TPS7B8333QDCYRQ1 [TI]

具有快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125;
TPS7B8333QDCYRQ1
型号: TPS7B8333QDCYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125

稳压器
文件: 总29页 (文件大小:2581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
TPS7B83-Q1 150mA40V 低压降稳压器  
1 特性  
3 说明  
符合面向汽车应用的 AEC-Q100 标准  
TPS7B83-Q1 是一款低压降线性稳压器专用于连接  
汽 车 应 用 中 的 电 池 。 该 器 件 的 输 入 电 压 范 围 高 达  
40V因此可承受汽车系统可能发生的瞬变如负载突  
。此器件的静态电流仅为 18µA,  
是为备用系统中微控制器 (MCU) 控制器局域网  
(CAN) 收发器等常开型器件供电的出色解决方案。  
– 温度等级 140°C +125°CTA  
– 结温40°C +150°CTJ  
输入电压范围3V 40V最大 42V)  
输出电压范围3.3V 5V固定)  
输出电流高达 150mA  
输出电压精度±1%最大值)  
低压降:  
150 mA 时为 230 mV最大值(VOUT 3.3V)  
低静态电流:  
18µA典型值)  
该器件具有先进的瞬态响应因此输出端可对负载或线  
路变化例如在冷启动条件下作出迅速响应。此  
该器件架构新颖可在从电压跌落恢复过程中最大  
限度降低输出过冲幅度。正常运行时该器件可在整个  
线路、负载和温度范围内维持 ±1% 的直流精度。  
出色的线路瞬态响应:  
器件信息(1)  
– 冷启动时出现 ±2% VOUT 偏差  
±2% VOUT 偏差VIN 压摆率 1V/µs)  
2.2µF 或更高的电容器搭配使用时可保持稳定  
提供功能安全  
器件型号  
封装  
封装尺寸标称值)  
TPS7B83-Q1  
SOT-223 (3)  
6.50mm × 3.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
可帮助进行功能安全系统设计的文档  
封装3 引脚 SOT-223  
2 应用  
可重新配置仪表组  
车身控制模块 (BCM)  
常开型电池连接应用:  
汽车网关  
远程免钥匙进入 (RKE)  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
0.2  
IN  
OUT  
VIN  
VOUT  
TPS7B83-Q1  
GND  
0.15  
0.1  
0.05  
0
典型应用原理图  
-0.05  
-0.1  
-0.15  
-0.2  
0
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
线路瞬态响应  
VIN 压摆率 3V/µs)  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS376  
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 19  
9 Power Supply Recommendations................................20  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 接收文档更新通知................................................... 22  
11.3 支持资源..................................................................22  
11.4 Trademarks............................................................. 22  
11.5 静电放电警告...........................................................22  
11.6 术语表..................................................................... 22  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 3  
6.1 Absolute Maximum Ratings ....................................... 3  
6.2 ESD Ratings .............................................................. 3  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................4  
6.6 Typical Characteristics................................................6  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
GND  
OUT  
1
2
3
4
GND  
Not to scale  
5-1. DCY Package, 3-Pin SOT-223, Top View  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
GND  
DCY  
2, 4  
G
P
Ground pin. Connect this pin to the thermal pad with a low-impedance connection.  
Input power-supply voltage pin. For best transient response and to minimize input  
impedance, use the recommended value or larger ceramic capacitor from IN to ground, as  
listed in the Recommended Operating Conditions table and the Input Capacitor section.  
Place the input capacitor as close to the input of the device as possible.  
IN  
1
3
Regulated output voltage pin. A capacitor is required from OUT to ground for stability. For  
best transient response, use the nominal recommended value or larger ceramic capacitor  
from OUT to ground; see the Recommended Operating Conditions table and the Output  
Capacitor section. Place the output capacitor as close to output of the device as possible. If  
using a high ESR capacitor, decouple the output with a 100-nF ceramic capacitor.  
OUT  
O
(1) I = input; O = output; P = power; G = ground.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
40  
40  
65  
MAX UNIT  
IN  
Unregulated input  
42  
VIN + 0.3(2)  
125  
V
OUT  
TA  
Regulated output  
V
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
150  
Tstg  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions isnot implied. Exposure to absolute-maximum-rated conditions for extended periods may affect devicereliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 20 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7B83-Q1  
 
 
 
 
 
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX  
40  
UNIT  
V
VIN  
Input voltage  
VOUT  
IOUT  
COUT  
ESR  
CIN  
Output voltage  
1.2  
18  
V
Output current  
0
150  
220  
2
mA  
µF  
Output capacitor(2)  
2.2  
Output capacitor ESR requirements(3)  
Input capacitor(1)  
0.001  
0.1  
Ω
1
µF  
TJ  
Operating junction temperature  
150  
°C  
40  
(1) For robust EMI performance the minimum input capacitance is 500 nF.  
(2) Effective output capacitance of 1 µF minimum required for stability.  
(3) If using a large ESR capacitor it is recommended to decouple this with a 100-nF ceramic capacitor to improve transient performance.  
6.4 Thermal Information  
TPS7B83-Q1  
THERMAL METRIC(1) (2)  
DCY  
3 PINS  
77.1  
41.7  
11.7  
UNIT  
RθJA  
RθJC(top) Junction-to-case (top) thermal resistance  
Junction-to-ambient thermal resistance(3)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.3  
11.5  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
11.5  
(1) The thermal data is based on the JEDEC standard high K profile,JESD 51-7. Two-signal, two-plane, four-layer board with 2-oz. copper.  
The copper pad is soldered tothe thermal land pattern. Also, correct attachment procedure must be incorporated.  
(2) For more information about traditional and new thermal metrics,see the Semiconductor and IC PackageThermal Metrics application  
report.  
(3) The 1s0p RθJA is 154.6/W for the DCY package.  
6.5 Electrical Characteristics  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF typical  
values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
TJ = 25ºC  
MIN TYP MAX  
UNIT  
0.75  
0.75  
VIN = VOUT + 500 mV to  
Regulated output accuracy DCY 40 V,  
IOUT = 100 µA to 150 mA (1)  
VOUT  
%
TJ = 40°C to +150º  
C
1
1  
VIN = VOUT + 500 mV  
to 40 V,  
IOUT = 100 µA  
Change in percent of output  
voltage  
Line regulation  
Load regulation  
0.2  
ΔVOUT(ΔVIN)  
%
VIN = VOUT + 500 mV,  
IOUT = 100 µA to  
150 mA  
Change in percent of output  
voltage  
0.2  
ΔVOUT(ΔIOUT)  
Load transient response settling  
time(2) (3)  
COUT = 10 µF  
100  
µs  
IOUT = 45 mA to 105  
mA  
COUT = 10 µF  
10%  
ΔVOUT  
2%  
Load transient response  
overshoot, undershoot(3)  
%VOUT  
IOUT = 0 mA to 150  
mA  
10%  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
 
 
 
 
 
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF typical  
values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
TJ = 25ºC  
18  
21  
26  
35  
VIN = VOUT + 500 mV to  
40 V, IOUT = 0 mA  
TJ = 40°C to +150º  
C
IQ  
Quiescent current  
µA  
TJ = 40°C to +150º  
C
IOUT = 500 µA  
47  
180  
230  
2.82  
2.6  
I
OUT 1 mA, VOUT 3.3 V, VIN = VOUT(NOM) x 0.95  
VDO  
Dropout voltage  
130  
160  
2.7  
mV  
IOUT = 105 mA, VOUT 3.3 V, VIN = VOUT(NOM)  
IOUT = 150 mA, VOUT 3.3 V, VIN = VOUT(NOM)  
VUVLO(RISING) Rising input supply UVLO  
VUVLO(FALLING) Falling input supply UVLO  
VIN rising  
VIN falling  
2.6  
V
V
2.38  
2.5  
VUVLO(HYST)  
ICL  
VUVLO hysteresis  
230  
mV  
VIN = VOUT(nom) + 1 V, VOUT short to  
90% x VOUT(NOM)  
Output current limit  
180  
220  
55  
260  
mA  
dB  
VIN - VOUT = 500 mV, frequency = 1 kHz,  
IOUT = 150 mA  
PSRR  
Vn  
Power-supply ripple rejection  
Output noise voltage  
VOUT = 3.3 V, BW = 10 Hz to 100 kHz  
280  
175  
20  
µVRMS  
°C  
TSD(SHUTDOWN) Junction shutdown temperature  
TSD(HYST) Hysteresis of thermal shutdown  
°C  
(1) Power dissipation is limited to 2W for IC production testing purposes. The power dissipation can be higher during normal operation.  
Please see the thermal dissipation section for more information on how much power the device can dissipate while maintaining a  
junction temperature below 150.  
(2) The settling time is measured from when IOUT is stepped from 45mA to 105 mA to when the output voltage recovers to  
VOUT = VOUT(nom) - 5 mV.  
(3) This specification is specified by design.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7B83-Q1  
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
0.1  
0.05  
0
5.015  
5.01  
5.005  
5
150 mA  
100 mA  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
4.995  
4.99  
4.985  
4.98  
4.975  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 150 mA  
6-2. Line Regulation vs VIN  
6-1. Accuracy vs Temperature  
5.015  
5.015  
5.01  
5.005  
5
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
5.01  
5.005  
5
4.995  
4.99  
4.985  
4.98  
4.975  
4.995  
4.99  
4.985  
4.98  
4.975  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 5 mA  
6-3. Line Regulation vs VIN  
VOUT = 5 V, IOUT = 1 mA  
6-4. Line Regulation vs VIN  
5.015  
5.01  
5.005  
5
5.01  
5.0075  
5.005  
5.0025  
5
-40 èC  
25 èC  
85 èC  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
4.995  
4.99  
4.985  
4.98  
4.975  
4.9975  
4.995  
4.9925  
4.99  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
0
25  
50 75  
Output Current (mA)  
100  
125  
150  
COUT = 10 µF  
6-6. Line Regulation at 50 mA  
VOUT = 5 V  
6-5. Load Regulation vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
5.01  
5.0075  
5.005  
5.0025  
5
275  
250  
225  
200  
175  
150  
125  
100  
75  
-55èC  
-40èC  
0èC  
85èC  
150èC  
-40 èC  
25 èC  
85 èC  
25èC  
125èC  
4.9975  
4.995  
4.9925  
4.99  
50  
25  
0
0
30  
60 90  
Output Current (mA)  
120  
150  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
VIN = 3 V  
COUT = 10 µF  
6-7. Line Regulation at 100 mA  
6-8. Dropout Voltage (VDO) vs IOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 50 mA  
IOUT = 10 mA  
IOUT = 1mA  
VIN = 5.5 V  
VIN = 6 V  
VIN = 7 V  
VIN = 10 V  
VIN = 13.5 V  
0
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
COUT = 10 µF (X7R 50 V), IOUT = 150 mA, VOUT = 5 V  
6-9. PSRR vs Frequency and IOUT  
6-10. PSRR vs Frequency and VIN  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
IOUT  
10 mA, 252.5 mVRMS  
150 mA, 267.6 mVRMS  
IOUT  
10 mA, 364.8 mVRMS  
150 mA, 391.4 mVRMS  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
VOUT = 3.3 V, COUT = 10 µF  
VOUT = 5 V, COUT = 10 µF  
6-12. Noise vs Frequency at 5.0 V  
6-11. Noise vs Frequency at 3.3 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
0.2  
10  
8
300  
240  
180  
120  
60  
VIN  
VOUT  
VIN  
VOUT  
6
0.15  
0.1  
4
2
0.05  
0
0
0
-2  
-4  
-6  
-8  
-10  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-120  
-180  
-240  
-300  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
VOUT = 5 V, VIN = 5.5 V to 6.5 V, trise = 1 µs, COUT = 10 µF  
VOUT = 5 V, IOUT = 1 mA, VIN = 13.5 V to 40 V,  
slew rate = 2.7 V/µs, VEN = 3.3 V, COUT = 10 µF  
6-14. Line Transients at 5.5 V to 6.5 V  
6-13. Line Transients at 13.5 V to 40 V  
150  
100  
50  
300  
200  
100  
0
150  
100  
50  
300  
-40èC  
-40èC  
25èC  
150èC  
IOUT  
25èC  
150èC  
IOUT  
200  
100  
0
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
VEN = 3.3 V, COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
VEN = 3.3 V, COUT = 10 µF  
6-15. Load Transient, No Load to 100 mA  
6-16. Load Transient, No Load to 100-mA Rising Edge  
50  
300  
240  
180  
120  
60  
50  
40  
30  
20  
10  
0
200  
150  
100  
50  
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
40  
30  
20  
10  
0
0
0
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-100  
-150  
-200  
-250  
-120  
-180  
-240  
-300  
0
40  
80  
120  
Time (ms)  
160  
200  
240  
280  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
VEN = 3.3 V, COUT = 10 µF  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
VEN = 3.3 V, COUT = 10 µF  
6-17. Load Transient, 45 mA to 105 mA  
6-18. Load Transient, 45-mA to 105-mA Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
150  
100  
50  
300  
200  
100  
0
150  
100  
50  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.25  
0.5  
0.75  
1
Time (ms)  
1.25  
1.5  
1.75  
2
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
VEN = 3.3 V, COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs, VEN  
3.3 V, COUT = 10 µF  
=
6-19. Load Transient, No Load to 150 mA  
6-20. Load Transient, No Load to 150-mA Rising Edge  
228  
227  
226  
225  
224  
223  
222  
221  
220  
40  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
35  
30  
25  
20  
15  
10  
219  
Current Limit  
218  
-75  
-45  
-15  
15  
45  
75  
105  
135  
Temperature (èC)  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VIN = VOUT + 1 V, VOUT = 90% × VOUT(NOM)  
VOUT = 5 V  
6-22. Quiescent Current (IQ) vs VIN  
6-21. Output Current Limit vs Temperature  
175  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
150  
125  
100  
75  
50  
25  
0
0
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
0
25  
50  
75  
Output Current (mA)  
100  
125  
150  
VOUT = 5 V  
6-23. Quiescent Current (IQ) vs VIN  
6-24. Ground Current (IGND) vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
281  
280  
279  
278  
277  
276  
275  
274  
273  
272  
271  
26  
25  
24  
23  
22  
21  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Ambient Temperature (èC)  
IOUT = 100 mA  
IOUT = 500 µA  
6-25. Ground Current  
6-26. Ground Current  
20  
15  
10  
5
200  
2.8  
Input Voltage  
Output Voltage  
Output Current  
Falling Threshold  
Rising Threshold  
2.75  
2.7  
150  
100  
50  
2.65  
2.6  
2.55  
2.5  
0
0
2.45  
2.4  
-5  
-50  
10  
0
1
2
3
4
5
Time (ms)  
6
7
8
9
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
COUT = 10 µF  
6-27. Undervoltage Lockout (UVLO) Threshold vs  
6-28. Startup Plot  
Temperature  
20  
18  
16  
14  
12  
10  
8
OFF  
ON  
6
4
0.2  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
0.4  
0.6  
0.8  
1
1.2  
Injected current (mA)  
1.4  
1.6  
1.8  
Temperature (èC)  
6-30. Thermal Shutdown  
6-29. Output Voltage vs Injected Current  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
specified at TJ = 40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
Stable region  
0.02  
0.01  
0.005  
0.002  
0.001  
0.0005  
0.0002  
0.0001  
1
2
3
4 5 67810  
20 30 50 70 100 200300 500  
COUT (mF)  
6-31. Stability ESR vs COUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B83-Q1 is a low-dropout linear regulator (LDO) designed to connect to the battery in automotive  
applications. The device has an input voltage range extending to 40 V, which allows the device to withstand  
transients (such as load dumps) that are anticipated in automotive systems. With only a 18-µA quiescent current  
at light loads, the device is an optimal solution for powering always-on components.  
The device has a state-of-the-art transient response that allows the output to quickly react to changes in the load  
or line (for example, during cold-crank conditions). Additionally, the device has a novel architecture that  
minimizes output overshoot when recovering from dropout. During normal operation, the device has a tight DC  
accuracy of ±1% over line, load, and temperature.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
R1  
Thermal  
Shutdown  
œ
+
UVLO  
R2  
Bandgap  
GND  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.2 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.3.3 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brickwall scheme. In a high-load current fault, the brickwall scheme  
limits the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
7-1 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
7-1. Current Limit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7B83-Q1  
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
)
The output current is less than the current limit (IOUT < ICL)  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分的信息不属于 TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TPS7B83-Q1 requires an output capacitor of 2.2 µF or larger (1 µF or larger capacitance) for stability and an  
equivalent series resistance (ESR) between 0.001 Ω and 2 Ω. For the best transient performance, use X5R-  
and X7R-type ceramic capacitors because these capacitors have minimal variation in value and ESR over  
temperature. When choosing a capacitor for a specific application, be mindful of the DC bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
8.1.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
8.1.3 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7B83-Q1  
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
8.1.4 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN VOUT) × IOUT  
(2)  
Note  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(3)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.4.1 Thermal Performance Versus Copper Area  
The most used thermal resistance parameter, RθJA, is highly dependent on the heat-spreading capability built  
into the particular PCB design, and therefore varies according to the total copper area, copper weight, and  
location of the planes. The RθJA recorded in the Thermal Information table in the Specifications section is  
determined by the JEDEC standard (see 8-1), PCB, and copper-spreading area, and is only used as a  
relative measure of package thermal performance. For a well-designed thermal layout, RθJA is actually the sum  
of the package junction-to-case (bottom) thermal resistance (RθJCbot) plus the thermal resistance contribution by  
the PCB copper.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
Mold  
Compound  
Die  
Wire  
Die  
Attach  
2oz  
Signal  
Trace  
Lead  
Frame  
Internal Signal  
or power plane  
1oz copper  
Thermal  
Pad or Tab  
of the LDO  
Internal  
GND plane  
1oz copper  
Bottom  
Relief  
2oz copper  
Thermal  
Vias  
8-1. JEDEC Standard 2s2p PCB  
8-2 and 8-3 depict the functions of RθJA and ψJB versus copper area and thickness. These plots are  
generated with a 101.6-mm x 101.6-mm x 1.6-mm PCB of two and four layers. For the four-layer board, the inner  
planes use a 1-oz copper thickness. Outer layers are simulated with both a 1-oz and 2-oz copper thickness. A 4  
x 4 array of thermal vias of 300-µm drill diameter and 25-µm Cu plating is located beneath the thermal pad of the  
device. The thermal vias connect the top layer, the bottom layer and, in the case of the 4-layer board, the first  
inner GND plane. Each of the layers has a copper plane of equal area.  
20  
115  
105  
95  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
19  
18  
17  
16  
15  
14  
13  
85  
75  
65  
55  
45  
35  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Cu Area Per Layer (cm2)  
Cu Area Per Layer (cm2)  
8-2. RθJA vs Copper Area 2s2p DCY Package  
8-3. ψJB vs Copper Area 2s2p DCY Package  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7B83-Q1  
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
8.1.5 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two  
methods for calculating the junction temperature (TJ), as described in the following equations. Use the junction-  
to-top characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to  
calculate the junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB  
surface temperature 1 mm from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
(4)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(5)  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
8.2 Typical Application  
8-4 shows a typical application circuit for the TPS7B83-Q1. Use different values of external components,  
depending on the end application. An application may require a larger output capacitor during fast load steps in  
order to prevent a reset from occurring. TI recommends a low-ESR ceramic capacitor with a dielectric of type  
X5R or X7R.  
VI  
Vo  
V
V
reg  
bat  
0.1 F  
10 F  
TPS7B83-Q1  
GND  
8-4. Typical Application Schematic for the TPS7B83-Q1  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
6 V to 40 V  
5 V  
Output current  
100 mA  
10 µF  
Output capacitor  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 1 µF. The voltage rating must be greater than the maximum  
input voltage.  
8.2.2.2 Output Capacitor  
The device requires an output capacitor to stabilize the output voltage. The capacitor value must be between  
2.2 µF and 200 µF and the ESR range must be between 1 mΩ and 2 Ω. For this design a low ESR, 10-µF  
ceramic capacitor was used to improve transient performance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7B83-Q1  
 
 
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
8.2.3 Application Curves  
20  
15  
10  
5
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
Output Voltage  
Output Current  
0
0
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 50 mA  
IOUT = 10 mA  
IOUT = 1mA  
-5  
-50  
10  
0
1
2
3
4
5
Time (ms)  
6
7
8
9
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
8-5. Power-Up Waveform  
8-6. PSRR  
50  
40  
300  
-40èC  
25èC  
150èC  
IOUT  
240  
180  
120  
60  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-120  
-180  
-240  
-300  
0
40  
80  
120  
160  
200  
240  
280  
Time (ms)  
8-7. Transient Response  
9 Power Supply Recommendations  
This device is designed for operation from an input voltage supply with a range between 3 V and 40 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the TPS7B83-Q1, add  
an electrolytic capacitor and a ceramic bypass capacitor at the input.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close as possible to each other, connected by a wide, component-side,  
copper surface. The use of vias and long traces to the input and output capacitors is strongly discouraged and  
negatively affects system performance. TI also recommends a ground reference plane either embedded in the  
PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves to  
assure accuracy of the output voltage, shield noise, and behaves similarly to a thermal plane to spread (or sink)  
heat from the LDO device when connected to the thermal pad. In most applications, this ground plane is  
necessary to meet thermal requirements.  
10.1.1 Package Mounting  
Solder pad footprint recommendations for the TPS7B83-Q1 are available at the end of this document and at  
www.ti.com.  
10.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance  
As depicted in 10-1, place the input and output capacitors close to the device for the layout of the TPS7B83-  
Q1. In order to enhance the thermal performance, place as many vias as possible around the device. These vias  
improve the heat transfer between the different GND planes in the PCB.  
To improve ac performance such as PSRR, output noise, and transient response, TI recommends a board  
design with separate ground planes for IN and OUT, with each ground plane connected only at the GND pin of  
the device. In addition, the ground connection for the output capacitor must connect directly to the GND pin of  
the device.  
Minimize equivalent series inductance (ESL) and ESR in order to maximize performance and ensure stability.  
Place each capacitor as close as possible to the device and on the same side of the PCB as the regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use of vias and long traces to connect the capacitors because these can negatively  
impact system performance and may even cause instability.  
If possible, and to ensure the maximum performance specified in this document, use the same layout pattern  
used for the TPS7B83-Q1 evaluation board, available at www.ti.com.  
10.2 Layout Example  
GND  
VIN  
VOUT  
10-1. SOT-223 (DCY) Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7B83-Q1  
 
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
11-1. Device Nomenclature(1)  
PRODUCT  
VOUT  
xx is the nominal output voltage (for example, 33 = 3.3 V V; 50 = 5.0 V).  
TPS7B83xxQDCYRQ1  
Q indicates that this device is a grade-1 device in accordance with the AEC-Q100 standard.  
Q1 indicates that this device is an automotive grade (AEC-Q100) device.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
 
 
 
 
 
 
 
 
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
DRC0010U  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
S
C
A
S
 E
C
30.0  
OI  
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
4X (0.25)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
5
6
(0.16) TYP  
A
A
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
SYMM  
10X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
4225163/A 07/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DRC0010U  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.25)  
11  
(2.4)  
SYMM  
(3.4)  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
( 0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225163/A 07/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7B83-Q1  
TPS7B83-Q1  
ZHCSMC8 NOVEMBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DRC0010U  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.25)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4225163/A 07/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7B83-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B8333QDCYRQ1  
TPS7B8333QDCYRQ1M3  
TPS7B8350QDCYRQ1  
TPS7B8350QDCYRQ1M3  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
DCY  
DCY  
DCY  
DCY  
4
4
4
4
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
7B8333  
Samples  
Samples  
Samples  
Samples  
SN  
NIPDAU  
SN  
7B8333  
7B8350  
7B8350  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Mar-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MPDS094A – APRIL 2001 – REVISED JUNE 2002  
DCY (R-PDSO-G4)  
PLASTIC SMALL-OUTLINE  
6,70 (0.264)  
6,30 (0.248)  
3,10 (0.122)  
2,90 (0.114)  
4
0,10 (0.004)  
M
3,70 (0.146)  
3,30 (0.130)  
7,30 (0.287)  
6,70 (0.264)  
Gauge Plane  
1
2
3
0,25 (0.010)  
0,84 (0.033)  
0,66 (0.026)  
0°–10°  
2,30 (0.091)  
0,10 (0.004)  
M
4,60 (0.181)  
0,75 (0.030) MIN  
1,70 (0.067)  
1,50 (0.059)  
1,80 (0.071) MAX  
0,35 (0.014)  
0,23 (0.009)  
Seating Plane  
0,08 (0.003)  
0,10 (0.0040)  
0,02 (0.0008)  
4202506/B 06/2002  
NOTES: A. All linear dimensions are in millimeters (inches).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC TO-261 Variation AA.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7B8333QDCYRQ1M3

具有快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125
TI

TPS7B8350QDCYRQ1

具有快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125
TI

TPS7B8350QDCYRQ1M3

具有快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125
TI

TPS7B84-Q1

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B84-Q1_V01

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B84-Q1_V02

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B8401QWDRBRQ1

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B8433QDCYRQ1

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B8433QDCYRQ1M3

具有使能和快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125
TI

TPS7B8433QWDRBRQ1

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B8450QDCYRQ1

TPS7B84-Q1 150-mA, 40-V, Adjustable, Low-Dropout Regulator
TI

TPS7B8450QDCYRQ1M3

具有使能和快速瞬态响应的汽车类 150mA、40V 低压降 (LDO) 线性稳压器 | DCY | 4 | -40 to 125
TI