TPS7A88 [TI]

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器;
TPS7A88
型号: TPS7A88
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器

稳压器
文件: 总36页 (文件大小:2314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
TPS7A88 双路 1A 低噪声 (3.8 µVRMS)LDO 稳压器  
1 特性  
3 说明  
1
两个独立的 LDO 通道  
TPS7A88 是一款双路、低噪声 (3.8 µVRMS)、低压降  
(LDO) 稳压器,每通道具有 1A 的拉电流能力,其最高  
压降仅为 200mV。  
低输出噪声:< 3.8µVRMS (10Hz–100kHz)  
低压降:1A 电流时为 200mV(最大值)  
宽输入电压范围:1.4V 6.5V  
宽输出电压范围:0.8V 5.0V  
高电源纹波抑制:  
TPS7A88 提供两个独立的 LDO,极具灵活性,解决方  
案尺寸要比两个单通道 LDO 50% 左右。每个输出  
可通过外部电阻在 0.8V 5.0V 范围内进行调节。  
TPS7A88 的宽输入电压范围支持其在 1.4V 6.5V 范  
围内的电压下工作。  
直流时为 75dB  
100kHz 时为 40dB  
1MHz 时为 40dB  
TPS7A88 的输出电压精度(整个线路、负载和温度范  
围内)达 1%,并且可通过软启动功能减少涌入电流,  
因此非常适合为敏感类模拟低压器件 [例如,压控振荡  
(VCO)、模数转换器 (ADC)、数模转换器 (DAC)、  
高端处理器和现场可编程门阵列 (FPGA)] 供电。  
整个线路、负载和温度范围内的精度达 1.0%  
出色的负载瞬态响应  
可调节的启动浪涌控制  
可选软启动充电电流  
独立开漏电源正常 (PG) 输出  
10µF 或更大的陶瓷输出电容一起工作时保持稳  
TPS7A88 旨在为噪声敏感类组件供电,广泛适用于高  
速通信、视频、医疗或测试和测量等 应用。此器件具  
4 µVRMS 的超低输出噪声和宽带电源抑制比 (PSRR)  
1MHz 时为 40dB),最大限度减少了相位噪声和时  
钟抖动。这些 特性 最大限度提升了计时器件、ADC  
DAC 的性能。  
4mm × 4mm 20 引脚超薄型四方扁平无引线  
(WQFN) 封装  
2 应用  
高速模拟电路:  
器件信息(1)  
压控振荡器 (VCO)、模数转换器 (ADC)、数模  
转换器 (DAC) 以及低压差分信令 (LVDS)  
器件型号  
TPS7A88  
封装  
WQFN (20)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
成像:互补金属氧化物半导体 (CMOS) 传感器,视  
频专用集成电路 (ASIC)  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
测试和测量  
仪器仪表、医疗和音频  
数字负载:串化解串器 (SerDes),现场可编程栅极  
阵列 (FPGA)DSP™  
典型应用图  
ENABLE  
Clock  
LMK03328  
LMX2581  
PG1  
VIN1  
EN1  
IN1  
EN1  
OUT1  
OUT2  
VDD_VCO  
TPS7A88  
VIN2  
EN2  
IN2  
EN2  
PG2  
VDD  
SCLK  
ADC  
ADC3xxx  
ADC3xJxx  
ADS4xJBxx  
ADC5xJxx  
ADC12Jxxxx  
ENABLE  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS248  
 
 
 
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 16  
8
9
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 22  
8.3 Do's and Don'ts....................................................... 23  
Power Supply Recommendations...................... 24  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 器件支持 ............................................................... 26  
11.2 文档支持 ............................................................... 26  
11.3 社区资源................................................................ 26  
11.4 ....................................................................... 27  
11.5 静电放电警告......................................................... 27  
11.6 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
Changes from Original (November 2015) to Revision A  
Page  
已发布为量产数据”................................................................................................................................................................. 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
5 Pin Configuration and Functions  
RTJ Package  
4-mm × 4-mm 20-Pin WQFN  
Top View  
20 19 18 17 16  
IN1  
IN1  
1
15 OUT1  
OUT1  
GND  
2
3
4
5
14  
13  
12  
GND  
IN2  
Thermal Pad  
OUT2  
IN2  
11 OUT2  
6
7
8
9
10  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
EN1  
EN2  
20  
Enable pin for each channel. These pins turn the regulator on and off. If VENx(1) VIH(ENx), the regulator is enabled.  
If VENx VIL(ENx), the regulator is disabled. The ENx pin must be connected to INx if the enable function is not  
used.  
I
6
FB1  
FB2  
GND  
IN1  
16  
10  
Feedback pin for each channel. These pins are the inputs to the control loop error amplifier and are used to set  
the output voltage of the device.  
I
I
3, 13  
1, 2  
4, 5  
19  
Device GND. Connect both pins to the device thermal pad.  
Input pin for LDO1. A 10 µF or greater input capacitor is required to assure robust operation.  
Input pin for LDO2. A 10 µF or greater input capacitor is required to assure robust operation.  
IN2  
NR/SS1  
NR/SS2  
Noise reduction pin for each channel. Connect these pins to an external capacitor to bypass the noise generated  
by the internal band-gap reference. The capacitor reduces the output RMS noise to very low levels and sets the  
output ramp rate to limit inrush current.  
7
OUT1  
OUT2  
PG1  
14, 15  
11, 12  
17  
Regulated output 1. A 10 µF or greater capacitor must be connected from this pin to GND to assure stability.  
Regulated output 2. A 10 µF or greater capacitor must be connected from this pin to GND to assure stability.  
O
O
Open-drain power-good indicator pins for the LDO1 and LDO2 output voltages. A 10-kΩ to 100-kΩ external pullup  
resistor is required. These pins can be left floating or connected to GND if not used.  
PG2  
9
SS_CTRL1  
18  
Soft-start control pin for each channel. Connect these pins either to GND or INx to allow normal or fast charging of  
the NR/SSx capacitor. If a CNR/SSx capacitor is not used, SS_CTRLx must be connected to GND to avoid output  
overshoot.  
I
SS_CTRL2  
8
Thermal pad  
Connect the thermal pad to the printed circuit board (PCB) ground plane.  
(1) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range and all voltages with respect to GND (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
INx, PGx, ENx(2)  
7.0  
7.5  
VINx + 0.3(3)  
VINx + 0.3(3)  
3.6  
INx, PGx, ENx (5% duty cycle, pulse duration = 200 µs)  
Voltage  
Current  
OUTx  
V
SS_CTRLx  
NR/SSx, FBx(2)  
OUTx(2)  
PGx (sink current into device)(2)  
Internally limited  
A
5
mA  
°C  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–55  
–55  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.  
(3) The absolute maximum rating is VINx + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.4  
0.8  
0
MAX  
6.5  
5.0  
1
UNIT  
VINx  
Input supply voltage range  
Output voltage range  
V
V
VOUTx  
IOUTx  
CINx  
Output current  
A
Input capacitor, each input  
Output capacitor  
10  
µF  
µF  
µF  
kΩ  
°C  
COUTx  
CNR/SSx  
RPG  
10  
Noise-reduction capacitor  
Power-good pullup resistance  
Junction temperature range  
1
100  
125  
10  
TJ  
–40  
6.4 Thermal Information  
TPS7A88  
THERMAL METRIC(1)  
RTJ (WQFN)  
UNIT  
20 PINS  
33  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.8  
8.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.0  
RθJC(bot)  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
6.5 Electrical Characteristics  
over operating temperature range (TJ = –40°C to +125°C), VINx = 1.4 V, VOUTx(TARGET) = 0.8 V, IOUTx = 50 mA, VENx = 1.4 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, SS_CTRLx = GND, PGx pin pulled up to VINx with 100 kΩ, and for each channel  
(unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
VINx  
Input supply voltage range  
Reference voltage  
Input supply UVLO  
VUVLO  
1.4  
6.5  
V
VREF  
VUVLO  
VHYS  
0.8  
1.31  
290  
V
VINx rising  
1.39  
V
mV  
V
Output voltage range  
Output voltage accuracy(2)(3)  
Line regulation  
0.8 – 1.0%  
–1.0%  
5.0 + 1.0%  
1.0%  
VOUTx  
0.8 V VOUTx 5 V, 5 mA IOUTx 1 A  
IOUTx= 5 mA, 1.4 V VINx 6.5 V  
5 mA IOUTx 1 A  
ΔVOUTx(ΔVINx)  
ΔVOUTx(ΔIOUTx)  
0.003  
0.03  
%/V  
%/A  
Load regulation  
VINx 1.4 V, 0.8 V VOUTx 5.0 V,  
IOUTx = 1 A, VFBx = 0.8 V – 3%  
VDO  
ILIM  
Dropout voltage  
200  
1.9  
3.5  
4
mV  
A
VOUTx forced at 0.9 × VOUTx(TARGET)  
,
Output current limit  
1.5  
1.7  
2.1  
VINx = VOUTx(TARGET) + 300 mV  
Both channels enabled, per channel,  
VINx = 6.5 V, IOUTx = 5 mA  
IGND  
GND pin current  
mA  
Both channels enabled, per channel,  
VINx = 1.4 V, IOUTx = 1 A  
Both channels shutdown, per channel, PGx = (open),  
VINx = 6.5 V, VENx = 0.5 V  
ISDN  
Shutdown GND pin current  
ENx pin current  
0.1  
15  
0.2  
0.4  
μA  
μA  
V
IENx  
VINx = 6.5 V, 0 V VENx 6.5 V  
–0.2  
0
ENx pin low-level input voltage  
(device disabled)  
VIL(ENx)  
ENx pin high-level input voltage  
(device enabled)  
VIH(ENx)  
ISS_CTRLx  
VIT(PGx)  
1.1  
–0.2  
82%  
6.5  
0.2  
V
SS_CTRLx pin current  
PGx pin threshold  
VINx = 6.5 V, 0 V VSS_CTRLx 6.5 V  
μA  
For PGx transitioning low with falling VOUTx  
expressed as a percentage of VOUTx(TARGET)  
,
88.9%  
1%  
93%  
For PGx transitioning high with rising VOUTx  
expressed as a percentage of VOUTx(TARGET)  
,
Vhys(PGx)  
PGx pin hysteresis  
VOL(PGx)  
Ilkg(PGx)  
PGx pin low-level output voltage VOUTx < VIT(PGx), IPGx = –1 mA (current into device)  
0.4  
1
V
PGx pin leakage current  
VOUTx > VIT(PGx), VPGx = 6.5 V  
µA  
VNR/SSx = GND, 1.4 V VINx 6.5 V,  
VSS_CTRLx = GND  
4.0  
6.2  
9.0  
INR/SSx  
NR/SSx pin charging current  
µA  
VNR/SSx = GND, 1.4 V VINx 6.5 V, VSS_CTRLx = VINx  
65  
100  
150  
100  
IFBx  
FBx pin leakage current  
VINx = 6.5 V, VFBx = 0.8 V  
–100  
nA  
dB  
f = 500 kHz, VINx = 3.8 V, VOUTx = 3.3 V,  
IOUTx = 750 mA, CNR/SSx = 10 nF, CFFx = 10 nF  
PSRR  
Power-supply ripple rejection  
40  
3.8  
11  
BW = 10 Hz to 100 kHz, VINx = 1.8 V, VOUTx = 0.8 V,  
IOUTx = 1.0 A, CNR/SSx = 1 µF, CFFx = 100 nF  
Vn  
Output noise voltage  
Noise spectral density  
μVRMS  
nV/Hz  
Ω
f = 10 kHz, VINx = 1.8 V, VOUTx = 0.8 V,  
IOUTx = 1.0 A, CNR/SSx = 10 nF, CFFx = 10 nF  
Output active discharge  
resistance  
Rdiss  
VENx = GND  
250  
Shutdown, temperature increasing  
Reset, temperature decreasing  
160  
140  
Tsd  
Thermal shutdown temperature  
°C  
(1) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.  
(2) When the device is connected to external feedback resistors at the FBx pin, external resistor tolerances are not included.  
(3) The device is not tested under conditions where VINx > VOUTx + 2.5 V and IOUTx = 1 A because the power dissipation is higher than the  
maximum rating of the package. Also, this accuracy specification does not apply on any application condition that exceeds the power  
dissipation limit of the package under test.  
版权 © 2015, Texas Instruments Incorporated  
5
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
IOUTx = 1 A  
CNR/SSx = Open  
CNR/SSx = 0.01 mF  
CNR/SSx = 0.1 mF  
CNR/SSx = 1 mF  
CNR/SSx = 10 mF  
IOUTx = 0.75 A  
IOUTx = 0.5 A  
IOUTx = 0.25 A  
IOUTx = 0.1 A  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1 A, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1.0 A, COUTx = 10 µF,  
CFFx = 10 nF  
1. Power-Supply Rejection vs Output Current  
2. Power-Supply Rejection vs CNR/SSx  
90  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
30  
VINx = 1.5 V  
30  
VINx = 1.7 V  
IOUTx = 1 A  
20  
10  
0
VINx = 1.8 V  
VINx = 2.5 V  
IOUTx = 0.75 A  
IOUTx = 0.5 A  
IOUTx = 0.25 A  
IOUTx = 0.1 A  
20  
VINx = 3.3 V  
VINx = 5.0 V  
10  
0
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.2 V, IOUTx = 1.0 A, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
VOUTx = 3.3 V, VINx = VENx = 3.8 V, IOUTx = 1 A, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
4. Power-Supply Rejection vs Output Current  
3. Power-Supply Rejection vs Input Voltage  
80  
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
COUTx = 10 mF  
VINx = 6.0 V  
VINx = 5.0 V  
VINx = 3.8 V  
20  
COUTx = 22 mF  
10  
0
COUTx = 100 mF  
10  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1.0 A,  
COUTx = ceramic, CFFx = 10 nF  
VOUTx = 3.3 V, IOUTx = 1.0 A, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
5. Power-Supply Rejection vs Output Capacitance  
6. Power-Supply Rejection vs Input Voltage  
6
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
VOUTx = 0.8 V, 3.94 mVRMS  
VOUTx = 1.2 V, 4.31 mVRMS  
VOUTx = 1.8 V, 5.1 mVRMS  
VOUTx = 2.5 V, 6.03 mVRMS  
VOUTx = 3.3 V, 7.43 mVRMS  
VOUTx = 5.0 V, 10.3 mVRMS  
0.1  
0.01  
VOUT1 to VOUT2  
VOUT2 to VOUT1  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.8 V, IOUTx = 100 mA, COUTx = 10 µF,  
CNR/SSx = CFFx = 10 nF  
VINx = VOUTx + 1.0 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz,  
COUTx = 10 µF, CNR/SSx = CFFx = 10 nF  
8. Spectral Noise Density vs Output Voltage  
7. Channel-to-Channel Output Voltage Isolation vs  
Frequency  
10  
10  
CNR/SSx = None, 11.43 mVRMS  
CNR/SSx = 0.01 mF, 4.94 mVRMS  
CNR/SSx = 0.1 mF, 4.24 mVRMS  
CFFx = 0 mF  
CFFx = 0.01 mF  
CFFx = 0.1 mF  
CNR/SSx = 1.0 mF, 4.22 mVRMS  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VINx = 1.7 V, VOUTx = 1.2 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to  
100 kHz, COUTx = 10 µF, CFFx = 10 nF  
VINx = 3.8 V, VOUTx = 3.3 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to  
100 kHz, COUTx = 10 µF, CNR/SSx = 10 nF  
9. Spectral Noise Density vs CNR/SSx  
10. Spectral Noise Density vs CFFx  
10  
10  
VINx = 1.5 V  
VINx = 1.8 V  
VINx = 2.5 V  
COUTx = 10 mF, 4.94 mVRMS  
COUTx = 22 mF, 5.05 mVRMS  
COUTx = 100 mF, 5.66 mVRMS  
VINx = 3.3 V  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Frequency (Hz)  
VOUTx = 1.2 V, IOUTx = 1.0 A, COUTx = 10 µF, CNR/SSx = 10 nF  
VOUTx = 1.8 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz,  
CFFx = 0.01 µF  
12. Spectral Noise Density vs COUTx  
11. Spectral Noise Density vs VINx  
版权 © 2015, Texas Instruments Incorporated  
7
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
1E-6  
1E-5 0.0001 0.001  
0.01  
0.1  
1
10  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
Noise Reduction Capacitor [CNR/SSx] (mF)  
Feed-Forward Capacitor [CFFx] (mF)  
VOUTx = 1.8 V, IOUTx = 1.0 A, CFFx = 0.01 µF,  
BW = 10 Hz to 100 kHz  
VOUTx = 1.8 V, IOUTx = 1.0 A, CNR/SSx = 1 µF,  
BW = 10 Hz to 100 kHz  
13. RMS Output Noise vs CNR/SSx  
14. RMS Output Noise vs CFFx  
VOUT2  
VOUT2  
50 mV/div  
20 mV/div  
VOUT1  
20 mV/div  
VOUT1  
50 mV/div  
IOUT1  
500 mA/div  
IOUT1  
500 mA/div  
Time (10 ms/div)  
Time (10 ms/div)  
VINx = 5.5 V, IOUTx = 100 mA to 1 A to 100 mA at 1 A/µs,  
COUTx = 10 µF  
VINx = 1.5 V, IOUTx = 100 mA to 1 A to 100 mA at 1 A/µs,  
COUTx = 10 µF  
16. Load Transient Response (VOUTx = 5.0 V)  
15. Load Transient Response (VOUTx = 1.2 V)  
2.2  
-40èC  
0èC  
2
25èC  
85èC  
125èC  
VINx  
2 V/div  
1.8  
1.6  
1.4  
1.2  
1
VOUTx  
20 mV/div  
VPGx  
1 V/div  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Output Voltage (V)  
Time (200 ms/div)  
VINx = 1.4 V to 6.5 V to 1.4 V at 2 V/µs, VOUTx = 0.8 V,  
IOUTx = 1 A, CNR/SSx = CFFx = 10 nF  
D001  
VINx = 1.8 V, VOUTx = 1.5 V  
17. Line Transient  
18. Current Limit Foldback  
8
版权 © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
VENx  
1 V/div  
VEN1  
1 V/div  
VOUTx  
200 mV/div  
VOUT1  
200 mV/div  
VPGx  
200mV/div  
VPG1  
200 mV/div  
Time (50 ms/div)  
VINx = 1.4 V  
Time (500 ms/div)  
VINx = 1.4 V  
19. Start-Up (SS_CTRLx = GND, CNR/SSx = 0 nF)  
20. Start-Up (SS_CTRLx = GND, CNR/SSx = 10 nF)  
VEN1  
VEN1  
1 V/div  
VOUT1  
VOUT1  
1 V/div  
200 mV/div  
200 mV/div  
VPG1  
200 mV/div  
VPG1  
200 mV/div  
Time (50 ms/div)  
Time (2 ms/div)  
VINx = 1.4 V  
VINx = 1.4 V  
22. Start-Up (SS_CTRLx = VINx, CNR/SSx = 1 µF)  
21. Start-Up (SS_CTRLx = VINx, CNR/SSx = 10 nF)  
180  
550  
-40èC  
-40èC  
500  
160  
140  
120  
100  
80  
0èC  
0èC  
25èC  
85èC  
125èC  
25èC  
450  
85èC  
125èC  
400  
350  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
0
100 200 300 400 500 600 700 800 900 1000  
Load Current (mA)  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
VINx = 5.5 V  
IOUTx = 1 A  
23. Dropout Voltage vs Output Current  
24. Dropout Voltage vs Input Voltage  
版权 © 2015, Texas Instruments Incorporated  
9
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
0.5  
0.25  
0
0.5  
0.25  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.25  
-0.5  
-0.25  
-0.5  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
VINx = 1.4 V  
IOUTx = 50 mA  
25. Load Regulation (VOUTx = 0.8 V)  
26. Line Regulation (VOUTx = 0.8 V)  
0.5  
0.25  
0
0.5  
0.25  
0
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.25  
-0.5  
-0.25  
-0.5  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
VINx = 3.8 V  
IOUTx = 5 mA  
27. Load Regulation (VOUTx = 3.3 V)  
28. Line Regulation (VOUTx = 3.3 V)  
5
4
3
2
1
0
0.5  
-40èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0èC  
25èC  
85èC  
125èC  
0.25  
0
-0.25  
-0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
Input Voltage (V)  
D001  
VINx = 5.5 V  
Both channels  
29. Load Regulation (VOUTx = 5.0 V)  
30. Shutdown Current vs Input Voltage  
10  
版权 © 2015, Texas Instruments Incorporated  
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
5.2  
5
5
4.5  
4
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
4.8  
4.6  
4.4  
4.2  
4
3.8  
3.6  
3.4  
3.2  
3.5  
3
0
100 200 300 400 500 600 700 800 900 1000  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Output Current (mA)  
Input Voltage (V)  
D001  
D001  
VINx = 1.4 V, both channels enabled  
Both channels enabled  
31. Ground Current vs Output Current  
32. Ground Current vs Input Voltage  
500  
400  
300  
200  
100  
0
500  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
400  
300  
200  
100  
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
PG Current (mA)  
PG Current (mA)  
33. PG Low Level vs PG Current (VINx = 1.4 V)  
34. PG Low Level vs PG Current (VINx = 6.5 V)  
91  
90.6  
90.2  
89.8  
89.4  
89  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
Rising Threshold  
Falling Threshold  
88.6  
88.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
VINx = 6.5 V  
VINx = VPGx = 6.5 V  
35. PG Threshold vs Temperature  
36. PG Leakage Current vs Temperature  
版权 © 2015, Texas Instruments Incorporated  
11  
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VINx < 6.5 V, VINx VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V,  
COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise  
noted)  
115  
110  
105  
100  
95  
8
7.5  
7
VIN = 6.5 V  
VIN = 1.4 V  
6.5  
6
5.5  
5
90  
VIN = 6.5 V  
VIN = 1.4 V  
85  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
37. Soft-Start Current vs Temperature  
38. Soft-Start Current vs Temperature  
(SS_CTRLx = GND)  
(SS_CTRLx = VINx  
)
900  
850  
800  
750  
700  
650  
600  
550  
900  
850  
800  
750  
700  
650  
600  
550  
Enable Rising  
Enable Falling  
Enable Rising  
Enable Falling  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
39. Enable Threshold vs Temperature (VINx = 1.4 V)  
40. Enable Threshold vs Temperature (VINx = 6.5 V)  
1.4  
Rising Threshold  
Falling Threshold  
1.35  
1.3  
1.25  
1.2  
1.15  
1.1  
1.05  
1
0.95  
0.9  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
41. Input UVLO Threshold vs Temperature  
12  
版权 © 2015, Texas Instruments Incorporated  
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS7A88 is a dual-channel, low-noise, high PSRR, low dropout (LDO) regulator capable of sourcing a 1-A  
load with only 200 mV of maximum dropout. The TPS7A88 can operate down to a 1.4-V input voltage and a 0.8-  
V output voltage. This combination of low-noise, high PSRR, and low dropout voltage makes the device an ideal  
LDO to power a multitude of loads from noise-sensitive communication components in high-speed  
communications applications to high-end microprocessors or field-programmable gate arrays (FPGAs).  
As shown in the Functional Block Diagram section, each linear regulator features a low-noise, 0.8-V internal  
reference that can be filtered externally to obtain even lower output noise. The internal protection circuitry (such  
as the undervoltage lockout) prevents the device from turning on before the input is high enough to ensure  
accurate regulation. Foldback current limiting is also included that allows each output to source the rated output  
current when the output voltage is in regulation but reduce the allowable output current during short-circuit  
conditions. The internal power-good detection circuit allows users to sequence down-stream supplies and be  
alerted if the output voltage is below a regulation threshold.  
7.2 Functional Block Diagram  
Current  
Limit  
IN1  
OUT1  
Charge  
Pump  
Active  
Discharge  
0.8-V  
VREF  
+
Error  
Amp  
œ
Softstart  
Control  
INR/SSx  
SS_CTRL1  
NR/SS1  
FB1  
PG1  
œ
0.89 x VREF  
+
UVLO  
Internal  
Enable  
Control  
Thermal  
Shutdown  
EN1  
IN2  
Current  
Limit  
OUT2  
Charge  
Pump  
Active  
Discharge  
0.8-V  
VREF  
+
Error  
Amp  
œ
Softstart  
Control  
INR/SSx  
SS_CTRL2  
NR/SS2  
FB2  
PG2  
œ
0.89 x VREF  
+
UVLO  
Internal  
Enable  
Control  
Thermal  
Shutdown  
EN2  
GND  
版权 © 2015, Texas Instruments Incorporated  
13  
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Independent Dual-Channel LDO  
The TPS7A88 consists of two completely independent linear regulators that can be used to replace two stand-  
alone LDOs, or to provide channel isolation for the same voltage input and outputs. Regardless of the  
implementation, the TPS7A88 provides excellent regulation to 1% accuracy, excellent dropout voltage, and high  
output current. If desired, the LDOs can be cascaded to achieve even higher PSRR by connecting the output of  
one channel to the input of the other channel.  
Both channels of the TPS7A88 have an on-board charge pump that is always running to power the error  
amplifier to drive the gate of the n-channel pass-FET higher than the input voltage. The integrated charge pump  
allows the low dropout characteristics of the device to be maintained over the entire input voltage range of 1.4 V  
to 6.5 V.  
7.3.2 Output Enable  
The enable pins for the TPS7A88 are both active high. The output voltage for each channel is enabled when the  
corresponding enable pin voltage is greater than VIH(ENx) and disabled with the enable pin voltage is less than  
VIL(ENx). If control of the output voltage with the enable pin is not needed, then connect the enable pin to the  
corresponding input.  
The TPS7A88 has an internal pulldown MOSFET that connects a 250-Ω resistor to ground when the device is  
disabled to actively discharge the output voltage.  
7.3.3 Dropout Voltage (VDO  
)
Dropout voltage (VDO) is defined as the VINx – VOUTx voltage at the rated current (IRATED), where the main current  
pass-FET is fully on and in the ohmic region of operation. VDO indirectly specifies a minimum input voltage above  
the nominal programmed output voltage at which the output voltage is expected to remain in regulation. If the  
input falls below the nominal output regulation, then the output follows the input.  
Dropout voltage is determined by the RDS(ON) of the main pass-FET. Therefore, if the LDO operates below the  
rated current, then the VDO for that current scales accordingly. The RDS(ON) for the TPS7A88 can be calculated  
using 公式 1:  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.4 Output Voltage Accuracy  
Output voltage accuracy specifies minimum and maximum output voltage error, relative to the expected nominal  
output voltage stated as a percent. The TPS7A88 features an output voltage accuracy of 1% that includes the  
errors introduced by the internal reference, load regulation, and line regulation variance across the full range of  
rated load and line operating conditions over temperature, as specified by the Electrical Characteristics table.  
Output voltage accuracy also accounts for all variations between manufacturing lots.  
7.3.5 Low Output Noise  
Each channel of the TPS7A88 includes a low-noise reference ensuring minimal output noise in normal operation.  
Adding a capacitor to the NR/SSx pins provides additional filtering to the internal reference, thus reducing the  
total output noise. The maximum value recommended for the NR/SSx capacitor is 1 µF. Further output noise  
reduction can be achieved by adding an external CFF between the SNS pin and the FBx pin.  
7.3.6 Internal Protection Circuitry  
7.3.6.1 Undervoltage Lockout (UVLO)  
Each input of the TPS7A88 has an independent undervoltage lockout (UVLO) circuit that monitors the input  
voltage, allowing a controlled and consistent turn on and off of the output voltage. To prevent the device from  
turning off if the input droops during turn on, the UVLO has approximately 285 mV of hysteresis.  
14  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
Feature Description (接下页)  
7.3.6.2 Internal Current Limit (ICL  
)
The internal current limit circuit is used to protect the LDO against transient high-load current faults or shorting  
events. The LDO is not designed to operate in current limit under steady-state conditions. During an overcurrent  
event where the output voltage is pulled 10% below the regulated output voltage, the LDO sources a constant  
current as specified in the Electrical Characteristics table. When the output voltage falls, the amount of output  
current is reduced to better protect the device. During a hard short-circuit event, the current is reduced to  
approximately 1.25 A. See 18 in the Typical Characteristics section for more information about the current limit  
foldback behavior. Note also that when a current-limit event occurs, the LDO begins to heat up because of the  
increase in power dissipation. The increase in heat can trigger the integrated thermal shutdown protection circuit.  
7.3.6.3 Thermal Protection  
Each LDO channel of the TPS7A88 contains a thermal shutdown protection circuit to turn off the output current  
when excessive heat is dissipated in the LDO. Thermal shutdown occurs when the thermal junction temperature  
(TJ) of the main pass-FET exceeds 160°C (typical). Thermal shutdown hysteresis assures that the LDO again  
resets (turns on) when the temperature falls to 140°C (typical). The thermal time-constant of the semiconductor  
die is fairly short, and thus the output turns on and off at a high rate when thermal shutdown is reached until  
power dissipation is reduced. Because there are two independent thermal shutdown circuits, one channel can be  
in thermal shutdown when the other channel is not.  
The internal protection circuitry of the TPS7A88 is designed to protect against thermal overload conditions. The  
circuitry is not intended to replace proper heat sinking. Continuously running the TPS7A88 into thermal shutdown  
degrades device reliability.  
For reliable operation, limit junction temperature to a maximum of 125°C. To estimate the thermal margin in a  
given layout, increase the ambient temperature until the thermal protection shutdown is triggered using worst-  
case load and highest input voltage conditions. For good reliability, thermal shutdown must occur at least 40°C  
above the maximum expected ambient temperature condition for the application. This configuration produces a  
worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.  
7.3.7 Output Soft-Start Control  
Soft-start refers to the ramp-up characteristic of the output voltage during LDO turn-on after the ENx and UVLO  
thresholds are exceeded. The noise-reduction capacitor (CNR/SSx) serves a dual purpose of both governing output  
noise reduction and programming the soft-start ramp during turn-on. Larger values for the noise-reduction  
capacitors decrease the noise but also result in a slower output turn-on ramp rate.  
The TPS7A88 features an SS_CTRLx pin for each output. When this pin connected to INx the charging current  
for the NR/SSx pin is increased to 100 µA (typ). The higher current allows use of a much larger noise-reduction  
capacitor and still maintains a faster soft-start time. When the SS_CTRLx pin is connected to GND the charging  
current is reduced to 6.2 µA (typ), allowing a slower startup ramp rate. If a noise-reduction capacitor is not used  
on the NR/SSx pin, tying the SS_CTRLx pin to VIN can result in output voltage overshoot of approximately  
10%. Any overshoot is minimized by connecting the SS_CTRLx pin to GND or using a capacitor on the NR/SSx  
pin. To achieve the lowest possible output noise, values for the noise-reduction capacitor can be as high as  
10 µF. In this case, if a faster soft-start time is needed, connect the SS_CTRLx pin to VDD.  
7.3.8 Power-Good Function  
The power-good circuit monitors the voltage at the feedback pin to indicate the status of the output voltage.  
When the feedback pin voltage falls below the PG threshold voltage (VIT(PG)), the PGx pin open-drain output  
engages and pulls the PGx pin close to GND. When the feedback voltage exceeds the VIT(PG) threshold by an  
amount greater than VHYS(PG), the PGx pin becomes high impedance. By connecting a pullup resistor to an  
external supply, any downstream device can receive power good as a logic signal that can be used for  
sequencing. Make sure that the external pullup supply voltage results in a valid logic signal for the receiving  
device or devices. Using a pullup resistor from 10 kΩ to 100 kΩ is recommended. Using an external reset device  
such as the TPS3780 is also recommended in applications where high accuracy is needed or in applications  
where microprocessor resets are needed.  
版权 © 2015, Texas Instruments Incorporated  
15  
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (接下页)  
When employing the feed-forward capacitor (CFF), the turn-on time constant for the LDO is increased whereas  
the power-good output time constant stays the same, resulting in an invalid status of the LDO. To avoid this  
issue and to receive a valid PG output, ensure that the time constant of both the LDO and the power-good output  
are matching by adding a capacitor in parallel with the power-good pullup resistor. The state of PG is only valid  
when the device is operating above the minimum input voltage of the device and power good is asserted  
regardless of the output voltage state when the input voltage falls below the UVLO threshold minus the UVLO  
hysteresis. When the input voltage falls below approximately 0.8 V, there is not enough gate drive voltage to  
keep the open-drain, power-good device turned on and the power-good output is falsely pulled high. Connecting  
the power-good pullup resistor to the output voltage can help minimize this effect.  
7.4 Device Functional Modes  
1 provides a quick comparison between the normal, dropout, and disabled modes of operation.  
1. Device Functional Modes Comparison  
PARAMETER  
OPERATING MODE  
VINx  
ENx  
IOUTx  
IOUTx < ICL  
IOUTx < ICL  
TJ  
Normal(1)  
Dropout(1)  
Disabled(2)  
VINx > VOUTx(nom) + VDO  
VINx < VOUTx(nom) + VDO  
UVLO  
VENx > VIH(ENx)  
VENx > VIH(ENx)  
VENx < VIL(ENx)  
TJ < Tsd  
TJ < Tsd  
TJ > Tsd  
(1) All table conditions must be met.  
(2) The device is disabled when any condition is met.  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage when all of the following conditions are met.  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUTx(nom) + VDO)  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
below the enable falling threshold  
The output current is less than the current limit (IOUTx < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < Tsd)  
)
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks  
the input voltage. During this mode, the transient performance of the device becomes significantly degraded  
because the pass device is in a triode state and no longer controls the current through the LDO. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VINx < VOUTx(NOM) + VDO  
,
right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible  
when the control loop is out of balance. During the normal time required for the device to regain regulation, VINx  
VOUTx(NOM) + VDO, VOUTx overshoots if the input voltage slew rate is 0.1 V/µs or faster.  
7.4.3 Disabled  
The outputs of the TPS7A88 can be shutdown by forcing the enable pins below 0.4 V. When disabled, the pass  
device is turned off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an  
internal switch from the output to ground.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A88 is a linear voltage regulator operating from 1.4 V to 6.5 V on the input and regulates voltages  
between 0.8 V to 5.0 V within 1% accuracy and a 1-A maximum output current. Efficiency is defined by the ratio  
of output voltage to input voltage because the TPS7A88 is a linear voltage regulator. To achieve high efficiency,  
the dropout voltage (VINx – VOUTx) must be as small as possible, thus requiring a very low dropout LDO.  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement them to achieve a reliable design.  
8.1.1 Adjustable Outputs  
The output voltages of the TPS7A8801 can be adjusted from 0.8 V to 5.0 V by using resistor divider networks as  
shown in 42.  
TPS7A8801  
VIN1  
IN1  
VOUT1  
COUT1  
OUT1  
FB1  
R1  
CIN1  
EN1  
SS_CTRL1  
R2  
NR/SS1  
CNR/SS1  
PG1  
VIN2  
VOUT2  
COUT2  
OUT2  
IN2  
R3  
CIN2  
EN2  
FB2  
SS_CTRL2  
NR/SS2  
R4  
CNR/SS2  
PG2  
GND  
42. Adjustable Operation  
R1, R3 and R2, R4 can be calculated for any output voltage range using 公式 2. This resistive network must  
provide a current equal to or greater than 5 μA for optimum noise performance.  
VREF(max)  
R2, R4  
«
VOUTx  
VREF  
R1, R3 = R2, R4  
-1 , where  
> 5 mA  
÷
(2)  
If greater voltage accuracy is required, take into account the output voltage offset contributions resulting from the  
feedback pin current (IFB) and use 0.1% tolerance resistors.  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Application Information (接下页)  
2 shows the resistor combination required to achieve a few of the most common rails using commercially-  
available, 0.1%-tolerance resistors to maximize nominal voltage accuracy and also abiding to the formula given  
in 公式 2.  
2. Recommended Feedback-Resistor Values  
FEEDBACK RESISTOR VALUES(1)  
VOUTx(TARGET)  
(V)  
R1, R3 (kΩ)  
Short  
2.55  
R2, R4 (kΩ)  
Open  
10.2  
11.8  
10.7  
1.5  
0.8  
1.00  
1.20  
1.50  
1.80  
1.90  
2.50  
3.00  
3.30  
5.00  
5.9  
9.31  
1.87  
15.8  
11.5  
1.15  
1.15  
1.15  
2
2.43  
3.16  
3.57  
10.5  
(1) R1, R3 are connected from OUTx to FBx; R2, R4 are connected from FBx to GND; see 42.  
8.1.2 Start-Up  
8.1.2.1 Enable (ENx) and Undervoltage Lockout (UVLO)  
The TPS7A88 only turns on when ENx and UVLO are above their respective voltage thresholds. Each input to  
the TPS7A88 has an independent UVLO circuit that monitors the input voltage to allow a controlled and  
consistent turn on and off. To prevent the device from turning off if the input droops during turn on, the UVLO has  
approximately 285 mV of hysteresis. The ENx signal for each output allows independent logic-level turn-on and  
shutdown of the LDO when the input voltage is present. It is recommended to connect ENx directly to INx if  
independent turn-on is not needed.  
8.1.2.2 Noise-Reduction and Soft-Start Capacitor (CNR/SSx  
)
Each output of the TPS7A88 features a programmable, monotonic, voltage-controlled soft-start that is set with an  
external capacitor (CNR/SSx). This soft-start eliminates power-up initialization problems when powering FPGAs,  
digital signal processors (DSPs), or other processors. The controlled voltage ramp of the output also reduces  
peak inrush current during start-up, thus minimizing start-up transients to the input power bus.  
To achieve a linear and monotonic start-up, the TPS7A88 error amplifier tracks the voltage ramp of the external  
soft-start capacitor until the voltage exceeds the internal reference. The soft-start ramp time depends on the soft-  
start charging current (INR/SSx), the soft-start capacitance (CNR/SSx), and the internal reference (VREF). The  
approximate soft-start ramp time (tSSx) can be calculated with 公式 3:  
tSSx = (VREF × CNR/SSx) / INR/SSx  
(3)  
Note that the value for INR/SSx is determined by the state of the SS_CTRLx pin. When the SS_CTRLx pin is  
connected to GND, the typical value for the INR/SSx current is 6.2 µA. Connecting the SS_CTRLx pin to INx  
increases the typical soft-start charging current to 100 µA. The larger charging current for INR/SSx is useful if  
smaller start-up ramp times are needed or when using larger noise reduction capacitors. Values for the soft-start  
charging currents are provided in the Electrical Characteristics table.  
For low-noise applications, the noise-reduction capacitor (connected to the NR/SSx pin of the LDO) forms an RC  
filter for filtering out noise that is ordinarily amplified by the control loop and appears on the output voltage. For  
low-noise applications, a 10-nF to 1-µF CNR/SSx is recommended. Larger values for CNR/SSx can be used;  
however, above 1-µF there is little benefit in lowering the output voltage noise.  
18  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
8.1.2.3 Soft-Start and Inrush Current  
Soft-start refers to the gradual ramp-up characteristic of the output voltage after the ENx and UVLO thresholds  
are exceeded. The noise-reduction capacitor serves a dual purpose of both governing output noise reduction and  
programming the soft-start ramp during turn-on.  
Inrush current is defined as the current into the LDO at the INx pin during start-up. Inrush current then consists  
primarily of the sum of load and current used to charge the output capacitor. This current is difficult to measure  
because the input capacitor must be removed, which is not recommended. However, the inrush current can be  
estimated by 公式 4:  
«
÷
C
OUTx ì dVOUTx(t)  
VOUTx(t)  
RLOADx  
IOUTx(t) =  
+
«
÷
dt  
where:  
VOUTx(t) is the instantaneous output voltage of the turn-on ramp  
dVOUTx(t) / dt is the slope of the VOUTx ramp and  
RLOAD is the resistive load impedance  
(4)  
8.1.3 Capacitor Recommendation  
The TPS7A88 is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the  
inputs, outputs, and noise-reduction pins. Multilayer ceramic capacitors have become the industry standard for  
these types of applications and are recommended, but must be used with good understanding of their limitations.  
Ceramic capacitors that employ X7R-, X5R-, and COG-rated dielectric materials provide relatively good  
capacitive stability across temperature, whereas the use of Y5V-rated capacitors is discouraged precisely  
because the capacitance varies so widely. In all cases, ceramic capacitors vary a great deal with operating  
voltage and temperature and the design engineer must be aware of these characteristics. As a rule of thumb,  
ceramic capacitors are recommended to be derated by 50%. To compensate for this derating, increase the  
capacitor value by 100%. The input and output capacitors recommended herein account for a capacitance  
derating of 50%.  
Attention must be given to the input capacitance to minimize transient input droop during load current steps. An  
input capacitor of 10 µF or greater provides the desired effect and does not affect stability. Note that simply using  
large ceramic input capacitances can also cause unwanted ringing at the output if the input capacitor (in  
combination with the wire-lead inductance) creates a high-Q peaking effect during transients. For example, a  
5-nH lead inductance and a 10-µF input capacitor form an LC filter with a resonance frequency of 712 kHz that is  
near the edge of the open-loop bandwidth. Short, well-designed interconnect traces to the upstream supply  
minimize this effect without adding damping. Damping of unwanted ringing can be accomplished by using a  
tantalum capacitor, with a few hundred milliohms of ESR, in parallel with the ceramic input capacitor.  
8.1.3.1 Input and Output Capacitor Requirements (CINx and COUTx  
)
The TPS7A88 is designed and characterized for operation with ceramic capacitors of 10 µF or greater at the  
input and output. Locate the input and output capacitors as near as practical to the respective input and output  
pins to minimize the trace inductance from the capacitor to the device.  
8.1.3.2 Feed-Forward Capacitor (CFFx  
)
Although a feed-forward capacitor (CFFx), from the FBx pin to the OUTx pin is not required to achieve stability, a  
10-nF, feed-forward capacitor optimizes the noise and PSRR performance. A higher capacitance CFF can be  
used; however, the startup time is longer and the power-good signal can incorrectly indicate that the output  
voltage has settled. For a detailed description, see application report Pros and Cons of Using a Feed-Forward  
Capacitor with a Low Dropout Regulator, SBVA042.  
8.1.4 AC Performance  
LDO ac performance for a dual-channel device includes power-supply rejection ratio, channel-to-channel output  
isolation, load step transient response, and output noise. These metrics are primarily a function of open-loop gain  
and bandwidth, phase margin, and reference noise.  
版权 © 2015, Texas Instruments Incorporated  
19  
 
 
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
8.1.4.1 Power-Supply Ripple Rejection (PSRR)  
PSRR is a measure of how well the LDO control loop rejects ripple noise from the input source to make the dc  
output voltage as noise-free as possible across the frequency spectrum (usually 10 Hz to 10 MHz). Even though  
PSRR is a loss in noise signal amplitude, the PSRR curves in the Electrical Characteristics table are shown as  
positive values in decibels (dB) for convenience. 公式 5 gives the PSRR calculation as a function of frequency  
where input noise voltage [VS(INx)(f)] and output noise voltage [VS(OUTx)(f)] are understood to be purely sinusoidal  
signals.  
«
÷
V
INx(f)  
PSRR (dB) = 20 Log10  
VOUTx(f)  
(5)  
Noise that couples from the input to the internal reference voltage for the control loop is also a primary  
contributor to reduced PSRR magnitude and bandwidth. This reference noise is greatly filtered by the noise-  
reduction capacitor at the NR/SSx pin of the LDO in combination with an internal filter resistor for improved  
PSRR at lower frequencies.  
The LDO is often employed not only as a dc-dc regulator, but also to provide exceptionally clean power-supply  
voltages that exhibit ultra-low noise and ripple to power-sensitive system components. This usage is especially  
true for the TPS7A88.  
The TPS7A88 features an innovative circuit to boost the PSRR between 200 kHz and 1 MKz; see 4. To  
achieve the maximum benefit of this PSRR boost circuit, using a capacitor with a minimum impedance in the  
100-kHz to 1-MHz band is recommended.  
8.1.4.2 Channel-to-Channel Output Isolation and Crosstalk  
Output isolation is a measure of how well the device prevents voltage disturbances on one output from affecting  
the other output. This attenuation appears in load transient tests on the other output; however, to numerically  
quantify the rejection, the output channel isolation is expressed in decibels (dB). In order to characterize the  
output channel isolation both ac disturbances in output voltages are understood to be purely sinusoidal signals.  
Output isolation performance is a strong function of the PCB layout. See the Layout section on how to best  
optimize the isolation performance.  
8.1.4.3 Load-Step Transient Response  
The load-step transient response is the output voltage response by the LDO to a step change in load current,  
whereby output voltage regulation is maintained. The depth of charge depletion immediately after the load step is  
directly proportional to the amount of output capacitance. However, larger output capacitances function to  
decrease any voltage dip or peak occurring during a load step but also decrease the control-loop bandwidth,  
thereby slowing response.  
The LDO cannot sink charge, therefore the control loop must turn off the main pass-FET to wait for the charge to  
deplete when the output load is removed.  
8.1.4.4 Noise  
The TPS7A88 is designed for system applications where minimizing noise on the power-supply rail is critical to  
system performance. This scenario is the case for phase-locked loop (PLL)-based clocking circuits where  
minimum phase noise is all important, or in test and measurement systems where even small power-supply  
noise fluctuations can distort instantaneous measurement accuracy.  
LDO noise is defined as the internally-generated intrinsic noise created by the semiconductor circuits alone. This  
noise is the sum of various types of noise (such as shot noise associated with current-through-pin junctions,  
thermal noise caused by thermal agitation of charge carriers, flicker noise, or 1/f noise and dominates at lower  
frequencies as a function of 1/f).  
See the marketing white paper, How to Measure LDO Noise, SLYY076 for further details.  
Noise is affected by the choice of noise reduction capacitor CNR/SSx and feedforward capacitor CFFx.. See the  
Noise-Reduction and Soft-Start Capacitor (CNR/SSx) and Feed-Forward Capacitor (CFFx) sections for additional  
design information.  
20  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
8.1.5 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. PD can be calculated using 公式 6:  
PD = (VOUTx – VINx) × IOUTx  
(6)  
An important note is that power dissipation can be minimized, and thus greater efficiency achieved, by proper  
selection of the system voltage rails. Proper selection allows the minimum input voltage necessary for output  
regulation to be obtained.  
The primary heat conduction path for the RTJ package is through the thermal pad to the PCB. Solder the thermal  
pad to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to  
any inner plane areas or to a bottom-side copper plane.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(θJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to 公式 7.  
TJ = TA + (qJA ´ PD)  
(7)  
Unfortunately, the thermal resistance (θJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The θJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area and is only used as a relative measure of package thermal performance.  
8.1.6 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are given in the Thermal Information table and are used in accordance with 公式 8.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 6  
TT is the temperature at the center-top of the device package and  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(8)  
版权 © 2015, Texas Instruments Incorporated  
21  
 
 
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
8.2 Typical Application  
This section discusses the implementation of the TPS7A88 to regulate from a common input voltage to two  
output voltages of the same value. This is a common application where two noise-sensitive loads must have the  
same supply voltage but have high channel-to-channel isolation. The schematic for this application circuit is  
provided in 43.  
TPS7A8801  
1.8 V  
IN1  
OUT1  
FB1  
1.2 V  
COUT1  
10 F  
CIN1  
10 mF  
R1 5.9 kW  
EN1  
SS_CTRL1  
NR/SS1  
CFF1 10 nF  
VOUT1  
R2  
11.8 kW  
CNR/SS1  
0.1 mF  
RPG1  
20 kW  
PG1  
PG1  
IN2  
OUT2  
FB2  
1.2 V  
CIN2  
10 mF  
R3 5.9 kW  
COUT2  
EN2  
10 F  
SS_CTRL2  
NR/SS2  
CFF2 10 nF  
VOUT2  
R4  
11.8 kW  
CNR/SS2  
RPG2  
0.1 mF  
20 kW  
PG2  
PG2  
GND  
43. Application Example  
8.2.1 Design Requirements  
For the design example shown in 43, use the parameters listed in 3 as the input parameters.  
3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
1.8 V, ±3%, provided by the dc-dc converter switching at 750 kHz  
55°C  
Input voltages (VIN1 and VIN2  
)
Maximum ambient operating temperature  
Output voltages (VOUT1 and VOUT2)  
1.2 V, ±1%, output voltages are isolated  
1.0 A (maximum), 10 mA (minimum)  
Isolation greater than 50 dB at 100 kHz  
< 5 µVRMS, bandwidth = 10 Hz to 100 kHz  
> 40 dB  
Output currents (IOUT2 and IOUT2  
Channel-to-channel isolation  
RMS noise  
)
PSRR at 750 kHz  
Startup time  
< 5 ms  
8.2.2 Detailed Design Procedure  
The output voltages can be set to 1.2 V by selecting the correct values for R1, R3 and R2, R4; see 公式 2.  
Input and output capacitors are selected in accordance with the Capacitor Recommendation section. Ceramic  
capacitances of 10 µF for both inputs and outputs are selected.  
To satisfy the required startup time (tSSx) and still maintain low-noise performance, a 0.1-µF CNR/SSx is selected  
for both channels with SS_CTRL1 and SS_CTRL2 connected to VIN1 and VIN2, respectively. This value is  
calculated with 公式 9.  
tSSx = (VREF × CNR/SSx) / INR/SSx  
(9)  
With a 1.0-A maximum load, the internal power dissipation is 600 mW per channel or 1.2 W total, which  
corresponds to a 40°C junction temperature rise. With an 55°C maximum ambient temperature, the junction  
temperature is at 95°C. To minimize noise, a feed-forward capacitance (CFF) of 10 nF is selected.  
22  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
Channel-to-channel isolation depends greatly on the layout of the design. To minimize crosstalk between the  
outputs, keep the output capacitor grounds on separate sides of the design. See the Layout section for an  
example of how to layout the TPS7A88 to achieve best PSRR, channel-to-channel isolation, and noise.  
8.2.3 Application Curves  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VINx = 1.8 V  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
44. Power-Supply Rejection  
45. Channel-to-Channel Isolation  
0.5  
VINx = 1.8 V, VRMS = 4.26 mV  
0.3  
0.2  
0.1  
0.05  
0.03  
0.02  
0.01  
0.005  
0.003  
0.002  
0.001  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
46. Output Noise  
8.3 Do's and Don'ts  
4 lists the recommended guidelines for the TPS7A88.  
4. Recommended Guidelines for Designing with the TPS7A88  
DO'S  
DON'TS  
Do place at least one 10-µF ceramic capacitor as close as possible  
to each output of the device.  
Do not place either output capacitor more than 10 mm away from the  
regulator.  
Do connect a 10-μF or larger low equivalent series resistance (ESR)  
capacitor across each input pin to GND.  
Do not exceed the absolute maximum ratings.  
Do not leave the enable pins floating.  
Do follow the recommended layout in 47  
版权 © 2015, Texas Instruments Incorporated  
23  
 
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
Both inputs of the TPS7A88 are designed to operate from an input voltage range between 1.4 V and 6.5 V. The  
input voltage range must provide adequate headroom in order for the device to have a regulated output. This  
input supply must be well regulated. If the input supply is noisy, additional input capacitors with low ESR can help  
improve the output noise performance.  
10 Layout  
10.1 Layout Guidelines  
General guidelines for linear regulator designs are to place all circuit components on the same side of the circuit  
board and as near as practical to the respective LDO pin connections. Place ground return connections to the  
input and output capacitor, and to the LDO ground pin as close to each other as possible, connected by a wide,  
component-side, copper surface. The use of vias and long traces to create LDO circuit connections is strongly  
discouraged and negatively affects system performance.  
10.1.1 Board Layout  
To maximize the ac performance of the TPS7A88, following the layout example illustrated in 47 is  
recommended. This layout isolates the analog ground (AGND) from the noisy power ground. Components that  
must be connected to the quiet analog ground are the noise reduction capacitors (CNR/SSx) and the lower  
feedback resistors (R2, R4). These components must have a separate connection back to the power pad of the  
device. To minimize crosstalk between the two outputs, the output capacitor grounds are positioned on opposite  
sides of the layout and only connect back to the device at opposite sides of the thermal pad. TI recommends  
connecting the GND pins directly to the thermal pad and not to any external plane.  
To maximize the output voltage accuracy, the connection from each output voltage back to top output divider  
resistors (R1 and R3) must be made as close as possible to the load. This method of connecting the feedback  
trace eliminates the voltage drop from the device output to the load.  
To improve thermal performance, a 3 × 3 thermal via array must connect the thermal pad to internal ground  
planes. A larger area for the internal ground planes improves the thermal performance and lowers the operating  
temperature of the device.  
24  
版权 © 2015, Texas Instruments Incorporated  
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
10.2 Layout Example  
Power Ground  
RPG1  
AGND  
R2  
PGOOD1  
R1  
CNR/SS1  
CFF1  
VOUT1 SENSE  
on Bottom  
Layer  
20  
19  
18  
17  
16  
CIN1  
COUT1  
1
2
3
4
5
15  
14  
13  
12  
11  
IN1  
IN1  
OUT1  
VIN1  
VOUT1  
OUT1  
GND  
GND  
IN2  
IN2  
OUT2  
OUT2  
VOUT2  
VIN2  
CIN2  
COUT2  
6
7
8
9
10  
VOUT2 SENSE  
on Bottom  
Layer  
CFF2  
CNR/SS2  
R3  
PGOOD2  
R4  
AGND  
RPG2  
Circles denote PCB via connections.  
Power Ground  
47. TPS7A88 Example Layout  
版权 © 2015, Texas Instruments Incorporated  
25  
TPS7A88  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS7A88 配套使用,帮助评估初始电路性能。有关此固定装置的相关摘要信息,请参见表  
4。  
5. 设计套件与评估模块(1)  
名称  
器件号  
TPS7A88 低压降稳压器评估模块  
TPS7A88EVM-776  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
在德州仪器 (TI) 网站 (www.ti.com) 上,可通过 TPS7A88 产品文件夹获取 EVM。  
11.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 spice 模型对电路性能进行计算机仿真非常有用。可以从 TPS7A88 产品文件  
夹中的仿真模型下获取 TPS7A88 spice 模型。  
11.1.2 器件命名规则  
6. 订购信息(1)  
产品  
说明  
YYY 为封装标识符。  
TPS7A88xxYYYZ  
XX 表示输出电压。01 为可调输出版本。  
Z 为封装数量。  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
TPS3780 数据表》,SBVS250  
TPS7A88EVM 用户指南》,SBVU027  
使用前馈电容器和低压降稳压器的优缺点, SBVA042  
《如何测量 LDO 噪声》SLYY076  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
26  
版权 © 2015, Texas Instruments Incorporated  
TPS7A88  
www.ti.com.cn  
ZHCSEP2A NOVEMBER 2015REVISED NOVEMBER 2015  
11.4 商标  
DSP, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A8801RTJR  
TPS7A8801RTJT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTJ  
RTJ  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TPS7A88  
TPS7A88  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
OTHER QUALIFIED VERSIONS OF TPS7A88 :  
Automotive : TPS7A88-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
DATA BOOK  
PACKAGE OUTLINE  
LEADFRAME EXAMPLE  
4222370  
DRAFTSMAN:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
DATE:  
H. DENG  
09/12/2016  
09/12/2016  
09/12/2016  
DESIGNER:  
CHECKER:  
ENGINEER:  
APPROVED:  
RELEASED:  
CODE IDENTITY  
NUMBER  
H. DENG  
01295  
SEMICONDUCTOR OPERATIONS  
V. PAKU & T. LEQUANG  
T. TANG  
ePOD, RTJ0020D / WQFN,  
20 PIN, 0.5 MM PITCH  
09/12/2016  
10/06/2016  
10/24/2016  
E. REY & D. CHIN  
WDM  
SCALE  
SIZE  
REV  
PAGE  
OF  
TEMPLATE INFO:  
4219125  
A
15X  
04/07/2016  
A
EDGE# 4218519  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RTJ0020D  
A
4.1  
3.9  
B
PIN 1 INDEX AREA  
4.1  
3.9  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
16X 0.5  
(A) TYP  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
SYMM  
ꢀꢁꢂ“ꢃꢁꢄ  
4X 2  
21  
15  
1
0.5  
0.3  
20X  
PIN 1 ID  
(OPTIONAL)  
20  
16  
SYMM  
0.29  
0.19  
0.1  
20X  
C A B  
C
0.05  
4219125 / A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
2.7)  
SYMM  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(1.1)  
TYP  
21  
SYMM  
(3.8)  
(0.5)  
TYP  
ꢅ‘ꢃꢁꢀꢆꢇ7<3  
VIA  
5
11  
(R0.05)  
TYP  
6
10  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219125 / A 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTJ0020D  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.69)  
TYP  
20  
16  
20X (0.6)  
1
20X (0.24)  
15  
(0.69)  
TYP  
SYMM  
(3.8)  
(0.5)  
TYP  
5
11  
(R0.05)  
TYP  
21  
6
10  
4X ( 1.19)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219125 / A 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
R E V I S I O N S  
REV  
A
DESCRIPTION  
ECR  
DATE  
ENGINEER / DRAFTSMAN  
T. TANG / H. DENG  
RELEASE NEW DRAWING  
2160736  
10/24/2016  
SCALE  
SIZE  
REV  
PAGE  
4219125  
5 OF 5  
A
NTS  
A
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A88-Q1

汽车类 1A、低噪声、高精度、双通道可调节低压降稳压器
TI

TPS7A8801QRTJRQ1

汽车类 1A、低噪声、高精度、双通道可调节低压降稳压器 | RTJ | 20 | -40 to 140
TI

TPS7A8801RTJR

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A8801RTJT

1A、低噪声、高 PSRR、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A89

2A、低噪声、高精度、双通道可调节超低压降稳压器
TI

TPS7A8901RTJR

2A、低噪声、高精度、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A8901RTJT

2A、低噪声、高精度、双通道可调节超低压降稳压器 | RTJ | 20 | -40 to 125
TI

TPS7A90

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器
TI

TPS7A9001DSKR

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125
TI

TPS7A9001DSKT

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125
TI

TPS7A91

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器
TI

TPS7A9101DSKR

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125
TI