TPS7H3302-SEP [TI]

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器;
TPS7H3302-SEP
型号: TPS7H3302-SEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器

双倍数据速率 稳压器
文件: 总37页 (文件大小:2205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
TPS7H3302-SP TPS7H3302-SEP 3A DDR 耐辐射终端稳压器  
1 特性  
3 说明  
• 提QMLP TPS7H3302-SP 标准微电路图  
(SMD)5962R14228  
TPS7H3302 是一款具有内置 VTTREF 缓冲器的耐辐  
射双倍数据速率 (DDR) 3A 终端稳压器。该稳压器专门  
设计用于为单板计算机、固态记录器和有效载荷处理等  
航天 DDR 端接应用提供完整的紧凑型低噪声解决方  
案。  
• 提供增强型航天塑料封装供应商项目图VID  
V62/22615  
• 电离辐射总剂(TID) 特性  
– 耐辐射保(RHA)耐受高100krad(Si) 或  
50krad(Si) 的电离辐射总剂(TID)  
• 单粒子效(SEE) 特性  
TPS7H3302 支持使用 DDRDDR2DDR3DDR3L  
DDR4 DDR VTT 端接应用。凭借快速瞬态响  
TPS7H3302 VTT 稳压器可在读取/写入状态下提  
供非常稳定的电源。TPS7H3302 还包含一个用于跟踪  
VTT 的内置 VTTREF 电源以进一步减小解决方案尺  
寸。为了实现简单的电源时序TPS7H3302 中集成了  
使能输入和电源正常输出 (PGOOD)。使能信号还可用  
于在挂起RAM (S3) 断电模式时使VTT 放电。  
– 单粒子锁(SEL)、单粒子栅穿(SEGR)、单粒  
子烧(SEB) LET 的抗扰= 70MeV-  
cm2/mg  
– 单粒子瞬(SET)、单粒子功能中(SEFI) 和  
单粒子翻(SEU) 特性值高70MeVcm2/mg  
• 支DDRDDR2DDR3DDR3L DDR4 端  
接应用  
• 输入电压2.5V 3.3V 电源轨  
• 低至  
0.9V 的独立低压输(VLDOIN)可提高电源效率  
3A 灌电流和拉电流终端稳压器  
• 可实现电源时序的使能输入和电源正常输出  
VTT 终端稳压器  
器件信息  
等级  
器件型号(1)  
封装(2)  
HTSSOP (32)  
5962R142280PYE(3)  
QMLP-RHA  
6.10mm × 11.00mm  
= 0.184g  
TPS7H3302MDAPTSEP  
TPS7H3302EVM  
9 月  
EVM  
评估板  
(1) 有关更多信息请查Device Options 表。  
(2) 尺寸和质量值为标称值。  
(3) 产品预发布。  
– 输出电压范围0.5 1.75 V  
3A 灌电流和拉电流  
• 具有检测输入的精密集成分压器网络  
• 遥(VTTSNS)  
TPS7H3302  
VIN (2.5 V or 3.3 V supply)  
VDD  
VTTSNS  
VTT = VDDQ / 2  
VDDQ  
VTTREF 缓冲基准  
VDDQSNS  
VLDOIN  
EN  
VTT  
VTTREF  
PGOOD  
AGND  
– 相对VDDQSNS (±3mA) 的精度49% 至  
VDDQ  
VTTREF = VDDQSNS / 2  
51%  
DDR - 2.5 V  
DDR2 - 1.8 V  
DDR3 - 1.5 V  
DDR 3L - 1.375 V  
DDR4 - 1.2 V  
±10mA 灌电流和拉电流  
• 集成了欠压锁(UVLO) 和过流限(OCL) 功能  
• 塑料封装  
VDD  
ENABLE  
100 k  
PGND  
2 应用  
卫星电力系(EPS)  
命令和数据处(C&DH)  
光学成像有效载荷  
雷达成像有效载荷  
3-1. DDR 应用的简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGX6  
 
 
 
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
9.3 Power Supply Recommendations.............................25  
9.4 Layout....................................................................... 25  
10 Device and Documentation Support..........................27  
10.1 Device Support....................................................... 27  
10.2 Documentation Support.......................................... 27  
10.3 Receiving Notification of Documentation Updates..27  
10.4 Support Resources................................................. 27  
10.5 Trademarks.............................................................27  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics..............................................10  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2023) to Revision A (May 2023)  
Page  
TPS7H3302-SEP 状态从“预告信息”更改为“量产数据”......................................................................... 1  
QMLP TPS7H3302-SP 添加了“产品预发布”说明..............................................................................1  
• 在“特性”部分和“器件选项”表中添加TPS7H3302-SP产品预发布辐射等级.....................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
2
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
5 Device Options  
Device Options  
Grade2  
Generic Part Number  
Radiation Rating(1)  
Package  
Orderable Part Number  
TPS7H3302-SP  
QMLP-RHA  
32-Pin HTSSOP DAP  
5962R142280PYE(3)  
TID of 100 krad(Si) RLAT,  
DSEE free to 70 MeV-  
cm2/mg  
TPS7H3302-SEP  
TPS7H3302EVM  
TID of 50 krad(Si) RLAT,  
DSEE free to 48 MeV-  
cm2/mg  
Space Enhanced Plastic  
Evaluation Board  
32-Pin HTSSOP DAP  
EVM  
TPS7H3302MDAPTSEP  
TPS7H3302EVM  
None  
(1) TID is total ionizing dose and DSEE is destructive single event effects. Additional information is available in the associated TID reports  
and SEE reports for each product.  
(2) For additional information about part grade, view SLYB235.  
(3) Product preview.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
NC  
NC  
NC  
NC  
NC  
3
NC  
4
VTTSNS  
AGND  
NC  
VTTREF  
VDDQSNS  
NC  
5
6
7
VTT  
VTT  
VTT  
VTT  
PGOOD  
VDD  
EN  
VLDOIN  
VLDOIN  
PGND  
PGND  
PGND  
NC  
8
Thermal Pad  
9
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
6-1. DAP Package 32-Pin HTSSOP Top View  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
VTTREF  
VDDQSNS  
4
5
O
I
Reference output. Connect to GND through 0.1-µF ceramic capacitor.  
VDDQ sense input. Reference input for VTTREF.(2)  
7
VLDOIN  
I
Supply voltage for the LDO. Connect to VDDQ voltage or an alternate voltage source.  
8
9
PGND  
10  
11  
Power ground. Connect to system ground.  
Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the  
device.  
EN  
20  
21  
22  
I
I
2.5- or 3.3-V power supply. A ceramic decoupling capacitor with a value between 1 and 10 µF is  
required.  
VDD  
PGOOD output pin. PGOOD pin is an open drain output to indicate the output voltage is within  
specification.  
PGOOD  
O
23  
24  
25  
26  
28  
29  
VTT  
O
Power output for VTT LDO.  
AGND  
VTTSNS  
NC  
Signal ground. Connect to system ground.  
I
Voltage sense for VTT. Place capacitor close to pin. Route sense line to VTT near load.  
1-3, 6,  
12-19,  
27, 30-32  
No connect. These pins are not internally connected. It is recommended to connect these pins to ground  
to prevent charge buildup; however, these pins can also be left open or tied to any voltage between  
ground and VDD.  
Thermal Pad  
Connect to PGND. This is internally floating.  
(1) I = Input, O = Output, = Other  
(2) VDDQSNS shall be connected to the regulated voltage supplying VDDQ. If the VDDQ supply is also used for VLDOIN, an RC filter is  
recommended to isolate transients from VLDOIN to VDDQ.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
4
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range and all voltages with respect to AGND (unless otherwise noted)(1)  
MIN  
0.36  
0.3  
0.3  
0.3  
0.3  
55  
MAX  
3.6  
UNIT  
VDD, VLDOIN, VTTSNS, VDDQSNS  
Input voltage  
EN  
3.6  
V
PGND to AGND  
VTT, VTTREF  
PGOOD  
TJ  
0.3  
3.6  
Output voltage  
V
3.6  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
55  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
±4000  
±750  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
all voltages with respect to AGND (unless otherwise noted)  
MIN  
2.375  
1
NOM  
MAX  
UNIT  
VDD  
3.5  
3.5  
3.5  
3.5  
0.1  
3.5  
1.8  
4
VDDQSNS  
VLDOIN  
EN, VTTSNS, PGOOD  
PGND  
0.9  
Input voltage  
V
0.1  
0.1  
0.1  
0.1  
0
VTT  
Output voltage  
Input current  
V
mA  
A
VTTREF  
PGOOD  
VTT  
3
3  
Output current  
Junction temperature  
VTTREF  
TJ  
0.01  
125  
0.01  
55  
°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
 
 
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
TPS7H3302-SEP  
THERMAL METRIC(1)  
HTSSOP DAP  
32-PINS  
25.9  
15.9  
7.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
7.9  
ΨJB  
RθJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
6
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over 2.375 VDD 3.5 V, VLDOIN = 1.8 V, VDDQSNS = 1.8 V, EN = VDD, TA = 55°C to 125°C; Standard DDR  
Application; all voltages with respect to AGND, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY CURRENTS  
IVDD  
Quiescent current  
Shutdown current  
EN = 3.3 V, no load  
18  
1.75  
5
30 mA  
VDDQSNS = 0 V  
3
IVDD(SHDN)  
EN = 0 V, no load  
mA  
6
VDDQSNS > 0.78 V  
IVLDOIN  
Quiescent current of VLDOIN  
Shutdown current of VLDOIN  
VDDQSNS input current  
EN = 3.3 V, no load  
EN = 0 V, no load  
EN = 3.3 V  
450 1200 µA  
IVLDOIN(SHDN)  
IVDDQSNS  
0.5  
4
1
6
µA  
µA  
VTT OUTPUT  
VDDQSNS = VLDOIN  
= 2.5 V (DDR1)  
1.24  
0.89  
1.25  
0.9  
1.26  
0.91  
VDDQSNS = VLDOIN  
= 1.8V (DDR2)  
VDDQSNS = VLDOIN  
= 1.5 V (DDR3)  
IVTT = 5 mA  
0.745 0.752 0.759  
0.67 0.677 0.684  
0.596 0.602 0.608  
V
V
V
VDDQSNS = VLDOIN  
= 1.35 V (DDR3L)  
VDDQSNS = VLDOIN  
= 1.2 V (DDR4)  
VDDQSNS = VLDOIN  
= 2.5 V (DDR1)  
1.25  
0.9  
1.26  
0.91  
1.27  
0.92  
VDDQSNS = VLDOIN  
= 1.8V (DDR2)  
VDDQSNS = VLDOIN  
= 1.5 V (DDR3)  
VTTSNS  
Output DC voltage, VTT  
0.752  
0.76 0.768  
IVTT = 5 mA  
VDDQSNS = VLDOIN  
= 1.35 V (DDR3L)  
0.675 0.685 0.692  
VDDQSNS = VLDOIN  
= 1.2 V (DDR4)  
0.602  
1.24  
0.61 0.618  
VDDQSNS = VLDOIN  
= 2.5 V (DDR1)  
1.26  
1.28  
0.93  
0.78  
0.72  
0.63  
VDDQSNS = VLDOIN  
= 1.8V (DDR2)  
0.885 0.910  
VDDQSNS = VLDOIN  
= 1.5 V (DDR3)  
0.735  
0.66  
0.76  
0.69  
0.6  
1 A IVTT 1 A  
VDDQSNS = VLDOIN  
= 1.35 V (DDR3L)  
VDDQSNS = VLDOIN  
= 1.2 V (DDR4)  
0.585  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
Over 2.375 VDD 3.5 V, VLDOIN = 1.8 V, VDDQSNS = 1.8 V, EN = VDD, TA = 55°C to 125°C; Standard DDR  
Application; all voltages with respect to AGND, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
IVTT = 0.5 A  
5
60  
190  
8
60  
180  
465  
70  
VDDQSNS = 2.5 V  
(DDR1)  
IVTT = 1 A  
IVTT = 2 A  
IVTT = 0.5 A  
IVTT = 1 A  
IVTT = 2 A  
IVTT = 0.5 A  
IVTT = 1 A  
IVTT = 2 A  
IVTT = 0.5 A  
IVTT = 1 A  
IVTT = 2 A  
IVTT = 0.5 A  
IVTT = 1 A  
IVTT = 2 A  
VDDQSNS = 1.8 V  
(DDR2)  
65  
190  
5
200  
475  
65  
Dropout voltage,  
VDO = VLDOIN VTTREF  
VDO recorded when VTT –  
VTTREF = 50 mV  
VDDQSNS = 1.5 V  
(DDR3)  
VDO  
60  
180  
4
180 mV  
420  
60  
VDDQSNS = 1.35 V  
(DDR3L)  
60  
175  
4
180  
420  
60  
VDDQSNS = 1.2 V  
(DDR4)  
60  
175  
18  
-15  
180  
420  
IVTT = -3 A  
IVTT = 3 A  
1
30  
mV  
-1  
VTT Tolerance to VTTREF  
(VTT VTTREF)  
VTT(TOL)  
-30  
Ramp output 0 A to 10 A, record current when  
VTT reaches lowest value  
ILIM_SRC_VTT  
ILIM_SNK_VTT  
VTT sourcing current limit  
5
5
9
A
Ramp output 0 A to -10 A, record current when  
VTT reaches highest value  
VTT sinking current limit  
VTT discharge resistance  
10  
25  
A
RDSCHRG  
VDDQSNS = 0 V, VTT = 0.3 V, EN = 0 V  
7
POWER GOOD  
VPG(LOW, Falling)  
VPG(LOW, Rising)  
VPG(HI, Falling)  
VPG(HI, Rising)  
VPG(HYST)  
PGOOD window lower falling threshold  
PGOOD window lower rising threshold  
PGOOD window High falling threshold  
PGOOD window High rising threshold  
-21% -20% -18%  
-17% -15% -13%  
VTT PGOOD threshold with  
respect to VTTREF  
13%  
18%  
15%  
20%  
17%  
21%  
VTT PGOOD threshold with  
respect to VTTREF  
VTT PGOOD hysteresis  
PGOOD startup delay  
5%  
Startup rising edge, VTTSNS within 20% of  
VTTREF  
tPG(delay)  
4
ms  
tPG_BAD(delay)  
VPG(OL)  
PGOOD bad delay  
VTTSNS outside of the ±20% PGOOD window  
IPGOOD(SINK) = 4 mA  
1.95  
µs  
V
Power good output low  
0.4  
1
VTTSNS = VTTREF (PGOOD high impedance),  
PGOOD = VDD + 0.2 V  
IPG(LKG)  
Power good leakage  
0.07  
µA  
VDDQSNS AND VTTREF  
VDDQSNS UVLO turn-on  
threshold  
VDDQSNSUVLO(HYST) VDDQSNS UVLO hysteresis  
VTTREF VTTREF voltage  
VDDQSNSUVLO  
VDDQSNS rising  
750  
75  
900 mV  
150  
V
VDDQSNS / 2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
8
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
Over 2.375 VDD 3.5 V, VLDOIN = 1.8 V, VDDQSNS = 1.8 V, EN = VDD, TA = 55°C to 125°C; Standard DDR  
Application; all voltages with respect to AGND, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
49%  
49%  
49%  
49%  
49%  
49%  
49%  
49%  
TYP MAX UNIT  
VDDQSNS = 2.5 V  
51%  
51%  
VDDQSNS = 1.8 V  
VDDQSNS = 1.5 V  
VDDQSNS = 1.35 V  
VDDQSNS = 1.2 V  
VDDQSNS = 1.5 V  
VDDQSNS = 1.35 V  
VDDQSNS = 1.2 V  
-10 mA IVTTREF 10  
51.25%  
51.5%  
51.5%  
51%  
mA  
VTTREF voltage tolerance to  
VDDQSNS  
VTTREF  
-3 mA IVTTREF 3  
51%  
mA  
51%  
Sourcing current ramped from 0 to 55mA. Find  
when VTTREF drops to half its original value  
ILIM_SRC_VTTREF  
VTTREF sourcing current limit  
35  
12  
45  
mA  
Sinking current ramped from 0 to 16.5mA. Find  
when VTTREF hits peak value  
ILIM_SNK_VTTREF  
IVTTREF(dis)  
VTTREF sinking current limit  
VTTREF discharge current  
15  
EN = 0 V, VDDQSNS = 0 V, VTTREF = 0.5 V  
1.3  
mA  
UVLO AND ENABLE  
VDDUVLO  
VDD UVLO turn-on threshold  
VDD UVLO hysteresis  
2.18  
40  
2.3  
1.7  
V
VDDUVLO(HYST)  
mV  
Enable high-level input voltage  
(turn-on)  
VIH_EN  
VIL_EN  
V
V
Enable low-level input voltage  
(turn-off)  
0.3  
-1  
VEN(HYS)  
IEN(LKG)  
Enable hysteresis voltage  
700  
mV  
µA  
Enable input leakage current  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
For Fig 7-1 through Fig 7-11, (3 × 150-µF tantalum + 4 × 4.7-µF MLCC) or equivalent capacitance/ESR are used  
on VTT output  
1.278  
1.275  
1.272  
1.269  
1.266  
1.263  
1.26  
1.257  
1.254  
1.251  
1.248  
1.245  
1.242  
1.239  
1.236  
0.927  
0.924  
0.921  
0.918  
0.915  
0.912  
0.909  
0.906  
0.903  
0.9  
0.897  
0.894  
0.891  
0.888  
0.885  
25C  
125C  
-55C  
25C  
125C  
-55C  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
3
3
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
VDD = 3.6 V  
VDDQSNS = 2.5  
VDD = 3.6 V  
VDDQSNS = 1.8 V  
7-1. Output Voltage vs Output Current  
7-2. Output Voltage vs Output Current  
0.777  
0.702  
25C  
125C  
-55C  
25C  
125C  
-55C  
0.774  
0.771  
0.768  
0.765  
0.762  
0.759  
0.756  
0.753  
0.75  
0.747  
0.744  
0.741  
0.738  
0.735  
0.699  
0.696  
0.693  
0.69  
0.687  
0.684  
0.681  
0.678  
0.675  
0.672  
0.669  
0.666  
0.663  
0.66  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
VDD = 3.6 V  
VDDQSNS = 1.5 V  
VDD = 3.6 V  
VDDQSNS = 1.35 V  
7-3. Output Voltage vs Output Current  
7-4. Output Voltage vs Output Current  
0.625  
1.2605  
25C  
125C  
-55C  
25C  
125C  
-55C  
1.26  
1.2595  
1.259  
0.62  
0.615  
0.61  
1.2585  
1.258  
0.605  
0.6  
1.2575  
1.257  
0.595  
0.59  
1.2565  
1.256  
0.585  
0.58  
1.2555  
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
Output Current (A)  
VTTREF Current (mA)  
VDD = 3.6 V  
VDDQSNS = 1.2 V  
VDDQSNS = 2.5 V  
7-5. Output Voltage vs Output Current  
7-6. VTTREF Voltage vs VTTREF Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
10  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
0.9105  
0.91  
0.76  
0.7595  
0.759  
25C  
125C  
-55C  
25C  
125C  
-55C  
0.9095  
0.909  
0.9085  
0.908  
0.9075  
0.907  
0.9065  
0.906  
0.7585  
0.758  
0.7575  
0.757  
0.7565  
0.756  
0.7555  
0.755  
0.9055  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
VTTREF Current (mA)  
VTTREF Current (mA)  
VDDQSNS = 1.8V  
VDDQSNS = 1.5 V  
7-7. VTTREF Voltage vs VTTREF Current  
7-8. VTTREF Voltage vs VTTREF Current  
0.685  
0.61  
25C  
25C  
0.6845  
0.6095  
125C  
125C  
-55C  
-55C  
0.684  
0.609  
0.6835  
0.683  
0.6825  
0.682  
0.6815  
0.681  
0.6805  
0.68  
0.6085  
0.608  
0.6075  
0.607  
0.6065  
0.606  
0.6055  
0.605  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
VTTREF Current (mA)  
VTTREF Current (mA)  
VDDQSNS = 1.35 V  
VDDQSNS = 1.2V  
7-9. VTTREF Voltage vs VTTREF Current  
7-10. VTTREF Voltage vs VTTREF Current  
180  
160  
140  
120  
100  
80  
60  
1.25 V  
0.9 V  
0.75 V  
0.675 V  
0.6 V  
40  
20  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Output Current (A)  
VDD = 3.6 V  
7-11. Dropout Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS7H3302-SEP device is a sink and source double data rate (DDR) termination regulator specifically  
designed for low input voltage, low-noise systems where space and mass are a key consideration.  
8.2 Functional Block Diagram  
VDDQSNS  
5
7, 8  
4
VLDOIN  
VTTREF  
+
2.25V  
-
UVLO  
+
VDD  
21  
29  
DchgREF  
Gm  
GND  
-
VTTSNS  
+
23, 24, 25, 26  
VTT  
20  
28  
EN  
DchgVTT  
REFINOK  
Gm  
9, 10, 11  
PGND  
AGND  
GND  
-
GND  
22  
PGOOD  
+
+
+
Startup  
Delay  
-
+
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
12  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 VTT Sink and Source Regulator  
The TPS7H3302 is a 3-A sink and source tracking termination regulator incorporating a high performance, low-  
dropout (LDO) linear regulator specifically designed for low input voltage, and low external component count  
systems where board area is a key application parameter. The LDO regulator employs a fast feedback loop so  
that ceramic capacitors can be used to support the fast load transient response. To achieve tight regulation with  
minimum effect of trace resistance, a remote sensing pin (VTTSNS) should be connected to the positive pin of  
the output capacitor(s) as a separate trace from the high-current path of VTT.  
The TPS7H3302 has a dedicated pin (VLDOIN) for connection to the VTT power supply, in order to minimize the  
LDO power dissipation. The minimum VLDOIN voltage is highlighted in Electrical Characteristics : TPS7H3302  
(VLDOIN to VTT headroom) for various load conditions.  
8.3.2 Reference Input (VDDQSNS)  
The output voltage, VTT, is regulated to VTTREF. VDDQSNS incorporates an integrated resistor divider network.  
VDDQSNS should be connected to the memory supply bus (VDDQ). The TPS7H3302 supports VDDQSNS  
voltage from 1 V to 3.5 V, making it versatile and ideal for many types of low-power LDO applications.  
8.3.3 Reference Output (VTTREF)  
When it is configured for DDR termination applications, VTTREF buffers the DDR VTT reference voltage for the  
memory application. The VTTREF block consists of an on-chip 1/2 resistor divider and a low-pass filter (LPF).  
VTTREF tracks 1/2 of VDDQSNS typically within ±1%. It is typically capable of supporting a ±10 mA sink/source  
load current. VTTREF becomes active when VDDQSNS reaches 0.75V and VDD is above the UVLO threshold.  
When VTTREF is less than 0.675 V, VTTREF is disabled and subsequently discharges to GND through an  
internal MOSFET. VTT is also discharged following the discharge of VTTREF. VTTREF is independent of the EN  
pin state. To meet stability criteria, a ceramic capacitor of 0.1-µF minimum must be installed close to VTTREF  
(pin 4). Capacitor value at VTTREF (pin 4) must not exceed 2.2 µF.  
8.3.4 EN Control (EN)  
When EN is driven high, the TPS7H3302 VTT regulator begins normal operation. When EN is driven low, VTT  
discharges to GND through an internal 18-(typical) MOSFET. VTTREF remains on when EN is driven low. EN  
is not tied high internally to prevent power sequencing issues with an external signal that may be controlling the  
enable. EN is a floating input and not internally tied, thus the user can have complete control over where and  
when the EN signal is generated. EN feeds directly into power-good (PGOOD). When enable is low, PGOOD is  
low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
8.3.5 Power-Good Function (PGOOD)  
The TPS7H3302 provides an open-drain PGOOD output that goes high when the VTT output is within 20% of  
VTTREF (typ). PGOOD deasserts within 1.95 μs after the output exceeds the size of the power-good window.  
During initial VTT startup, PGOOD asserts high 4 ms (typ) after the VTT enters power-good window. Because  
PGOOD is an open-drain output, a 100-kpullup resistor between PGOOD and a stable active supply voltage  
rail is recommended for proper operation.  
8.3.6 VTT Current Protection  
The LDO has a constant overcurrent limit (OCL).  
8.3.7 VIN UVLO Protection  
For VDD undervoltage lockout (UVLO) protection, the TPS7H3302 monitors VDD voltage. When the VDD  
voltage is lower than the UVLO threshold voltage, both the VTT and VTTREF regulators are powered off. This  
shutdown is a non-latch protection.  
8.3.8 Thermal Shutdown  
The TPS7H3302 includes thermal shutdown circuitry that typically activates at 210ºC with a 12ºC hysterysis;  
when engaged the VTT and VTTREF regulators are both shutoff and discharged by the internal discharge  
MOSFET. This description is only provided in order to provide a complete description of the TPS7H3302; the  
thermal shutdown feature is not included in the product specification as the plastic package is not designed for  
use at 210ºC.  
8.4 Device Functional Modes  
The TPS7H3302 is a 3-A sink and source LDO provides low output noise to meet system needs. In order to  
improve efficiency in the LDO, the TPS7H3302 LDO can operate from low VLDOIN voltage rail, thus using dual  
voltage source one for the VLDOIN that supports high-current and an alternate voltage sources that enables the  
VDDQSNS pin to track VDDQ.  
In some cases VLDOIN and VDDQSNS pins are tied together. In the memory system, VDDQ is a high-current  
supply that powers the core, the I/O, and the logic of the memory. VTTREF is a low-current, precision reference  
voltage that provides a threshold between a logic high (one) and a logic low (zero) that adapts to changes in the  
I/O supply voltage. By providing a precision threshold that adapts to the supply voltage, VTTREF realizes wider  
noise margins than those possible with a fixed threshold and normal variations in termination and drive  
impedance. Specifications vary for different DDR technologies. For example DDR3 JEDEC JESD79-3F specifies  
0.49 to 0.51 times VDDQ and draws only tens to hundreds of microamps. The TPS7H3302 VTTREF is designed  
to sink and source up to 10 mA.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
14  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS7H3302 device is a highly-integrated sink and source LDO. The device is targeted to support VTT  
voltage for DDR memory applications and is capable of sourcing and sinking 3-A load current. The  
TPS7H3302EVM users guide is available on www.ti.com, SLVUCK2. The guide highlights standard EVM test  
results, schematic, and bill of materials (BOM) for reference.  
9.2 Typical Application  
The design example describes a 2.5-V VIN, DDR3 configuration.  
VDD  
R5  
R2  
TPS7H3302  
PGOOD  
VTTSNS  
AGND  
VTT  
PGOOD  
C2  
VTTREF = VDDQSNS/2  
C14  
VTTREF  
VDDQSNS  
VLDOIN  
PGND  
GND  
VTT = 0.75V  
C9 C18  
C7  
C16  
C8  
C17  
C15  
C10  
VDDQ  
DDR3 1.5V  
EN  
C4 C11 C5 C12 C6 C13  
GND  
R1  
ENABLE  
2.5V SUPPLY  
VDD  
C1  
GND  
GND  
9-1. Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.1 Design Requirements  
See the Recommended Operating Conditions for recommended limits.  
9.2.2 Detailed Design Procedure  
9-1. Design Example 1 List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
RC0603JR-0720KL  
RC0603FR-07392RL  
GCM31CR71C106KA64K  
CC0603KRX7R7BB102  
1210ZC475KAT2A  
R1, R5  
Yageo  
Yageo  
Murata  
Yageo  
AVX  
20 kΩ  
Resistor  
R2  
392 Ω  
C1, C4, C5, C6, C11, C12,  
10 µF, 16 V  
1000 pF, 10 V  
4.7 µF, 10 V  
1000 pF, 100 V  
150 µF, 10 V  
2.2 µF, 25 V  
C2  
C7, C8, C9, C18  
C10  
Capacitor  
06031C102KAT2A  
AVX  
C13, C15, C16, C17  
C14  
T530D157M010ATE005  
08053C225KAT2A  
Kemet  
AVX  
9.2.2.1 VDD Capacitor  
Add a ceramic capacitor, with a value between 1- and 10-μF, placed close to the VDD pin to minimize high  
frequency noise from the supply.  
9.2.2.2 VLDO Input Capacitor  
Depending on the trace impedance between the VLDOIN/VDDQ bulk power supply to the device, a transient  
increase of source current is supplied mostly by the charge from the VLDOIN/VDDQ input capacitor. Use a 150-  
μF (or greater) tantalum capacitor in parallel with a 4.7-µf ceramic capacitor to supply this transient charge.  
Provide more input capacitance as more output capacitance is used at VTT.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
16  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.3 VTT Output Capacitor  
For stable operation, the total capacitance of the VTT output pin must be greater than 470 μF. Attach three, 3 ×  
150-μF low-ESR tantalum capacitors in parallel with four 4.7 μF ceramic capacitors to minimize the effect of  
equivalent series resistance (ESR) and equivalent series inductance (ESL). If the total parallel ESR is greater  
than 2 m, insert an R-C filter between the output and the VTTSNS input to achieve loop stability. The R-C filter  
time constant should be almost the same as or slightly lower than the time constant of the output capacitor and  
its ESR.  
9.2.2.4 VTTSNS Connection  
To achieve tight regulation with minimum effect of trace resistance, a remote sensing pin (VTTSNS) should be  
connected to the positive pin of the VTT pin output capacitor or capacitors as a separate trace from the high-  
current path from VTT. Consider adding a low-pass R-C filter at the VTTSNS pin in case the ESR of the VTT  
output capacitor or capacitors is larger than 2 mΩ. The R-C filter time constant should be approximately the  
same or slightly lower than the time constant of the VTT output capacitance and ESR.  
TPS7H3302-SEP  
26  
25  
24  
23  
VTT  
VTT  
VTT  
VTT  
RC  
29  
VTTSNS  
CC  
470 μF  
PGND  
PGND  
PGND  
9
GND  
10  
11  
GND  
9-2. RC Filter for VTTSNS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.5 Low VDD Applications  
TPS7H3302 can be used in an application system where either a 2.5-V rail or a 3.3-V rail is available. The  
TPS7H3302 minimum input voltage requirement is 2.375 V. If a 2.5-V rail is used, ensure that the absolute  
minimum voltage (both DC and transient) at the device pin is 2.375 V or greater. The voltage tolerance for a 2.5-  
V rail input is between ±5% accuracy, or better.  
9.2.2.6 S3 and Pseudo-S5 Support  
The TPS7H3302 provides S3 support by an EN function. The EN pin could be connected to an SLP_S3 signal in  
the end application. Both VTTREF and VTT are on when EN = high (S0 state). VTTREF is maintained while VTT  
is turned off and discharged via an internal discharge MOSFET when EN = low (S3 state). Please notice that the  
EN signal controls only the output buffer for VTT and therefore, while in S3 state, VDDQSNS is present in order  
to maintain data in volatile memory. As a result, when EN is set high to exit the S3 state, it is desired to bring  
VTT into regulation as fast as possible. This causes an output current controlled by the current limit of the device  
and the output capacitors.  
When EN = low and the VDDQSNS voltage is less than 0.75 V(typically), TPS7H3302 enters pseudo-S5 state.  
Both VTT and VTTREF outputs are turned off and discharged to GND through internal MOSFETs when pseudo-  
S5 support is engaged (S4/S5 state). 9-3 shows a typical startup and shutdown timing diagram for an  
application that uses S3 and pseudo-S5 support.  
VDD  
VDDQ = 1.5 V  
VLDOIN  
0.75 V  
0.675 V  
0.37 V  
VDDQSNS  
VTTREF  
EN  
(S3_SLP)  
trise  
VTT = 0.75 V  
VTT  
COUT x VTT  
IVOSRCL  
trise  
=
PGOOD  
4 ms  
9-3. Typical Timing Diagram for S3 and Pseudo-S5 Support  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
18  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.7 Tracking Startup and Shutdown  
The TPS7H3302 supports tracking startup of VDDQ and shutdown when EN is tied directly to the system bus  
and not used to turn on or turn off the device. During tracking startup, VTT follows VTTREF once VDDQSNS  
voltage is greater than 0.75 V. VDDQSNS incorporates a resistor divider network and a time constant of about  
445 µs. The rise time of the VTT output is then a function of the rise time of VDDQSNS. If the VDDQSNS rise  
time is larger than 445 µs. Typically PGOOD is asserted 4 ms after VTT is within ±20% of VTTREF. During  
tracking shutdown, VTT falls following VTTREF until VTTREF reaches 0.37 V (typically). Once VTTREF falls  
below 0.37 V, the internal discharge MOSFETs are turned on and quickly discharge both VTTREF and VTT to  
GND. PGOOD is deasserted once VTT is beyond the ±20% range of VTTREF. 9-4 shows the typical timing  
diagram for an application that uses tracking startup and shutdown.  
There are no sequencing requirements between VDD and VLDOIN. If VLDOIN is applied first followed by VDD  
there is no issue. VDD UVLO protection monitors VDD voltage. When VDD is lower than UVLO threshold both  
VTT and VTTREF regulators are powered off.  
VDD  
EN  
VLDOIN  
VDDQSNS  
VTTREF  
EN  
(S3_SLP)  
VTT = 0.75 V  
Trise determined by the  
rise time of VDDQSNS  
VTT  
PGOOD  
4 ms  
9-4. Typical Timing Diagram of Tracking Startup and Shutdown  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.8 Output Tolerance Consideration for VTT DIMM or Module Applications  
The TPS7H3302 is specifically designed to power up the memory termination rail (as shown in 9-5). The DDR  
memory termination structure determines the main characteristics of the VTT rail, which is to be able to sink and  
source current while maintaining acceptable VTT tolerance. See 9-6 for typical characteristics for a single  
memory cell.  
TPS7H3302-SEP  
VTTREF  
VTT  
Cref  
0.1 - 2.2 μF  
GND  
150 μF  
150 μF  
150 μF  
GND  
9-5. Typical Application Diagram for DDR3 VTT DIMM/Module Using TPS7H3302  
In 9-6, when Q1 is on and Q2 is off:  
Current flows from VDDQ via the termination resistor to VTT.  
VTT sinks current.  
In 9-6, when Q2 is on and Q1 is off:  
Current flows from VTT via the termination resistor to GND.  
VTT sources current.  
V
V
TT  
DDQ  
Q1  
Q2  
25 W  
R
S
20 W  
Receiver  
Ouput  
Buffer  
(Driver)  
V
V
IN  
OUT  
V
SS  
UDG-08023  
9-6. DDR Physical Signal System SSTL Signaling  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
Because VTT accuracy has a direct impact on the memory signal integrity, it is imperative to understand the  
tolerance requirement on VTT. Based on JEDEC VTT specifications for DDR and DDR2. See 9-2 for detailed  
information and JEDEC relevant specifications.  
VTTREF 40 mV < VTT < VTTREF + 40 mV, for both DC and AC conditions  
The specification itself indicates that VTT must keep track of VTTREF for proper signal conditioning.  
The TPS7H3302 specifies the regulator output voltage to be:  
VTTREF 30 mV < VTT < VTTREF + 30 mV, for both DC and AC conditions and 3 A < IVTT < 3 A.  
The regulator output voltage is measured at the regulator side, not the load side. The tolerance is applicable to  
DDR, DDR2, DDR3 and low-power DDR3/DDR4 applications (see 9-2 for detailed information). To meet the  
stability requirement, a minimum output capacitance of 470 μF is needed, combination of both tantalum and  
ceramic capacitors. Considering the actual tolerance on the MLCC capacitors, four 4.7-μF ceramic capacitors in  
parallel with 3 × 150-µF low-ESR tantalum capacitor are sufficient to meet the above requirement. Higher ESR  
tantalum capacitors will require multiple tantalum capacitors in parallel with ceramic capacitors to meet system  
needs.  
9-2. DDR, DDR2, DDR3, and LP DDR3 Termination Technology and Differences  
LOW POWER DDR3  
DDR  
DDR2  
DDR3  
(DDR3L)  
FSB data rates 200, 266, 333 and 400 MHz 400, 533, 677 and 800 MHz  
On-die termination for data  
800, 1066, 1330 and 1600 MHz Same as DDR3  
On-die termination for data  
Motherboard termination to group. VTT used for termination group. VTT used for termination  
Termination  
Same as DDR3  
Same as DDR3  
VTT for all signals  
of address, command and  
control signals.  
of address, command and  
control signals.  
Not as demanding  
Not as demanding  
Only 34 signals (address,  
command, control) tied to  
VTT  
Only 34 signals (address,  
command, control) tied to  
VTT  
Max sink and source  
transient currents of up to  
2.6 A to 2.9 A  
Termination  
current demand  
ODT handles data signals  
ODT handles data signals  
Less than 1 A of burst current  
1.8-V core and I/O 0.9-V VTT  
Less than 1 A of burst current  
1.5-V core and I/O 0.75-V VTT  
2.5-V core and I/O 1.25-V  
VTT  
1.35-V core and I/O  
0.68-V VTT  
Voltage level  
Relevant  
JEDEC  
specification  
JESD79F (SSTL_2  
JESD8-9B)  
DDR2 JESD79-2F (SSTL_18  
JESD8-15)  
DDR3L  
JESD79-3-1A.01  
DDR3 JESD79-3F  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
The TPS7H3302 is designed as a Gm-driven LDO. The voltage droop between the reference input and the  
output regulator is determined by the transconductance and output current of the device. The typical Gm is 250  
S at 3 A and changes with respect to the load in order to conserve the quiescent current (that is, the Gm is very  
low at no load condition). The Gm LDO regulator is a single pole system. Its unity gain bandwidth for the voltage  
loop is only determined by the output capacitance, as a result of the bandwidth nature of the Gm. (See below)  
Gm  
F
=
UGBW  
2´ p´ C  
OUT  
(1)  
where  
FUGBW is the unity gain bandwidth  
Gm is transconductance  
COUT is the output capacitance  
There are two limitations to this type of regulator when it comes to the output bulk capacitor requirement. To  
maintain stability, the zero location contributed by the ESR of the output capacitors should be greater than the –  
3-dB point of the current loop. This constraint means that higher ESR capacitors should not be used in the  
design. In addition, the impedance characteristics of the ceramic capacitor should be well understood in order to  
prevent the gain peaking effect around the Gm 3-dB point because of the large ESL, the output capacitor, and  
parasitic inductance of the VTT trace.  
9-7 shows the bode plot simulation for a typical DDR3 configuration of the TPS7H3302, where:  
VDD = 2.4 V  
VVLDOIN = 1.5 V  
VTT = 0.75 V  
IIO = 3 A  
3 × 150-μF low-ESR tantalum capacitors (T530D157M010ATE005) in parallel with 4 × 4.7-µF ceramic  
capacitor  
ESR = 1.66 mΩ  
ESL = 800 pH  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
22  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
The unity-gain bandwidth is approximately 85 kHz and the phase margin is 92°. The 0-dB level is crossed, the  
gain peaks because of the ESL effect. However, the peaking is kept well below 0 dB.  
Bode Plot for DDR3 VDDQSNS = 1.5V  
VTT load 3 A  
100  
90  
80  
70  
60  
200  
180  
160  
140  
120  
100  
80  
Gain  
Phase  
50  
40  
30  
60  
20  
40  
10  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
10 20 50 100200  
1000  
10000  
100000  
1000000 5000000  
Frequency  
9-7. Bode Plot for a Typical DDR3 Configuration  
The figure below shows the Load Regulation and Transient Plot shows the transient response for a typical DDR3  
configuration. When the regulator is subjected to a ±1.875-A load step. The current shown only represents the  
device sourcing 1.875 A due to location of current probe.  
9-8. Transient Plot  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.9 LDO Design Guidelines  
For TPS7H3302, a minimum of 420 mV (VLDOINMIN VTTMAX) is needed in order to support a Gm driven  
sourcing current of 2 A based on the specified dropout voltage maximum at VDDQSNS = 1.5 V. Because the  
TPS7H3302 is essentially a Gm-driven LDO, its impedance characteristics are both a function of the 1/Gm and  
RDS(on) of the sourcing MOSFET (see TPS7H3302 Impedance Characteristics). The current inflection point of  
the design is between 3 A and 4 A. When ISRC is less than the inflection point, the LDO is considered to be  
operating in the Gm region; when ISRC is greater than the inflection point but less than the overcurrent limit point,  
the LDO is operating in the RDS(on) region. The typical sourcing RDS(on) is 154 mwith VIN = 3 V and TJ = 125°C.  
1/Gm  
Inflection  
Point  
1/R  
DS(on)  
(between  
2 A and 3 A)  
Overcurrent  
Limit  
I
- Source Current - A  
SRC  
UDG-08026  
9-9. TPS7H3302 Impedance Characterisitcs  
9.2.3 Application Curve  
Bode Plot for DDR3 VDDQSNS = 1.5V  
VTT load 1 A  
100  
90  
80  
70  
60  
200  
180  
160  
140  
120  
100  
80  
Gain  
Phase  
50  
40  
30  
60  
20  
40  
10  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
10 20 50 100200  
1000  
10000  
100000  
1000000 5000000  
Frequency  
9-10. DDR2 2-A Load VDD = 2.4 V, VTT = 0.9 V  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
TPS7H3302 is designed to support DDR, DDR2, DDR3, DDR3L, and DDR4 VTT applications. TPS7H3302  
VLDOIN supports voltage range from 0.9 V to 3.5 V. The supply must be well regulated. Having a separate  
VLDOIN supply from DDR VDDQ allows designer to optimize system efficiency. VDD is used to bias the  
TPS7H3302 IC and its voltage range from 2.375 V to 3.5 V. This supply must be well regulated and bypassed  
with a ceramic capacitor with a value of 1 µF and 10 µF. TI recommends that VLDOIN and DDR supply VDDQ  
be isolated from each other. If this is not possible then an RC filter must be used to isolate VLDOIN and  
VDDQSNS. However, in so doing the dynamic tracking of VTT and VTTREF will be reduced. See the EVM  
user's guide SLVUCK2 for additional details.  
9.4 Layout  
9.4.1 Layout Guidelines  
Consider the following points before starting the TPS7H3302 layout design.  
The input bypass capacitor for VLDOIN should be placed as close as possible to the pin with short and wide  
connections.  
The output capacitor for VTT should be placed close to the pin with short and wide connection in order to  
avoid additional ESR and/or ESL trace inductance.  
VTTSNS should be connected to the positive node of VTT output capacitors as a separate trace from the  
high-current power line. This configuration is strongly recommended to avoid additional ESR and/or ESL. If  
sensing the voltage at the point of the load is required, it is recommended to attach the output capacitor or  
capacitors at that point. Also, it is recommended to minimize any additional ESR and/or ESL of ground trace  
between the GND pin and the output capacitor or capacitors.  
Consider adding low-pass filter at VTTSNS if the ESR of the VTT output capacitor or capacitors is larger than  
2 m.  
VDDQSNS can be connected separately from VLDOIN. Remember that this sensing potential is the  
reference voltage of VTTREF. Avoid any noise-generating lines.  
The negative node of the VTT output capacitor or capacitors and the VTTREF capacitor should be tied  
together by avoiding common impedance to the high-current path of the VTT sink and source current.  
The GND and PGND pins should be connected to the thermal land underneath the die pad with multiple vias  
connecting to the internal system ground planes (for better result, use at least two internal ground planes).  
Use as many vias as possible to reduce the impedance between PGND/GND and the system ground plane.  
Also, place bulk caps close to the DIMM/module or memory load point and route the VTTSNS to the DIMM/  
module load sense point.  
In order to effectively remove heat from the package, properly prepare the thermal land. Apply solder directly  
to the packages thermal pad. Numerous vias, 0.33 mm in diameter or smaller, connected from the thermal  
land to the internal/solder side ground plane or planes should also be used to help dissipation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
9.4.2 Layout Example  
To VTTREF Host  
To VDDQ Source  
Vias from top layer thermal pad to GND (PGND)  
NC  
NC  
NC  
NC  
NC  
NC  
Cap  
VTTREF  
VDDQSNS  
NC  
VTTSNS  
AGND  
NC  
VLDOIN PLANE  
VLDOIN  
VLDOIN  
VTT  
VTT  
VTT  
VTT  
VTT PLANE  
Cap  
Cap  
Cap  
Cap  
Cap  
PGND  
PGND  
Cap  
Cap  
Cap  
Cap  
Cap  
Cap  
Cap  
PGOOD  
VDD  
EN  
NC  
NC  
PGND  
NC  
NC  
NC  
NC  
Res  
Cap  
NC  
NC  
TPS7H3302-SEP  
To GPIO or Host  
Main Ground  
Plane  
From GPIO or Host  
9-11. Layout Example  
9.4.3 Thermal Considerations  
VTT current can flow in both source and sink directions. As the TPS7H3302 is a linear regulator, power is  
dissipated internal to the device. When the device is sourcing current, the voltage difference between VLDOIN  
and VTT times IO (IIO ) current becomes the power dissipation as shown in 方程2.  
P
=
V
(
- V  
x I  
O _SRC  
)
DISS _SRC  
VLDOIN  
VO  
(2)  
In this case, if VLDOIN is connected to an alternative power supply lower than the VDDQ voltage, overall power  
loss can be reduced. For the sink phase, VTT voltage is applied across the internal LDO regulator and the power  
dissipation (PDISS_SNK) can be calculated by 方程3.  
P
= V ´ I  
VO O _SNK  
DISS _SNK  
(3)  
Because the device does not sink and source current at the same time and the IO current may vary rapidly with  
time, the actual power dissipation should be the time average of the above dissipations over the thermal  
relaxation duration of the system. Another source of power consumption is the current used for the internal  
current control circuitry from the VDD supply and the VLDOIN supply. This can be estimated as 5 mW or less  
during normal operating conditions. This power must be effectively dissipated from the package.  
The thermal performance of an LDO depends on the printed circuit board (PCB) layout.  
To further improve the thermal performance of this device, using a larger than recommended thermal land as  
well as increasing the number of vias helps lower the thermal resistance from junction to heat slug.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGX6  
26  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS7H3302-SEP Single-Event Effects Summary radiation report (SLVK132)  
Texas Instruments, TPS7H3302EVM-CVAL (HREL022) user's guide (SLVUCK2)  
10.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.4 Support Resources  
10.5 Trademarks  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
 
 
 
 
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
PACKAGE OUTLINE  
TM  
PowerPAD TSSOP - 1.2 mm max height  
DAP0032F  
S
C
A
L
E
1
.
5
0
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID AREA  
30X 0.65  
32  
1
11.1  
10.9  
NOTE 3  
2X  
9.75  
16  
B
17  
0.30  
32X  
0.19  
6.2  
6.0  
0.1 C  
0.1  
C A B  
SEATING PLANE  
(0.15) TYP  
C
SEE DETAIL A  
4.11  
3.29  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
4.06  
3.16  
1.2 MAX  
0.75  
0.50  
0.15  
0.05  
2X (0.9)  
NOTE 5  
0 - 8  
2X (0.15)  
NOTE 5  
DETAIL A  
TYPICAL  
4226056/A 07/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
 
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DAP0032F  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(4.11)  
32X (1.5)  
SYMM  
SEE DETAILS  
1
32  
32X (0.45)  
30X (0.65)  
(11)  
NOTE 9  
SYMM  
(4.06)  
(1.2 TYP)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
16  
17  
(0.65) TYP  
(1.3) TYP  
METAL COVERED  
BY SOLDER MASK  
(7.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226056/A 07/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
TPS7H3302-SP, TPS7H3302-SEP  
ZHCSRP2A FEBRUARY 2023 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DAP0032F  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(4.11)  
BASED ON  
0.125 THICK  
STENCIL  
32X (1.5)  
1
32  
32X (0.45)  
30X (0.65)  
(4.06)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
17  
16  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
4.60 X 4.54  
4.11 X 4.06 (SHOWN)  
3.75 X 3.71  
0.125  
0.15  
0.175  
3.47 X 3.43  
4226056/A 07/2020  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS7H3302-SP TPS7H3302-SEP  
English Data Sheet: SLVSGX6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7H3302MDAPTSEP  
V62/22615-01XE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DAP  
DAP  
32  
32  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
TPS7H3302  
TPS7H3302  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DAP 32  
8.1 x 11, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225303/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID AREA  
30X 0.65  
32  
1
11.1  
10.9  
NOTE 3  
2X  
9.75  
16  
B
17  
0.30  
32X  
0.19  
6.2  
6.0  
0.1 C  
0.1  
C A B  
SEATING PLANE  
(0.15) TYP  
C
SEE DETAIL A  
4.11  
3.29  
EXPOSED  
THERMAL PAD  
0.25  
4.06  
3.16  
1.2 MAX  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
2X (0.9)  
NOTE 5  
0 - 8  
2X (0.15)  
NOTE 5  
DETAIL A  
TYPICAL  
4226056/A 07/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(4.11)  
32X (1.5)  
SYMM  
SEE DETAILS  
1
32  
32X (0.45)  
30X (0.65)  
(11)  
NOTE 9  
SYMM  
(4.06)  
(1.2 TYP)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
16  
17  
(0.65) TYP  
(1.3) TYP  
(7.5)  
METAL COVERED  
BY SOLDER MASK  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226056/A 07/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(4.11)  
BASED ON  
0.125 THICK  
STENCIL  
32X (1.5)  
1
32  
32X (0.45)  
30X (0.65)  
(4.06)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
17  
16  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
4.60 X 4.54  
4.11 X 4.06 (SHOWN)  
3.75 X 3.71  
0.125  
0.15  
0.175  
3.47 X 3.43  
4226056/A 07/2020  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7H4001-SP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001HKY/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | HKY | 34 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001MDDWTSHP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001Y/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002-SP

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002HKH/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | HKH | 20 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002Y/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003-SEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWTSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP-V02

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI