TPS92410 [TI]

用于离线 LED 驱动器的开关控制型、直接驱动、线性控制器;
TPS92410
型号: TPS92410
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于离线 LED 驱动器的开关控制型、直接驱动、线性控制器

开关 驱动 控制器 驱动器
文件: 总24页 (文件大小:619K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS92410  
ZHCSCM9 MAY 2014  
TPS92410 用于离线 LED 驱动器的开关控制直接驱动线性控制器  
1 特性  
3 说明  
1
乘法器适用于优良 PFC、线路调节和低 THD  
VIN 范围从 9.5V 450V  
与相位调光器兼容  
模拟调光输入时关闭 LED  
可编程过压保护  
TPS92410 是一款具有高压启动功能的先进线性驱动  
器,适用于低功耗离线 LED 照明应用。 该器件可与  
TPS92411 直接驱动开关结合使用,用于调节流过  
LED 的平均电流。  
TPS92410 设有基准电压,可用于设定电流级别和温  
度折返阈值。 此器件内含乘法器,可用于获取优异的  
功率因数同时保持良好的线路调节性能。 其它特性包  
括:欠压锁定、过压保护、正向相位调光器检测、切换  
到恒流模式、温度折返以及热关断。  
高精度 3V 基准  
温度折返  
热关断  
无需电感器  
13 引脚,高压,SOIC 封装  
器件信息(1)  
2 应用  
部件号  
封装  
封装尺寸(标称值)  
TPS92410D  
SOIC (13)  
8.65mm x 6.00mm  
LED 驱动器  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
LED 照明灯泡更换  
简化电路原理图  
120 VRMS  
±
+
VIN  
DRAIN  
VS  
TPS92411  
RSET  
RSNS  
VIN  
CPS  
CDD  
DOV  
VIN  
DRAIN  
VS  
TPS92411  
MULT  
RSET  
RSNS  
VREF  
ADIM  
TPS92410  
GDL  
CS  
VIN  
DRAIN  
VS  
TPS92411  
TSNS  
VCC  
RSET  
RSNS  
COMP GND  
RCS  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLUSBW9  
 
 
 
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 14  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings ...................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 ....................................................................... 19  
11.2 静电放电警告......................................................... 19  
11.3 术语表 ................................................................... 19  
12 机械封装和可订购信息 .......................................... 20  
7
4 修订历史记录  
日期  
修订版本  
注释  
2014 6 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
5 Pin Configuration and Functions  
SOIC HV  
13 PIN  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN  
CPS  
CDD  
DOV  
GDL  
VCC  
MULT  
VREF  
ADIM  
TSNS  
CS  
GND  
COMP  
8
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
Analog input used to set the reference of the linear controller. A 0-V to 1.5-V signal on ADIM sets the current  
sense reference level.  
ADIM  
9
I
A capacitor to ground sets the time interval for dimmer detection. Tie to GND if no phase dimmer operation  
is required.  
CDD  
COMP  
CPS  
CS  
2
7
1
5
3
I/O  
I/O  
I/O  
I
Compensation for control loop. Connect a capacitor from the COMP pin to ground.  
A capacitor to ground sets the length of the CDD pin charge pulse. Leave open if no phase dimmer  
operation is required.  
Current sense input used for linear regulator.  
Input to monitor linear MOSFET drain voltage. A resistor divider from the DOV pin to the drain connection of  
the MOSFET monitors MOSFET over-voltage. Add a capacitor to GND for filtering.  
DOV  
I
GDL  
4
6
O
G
I
Gate drive for an external linear MOSFET.  
GND  
MULT  
TSNS  
VCC  
VIN  
Chip ground return.  
11  
8
AC input to the multiplier. Tap a resistor divider off the rectified line to this pin.  
Thermal sense input. Connect to a resistor and NTC thermistor for thermal foldback.  
Pre-regulated voltage. Connect a bypass capacitor to ground.  
High voltage input. Provides power to the device.  
I
12  
14  
10  
I/O  
P
VREF  
O
3-V voltage supply reference. Source used for TSNS input.  
(1) I = Input, O = Output, P = Supply, G = Ground  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
Input voltage  
VIN  
700  
18  
18  
7.7  
6
V
VCC  
GDL  
Output voltage  
V
MULT, VREF, ADIM, COMP, CPS, CDD, TSNS  
DOV  
CS  
Source current  
Sink current  
1
mA  
mA  
°C  
CS  
1
(2)  
Operating junction temperature, TJ  
–40  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum junction temperature is internally limited by the device.  
6.2 Handling Ratings  
MIN  
–65  
–1  
MAX UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
150  
1
°C  
kV  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2)  
(1)  
V(ESD)  
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(3)  
–250  
250  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe  
manufacturing with a standard ESD control process. Terminals listed as 1000V may actually have higher performance.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process. Terminals listed as 250V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
450  
3
UNIT  
V
VIN  
Input voltage  
9.5  
VMULT  
VADIM  
TJ  
Multiplier peak input voltage  
Analog dimming input voltage  
Operating junction temperature  
V
0
3
V
-40  
125  
°C  
6.4 Thermal Information  
TPS92410  
D (13)  
84.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
39.8  
39.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.9  
ψJB  
39.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
6.5 Electrical Characteristics  
–40°C TJ 125°C, VVIN = 100 V, VADIM = VMULT = 1 V (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE (VIN)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
Pre-regulator output voltage  
10.15  
V
Rising threshold, VVIN = VVCC  
8
8.3  
VCCUVLO  
Supply votlage undervoltage protection Falling threshold, VVIN = VVCC  
Hysteresis  
5
5.85  
2.15  
2.5  
V
IVIN  
Input voltage bias current  
Supply bias current  
VVCC = 12 V  
50  
μA  
μA  
IVCC  
305  
145  
500  
Supply standby current  
VCC supply current limit  
VVIN = 0 V, VVCC = 7 V (UVLO)  
VVCC = 7.5 V  
IVCCLIM  
8
25  
mA  
VVCC stepped from 6.075 V to 110% of  
VCCUVLO,rising  
Tplh(UVLO)  
VCC supply glitch filter rising  
16.2  
μs  
MULTIPLIER (MULT)  
VMULT,LINEAR  
VCOMP,LINEAR  
RMULT  
Multiplier linear range  
0
3.5  
3.25  
700  
V
V
COMP pin linear range  
Input impedance  
1.5  
500  
580  
kΩ  
VMULT = 1.5 V, VCOMP = 2.25 V,  
k = VMULT_OUT/[(VCOMP–1.5 V) ×  
AMULT  
Multiplier gain  
0.95  
1.43  
1.85  
1/V  
VMULT  
]
VMULT,OFFSET  
MULTOUT,mx  
Multiplier output offset  
VMULT = 0 V, VCOMP = 2.25 V  
13.7  
2.43  
mV  
V
VADIM = VTSNS = open; VCOMP = 4 V,  
VMULT = 3.5 V  
Multiplier Output Clamp Voltage  
2.25  
2.85  
2.65  
VOLTAGE REFERENCE (VREF)  
VVREF  
Reference voltage  
Line regulation  
Load regulation  
IVREF = 100 μA  
3
3.15  
1%  
V
VREFLINE  
VREFLOAD  
8.5 V VVIN 100 V  
10 μA IREF 200 μA  
1%  
TRANSCONDUCTANCE AMPLIFIER (ADIM, COMP)  
ADIMLIM  
IADIM  
ADIM operating voltage limit  
Pull-up current  
1.425  
18  
1.5  
0.5  
40  
1.575  
1
V
μA  
mV  
mV  
μS  
mV  
ADIMSD  
ADIMSD,HYS  
gM  
ADIM linear shutdown threshold  
ADIM shutdown hysteresis  
Transconductance  
Falling  
70  
20  
43.3  
VOFFSET  
Input offset voltage  
VADIM = 0.5 V  
-20  
20  
VCOMP = 2.25 V, VMULT = 0V,  
VADIM = VTSNS = 2 V  
IOUT,SOURCE  
Output source current  
Output sink current  
65  
μA  
IOUT,SINK  
ISTART  
DIMMER DETECT (MULT, CPS, CDD)  
VCOMP = 2.25 V, VTSNS = 0 V  
VCOMP = 0 V, VADIM = 0 V  
75  
485  
ICPS  
Charge current for CPS pin  
6.7  
5.7  
10  
10  
1
13.3  
13.3  
1.33  
ICDD,c  
ICDD,d  
Charge current for CDD pin  
Discharge current for CDD pin  
μA  
0.67  
VMULT stepped from 0 V to 1 V,  
minimum slew rate required  
Dv/Dt  
Maximum detection threshold  
1/100  
V/μs  
VOFFSET  
VTH,CDD  
VTH,CPS  
RCSP  
Detector offset voltage  
CDD threshold  
0.41  
1.5  
V
CPS threshold  
1.5  
Pull down RDS(on)  
314  
Ω
Copyright © 2014, Texas Instruments Incorporated  
5
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
–40°C TJ 125°C, VVIN = 100 V, VADIM = VMULT = 1 V (unless otherwise noted)  
PARAMETER  
DRAIN OVER-VOLTAGE (DOV)  
TEST CONDITIONS  
MIN  
TYP  
VTH,DOV  
Drain over-voltage threshold  
Internal DOV hysteresis  
1.38  
1.5  
1.62  
V
VHYS,DOV  
20  
mV  
VDOV = 1.5 V, Device in over-voltage  
mode  
IHYS,DOV  
VREF,DOV  
Drain over-voltage source current  
0.7  
1
1.5  
μA  
Linear CS reference during over-  
voltage  
VDOV = 1.75 V  
0.1  
V
THERMAL FOLDBACK (TSNS)  
TSNSLIM TSNS operating voltage limit  
1.425  
1.5  
2.1  
1.575  
V
VADIM = VTSNS = 1 V, Measure  
reference to the linear error amplifier  
mV  
µA  
VTSNS = 0 V, Measure reference to the  
linear error amplifier  
3.6  
0.5  
ITSNS  
Pull-up current  
1
LINEAR CURRENT SENSE (CS)  
VCS(max)  
VCS(max)  
VIO  
CS voltage level (CC dimming mode)  
2.5 V = VADIM = VTSNS  
2.5 V = VADIM = VTSNS  
VREF = 1 V  
1.425  
1.125  
–17  
1.5  
1.291  
2.57  
0
1.575  
1.425  
17  
V
CS voltage level (PFC mode)  
Input offset voltage  
mV  
V
VCMR–  
Minimum input common mode range  
GATE DRIVER (GDL)  
VOH  
High-level output voltage, GDL  
ILOAD = –1 mA  
ILOAD = 1 mA  
VGDL= 4 V  
6.5  
8.2  
0.152  
8.1  
V
VOL  
Low-level output voltage, GDL  
Output source current  
Output sink current  
0.45  
IOUT(src)  
IOUT(snk)  
THERMAL SHUTDOWN  
TSD Thermal shutdown  
Thermal shutdown hysteresis  
2.5  
2.5  
mA  
VGDL= 4 V  
11.9  
175  
10  
°C  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
6.6 Typical Characteristics  
Unless otherwise stated, –40°C TA = TJ +125°C. All characterization circuits are fully EMI compliant and phase dimmable.  
55  
53  
51  
49  
47  
45  
60  
59  
58  
57  
56  
55  
190  
200  
210  
220  
230  
240  
250  
260  
85  
95  
105  
115  
125  
135  
Input Voltage (VAC)  
Input Voltage (VAC)  
6.8 W Input  
C009  
C004  
230 VAC  
Middle stack = 80 V  
11.2 W Input  
Top stack = 160 V  
VADIM = 1.5 V  
120VAC  
Middle stack = 40 V  
Top stack = 80 V  
VADIM = 1.5 V  
Bottom stack= 40 V  
Bottom stack= 20 V  
Figure 2. System Input Current vs Input Voltage  
Figure 1. System Input Current vs Input Voltage  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
ADIM Voltage (V)  
ADIM Voltage (V)  
C010  
C005  
230 VAC  
Middle stack = 80 V  
11.2 W Input  
Top stack = 160 V  
120VAC  
Middle stack = 40 V  
6.8 W Input  
Top stack = 80 V  
Bottom stack= 40 V  
Bottom stack= 20 V  
Figure 4. System Input Current vs ADIM Voltage  
Figure 3. System Input Current vs ADIM Voltage  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
TSNS Voltage (V)  
TSNS Voltage (V)  
C011  
C012  
120VAC  
Middle stack = 40 V  
6.8 W Input  
Top stack = 80 V  
VADIM = 1.5 V  
230 VAC  
Middle stack = 80 V  
11. W Input  
Top stack = 160 V  
VADIM = 1.5 V  
Bottom stack= 20 V  
Bottom stack= 40 V  
Figure 5. System Input Current vs TSNS Voltage  
Figure 6. System Input Current vs TSNS Voltage  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated, –40°C TA = TJ +125°C. All characterization circuits are fully EMI compliant and phase dimmable.  
3.4  
3.2  
3.0  
2.8  
2.6  
14  
12  
10  
8
6
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
±40 ±25 ±10  
Junction Temperature (ƒC)  
Junction Temperature (ƒC)  
C013  
C014  
Figure 7. VREF Voltage vs Temperature  
Figure 8. VCC Voltage vs Temperature  
10  
9
8
7
6
5
4
3
2
1
1.60  
1.55  
1.50  
1.45  
1.40  
5
20 35 50 65 80 95 110 125  
5
20 35 50 65 80 95 110 125  
±40 ±25 ±10  
±40 ±25 ±10  
Junction Temperature (ƒC)  
Junction Temperature (ƒC)  
C015  
C016  
VIN = 100 V  
GDL Not Operating  
Figure 9. VIN Bias Current vs Temperature  
Figure 10. Over-voltage Threshold vs Temperature  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
7 Detailed Description  
7.1 Overview  
The TPS92410 device is a high-voltage linear regulator driver that can be used for offline LED drivers. It includes  
a feature that forces the regulator current to follow the rectified AC voltage to achieve high power-factor and low  
total harmonic distortion (THD). When the device detects multiple forward phase dimmer edges, the regulator  
current changes to a DC level to maintain a DC current draw to provide for a triac dimmer's hold current  
requirements. The TPS92410 device also includes linear MOSFET over-voltage protection to protect the  
MOSFET if the LEDs are shorted. It includes a thermal foldback feature to protect the entire circuit in the event it  
becomes overheated. Analog dimming capability allows light output to be controlled by a microcontroller or a 0 V  
to 10 V dimmer. The device also includes a precision voltage reference.  
7.2 Functional Block Diagram  
VCC  
VIN  
UVLO  
SD  
HV Bias  
Regulator  
Thermal  
Shutdown  
1.5 V  
OVP  
DOV  
3-V  
Reference  
VREF  
ADIM  
SD  
40 mV/20 mV  
SD  
A0  
Min  
(A0, A1, A2) .  
.
TSNS  
A1  
A2  
MULT  
1.5 V  
AMUX  
Sel  
+
GDL  
SD  
gM  
Dimmer Detection  
CS  
R
Edge  
dv/dt  
MULT  
Timer  
GND  
S
Q
CPS CDD  
COMP  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Setting the Linear Regulator Current/Input Power (CS)  
The input power (PIN) can be set with a resistor from the CS pin to ground. Calculate the value of the RCS resistor  
using the following equation (see Figure 11):  
V
IN(rms ) × 1.428  
RCS  
=
P
IN  
where  
VIN(rms) is the nominal rms input voltage to the circuit  
(1)  
This sets the input power level due to the linear regulator for a standard application with VADIM and VTSNS greater  
than or equal to 1.5 V. If either pin is pulled below 1.5 V the input power scales accordingly to the ratio of  
VTSNS/ADIM/1.5 V. The actual input power of the circuit is higher due to variables such as VIN bias current,  
resistor, diode, and other losses. When using forward phase dimmers there can be a significant current spike  
through the MOSFET and RCS depending on the dv/dt of the dimmer edge. The magnitude and duration of this  
current spike should be measured in any application and a resistor should be chosen that is rated for the peak  
current required in any final design.  
7.3.2 Over-Voltage Protecton (DOV)  
The DOV pin can be used to set an over-voltage protection threshold for the external linear MOSFET. During  
normal operation DOV is not active, but in the event that the LEDs become shorted resulting in excessive voltage  
and power dissipation in the MOSFET over-voltage protection becomes active. During an over-voltage event, the  
CS pin regulation voltage defaults to 100 mV to reduce power dissipation in the MOSFET but still provide some  
light with the remaining LEDs. For this reason it is recommended to use a nominal value for CS for normal  
operation higher than 100 mV. A resistor divider to DOV between the MOSFET drain and system ground sets  
this over-voltage level as shown in Figure 11. During an over-voltage event the DOV pin sources 1 µA to provide  
some hysteresis. The level and hysteresis can be set using the following equations:  
VOVP - 1.5 V  
RDRAIN = RGROUND  
×
1.5 V  
(2)  
VHYS-DOV = 20 µA × RDRAIN  
where  
VOVP is the desired maximum drain voltage  
RDRAIN is the resistor from DOV to the drain  
RGROUND is the resistor from DOV to system ground  
(3)  
Include a capacitor from the DOV pin to system ground to prevent the circuit from transitioning into over-voltage  
protection mode during the start-up sequence. A recommended value for the RGND resistor is 121 kin parallel  
with a 4.7-µF capacitor for most applications. RDRAIN can then be calculated. To calculate the values of RGND  
and CGND for a particular application you need to set the time constant to be longer than it takes to charge up  
the highest voltage LED string capacitor to prevent a false trip of the over-voltage protection during start-up. This  
time constant and the resulting RC can be found using the following equations:  
CUPPER × VUPPER  
dt =  
IUPPER  
(4)  
RGND × CGND = 5 × dt  
where  
dt is the time constant to charge the LED capacitor  
CUPPER is the highest voltage LED string capacitor  
VUPPER is the highest string voltage  
IUPPER is the highest voltage LED string current  
(5)  
Choose RGND to be in the 100 kto 150 krange and calculate CGND. Then RDRAIN can be calculated. Over-  
voltage protection should be adjusted for the minimum string voltages for analog dimming applications or simply  
disabled by connecting DOV to ground.  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
Feature Description (continued)  
CS  
GDL  
VS  
RDRAIN  
DOV  
CGND  
RGND  
RCS  
Figure 11. CS and DOV Over-voltage Connections  
7.3.3 Input Undervoltage Lockout (UVLO)  
The TPS92410 device includes input UVLO protection. This protection prevents the device from operating until a  
voltage on the VIN pin exceeds 8.0 V. The circuit has 2.15 V of hysteresis to prevent false triggering.  
7.3.4 Reference Voltage (VREF)  
The TPS92410 includes a 3-V reference feature which can be used to set the DC level on the ADIM pin. It can  
also source current for the TSNS divider for the thermal foldback circuitry using the TSNS pin. The VREF pin can  
supply a maximum current of approximately 3 mA but should be limited to less than 200 μA to minimize power  
dissipation. All current sourced from VREF is supplied by VIN so power dissipation can become significant when  
sourcing higher currents.  
7.3.5 Forward Phase Dimmer Detection (CPS, CDD)  
An edge-detect circuit senses when a forward phase dimmer is connected to the input. This detection feature  
allows the device to operate with a wide variety of dimmers that operate in either forward or reverse phase. The  
CCPS and CCDD capacitors assist in this function while preventing a false dimmer detect caused by line glitches  
and spikes in applications without a phase dimmer. Connect a 0.1-μF capacitor between CPS to GND and a 1-  
μF capacitor from CDD to GND for most applications to use this feature. This results in a time constant of 15 ms  
for CPS and 150 ms for CDD. If this feature is not required leave CPS open and ground CDD.  
The dimmer detect function operates by applying a 10 µA charging current to both the CPS and CDD capacitors.  
If no edges are detected the CPS capacitor charges to a 1.5 V threshold at which point the CDD pin switches  
from sourcing 10 µA to sinking 1 µA. This prevents the CDD pin from charging to the 1.5-V threshold that  
switches the device to dimmer detect mode. When a forward phase dimmer is present the edge is detected at  
the MULT pin. Each time an edge is detected the CPS pin is discharged and then begins charging again. When  
enough consecutive edges are present to keep the CPS pin below 1.5 V for longer than the CDD time constant  
the CDD pin reaches 1.5 V and the device switches to dimmer detect mode. The current regulation level  
between constant current dimmer detect mode and standard PFC operation can be different depending on  
dimmer angle. A time constant too long can result in a mild light difference at turn-on due to a slightly different  
light level between PFC mode at turn-on and dimmer detect mode. A time constant too short could result in  
unintentionally switching to dimmer detect mode on noisy lines. The easiest way to implement a dimmer detect  
circuit is to use a CPS time constant just a bit longer than TPER, the period of half of the sine wave input voltage.  
But other time constants may be used if required. To change the time constants use the following equations:  
CCPS × 1.5 V  
dtCPS  
=
10 µA  
(6)  
TPER  
11  
dtCDD = infinite (for dtCPS  
<
)
(7)  
11  
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
Feature Description (continued)  
CCDD × 1.5 V  
TPER  
11  
dtCDD  
=
(for  
< dtCPS < TPER )  
:
;
11 µA × dtCPS F (1 µA × TPER  
)
(8)  
(9)  
CCDD × 1.5 V  
10 µA  
dtCDD  
=
(for dtCPS > TPER )  
7.3.6 Analog Dimming Input and Setting VCS (ADIM)  
If a default CS voltage of lower than 1.291 V is required, it can be set using the ADIM pin. A resistor divider from  
the reference sets ADIM to any voltage lower than 1.5 V. During normal operation, the CS voltage is equal to  
0.86 times the voltage applied to ADIM. The ADIM pin can also be used for analog dimming using a variable  
voltage between 40 mV and 1.5 V to dynamically change the CS voltage. If the device pulls the ADIM pin below  
40 mV, the device pulls the linear MOSFET gate low to shut off the LEDs. Tie an unused ADIM pin to VREF with  
a 200-kresistor. If a larger analog dimming range is required, use the TSNS pin for analog dimming because it  
does not disable the linear regulator when the voltage drops below 40 mV. The ADIM and TSNS pins function  
identically with the exception of the GDL disable threshold on the ADIM pin.  
7.3.7 Thermal Foldback (TSNS)  
The thermal foldback function of the TPS92410 device behaves similarly to the ADIM function. However, rather  
than using a resistor divider, a NTC thermistor connects TSNS to system ground. Calculate the temperature at  
which the circuit begins to reduce current by determining the temperature at which the the TSNS pin drops below  
1.5 V (when the ADIM pin is 1.5 V or higher). With a valid external voltage on the ADIM pin (< 1.5 V), the current  
begins to reduce when the TSNS voltage drops lower than the ADIM voltage. As described in the Analog  
Dimming Input and Setting VCS (ADIM) section, the TSNS pin and the ADIM pin may be used interchangeably. If  
the TSNS pin is used for analog dimming, the ADIM pin may be used for thermal foldback.  
7.3.8 Internal Regulator (VCC)  
The VCC pin functions as the output of the internal supply for the device. Connect a 10-µF capacitor between the  
VCC pin and ground to keep VCC charged for phase dimming applications. For analog dimming or non-dimming  
applications a 4.7-µF capacitor is sufficient.  
7.3.9 Error Amplifier (COMP)  
The COMP pin functions as the output of the internal gM error amplifier. To ensure stability over all conditions,  
connect a 4.7-µF capacitor between the COMP pin and ground. The bandwidth of the PFC can be calculated  
using the following equation:  
gM  
BW =  
tN× CCOMP  
(10)  
7.3.10 Linear MOSFET Gate Drive (GDL)  
The GDL pin functions as the gate drive for the linear MOSFET that regulates current. Connect the GDL pin to  
the gate of the power MOSFET. To reduce EMI, connect a 10-resistor in series with a 1-µF capacitor between  
the GDL pin and the CS pin with a diode connected between them that returns to the VCC pin as show in  
Figure 12. If phase dimming is not required, the diode can be omitted. Choose a linear MOSFET with a voltage  
rating of at least 250 V for a 120-VAC input application. Choose a linear MOSFET with a voltage rating of at least  
400 V for a 230-VAC input application. The MOSFET voltage rating must take into account the MOV clamp  
voltage in protected applications as this may be higher than the MOSFET and damage may occur during a surge  
event. The Safe Operating Area (SOA) of the MOSFET must also be taken into account. During start-up the  
MOSFET experiences high voltages as the LED capacitors charge. This leads to high power dissipation during  
start-up that the MOSFET must withstand. Use with forward phase dimmers also causes a significant current  
spike in the MOSFET when the dimmer fires. The magnitude and duration of this current spike is dependent  
upon many factors and should be measured in any design to confirm the MOSFET is rated properly for long life  
operation. MOSFET parasitics should also be considered. A very large MOSFET with high parasitic capacitances  
can cause erroneous switching of the TPS92411 floating drivers.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
Feature Description (continued)  
7.3.11 EMI Filter  
The input EMI filter requirements are specific to each design. A capacitor is needed for filtering and may also  
require an input resistor. For forward phase applications a snubber across the capacitor is likely to be required.  
The input resistor and snubber resistor need to have a pulse rating high enough for the particular application  
both during start-up and during forward phase dimming.  
7.3.12 Thermal Shutdown  
The TPS92410 device includes thermal shutdown protection. If the die temperature reaches approximately  
175°C the device shuts down. When the die temperature cools to approximately 165°C, the device resumes  
normal operation.  
7.4 Device Functional Modes  
7.4.1 Multiplier Mode  
When the MULT pin detects full rectified AC voltage, the CS voltage follows the rectified AC waveform around its  
regulation point. This behavior forces the current that is drawn from the line to follow the AC input voltage  
waveform. This action results in high power factor and low total harmonic distortion (THD). Line transients are  
rejected by the time constant that is initially set on the dimmer detect circuit to ensure dimmer detect mode is not  
engaged by random voltage spikes on the line.  
7.4.2 Dimmer Detect Mode  
When a forward phase dimmer is present there is a sharp edge presented to the MULT pin each cycle. This  
forces the dimmer detect circuit past its time constant and the device enters dimming mode. The CS voltage is  
then set at a DC level to prevent dimmer misfire  
8 Application and Implementation  
8.1 Application Information  
The TPS92410 is a linear controller designed to be used in conjunction with the TPS92411 switch for high  
voltage off-line LED drive applications. Typical uses include 120 VAC and 230 VAC input LED drivers with either  
analog or phase dimming. However like any linear controller it may also be used with a DC input voltage up to  
450 V. The following applications are for typical off-line LED drivers with 120 VAC and 230 VAC input voltages.  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
8.2 Typical Application  
8.2.1 120-VAC Input, 6.6-W LED Driver  
22 Ÿꢀ  
200 V  
VIN  
DRAIN  
VS  
120 VRMS  
1.82 0Ÿꢀ  
TPS92411  
±
+
RSET  
RSNS  
1 0Ÿꢀ  
33 µF  
100 V  
200 V  
VIN  
DRAIN  
VS  
1.65 0Ÿꢀ  
1 0Ÿꢀ  
TPS92411  
0.15 µF(1)  
250 V  
68 µF  
50 V  
RSET  
RSNS  
0.047 µF  
250 V  
(1)  
442 Ÿ  
200 V  
VIN  
DRAIN  
VS  
1.43 0Ÿꢀ  
1 0Ÿꢀ  
TPS92411  
120 µF  
25 V  
RSET  
RSNS  
2 0Ÿꢀ  
VIN  
CPS  
CDD  
DOV  
0.1 PF(1)  
MULT  
1 PF(1)  
30.1 NŸꢀ  
0.1 PF  
2 0Ÿꢀ  
121 NŸꢀ 4.7 PF  
VREF  
TPS92410  
ADIM  
TSNS  
30.1 NŸꢀ  
GDL  
10 Ÿꢀ  
VCC(1)  
CS  
470 NŸꢀ  
NTC  
(1)  
VCC  
COMP GND  
1 PF  
55 NŸ  
4.7 PF  
10 PF  
25 V  
RCS  
30.1 Ÿꢀ  
128 Ÿꢀ  
(1) Required only for forward phase dimmer capability.  
Figure 12. 120-V Application Schematic  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
Typical Application (continued)  
8.2.1.1 Design Requirements  
This application requires a 6.6-W input power, high-efficiency, phase-dimmable LED lamp for use on 120-V  
systems.  
8.2.1.2 Detailed Design Procedure  
The TPS92411 components are chosen using the guidelines in the TPS92411 datasheet. Most of the values  
used for the TPS92410 are recommended values for any 120-V system. Connect the input voltage directly to the  
rectified AC while the MULT pin is connected to a 2-M, 30.1-kresistor divider from the rectified AC to ground.  
The VREF pin should have a 0.1-µF capacitor tied to ground for decoupling. The VCC pin should be decoupled  
using a 10-µF ceramic capacitor to ground and the COMP pin should have a 4.7-µF ceramic capacitor to ground.  
Connect a 0.1-µF ceramic capacitor from the CPS pin to ground. Connect a 1-µF ceramic capacitor from the  
CDD pin to ground to enable phase dimmable operation. This results in a 150 ms dimmer detect time constant.  
The over-voltage protection using the DOV pin can be set using Equation 3. In this case a MOSFET drain over-  
voltage level of approximately 27 V is chosen. A 4.7-µF capacitor should be placed in parallel with a 121-kΩ  
resistor from the DOV pin to ground to set a time constant and for filtering for all applications.  
Choose RDRAIN for the appropriate voltage, in this case 2 Mis chosen. Connect a 10-resistor in series with a  
1-µF ceramic capacitor from GDL to CS for stability and to help reduce EMI. Place a diode from the center point  
of these two components to the VCC pin to clamp the voltage on the GDL pin and the CS pin that can become  
high with some forward phase dimmers. A rating of at least 20 V and 100 mA is recommended with a peak-  
repetitive current rating of at least 2 A. A 55-kresistor should be connected between the MOSFET source and  
the CS pin for additional protection. Connect a 30.1-kresistor from the TSNS pin to the VREF pin. The NTC  
thermistor to ground should be selected so that the desired foldback temperature results in a thermistor value of  
30.1 k. RCS is then calculated using Equation 1. RCS = 25 is very close, a 30.1 in parallel with a 182 Ω  
resulting in about 25.83 was chosen.  
8.2.1.3 Application Curves  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
10  
8
6
4
2
0
85  
95  
105  
115  
125  
135  
85  
95  
105  
115  
125  
135  
Input Voltage (VAC)  
Top stack = 80 V  
Bottom stack= 20 V  
Input Voltage (VAC)  
Top stack = 80 V  
Bottom stack= 20 V  
C002  
C003  
120VAC  
Middle stack = 40 V  
6.8 W Input  
120VAC  
Middle stack = 40 V  
6.8 W Input  
VADIM = 1.5 V  
VADIM = 1.5 V  
Figure 13. Power Factor vs Input Voltage  
Figure 14. Total Harmonic Distortion vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
Typical Application (continued)  
8.2.2 230-VAC Input, 11-W LED Driver  
200 V  
Q3  
200 V  
1 NŸꢀ  
680 pF  
1 0Ÿꢀ  
VGS = 4 V  
10 NŸꢀ  
22 µF  
200 V  
68 Ÿꢀ  
VIN  
DRAIN  
TPS92411  
230 VRMS  
1.91 0Ÿꢀ  
1 0Ÿꢀ  
0.1 µF  
100 V  
12 V 12 V  
±
+
RSET  
RSNS  
VS  
200 V  
47 µF  
100 V  
VIN  
DRAIN  
VS  
1.82 0Ÿꢀ  
1 0Ÿꢀ  
TPS92411  
0.15 µF(1)  
400 V  
RSET  
RSNS  
0.033 µF  
400 V  
(1)  
410 Ÿ  
200 V  
VIN  
DRAIN  
VS  
1.69 0Ÿꢀ  
1 0Ÿꢀ  
TPS92411  
100 µF  
50 V  
RSET  
RSNS  
4 0Ÿꢀ  
VIN  
CPS  
CDD  
DOV  
0.1 PF(1)  
MULT  
1 PF(1)  
30.1 NŸꢀ  
0.1 PF  
4 0Ÿꢀ  
121 NŸꢀ 4.7 PF  
VREF  
ADIM  
30.1 NŸꢀ  
GDL  
TSNS  
10 Ÿꢀ  
470 NŸꢀ  
VCC(1)  
CS  
NTC  
VCC  
COMP GND  
1 PF  
(1)  
55 NŸ  
4.7 PF  
10 PF  
25 V  
RCS  
30.1 Ÿꢀ  
(1) Required only for forward phase dimmer capability.  
Figure 15. 230-V Application Schematic  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
Typical Application (continued)  
8.2.2.1 Design Requirements  
This application requires a 11-W input power, high-efficiency, phase-dimmable LED lamp for use on 230-V  
systems.  
8.2.2.2 Detailed Design Procedure  
The TPS92411 components are chosen using the guidelines in the TPS92411 datasheet. Most of the values  
used for the TPS92410 are recommended values for any 230-V system. The input voltage should be connected  
directly to rectified AC while the MULT pin is connected to a 4-M, 30.1-kresistor divider between rectified AC  
and ground. The VREF pin should have a 0.1-µF capacitor connected to ground to provide decoupling. The VCC  
pin should be decoupled using a 10-µF ceramic capacitor to ground and the COMP pin should have a 4.7-µF  
ceramic capacitor to ground. Connect a 0.1-µF ceramic capacitor from the CPS pin to ground. Connect a 1-µF  
ceramic capacitor from CDD to ground to enable phase dimmable operation. This results in a 150 ms dimmer  
detect time constant. The over-voltage protection using the DOV pin can be set using Equation 3. This case  
includes a MOSFET drain over-voltage level of approximately 51 V. A 4.7-µF capacitor should be placed in  
parallel with a 121-kresistor from the DOV pin to ground to set a time constant and for filtering for all  
applications.  
Choose RDRAIN for the appropriate voltage, this case uses a value of 4-M. A 10-resistor in series with a 1-µF  
ceramic capacitor from GDL to CS adds stability and helps reduce EMI. A diode should be placed from the  
center point of these two components to the VCC pin to clamp the voltage on the GDL pin and the CS pin that  
can become high with some forward phase dimmers. A rating of at least 20 V and 100 mA is recommended with  
a peak-repetitive current rating of at least 2 A. A 55-kresistor should be connected between the MOSFET  
source and the CS pin for additional protection. Connect a 30.1-kresistor from the TSNS pin to the VREF pin.  
The NTC thermistor to ground should be selected so that the desired foldback temperature results in a thermistor  
value of 30.1 k. RCS is then calculated using Equation 1. RCS = 30.1 is very close and was chosen for this  
design.  
8.2.2.3 Application Curves  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
15  
12  
9
6
3
0
190  
200  
210  
220  
230  
240  
250  
260  
190  
200  
210  
220  
230  
240  
250  
260  
Input Voltage (VAC)  
Input Voltage (VAC)  
C007  
C008  
Top stack = 160 V  
Middle stack = 80 V  
11.2 W Input  
230 VAC  
Top stack = 160 V  
Middle stack = 80 V  
11.2 W Input  
230 VAC  
Bottom stack= 40 V  
VADIM = 1.5 V  
Bottom stack= 40 V  
VADIM = 1.5 V  
Figure 16. Power Factor vs Input Voltage  
Figure 17. Total Harmonic Distortion vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
9 Power Supply Recommendations  
For testing purposes any benchtop adjustable AC power supply with a power rating higher than what is required  
by the circuit is suitable. An example would be an Hewlett Packard 6811B or equivalent. An isolated supply is  
recommended for safety purposes.  
10 Layout  
Proper layout is important in any regulator design. The TPS92410 is a linear regulator which simplifies layout  
compared to a switching regulator, however some consideration should be taken.  
10.1 Layout Guidelines  
Components between CPS, CDD, DOV, COMP, VREF, MULT, and VCC to ground (GND) should be placed  
directly next to the device as shown in Figure 18. The linear MOSFET as well as the GDL and CS traces should  
be placed as close the TPS92410 as possible as well.  
10.2 Layout Example  
To source of  
bottom  
TPS92411  
To rectified AC  
1
14  
CPS  
VIN  
2
3
CDD  
DOV  
12  
11  
10  
9
VCC  
4
GDL  
MULT  
5
6
CS  
VREF  
ADIM  
To VCC  
GND  
7
COMP  
TSNS  
8
Figure 18. Recommended Component Placement  
18  
版权 © 2014, Texas Instruments Incorporated  
 
TPS92410  
www.ti.com.cn  
ZHCSCM9 MAY 2014  
11 器件和文档支持  
11.1 商标  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2014, Texas Instruments Incorporated  
19  
TPS92410  
ZHCSCM9 MAY 2014  
www.ti.com.cn  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92410D  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
13  
13  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
TPS92410D  
TPS92410D  
TPS92410DR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92410D

用于离线 LED 驱动器的开关控制型、直接驱动、线性控制器 | D | 13 | -40 to 150
TI

TPS92410DR

用于离线 LED 驱动器的开关控制型、直接驱动、线性控制器 | D | 13 | -40 to 150
TI

TPS92411

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流
TI

TPS92411DBVR

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DBV | 5 | -40 to 150
TI

TPS92411DBVT

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DBV | 5 | -40 to 150
TI

TPS92411DDA

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DDA | 8 | -40 to 150
TI

TPS92411DDAR

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DDA | 8 | -40 to 150
TI

TPS92411PDBVR

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DBV | 5 | -40 to 150
TI

TPS92411PDBVT

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DBV | 5 | -40 to 150
TI

TPS92411PDDA

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DDA | 8 | -40 to 150
TI

TPS92411PDDAR

适用于 LED 离线交流线性直接驱动的浮动开关,具有低纹波电流 | DDA | 8 | -40 to 150
TI

TPS92510

1.5-A Constant-Current Buck Converter for High-Brightness LEDs with Integrated LED Thermal Foldback
TI