TPS7B4253QDDARQ1 [TI]

汽车类 300mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DDA | 8 | -40 to 125;
TPS7B4253QDDARQ1
型号: TPS7B4253QDDARQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 300mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DDA | 8 | -40 to 125

电池 光电二极管 输出元件 稳压器 调节器
文件: 总35页 (文件大小:2400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
TPS7B4253-Q1 具有 4mV 跟踪容差的 300mA 40V 低压降电压跟踪 LDO  
1 特性  
3 说明  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
对于汽车非板载传感器和小电流非板载模块,电源通过  
一条长电缆连接主板。 在这类情况下,电源器件需要  
为非板载负载提供保护,防止板载组件在接地短路或者  
电缆破损造成的电池短路期间受损。 非板载传感器需  
要与板载组件采用相同的电源,以确保数据采集的高精  
度。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 3A  
器件组件充电模式 (CDM) ESD 分类等级 C6  
TPS7B4253-Q1 器件设计用于具有 45V 负载突降问题  
的汽车类应用。 该器件可用作一个跟踪低压降 (LDO)  
稳压器或者电压跟踪器,通过板载主电源为非板载传感  
器构建一个封闭电源环路。 该器件的输出由 ADJ 引脚  
的基准电压精准调节。  
–40V 45V 宽输入电压范围(最大值)  
可调节输出电压范围:  
1.5V 40V (HTSSOP)  
2V 40 V (SO PowerPAD™)  
300mA 输出电流能力  
为了给非板载模块提供精确的电源,该器件的 ADJ 与  
FB 引脚间在运行温度范围内具有 4mV 超低跟踪容  
差。 PMOS 背靠背拓扑消除了反极性条件下对外部二  
极管的需求。 TPS7B4253-Q1 器件还包括热关断、感  
性钳位、过载和电池短路保护,防止板载组件在极限条  
件下受损。  
±4mV 超低输出跟踪容差  
320mV 低压降 (IOUT = 200mA )  
分别用于使能和跟踪输入的单独引脚(仅限  
HTSSOP)  
低静态电流 (IQ):  
< 4µAEN = 低电平时)  
轻负载时典型值为 60µA  
器件信息(1)  
超宽等效串联电阻 (ESR) 范围。  
器件型号  
封装  
封装尺寸(标称值)  
4.89mm × 3.90mm  
6.50mm x 4.40mm  
10µF 500µF 范围内的陶瓷输出电容  
SO PowerPAD (8)  
HTSSOP (20)  
TPS7B4253-Q1  
ESR 1mΩ 20Ω)搭配使用时可保持稳  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
反极性保护  
限流和热关断保护  
对接地和电源的输出短路保护  
输出引脚感性钳位  
提供以下封装:  
典型应用电路原理图  
Automotive  
Battery  
Main Board  
DC-DC or LDO  
8 引脚小外形尺寸 (SO) PowerPAD 封装  
V
IN  
OUT  
Long Cable  
20 引脚散热薄型小外形尺寸 (HTSSOP) 封装  
ADJ  
OUT  
TPS7B4253-Q1  
GND  
Off-Board  
Sensor  
2 应用  
C
(OUT)  
非板载传感器电源  
MCU  
ADC  
高精度电压跟踪  
非板载负载的电源开关  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCP3  
 
 
 
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 16  
Power Supply Recommendations...................... 19  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
10.3 Power Dissipation and Thermal Considerations... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持................................................................ 22  
11.2 文档支持................................................................ 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (January 2015) to Revision A  
Page  
已更改 器件状态,从产品预览更改为量产数据....................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
5 Pin Configuration and Functions  
DDA Package  
8-Pin SO PowerPAD  
Top View  
PWP Package  
20-Pin HTSSOP With Exposed Thermal Pad  
Top View  
OUT  
NC  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
FB  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN  
OUT  
NC  
1
2
3
4
8
7
6
5
IN  
EN  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
ADJ  
NC  
Thermal  
Pad  
GND  
FB  
GND  
ADJ  
Thermal  
Pad  
NC — No internal connection  
NC — No internal connection  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SO PowerPAD  
HTSSOP  
Connect the reference to this pin. A low signal disables the device and a high signal  
enables the device. The reference voltage can be connected directly or by a voltage  
divider for lower output voltages. To compensate for line influences, connect a  
capacitor close to the device pins.  
ADJ  
5
11  
I
This pin is the enable pin. The device goes to the STANDBY state when the enable  
pin goes lower than the threshold value.  
EN  
FB  
4
19  
10  
I
I
This pin is the feedback pin which can connect to the external resistor divider to  
select the output voltage.  
3
6
6
GND  
IN  
G
I
Ground reference  
15  
This pin is the device supply. To compensate for line influences, connect a  
capacitor close to the device pins.  
8
2
20  
2
3
4
5
7
8
NC  
9
NC  
Not connected  
12  
13  
14  
16  
17  
18  
7
1
Block to GND with a capacitor close to the device pins with respect to the  
capacitance and ESR requirements listed in the Output Capacitor section.  
OUT  
1
O
Exposed thermal pad  
Connect the thermal pad to the GND pin or leave it floating.  
(1) I = input, O = output, G = ground, NC = no connect  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–40  
–40  
–1  
MAX  
45  
UNIT  
Unregulated input voltage  
Enable input voltage  
IN(2)(3)  
V
V
V
Enable input voltage(2)(3)  
Regulated output voltage(2)(4)  
45  
Regulated output voltage  
45  
Voltage difference between the input and  
output  
IN – OUT  
–40  
45  
V
Reference voltage  
ADJ(2)(3)  
FB(2)(3)  
–0.3  
–1  
45  
45  
V
V
Feedback input voltage for the tracker  
Reference voltage minus the input voltage ADJ – IN(5)  
18  
V
Operating junction temperature, TJ  
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND pin.  
(3) Absolute maximum voltage.  
(4) An internal diode is connected between the OUT and GND pins with 600-mA DC current capability for inductive clamp protection.  
(5) The ADJ voltage cannot be 18 V higher than the IN voltage, otherwise the device can be damaged.  
6.2 ESD Ratings  
VALUE  
UNIT  
NC pins  
±2000  
kV  
Human body model (HBM), per AEC  
Q100-002(1)  
All pins except for NC  
pins  
V(ESD)  
Electrostatic discharge  
±4000  
±1000  
kV  
kV  
Charged device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
4
MAX  
UNIT  
VIN  
Unregulated input voltage(2)  
Enable input voltage  
40  
40  
V
V
VEN  
0
VADJ  
VFB  
Adjust and enable input voltage  
Feedback input voltage for the tracker  
Output voltage  
Output capacitor requirements(3)  
Output ESR requirements(4)  
Operating junction temperature range  
1.5  
1.5  
1.5  
10  
18  
V
18  
V
VOUT  
C(OUT)  
40  
V
500  
20  
µF  
Ω
0.001  
–40  
TJ  
150  
°C  
(1) Within the functional range the device operates as described in the circuit description. The electrical characteristics are specified within  
the conditions given in the related Electrical Characteristics table.  
(2) VIN > VADJ + V(DROPOUT)  
(3) The minimum output capacitance requirement is applicable for a worst-case capacitance tolerance of 30%, when a resistor divider is  
connected between the OUT and FB pins (the output voltage is higher than reference voltage), a 47-nF feedforward capacitor is  
required to be connected between the OUT and FB pins for loop stability, and the ESR range of the output capacitor is required to be  
from 0.001 to 10 Ω.  
(4) Relevant ESR value at f = 10 kHz  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
6.4 Thermal Information  
TPS7B4253-Q1  
THERMAL METRIC(1)  
DDA (SO PowerPAD)  
PWP (HTSSOP)  
UNIT  
8 PINS  
45.4  
51.1  
27.0  
8.2  
20 PINS  
45.9  
29.2  
24.7  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
26.9  
6.4  
24.5  
3.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VIN = 13.5 V, VADJ 1.5 V for HTSSOP, VADJ 2 V for SO PowerPAD, VEN 2 V, TJ = –40ºC to 150ºC unless otherwise  
stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.65  
2.8  
UNIT  
V
VIN rising  
VIN falling  
VI(UVLO)  
IN undervoltage detection  
V
IOUT = 100 µA to 300 mA, VIN = 4 to 40 V  
VADJ < VIN – 1 V  
1.5 V < VADJ < 18 V for HTSSOP  
2 V < VADJ < 18 V for SO PowerPAD  
ΔVO  
Output voltage tracking accuracy(1)  
–4  
4
mV  
ΔVO(ΔIO)  
ΔVO(ΔVI)  
Load regulation steady-state  
Line regulation steady-state  
IOUT = 0.1 to 300 mA, VADJ= 5 V  
4
4
mV  
mV  
IOUT= 10 mA, VIN = 6 to 40 V, VADJ = 5 V  
ƒrip = 100 Hz, Vrip = 0.5 VPP, C(OUT) = 10 µF,  
IOUT = 100 mA  
PSRR  
Power supply ripple rejection  
Dropout voltage  
70  
dB  
V(DROPOUT)  
IOUT = 200 mA, VIN = VADJ 4 V(2)  
320  
450  
520  
mV  
(V(DROPOUT) = VIN – VOUT  
Output current limitation  
Reverse current at IN  
)
IO(lim)  
IR(IN)  
VADJ = 5 V, OUT short to GND  
301  
–2  
520  
0
mA  
µA  
µA  
VIN = 0 V, VOUT = 40 V, VADJ = 5 V  
VIN = –40 V, VOUT = 0 V, VADJ = 5 V  
IR(–IN)  
Reverse current at negative IN  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
–10  
0
TJ increases because of power dissipation  
generated by the IC  
TSD  
175  
°C  
°C  
TSD_hys  
15  
2
4 V VIN 40 V, VADJ = 0 V; VEN = 0 V  
4 V VIN 40 V, VEN 2 V, VADJ < 0.8 V  
4 V VIN 40 V, IOUT < 100 µA, VADJ = 5 V  
4 V VIN 40 V, IOUT < 300 mA, VADJ = 5V  
VIN = VADJ = 5 V, IOUT = 100 µA  
HTSSOP package, VADJ = VFB = 5 V  
SO PowerPAD package, VADJ = VFB = 5 V  
VOUT = 0 V  
4
18  
7
IQ  
Current consumption  
µA  
60  
350  
70  
100  
400  
140  
0.5  
5.5  
0.8  
18  
IQ(DROPOUT)  
II(ADJ)  
Current consumption in dropout region  
Adjust input current  
µA  
µA  
V(ADJ_LOW)  
V(ADJ_HIGH)  
V(EN_LOW)  
V(EN_HIGH)  
IEN  
Adjust low signal valid  
Adjust high signal valid  
Enable low signal valid  
Enable high Signal Valid  
Enable pulldown current  
FB bias current  
0
1.5  
0
V
V
|VOUT – VADJ| < 5 mV  
VOUT = 0 V  
0.7  
40  
V
OUT settled  
2
V
2V < VEN < 40 V  
5
µA  
µA  
IFB  
VADJ = VFB = 5 V  
0.5  
(1) The tracking accuracy is specified when the FB pin is directly connected to the OUT pin which means VADJ = VOUT, external resistor  
divider variance is not included.  
(2) Measured when the output voltage, VOUT has dropped 10 mV from the nominal value.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 14 V, VADJ = 5 V, VFB = VOUT, unless otherwise specified  
4
4
3
IOUT = 70 mA  
IOUT = 300 mA  
IOUT = 10 mA  
IOUT = 100 mA  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
5
10  
15  
20  
25  
30  
35  
40  
Ambient Temperature (qC)  
Input Voltage (V)  
D004  
D005  
1. Tracking Accuracy vs Ambient Temperature  
2. Line Regulation  
800  
700  
600  
500  
400  
300  
200  
100  
0
4
3
TA = 40qC  
TA = 25qC  
TA = 125qC  
TA = 25qC  
TA = 125qC  
2
1
0
-1  
-2  
-3  
-4  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
D006  
D007  
VIN = VADJ = 4 V  
3. Load Regulation  
4. Dropout Voltage vs Output Current  
800  
700  
600  
500  
400  
300  
200  
100  
0
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (qC)  
Ambient Temperature (qC)  
D008  
D003  
VIN = VADJ = 4 V  
IOUT = 200 mA  
5. Dropout Voltage vs Ambient Temperature  
6. Current Limit (IO(lim)) vs Ambient Temperature  
版权 © 2015, Texas Instruments Incorporated  
6
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
Typical Characteristics (接下页)  
VIN = 14 V, VADJ = 5 V, VFB = VOUT, unless otherwise specified  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20  
TA = 40qC  
IQ (VEN = VADJ = 0 V)  
IQ (VEN = 5 V, VADJ = 0 V)  
18  
TA = 25qC  
TA = 125qC  
16  
14  
12  
10  
8
6
4
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
50  
100  
150  
200  
250  
300  
Ambient Temperature (qC)  
Output Current (mA)  
D009  
D010  
7. Shutdown Current vs Ambient Temperature  
8. Quiescent Current vs Output Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT = 300 mA  
IOUT = 0.1 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
5
10  
15  
20  
25  
30  
35  
40  
Ambient Temperature (qC)  
Input Voltage (V)  
D011  
D012  
VADJ = VEN = 5 V  
9. Quiescent Current vs Ambient Temperature  
10. Quiescent Current vs Input Voltage  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
Frequency (Hz)  
Frequency (Hz)  
D013  
D014  
C(OUT) = 10 µF  
IOUT = 1 mA  
TA = 25°C  
C(OUT) = 10 µF  
IOUT = 100 mA  
TA = 25°C  
11. PSRR  
12. PSRR  
版权 © 2015, Texas Instruments Incorporated  
7
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 14 V, VADJ = 5 V, VFB = VOUT, unless otherwise specified  
500  
500  
400  
300  
200  
100  
10  
400  
300  
Stable Region  
Stable Region  
200  
100  
10  
0.001  
5
10  
ESR of C(OUT) (Ω)  
15  
20  
0.001  
2.5  
5
ESR of C(OUT) (Ω)  
7.5  
10  
D002  
D002  
VFB = VOUT  
VFB < VOUT  
13. ESR Stability vs Load Capacitance  
14. ESR Stability vs Load Capacitance  
500  
400  
300  
200  
100  
10  
10 V/div  
Stable Region  
V
IN  
100 mV/div  
(OUT_AC)  
V
100 mA/div  
OUT  
I
0.001  
0.75  
1.5  
ESR of C(OUT) (Ω)  
2.25  
3
VIN = 6 to 40 V  
VADJ = 5 V  
C(OUT) = 10 µF  
D015  
IOUT = 100 mA, 20 µs/div  
15. ESR Stability vs Load Capacitance (Multiple Output  
16. 6- to 40-V Line Transient  
Capacitors)  
10 V/div  
10 V/div  
V
IN  
V
IN  
100 mV/div  
100 mV/div  
V
(OUT_AC)  
V
(OUT_AC)  
100 mA/div  
100 mA/div  
OUT  
I
I
OUT  
VIN = 40 to 6 V  
VADJ = 5 V  
C(OUT) = 10 µF  
VIN = 6 to 40 V  
VADJ = 5 V  
C(OUT) = 10 µF  
IOUT = 100 mA, 20 µs/div  
IOUT = 10 mA, 20 µs/div  
17. 40- to 6-V Line Transient  
18. 6- to 40-V Line Transient  
8
版权 © 2015, Texas Instruments Incorporated  
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
Typical Characteristics (接下页)  
VIN = 14 V, VADJ = 5 V, VFB = VOUT, unless otherwise specified  
10 V/div  
5 V/div  
100 mV/div  
V
IN  
V
(OUT_AC)  
100 mV/div  
(OUT_AC)  
V
IN  
V
50 mA/div  
100 mA/div  
OUT  
I
I
OUT  
VIN = 14 V  
VADJ = 5 V  
C(OUT) = 10 µF  
VIN = 40 to 6 V  
VADJ = 5 V  
C(OUT) = 10 µF  
IOUT = 10 to 100 mA, 40 µs/div  
IOUT = 10 mA, 20 µs/div  
20. 10- to 100-mA Load Transient  
19. 40- to 6-V Line Transient  
5 V/div  
100 mV/div  
V
(OUT_AC)  
V
IN  
50 mA/div  
I
OUT  
VIN = 14 V  
VADJ = 5 V  
C(OUT) = 10 µF  
IOUT = 100 to 10 mA, 40 µs/div  
21. 100- to 10-mA Load Transient  
版权 © 2015, Texas Instruments Incorporated  
9
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B4253-Q1 device is a monolithic integrated low-dropout voltage tracker with an ultralow tracking  
tolerance. Key protection circuits are integrated in the device, including output current limitation, reverse polarity  
protection, inductive load clamp, output short-to-battery protection, and thermal shutdown in case of an  
overtemperature event.  
7.2 Functional Block Diagram  
IN  
OUT  
V(BAT)  
Load  
Reverse  
Current  
Protection  
Internal  
Supply  
Current  
Limit  
UVLO  
EN  
Logic  
Control  
±
Thermal  
Shutdown  
ADJ  
FB  
Vref  
GND  
7.3 Feature Description  
7.3.1 Short Circuit and Overcurrent Protection  
The TPS7B4253-Q1 device features integrated fault protection which makes the device ideal for automotive  
applications. To keep the device in a safe area of operation during certain fault conditions, internal current-limit  
protection is used to limit the maximum output current. This protection protects the device from excessive power  
dissipation. For example, during a short-circuit condition on the output, the current through the pass element is  
limited to IO(lim) to protect the device from excessive power dissipation.  
7.3.2 Integrated Inductive Clamp Protection  
During output turnoff, the cable inductance continues to source the current from the output of the device. The  
device integrates an inductive clamp at the OUT pin to help to dissipate the inductive energy stored in the cable.  
An internal diode is connected between the OUT and GND pins with a DC-current capability of 600 mA for  
inductive clamp protection.  
10  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
Feature Description (接下页)  
7.3.3 OUT Short to Battery and Reverse Polarity Protection  
The TPS7B4253-Q1 device can withstand a short to battery when the output is shorted to the battery, as shown  
in 22. Therefore, no damage to the device occurs.  
Short to Battery  
TPS7B4253-Q1  
IN  
Automotive  
Battery  
OUT  
Load  
14 V (Typical)  
1 µF  
10 µF  
FB  
EN  
ADJ  
GND  
5 V  
100 nF  
22. OUT Short to Battery, VIN = V(BAT)  
A short to the battery can also occur when the device is powered by an isolated supply at lower voltage, as  
shown in 23. In this case, the TPS7B4253-Q1 supply-input voltage is set to 7 V when a short to battery (14 V  
typical) occurs on the OUT pin which operates at 5 V. The internal back-to-back PMOS remains on for 1 ms  
during which the input voltage of the TPS7B4253-Q1 device charges up to the battery voltage. A diode  
connected between the output of the DC-DC converter and the input of the TPS7B4253-Q1 device is required in  
case the other loads connected behind the DC-DC converter cannot withstand the voltage of an automotive  
battery. To achieve a lower dropout voltage, TI recommends using a Schottky diode. This diode can be  
eliminated if the output of the DC-DC converter and the loads connect behind it withstand automotive battery  
voltage.  
The internal back-to-back PMOS is switched to OFF when reverse polarity or short to battery occur for 1 ms.  
After that, the reverse current flows out through the IN pin with less than 10 µA. In the meanwhile, a special ESD  
structure implemented at the input ensures the device can withstand –40 V.  
版权 © 2015, Texas Instruments Incorporated  
11  
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Feature Description (接下页)  
Short to Battery  
TPS7B4253-Q1  
Automotive  
Battery  
14 V (Typical)  
IN  
7 V  
OUT  
DC-DC  
Load  
1 µF  
10 µF  
FB  
EN  
Other Loads  
ADJ  
GND  
5 V  
100 nF  
23. OUT Short to Battery, VIN < V(BAT)  
In most cases, the output of the TPS7B4253-Q1 device is shorted to the battery through an automotive cable.  
The parasitic inductance on the cable results in LC oscillation at the output of the TPS7B4253-Q1 device when  
the short to battery occurs. Ideally, the peak voltage at the output of the TPS7B4253-Q1 device should be lower  
than the absolute-maximum voltage rating (45 V) during LC oscillation.  
7.3.4 Undervoltage Shutdown  
The device has an internally fixed undervoltage-shutdown threshold. Undervoltage shutdown activates when the  
input voltage on IN drops below UVLO. This activation ensures the regulator is not latched into an unknown state  
during a low input-supply voltage. If the input voltage has a negative transient that drops below the UVLO  
threshold and then recovers, the regulator shuts down and then powers up with a standard power-up sequence  
when the input voltage is above the required levels.  
7.3.5 Thermal Protection  
The device incorporates a thermal shutdown (TSD) circuit as a protection from overheating. During continuous  
normal operation, the junction temperature should not exceed the TSD trip point. If the junction temperature  
exceeds the TSD trip point, the output turns off. When the junction temperature decreases to 15°C (typical) lower  
than the TSD trip point, the output turns on.  
The purpose of the design of the internal protection circuitry of the TPS7B4253-Q1 device  
is to protect against overload conditions and is not intended as a replacement for proper  
heat-sinking. Continuously running the device into thermal shutdown degrades device  
reliability.  
12  
版权 © 2015, Texas Instruments Incorporated  
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
Feature Description (接下页)  
7.3.6 Regulated Output (OUT)  
The OUT pin is the regulated output based on the required voltage. The output has current limitation. During  
initial power up, the regulator has an incorporated soft-start feature to control the initial current through the pass  
element.  
7.3.7 Enable (EN)  
The EN pin is a high-voltage-tolerant pin. A high input on the EN pin acitvates the device and turns on the  
regulator. The device consumes a maximum of shutdown current 4 µA when the EN pin is low. The EN pin has a  
maximum internal pulldown of 5 µA.  
7.3.8 Adjustable Output Voltage (FB and ADJ)  
7.3.8.1 OUT Voltage Equal to the Reference Voltage  
With the reference voltage applied directly at the ADJ pin and the FB pin connected to the OUT pin, the voltage  
at the OUT pin equals to the reference voltage at the ADJ pin, as shown in 24.  
VOUT = VADJ  
(1)  
TPS7B4253-Q1  
IN  
OUT  
V(BAT)  
Load  
22 µF  
10 µF  
FB  
EN  
ADJ  
GND  
Vref  
24. OUT Voltage Equal to the Reference Voltage  
7.3.8.2 OUT Voltage Higher Than Reference Voltage  
By using an external resistor divider connected between the OUT and FB pins, an output voltage higher than  
reference voltage can be generated as shown in 25. Use 公式 2 to calculate the value of the output voltage.  
The recommended range for R1 and R2 is from 10 kΩ to 100 kΩ.  
VADJ ´ (R1+ R2)  
=
R2  
VOUT  
(2)  
版权 © 2015, Texas Instruments Incorporated  
13  
 
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Feature Description (接下页)  
TPS7B4253-Q1  
IN  
OUT  
V(BAT)  
Load  
1 µF  
10 µF  
R1  
47 nF  
FB  
EN  
R2  
ADJ  
GND  
Vref  
25. OUT Voltage Higher Than the Reference Voltage  
7.3.8.3 Output Voltage Lower Than Reference Voltage  
By using an external resistor divider connected at the ADJ pin, an output voltage lower than reference voltage  
can be generated as shown in 26. Use 公式 3 to calculate the output voltage. The recommended value for  
both R1 and R2 is less than 100 kΩ.  
V
´ R2  
ref  
VOUT  
=
R1+ R2  
(3)  
TPS7B4253-Q1  
IN  
OUT  
V(BAT)  
Load  
1 µF  
10 µF  
FB  
EN  
Vref  
R1  
R2  
ADJ  
GND  
26. OUT Voltage Lower Than the Reference Voltage  
14  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
7.4 Device Functional Modes  
7.4.1 Operation With VIN < 4 V  
The maximum UVLO voltage is 3.65 V, and the device generally operates at an input voltage above 4 V. The  
device can also operate at a lower input voltage; no minimum UVLO voltage is specified. At an input voltage  
below the actual UVLO voltage, the device does not operate.  
7.4.2 Operation With EN Control  
The enable rising edge threshold is 2 V (maximum). With the EN pin held above that voltage and the input  
voltage above 4 V, the device becomes active. The falling edge of the EN pin is 0.7 V (minimum). Holding the  
EN pin below that voltage disables the device, thus reducing the quiescent current of the device.  
版权 © 2015, Texas Instruments Incorporated  
15  
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B4253-Q1 device is a 300-mA low-dropout tracking regulator with ultralow tracking tolerance. The  
PSpice transient model is available for download on the product folder and can be used to evaluate the basic  
function of the device.  
8.2 Typical Application  
8.2.1 Application With Output Voltage Equal to the Reference Voltage  
27 shows the typical application circuit for the TPS7B4253-Q1 device. Different values of external components  
can be used depending on the end application. An application may require a larger output capacitor during fast  
load steps to prevent a large drop on the output voltage. TI recommends using a low-ESR ceramic capacitor with  
a dielectric of type X5R or X7R.  
IN  
OUT  
Load  
Battery  
(sensor)  
1 µF  
10 µF  
Reverse  
Current  
Protection  
Internal  
Supply  
Current  
Limit  
UVLO  
EN  
MCU I/O  
Logic  
Control  
±
Thermal  
Shutdown  
ADJ  
FB  
V
ref  
(5 V)  
100 nF  
GND  
27. Output Voltage Equals the Reference Voltage  
16  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
Typical Application (接下页)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 1 as the design parameters.  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
4 to 40 V  
Output voltage  
1.5 to 40 V  
Enable voltage  
2 to 40 V  
ADJ voltage  
1.5 to 18 V  
Output capacitor  
Output capacitor ESR range  
10 to 500 µF  
0.001 to 20 Ω  
8.2.1.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Reference voltage  
Output current  
Current limit  
8.2.1.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 2.2 µF. The voltage rating must be greater than the  
maximum input voltage.  
8.2.1.2.2 Output Capacitor  
To ensure the stability of the TPS7B4253-Q1 device, the device requires an output capacitor with a value in the  
range from 10 µF to 500 µF and with an ESR range from 0.001 Ω to 20 Ω when the FB pin is directly connected  
to the OUT pin. TI recommends selecting a ceramic capacitor with low ESR to improve the load transient  
response.  
To achieve an output voltage higher than the reference voltage, a resistor divider is connected between the OUT  
pin and the FB pin. In this case, a 47-nF feed forward capacitor must be connected between the OUT and FB  
pins for loop stability. The ESR of the output capacitor must be from 0.001 Ω to 10 Ω.  
When multiple capacitors (two or more) are connected in parallel at the OUT pin, the ESR range of each output  
capacitor must be from 0.001 Ω to 3 Ω for loop stability.  
In case the FB pin is shorted to ground, the TPS7B4253-Q1 device functions as a power switch with no need for  
the output capacitor.  
版权 © 2015, Texas Instruments Incorporated  
17  
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.2.1.3 Application Curves  
10 V/div  
V
IN  
100 mV/div  
(OUT_AC)  
V
100 mA/div  
OUT  
I
VIN = 6 to 40 V  
IOUT = 100 mA, 20 µs/div  
28. 6- to 40-V Line Transient  
VADJ = 5 V  
C(OUT) = 10 µF  
8.2.2 High-Side Switch Configuration  
As shown in 29, by connecting the FB pin to the GND pin, the TPS7B4253-Q1 device can be used as a high-  
side switch with current-limit, thermal shutdown, output short-to-battery, and reverse polarity protection. The  
switching on and off of the device is then controlled through the EN and ADJ pins.  
TPS7B4253-Q1  
IN  
OUT  
V(BAT)  
Load  
1 µF  
10 µF  
FB  
EN  
ADJ  
GND  
MCU I/O  
29. High-Side Switch Application  
18  
版权 © 2015, Texas Instruments Incorporated  
 
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
8.2.3 High Accuracy LDO  
With an accurate voltage rail, the TPS7B4253-Q1 device can be used as an LDO with ultrahigh-accuracy output  
voltage by configuring the device as shown in 30.  
TPS7B4253-Q1  
IN  
OUT  
V(BAT)  
Load  
1 µF  
10 µF  
FB  
EN  
Accurate reference rail  
For example: TLV431  
ADJ  
GND  
Vref  
30. High-Accuracy LDO Application  
For example, assume the reference voltage is a 5-V rail with 0.5% accuracy. Because the tracking accuracy  
between the ADJ and OUT pins is specified below 4 mV across temperature, the output accuracy of the  
TPS7B4253-Q1 device can be calculated with 公式 4.  
VADJ ´ 0.5% + 4 mV  
5 ´ 0.5% + 0.004  
Accuracyof VOUT  
=
´ 100% =  
´ 100% = 0.58%  
VADJ  
5
(4)  
9 Power Supply Recommendations  
The device is designed to operate with an input voltage supply from 4 V to 40 V. This input supply must be well  
regulated. If the input supply is more than a few inches away from the TPS7B4253-Q1 device, TI recommends  
adding an electrolytic capacitor with a value of 2.2 µF and a ceramic bypass capacitor at the input.  
版权 © 2015, Texas Instruments Incorporated  
19  
 
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For the layout of the TPS7B4253-Q1 device, place the input and output capacitors close to the devices as shown  
in the Functional Block Diagram. To enhance the thermal performance, TI recommends surrounding the device  
with some vias.  
Minimize equivalent series inductance (ESL) and ESR to maximize performance and ensure stability. Place  
every capacitor as close as possible to the device and on the same side of the PCB as the regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use of vias and long traces for the path between the output capacitor and the OUT pins  
because vias can negatively impact system performance and even cause instability.  
If possible, and to ensure the maximum performance specified in this data sheet, use the same layout pattern  
used for the TPS7B4253-Q1 evaluation board, TPS7B4253EVM, which is available at  
www.ti.com/tool/TPS7B4253EVM.  
10.2 Layout Example  
HTSSOP 20  
62ꢀ3RZHU3$'Œ-8  
OUT  
IN  
OUT  
IN  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
8
1
2
7
6
5
Thermal  
Pad  
GND  
FB  
GND  
3
4
ADJ/EN  
Thermal Pad  
GND  
GND  
ADJ  
6
7
8
9
FB  
10  
31. SO PowerPAD Package TPS7B4253-Q1  
32. HTSSOP Package TPS7B4253-Q1 Layout  
Layout Example  
Example  
20  
版权 © 2015, Texas Instruments Incorporated  
TPS7B4253-Q1  
www.ti.com.cn  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
10.3 Power Dissipation and Thermal Considerations  
Use 公式 5 to calculate the device power dissipation.  
PD = IO ´ V - V + I ´ V  
(
)
I
O
Q
I
where  
PD = continuous power dissipation  
IO = output current  
VI = input voltage  
VO = output voltage  
IQ = quiescent current  
(5)  
As IQ « IO, the term IQ × VI in 公式 5 can be ignored.  
For a device under operation at a given ambient air temperature (TA), calculate the junction temperature (TJ) with  
公式 6.  
T = T + q ´ PD  
(
)
J
A
JA  
where  
θJA = junction-to-junction-ambient air thermal impedance  
(6)  
(7)  
A rise in junction temperature because of power dissipation can be calculated with 公式 7.  
DT = T - T = q ´ PD  
(
)
J
A
JA  
For a given maximum junction temperature (TJmax), the maximum ambient air temperature (TAmax) at which the  
device can operate can be calculated with 公式 8.  
TA max = TJ max- (qJA ´ PD )  
(8)  
版权 © 2015, Texas Instruments Incorporated  
21  
 
 
 
 
TPS7B4253-Q1  
ZHCSE23A JANUARY 2015REVISED AUGUST 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
如需 TPS7B4253 PSpice 瞬态模型,请访问 www.ti.com.cn/product/cn/TPS7B4253-Q1/toolssoftware。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
TPS7B4253-Q1 评估模块》SLVUAE3  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B4253QDDARQ1  
TPS7B4253QPWPRQ1  
ACTIVE SO PowerPAD  
DDA  
PWP  
8
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
4253  
7B4253Q  
ACTIVE  
HTSSOP  
20  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
2500  
2000  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B4253QDDARQ1  
SO  
Power  
PAD  
DDA  
8
330.0  
330.0  
12.8  
16.4  
6.4  
5.2  
7.1  
2.1  
1.6  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
TPS7B4253QPWPRQ1 HTSSOP PWP  
20  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B4253QDDARQ1  
TPS7B4253QPWPRQ1  
SO PowerPAD  
HTSSOP  
DDA  
PWP  
8
2500  
2000  
366.0  
350.0  
364.0  
350.0  
50.0  
43.0  
20  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
PACKAGE OUTLINE  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.1  
C A  
B
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
3.1  
2.5  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.6  
2.0  
4221637/B 03/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.6)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SOLDER MASK  
SYMM  
(1.3)  
TYP  
OPENING  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221637/B 03/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SYMM  
BASED ON  
0.127 THICK  
STENCIL  
6X (1.27)  
5
4
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 3.47  
2.6 X 3.1 (SHOWN)  
2.37 X 2.83  
0.125  
0.150  
0.175  
2.20 X 2.62  
4221637/B 03/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7B4253QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS7B4254-Q1

汽车类 150mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器
TI

TPS7B4254QDDARQ1

汽车类 150mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DDA | 8 | -40 to 125
TI

TPS7B4255

具有 5mV 跟踪容差的 70mA 40V 电压跟踪低压降 (LDO) 稳压器
TI

TPS7B4255-Q1

具有 5mV 跟踪容差的汽车级、70mA、40V 电压跟踪低压降 (LDO) 稳压器
TI

TPS7B4255DBVR

具有 5mV 跟踪容差的 70mA 40V 电压跟踪低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125
TI

TPS7B63-Q1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6333QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B6350QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B67-Q1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6701QKTTRQ1

1.5V-18V ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PSSO5, DDPAK-5
TI

TPS7B6701QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125
TI