS7A49

+36V, +150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A4901

36V, 150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A4901DGNR

+36V, +150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A4901DGNT

+36V, +150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A4901DRBR

具有使能功能的 150mA、36V、低噪声、高 PSRR、可调节低压降稳压器 | DRB | 8 | -40 to 125
TI

TPS7A4901DRBT

暂无描述
TI

TPS7A49XX

+36V, +150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A49XX_10

+36V, +150mA, Ultralow-Noise, Positive LINEAR REGULATOR
TI

TPS7A52

2A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器
TI

TPS7A52-Q1

汽车类 2A、低输入电压 (1.1V)、低噪声、高精度、超低压降 (LDO) 稳压器
TI