TPS7B4254QDDARQ1 [TI]

汽车类 150mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DDA | 8 | -40 to 125;
TPS7B4254QDDARQ1
型号: TPS7B4254QDDARQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 150mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DDA | 8 | -40 to 125

电池 光电二极管 输出元件 稳压器 调节器
文件: 总28页 (文件大小:2157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
TPS7B4254-Q1 跟踪容差为 4mV 150mA40V 电压跟踪 LDO  
1 特性  
2 应用  
1
适用于汽车电子 应用  
非板载传感器电源  
符合 AEC-Q100 标准的下列结果  
高精度电压跟踪  
非板载负载的电源开关  
器件温度等级 1:环境运行温度范围为 -40°C  
125°C  
3 说明  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 3A  
对于汽车非板载传感器和低电流非板载模块,电源通过  
一条长电缆连接主板。在这类情况下,电源器件需要为  
非板载负载提供保护,防止板载组件在接地短路或者电  
缆破损造成的电池短路期间受损。非板载传感器需要与  
板载组件采用相同的电源,以确保数据采集的高精度。  
器件组件充电模式 (CDM) ESD 分类等级 C6  
–40V 45V 宽输入电压范围(最大值)  
可调输出电压范围:2V 40V  
150mA 输出电流能力  
±4mV 超低输出跟踪容差  
TPS7B4254-Q1 器件设计用于 具有 45V 负载突降问  
题的汽车类应用。该器件可用作一个跟踪低压降  
(LDO) 稳压器或者电压跟踪器,通过板载主电源为非  
板载传感器构建一个封闭电源环路。该器件的输出由  
ADJ 引脚的基准电压精准调节。  
160mV 低压降 (IOUT = 100mA )  
低静态电流 (IQ):  
< 4µAADJ = 低电平时)  
轻负载时的典型值为 60µA  
超宽等效串联电阻 (ESR) 范围  
为了给非板载模块提供精确的电源,该器件的 ADJ 与  
FB 引脚间在运行温度范围内具有 4mV 超低跟踪容  
差。PMOS 背靠背拓扑消除了反极性条件下对外部二  
极管的需求。TPS7B4254-Q1 器件还包括热关断、感  
性钳位、过载和电池短路保护,防止板载组件在极限条  
件下受损。  
10µF 500µF 的陶瓷输出电容  
等效串联电阻 (ESR) 范围为 1mΩ 20Ω  
反极性保护  
限流和热关断保护  
针对接地和电源的输出短路保护  
输出引脚感性钳位  
器件信息(1)  
8 引脚小外形尺寸 (SO) PowerPAD™封装,带外露  
散热焊盘  
器件型号  
封装  
封装尺寸(标称值)  
TPS7B4254-Q1  
SO PowerPAD (8)  
4.89mm × 3.90mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
典型应用电路原理图  
Automotive  
Battery  
IN  
OUT  
CIN  
COUT  
DC-DC or  
LDO  
TPS7B4254-Q1  
ADJ  
Off-Board  
Sensor  
FB  
GND  
MCU  
ADC  
Main Board  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDI1  
 
 
 
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Applications ................................................ 14  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 社区资源................................................................ 19  
11.2 ....................................................................... 19  
11.3 静电放电警告......................................................... 19  
11.4 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (April 2016) to Revision A  
Page  
已将数据表状态由产品预览改为量产数据” .......................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
5 Pin Configuration and Functions  
DDA Package  
8-Pin HSOP With Exposed Thermal Pad  
Top View  
OUT  
NC  
1
2
3
4
8
7
6
5
IN  
NC  
Thermal  
Pad  
GND  
FB  
GND  
ADJ  
NC – No internal connection  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Connect the reference to this pin. A low signal disables the device and a high signal enables  
the device. The reference voltage can be connected directly or by a voltage divider for lower  
output voltages. To compensate for line influences, connect a capacitor close to the device  
pin.  
ADJ  
5
I
This pin is the feedback pin, which can connect to the external resistor divider to select the  
output voltage.  
FB  
4
3, 6  
8
I
G
GND  
IN  
Ground reference  
This pin is the device supply. To compensate for line influences, connect a capacitor close to  
the device pin.  
I
NC  
2, 7  
1
NC  
O
Not internally connected.  
Block to GND with a capacitor close to the device pins with respect to the capacitance and  
ESR requirements listed in the Output Capacitor section.  
OUT  
Exposed thermal pad  
Connect the thermal pad to the GND pin or leave it floating.  
(1) I = input, O = output, G = ground, NC = no internal connection  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–40  
–1  
MAX  
45  
UNIT  
V
Unregulated input voltage  
Regulated output voltage  
IN(2)  
OUT(2)(3)  
45  
V
Voltage difference between the input  
and output  
IN – OUT  
–40  
45  
V
Reference voltage  
ADJ(2)  
FB(2)  
–0.3  
–1  
45  
45  
V
V
Feedback input voltage for the tracker  
Reference voltage minus the input  
voltage  
ADJ – IN(4)  
18  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
ºC  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND pin.  
(3) An internal diode is connected between the OUT and GND pins with 600-mA dc current capability for inductive clamp protection.  
(4) When the (ADJ – IN) voltage is higher than 18 V, the (ADJ – OUT) voltage should be maintained lower than 18 V, otherwise the device  
can be damaged.  
6.2 ESD Ratings  
VALUE  
±4000  
±2000  
±1000  
UNIT  
All pins except NC  
NC pins  
Human-body model (HBM), per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
4
MAX  
40  
UNIT  
V
VIN  
Unregulated input voltage(2)  
Reference input voltage  
VADJ  
VFB  
1.5  
1.5  
1.5  
10  
18  
V
Feedback input voltage for the tracker  
Regulated output voltage  
Output capacitor requirements(3)  
Output ESR requirements(4)  
Operating junction temperature  
18  
V
VOUT  
COUT  
40  
V
500  
20  
µF  
Ω
0.001  
–40  
TJ  
150  
ºC  
(1) Within the functional range the device operates as described in the circuit description. The electrical characteristics are specified within  
the conditions given in the related Electrical Characteristics table.  
(2) VIN > VADJ + VDROPOUT  
(3) The minimum output capacitance requirement is applicable for a worst-case capacitance tolerance of 30%. When a resistor divider is  
connected between the OUT and FB pins (the output voltage is higher than reference voltage), a 47-nF feedforward capacitor is  
required to be connected between the OUT and FB pins for loop stability, and the ESR range of the output capacitor is required to be  
from 0.001 to 10 Ω.  
(4) Relevant ESR value at f = 10 kHz  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
6.4 Thermal Information  
TPS7B4254-Q1  
THERMAL METRIC(1)  
DDA (HSOP)  
8 PINS  
45.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.1  
27  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.2  
ψJB  
26.9  
RθJC(bot)  
6.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
VIN = 13.5 V, VADJ 2 V, TJ = –40ºC to 150ºC, over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VIN rising  
MIN  
TYP  
MAX  
3.65  
2.8  
UNIT  
V
VIN(UVLO)  
IN undervoltage detection  
VIN falling  
V
IOUT = 100 μA to 150 mA, VIN = 4 to  
40 V  
VADJ < VIN – 1 V  
ΔVOUT  
Output voltage tracking accuracy(1)  
–4  
4
mV  
2 V < VADJ < 18 V  
ΔVOUT(ΔIO) Load regulation, steady-state  
ΔVOUT(ΔVI) Line regulation, steady-state  
IOUT = 0.1 to 150 mA, VADJ= 5 V  
4
4
mV  
mV  
IOUT = 10 mA, VIN = 6 to 40 V, VADJ  
= 5 V  
frip = 100 Hz, Vrip = 0.5 VPP, COUT  
10 μF, IOUT = 100 mA  
=
PSRR  
Power-supply ripple rejection  
70  
dB  
Dropout voltage (VDROPOUT = VIN  
VDROPOUT  
IOUT = 100 mA, VIN = VADJ 4 V(2)  
160  
450  
260  
mV  
VOUT  
)
IOUT(LIM)  
IR(IN)  
IR(–IN)  
TSD  
Output current limitation  
VADJ = 5 V, OUT short to GND  
151  
–2  
520  
0
mA  
µA  
µA  
ºC  
Reverse current at IN  
VIN = 0 V, VOUT = 40 V, VADJ = 5 V  
VIN = –40 V, VOUT = 0 V, VADJ = 5 V  
Reverse current at negative IN  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
–10  
175  
15  
2
TSD_hys  
ºC  
4 V VIN 40 V, VADJ = 0 V  
4
µA  
4 V VIN 40 V, VADJ = 5 V, IOUT  
100 µA  
<
<
60  
210  
70  
100  
µA  
µA  
µA  
IQ  
Current consumption  
4 V VIN 40 V, VADJ = 5 V, IOUT  
150 mA  
260  
140  
IQ(DROPOUT Current consumption in dropout  
VIN = VADJ = 5 V, IOUT = 100 μA  
region  
)
IADJ  
Reference input current  
VADJ = VFB = 5 V  
VOUT = 0 V  
5.5  
0.7  
18  
µA  
V
VADJ(LOW) Reference low signal valid  
VADJ(HIGH) Reference high signal valid  
0
2
|VOUT – VADJ| < 4 mV  
VADJ = VFB = 5 V  
V
IFB  
FB bias current  
0.5  
µA  
(1) The tracking accuracy is specified when the FB pin is directly connected to the OUT pin which means VADJ = VOUT, external resistor  
divider variance is not included.  
(2) Measured when the output voltage, VOUT, has dropped 10 mV from the nominal value.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
4
3
4
3
IOUT = 0.1 mA  
IOUT = 70 mA  
IOUT = 150 mA  
IOUT = 10 mA  
IOUT = 100 mA  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
5
10  
15  
20  
25  
30  
35  
40  
Temp (èC)  
DVin (V)  
D001  
D002  
V
V
Figure 1. Tracking Accuracy vs Ambient Temperature  
Figure 2. Line Regulation  
400  
350  
300  
250  
200  
150  
100  
50  
4
-40 C  
25 C  
125 C  
Ta = 25 èC  
Ta = 125 èC  
3
2
1
0
-1  
-2  
-3  
-4  
0
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
IOUT (mA)  
IOUT (mA)  
D003  
D004  
V
VIN = VADJ = 4 V  
Figure 3. Load Regulation  
Figure 4. Dropout Voltage vs Output Current  
400  
350  
300  
250  
200  
150  
100  
50  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
VIN = VADJ = 4 V  
IOUT = 100 mA  
V
Figure 5. Dropout Voltage vs Ambient Temperature  
Figure 6. Current Limit (IOUT(LIM)) vs Ambient Temperature  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
Typical Characteristics (continued)  
250  
200  
150  
100  
50  
4
3.5  
3
-40 èC  
25 èC  
125 èC  
2.5  
2
1.5  
1
0.5  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
IOUT (mA)  
D007  
D008  
V
V
Figure 7. Shutdown Current vs Ambient Temperature  
Figure 8. Quiescent Current vs Output Current  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT = 300 mA  
IOUT = 0.1 mA  
IOUT = 1 mA  
IOUT = 10 mA  
IOUT = 100 mA  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
5
10  
15  
20  
25  
30  
35  
40  
Temperature (èC)  
VIN (V)  
D009  
D010  
V
VADJ = 5 V  
Figure 10. Quiescent Current vs Input Voltage  
Figure 9. Quiescent Current vs Ambient Temperature  
140  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
IOUT = 1 mA  
VADJ = 5 V  
Frequency (Hz)  
IOUT = 100 mA  
VADJ = 5 V  
D011  
D012  
COUT = 10 µF  
VIN = 14 V  
TA = 25°C  
COUT = 10 µF  
VIN = 14 V  
TA = 25°C  
Figure 11. PSRR  
Figure 12. PSSR  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
500  
500  
400  
300  
200  
400  
300  
Stable Region  
Stable Region  
200  
100  
10  
100  
10  
0.001  
5
10  
ESR of COUT (W)  
15  
20  
0.001  
2.5  
5
7.5  
10  
ESR of COUT (W)  
D013  
D014  
VFB = VOUT  
VFB < VOUT  
Figure 14. ESR Stability vs Load Capacitance  
Figure 13. ESR Stability vs Load Capacitance  
500  
VOUT (1 V/div)  
400  
300  
200  
VIN (10 V/div)  
Stable Region  
VOUT(AC) (50 mV/div)  
100  
10  
IOUT (10 mA/div)  
0.001  
0.5  
1
1.5  
ESR of COUT (W)  
2
2.5  
3
D015  
V
VIN = 6 to 40 V  
IOUT = 10 mA  
VADJ = 5 V  
40 µs/div  
COUT = 10 µF  
V
Figure 15. ESR Stability vs Load Capacitance (Multiple  
Output Capacitors in parallel)  
Figure 16. 6-V to 40-V Line Transient  
VIN (10 V/div)  
VOUT (1 V/div)  
VIN (10 V/div)  
VOUT (1 V/div)  
VOUT(AC) (50 mV/div)  
IOUT (100 mA/div)  
VOUT(AC) (50 mV/div)  
IOUT (10 mA/div)  
VIN = 40 to 6 V  
IOUT = 10 mA  
VADJ = 5 V  
40 µs/div  
COUT = 10 µF  
VIN = 6 to 40 V  
IOUT = 100 mA  
VADJ = 5 V  
40 µs/div  
COUT = 10 µF  
Figure 17. 40-V to 6-V Line Transient  
Figure 18. 6-V to 40-V Line Transient  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
Typical Characteristics (continued)  
VIN (10 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (100 mV/div)  
VOUT(AC) (50 mV/div)  
IOUT (100 mA/div)  
IOUT (50 mA/div)  
VIN = 40 to 6 V  
IOUT = 100 mA  
VADJ = 5 V  
40 µs/div  
COUT = 10 µF  
VIN = 14 V  
VADJ = 5 V  
COUT = 10 µF  
100 µs/div  
IOUT = 10 mA to 100 mA  
Figure 19. 40-V to 6-V Line Transient  
VIN (5 V/div)  
Figure 20. 10-V to 100-mA Load Transient  
VOUT (1 V/div)  
VOUT(AC) (100 mV/div)  
IOUT (50 mA/div)  
VIN = 14 V  
VADJ = 5 V  
COUT = 10 µF  
100 µs/div  
IOUT = 100 mA to 10 mA  
Figure 21. 100-mA to 10-mA Load Transient  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B4254-Q1 device is a monolithic integrated low-dropout voltage tracker with an ultralow tracking  
tolerance. Key protection circuits are integrated in the device, including output current limitation, reverse polarity  
protection, inductive load clamp, output short-to-battery protection, and thermal shutdown in case of an  
overtemperature event.  
7.2 Functional Block Diagram  
OUT  
IN  
VBAT  
Load  
Reverse  
Current  
Protection  
Internal  
Supply  
Current  
Limit  
UVLO  
Logic  
Control  
Thermal  
Shutdown  
FB  
ADJ  
VREF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Short-Circuit and Overcurrent Protection  
The TPS7B4254-Q1 device features integrated fault protection, which makes the device ideal for automotive  
applications. To keep the device in a safe area of operation during certain fault conditions, internal current-limit  
protection is used to limit the maximum output current. This protection protects the device from excessive power  
dissipation. For example, during a short-circuit condition on the output, the current through the pass element is  
limited to IOUT(LIM) to protect the device from excessive power dissipation.  
7.3.2 Integrated Inductive Clamp Protection  
During output turnoff, the cable inductance continues to source the current from the output of the device. The  
device integrates an inductive clamp at the OUT pin to help to dissipate the inductive energy stored in the cable.  
An internal diode is connected between the OUT and GND pins with a dc-current capability of 600 mA for  
inductive clamp protection.  
7.3.3 OUT Short-to-Battery and Reverse-Polarity Protection  
The TPS7B4254-Q1 device can withstand a short to battery on the output, as shown in Figure 22. Therefore, no  
damage to the device occurs.  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
Feature Description (continued)  
IN  
OUT  
Automotive Battery  
14 V (Typical)  
Load  
10 µF  
TPS7B4254-Q1  
ADJ  
FB  
5 V  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. OUT Short to Battery, VIN = VBAT  
A short to the battery can also occur when the device is powered by an isolated supply at lower voltage, as  
shown in Figure 23. In this case, the TPS7B4254-Q1 supply-input voltage is set to 7 V when a short to battery  
(14 V typical) occurs on the OUT pin, which operates at 5 V. The internal back-to-back PMOS remains on for  
1 ms, during which the input voltage of the TPS7B4254-Q1 device charges up to the battery voltage. A diode  
connected between the output of the dc-dc converter and the input of the TPS7B4254-Q1 device is required in  
case the other loads connected behind the dc-dc converter cannot withstand the voltage of an automotive  
battery. To achieve a lower dropout voltage, TI recommends using a Schottky diode. This diode can be  
eliminated if the output of the dc-dc converter and the loads connected behind it withstand automotive battery  
voltage.  
The internal back-to-back PMOS is switched to OFF when reverse polarity or a short to battery occurs for 1 ms.  
After that, the reverse current that flows out through the IN pin is less than 10 μA. Meanwhile, a special ESD  
structure implemented at the input ensures the device can withstand –40 V.  
Short to Battery  
Automotive Battery  
14 V (Typical)  
7 V  
IN  
OUT  
DC-DC  
Load  
10 µF  
Other  
Loads  
TPS7B4254-Q1  
ADJ  
FB  
5 V  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. OUT Short to Battery, VIN < VBAT  
In most cases, the output of the TPS7B4254-Q1 device is shorted to the battery through an automotive cable.  
The parasitic inductance on the cable results in LC oscillation at the output of the TPS7B4254-Q1 device when  
the short to battery occurs. The peak voltage at the output of the TPS7B4254-Q1 device must be lower than the  
absolute-maximum voltage rating (45 V) during LC oscillation.  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.4 Undervoltage Shutdown  
The device has an internally fixed undervoltage-shutdown threshold. Undervoltage shutdown activates when the  
input voltage on IN drops below UVLO. This activation ensures the regulator is not latched into an unknown state  
during a low input-supply voltage. If the input voltage has a negative transient that drops below the UVLO  
threshold and then recovers, the regulator shuts down and then powers up with a standard power-up sequence  
when the input voltage is above the required level.  
7.3.5 Thermal Protection  
The device incorporates a thermal shutdown (TSD) circuit as a protection from overheating. During continuous  
normal operation, the junction temperature should not exceed the TSD trip point. If the junction temperature  
exceeds the TSD trip point, the output turns off. When the junction temperature decreases to 15°C (typical) lower  
than the TSD trip point, the output turns on.  
NOTE  
The purpose of the internal protection circuitry of the TPS7B4254-Q1 device is to protect  
against overload conditions and is not intended as a replacement for proper heat-sinking.  
Continuously running the device into thermal shutdown degrades device reliability.  
7.3.6 Regulated Output (OUT)  
The OUT pin is the regulated output based on the required voltage. The output has current limitation. During  
initial power up, the regulator has an incorporated soft-start feature to control the initial current through the pass  
element.  
7.3.7 Adjustable Output Voltage (FB and ADJ)  
7.3.7.1 OUT Voltage Equal to the Reference Voltage  
With the reference voltage applied directly at the ADJ pin and the FB pin connected to the OUT pin, the voltage  
at the OUT pin equals to the reference voltage at the ADJ pin, as shown in Figure 24.  
VOUT = VADJ  
(1)  
IN  
OUT  
VBAT  
Load  
10µF  
TPS7B4254-Q1  
ADJ  
FB  
VREF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. OUT Voltage Equal to the Reference Voltage  
7.3.7.2 OUT Voltage Higher Than Reference Voltage  
By using an external resistor divider connected between the OUT and FB pins, an output voltage higher than  
reference voltage can be generated as shown in Figure 25. Use Equation 2 to calculate the value of the output  
voltage. The recommended range for R1 and R2 is from 10 kΩ to 100 kΩ.  
R1  
æ
ö
VOUT = VADJ ´ 1+  
ç
÷
R2  
è
ø
(2)  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
Feature Description (continued)  
IN  
OUT  
VBAT  
Load  
10µF  
47nF  
FB  
R1  
R2  
TPS7B4254-Q1  
ADJ  
VREF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. OUT Voltage Higher Than the Reference Voltage  
7.3.7.3 Output Voltage Lower Than Reference Voltage  
By using an external resistor divider connected at the ADJ pin, an output voltage lower than reference voltage  
can be generated as shown in Figure 26. Use Equation 3 to calculate the output voltage. The recommended  
value for both R1 and R2 is less than 100 kΩ.  
R2  
VOUT = VREF  
´
R1+ R2  
(3)  
IN  
OUT  
VBAT  
Load  
10 μF  
TPS7B4254-Q1  
VREF  
R1  
R2  
ADJ  
FB  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. OUT Voltage Lower Than the Reference Voltage  
7.4 Device Functional Modes  
7.4.1 Operation With VIN < 4 V  
The maximum UVLO voltage is 3.65 V, and the device generally operates at an input voltage above 4 V. The  
device can also operate at a lower input voltage; no minimum UVLO voltage is specified. At an input voltage  
below the actual UVLO voltage, the device does not operate.  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B4254-Q1 device is a 150-mA low-dropout tracking regulator with ultralow tracking tolerance. The  
PSpice transient model is available for download on the product folder and can be used to evaluate the basic  
function of the device.  
8.2 Typical Applications  
8.2.1 Application With Output Voltage Equal to the Reference Voltage  
Figure 27 shows a typical application circuit for the TPS7B4254-Q1 device. Different values of external  
components can be used, depending on the end application. An application may require a larger output capacitor  
during fast load steps to prevent a large drop on the output voltage. TI recommends using a low-ESR ceramic  
capacitor with a dielectric of type X5R or X7R.  
IN  
OUT  
VBAT  
Load  
1μF  
to  
10 μF  
0.1 μF  
22μF  
TPS7B4254-Q1  
ADJ  
0.1 μF  
FB  
VREF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Output Voltage Equals the Reference Voltage  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as the design parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
4 V to 40 V  
Output voltage  
2 V to 40 V  
ADJ voltage  
2 V to 18 V  
Output capacitor  
10 µF to 500 µF  
0.001 Ω to 20 Ω  
Output capacitor ESR range  
8.2.1.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Reference voltage  
Output current  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
Current limit  
8.2.1.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 10 μF with a 0.1 µF ceramic bypass capacitor in parallel. The  
voltage rating must be greater than the maximum input voltage.  
8.2.1.2.2 Output Capacitor  
To ensure the stability of the TPS7B4254-Q1 device, the device requires an output capacitor with a value in the  
range from 10 μF to 500 μF and with an ESR range from 0.001 Ω to 20 Ω when the FB pin is directly connected  
to the OUT pin. TI recommends selecting a ceramic capacitor with low ESR to improve the load transient  
response.  
To achieve an output voltage higher than the reference voltage, a resistor divider is connected between the OUT  
pin and the FB pin. In this case, a 47-nF feedforward capacitor must be connected between the OUT and FB  
pins for loop stability. The ESR of the output capacitor must be from 0.001 Ω to 10 Ω.  
When multiple capacitors (two or more) are connected in parallel at the OUT pin, the ESR range of each output  
capacitor must be from 0.001 Ω to 3 Ω for loop stability.  
In case the FB pin is shorted to ground, the TPS7B4254-Q1 device functions as a power switch with no need for  
the output capacitor.  
8.2.1.3 Application Curve  
VOUT (1 V/div)  
VIN (10 V/div)  
VOUT(AC) (50 mV/div)  
IOUT (100 mA/div)  
Figure 28. 6-V to 40-V Line Transient  
8.2.2 High-Accuracy LDO  
With an accurate voltage rail, the TPS7B4254-Q1 device can be used as an LDO with ultrahigh-accuracy output  
voltage by configuring the device as shown in Figure 29.  
Copyright © 2016, Texas Instruments Incorporated  
15  
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
IN  
OUT  
VBAT  
Load  
1 μF  
to  
0.1 μF  
10 μF  
22μ F  
TPS7B4254-Q1  
ADJ  
Accurate Reference Rail  
For Example: REF5050A-Q1  
FB  
VREF  
0.1 μF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. High-Accuracy LDO Application  
For example, assume the reference voltage is a 5-V rail with 0.1% accuracy. Because the tracking accuracy  
between the ADJ and OUT pins is specified below 4 mV across temperature, the output accuracy of the  
TPS7B4254-Q1 device can be calculated with Equation 4.  
V
ADJ ´ 0.1% + 4 mV  
5´ 0.1% + 0.004  
Accuracy of VOUT  
=
´100 % =  
´100 % = 0.18 %  
VOUT  
5
(4)  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
9 Power Supply Recommendations  
The device is designed to operate with an input voltage supply from 4 V to 40 V. This input supply must be well  
regulated. If the input supply is more than a few inches away from the TPS7B4254-Q1 device, TI recommends  
adding an electrolytic capacitor with a value of 10 μF and a ceramic bypass capacitor at the input.  
Copyright © 2016, Texas Instruments Incorporated  
17  
TPS7B4254-Q1  
ZHCSF00A APRIL 2016REVISED MAY 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For the layout of the TPS7B4254-Q1 device, place the input and output capacitors close to the devices as shown  
in the Functional Block Diagram. To enhance the thermal performance, TI recommends surrounding the device  
with some vias. Minimize equivalent series inductance (ESL) and ESR to maximize performance and ensure  
stability. Place every capacitor as close as possible to the device and on the same side of the PCB as the  
regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use of vias and long traces for the path between the output capacitor and the OUT pins  
because vias can negatively impact system performance and even cause instability.  
10.2 Layout Example  
OUT  
IN  
VOUT  
VIN  
1
2
3
4
8
7
6
5
Thermal  
Pad  
GND  
FB  
GND  
ADJ  
ADJ  
Figure 30. TPS7B4254-Q1 Layout Example  
18  
版权 © 2016, Texas Instruments Incorporated  
TPS7B4254-Q1  
www.ti.com.cn  
ZHCSF00A APRIL 2016REVISED MAY 2016  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。本数据随时可能发生变更并且  
不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
版权 © 2016, Texas Instruments Incorporated  
19  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B4254QDDARQ1  
ACTIVE SO PowerPAD  
DDA  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
4254  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B4254QDDARQ1  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO PowerPAD DDA  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TPS7B4254QDDARQ1  
8
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
PACKAGE OUTLINE  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.1  
C A  
B
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
3.1  
2.5  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.6  
2.0  
4221637/B 03/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.6)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SOLDER MASK  
SYMM  
(1.3)  
TYP  
OPENING  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221637/B 03/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008J  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SYMM  
BASED ON  
0.127 THICK  
STENCIL  
6X (1.27)  
5
4
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 3.47  
2.6 X 3.1 (SHOWN)  
2.37 X 2.83  
0.125  
0.150  
0.175  
2.20 X 2.62  
4221637/B 03/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7B4255

具有 5mV 跟踪容差的 70mA 40V 电压跟踪低压降 (LDO) 稳压器
TI

TPS7B4255-Q1

具有 5mV 跟踪容差的汽车级、70mA、40V 电压跟踪低压降 (LDO) 稳压器
TI

TPS7B4255DBVR

具有 5mV 跟踪容差的 70mA 40V 电压跟踪低压降 (LDO) 稳压器 | DBV | 5 | -40 to 125
TI

TPS7B63-Q1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6333QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B6350QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125
TI

TPS7B67-Q1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6701QKTTRQ1

1.5V-18V ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PSSO5, DDPAK-5
TI

TPS7B6701QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS7B6733QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS7B6750QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS7B68-Q1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI