TPS92610QPWPRQ1 [TI]

具有 450mA 输出、开路、短路和单 LED 短路检测功能的汽车类单通道 LED 驱动器 | PWP | 14 | -40 to 125;
TPS92610QPWPRQ1
型号: TPS92610QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 450mA 输出、开路、短路和单 LED 短路检测功能的汽车类单通道 LED 驱动器 | PWP | 14 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总31页 (文件大小:4025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
TPS92610-Q1 汽车单通道线性 LED 驱动器  
1 特性  
3 说明  
1
符合汽车类应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
随着 LED 在汽车 应用中广泛使用,简单的 LED 驱动  
器越来越受欢迎。与分立式解决方案相比,低成本单片  
解决方案可降低系统级组件数量,并显著提高电流精度  
和可靠性。  
温度等级 1–40°C 125°C 的环境工作温度  
范围  
器件 HBM ESD 分类等级 H2  
器件 CDM ESD 分类等级 C3B  
TPS92610-Q1 器件是一款简单的单通道高侧 LED 驱  
动器,由汽车蓄电池供电。这是一种简单而巧妙的解决  
方案,能够为单个 LED 灯串提供恒定电流,并具有全  
面的 LED 诊断功能。此器件的连带失效功能可与其  
LED 驱动器(如 TPS9261x-Q1TPS9263x-Q1 和  
TPS9283x-Q1 器件)一起工作,从而满足不同的要  
求。  
提供功能安全  
可帮助创建功能安全系统设计的文档  
具有 PWM 调光功能的单通道恒定电流 LED 驱动  
宽输入电压范围:4.5V - 40V  
可由检测电阻器进行调节的恒定输出电流  
器件信息(1)  
精密电流调节,在 –40°C 150°C 的结温范围内  
具有 ±4.6% 的容差  
器件型号  
封装  
封装尺寸(标称值)  
最大电流:450mA  
TPS92610-Q1  
HTSSOP (14)  
5mm × 4.4mm  
与外部电阻器实现热共享  
低压降电压(包含检测电阻器压降)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
最大压降:10mA 时为 150mV  
最大压降:70mA 时为 400mV  
最大压降:150mA 时为 700mV  
最大压降:300mA 时为 1.3V  
典型应用图  
4.5 œ 40V  
TPS92610 œ Q1  
诊断和保护  
EN  
LED 短路检测及自动恢复  
SUPPLY  
IN  
EN  
R(SNS)  
LED 开路与短路检测及自动恢复  
DIAGEN  
PWM  
DIAGEN  
PWM  
在低压降运行情况下支持诊断并具有可调阈值  
多达 15 个器件的故障总线,可配置为连带失  
仅失效的通道关闭”  
OUT  
R2  
R1  
FAULT  
GND  
较低的静态电流和故障模式电流(每个器件小于  
250µA)  
FAULT  
GND  
SSH  
SSL  
工作结温范围:–40°C 150°C  
2 应用  
汽车便利照明:座舱顶灯、车门把手、阅读灯和其  
他灯具  
Copyright © 2017, Texas Instruments Incorporated  
汽车尾灯、中央高位刹车灯、侧面标志灯、盲点监  
测指示灯、充电口指示灯  
通用 LED 驱动器应用  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLDS233  
 
 
 
 
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application .................................................. 16  
Layout ................................................................... 21  
9.1 Layout Guidelines ................................................... 21  
9.2 Layout Example ...................................................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 器件和文档支持 ..................................................... 22  
10.1 文档支持 ............................................................... 22  
10.2 接收文档更新通知 ................................................. 22  
10.3 社区资源................................................................ 22  
10.4 ....................................................................... 22  
10.5 静电放电警告......................................................... 22  
10.6 Glossary................................................................ 22  
11 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
Changes from Revision A (December 2017) to Revision B  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Original (November 2017) to Revision A  
Page  
产品说明书从预告信息更改为生产数据.............................................................................................................................. 1  
2
Copyright © 2017–2020, Texas Instruments Incorporated  
 
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
14-Pin HTSSOP With Exposed Termal Pad  
Top View  
EN  
DIAGEN  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
SUPPLY  
IN  
NC  
Thermal  
Pad  
PWM  
NC  
OUT  
NC  
FAULT  
GND  
SSH  
SSL  
8
Not to scale  
NC – No internal connection  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DIAGEN  
EN  
NO.  
2
I
I
Diagnostics enable, to avoid false open-circuit diagnostics during low-voltage operation  
1
Device enable  
FAULT  
GND  
6
I/O  
I
One-fails–all-fail fault bus  
Ground  
7
IN  
13  
Current input  
NC  
3, 5, 10, 12  
O
I
Not connected  
OUT  
11  
4
Constant-current output  
PWM input  
PWM  
SSH  
9
I
Single-LED short high-side reference  
Single-LED short low-side reference  
Device supply voltage  
SSL  
8
I
SUPPLY  
14  
I
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
UNIT  
V
High-voltage input  
High-voltage output  
Fault bus  
DIAGEN, EN ,IN, PWM, SSH, SSL, SUPPLY  
OUT  
45  
V
FAULT  
22  
V
IN to OUT  
V(IN) – V(OUT)  
V(SUPPLY) – V(IN)  
45  
V
SUPPLY to IN  
1
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
6.2 ESD Ratings  
TPS92610-Q1  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC  
Q100-002(1)  
All pins  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 7, 8, and  
14)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
4.4  
0
NOM  
MAX  
40  
40  
40  
40  
40  
5
UNIT  
V
SUPPLY  
IN  
Device supply voltage  
Sense voltage  
V
PWM  
DIAGEN  
OUT  
SSH  
PWM input  
V
Diagnostics enable pin  
Driver output  
0
V
0
V
Single LED short high-side reference  
Single LED short low-side reference  
Device enable  
0
V
SSL  
0
5
V
EN  
0
40  
7
V
FAULT  
TA  
Fault bus  
0
V
Operating ambient temperature  
–40  
125  
°C  
6.4 Thermal Information  
TPS92610-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
14 PINS  
52.4  
43.5  
22  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
ψJB  
22.3  
6.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 Electrical Characteristics  
V(SUPPLY) = 5 V – 40 V, TJ = –40°C–150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BIAS  
Supply voltage POR rising  
threshold  
V(POR_rising)  
3.2  
3
4
V
V
Supply voltage POR falling  
threshold  
V(POR_falling)  
2.2  
I(Shutdown)  
I(Quiescent)  
Device shutdown current  
Device quiescent current  
EN = LOW  
5
10  
µA  
PWM = HIGH, EN = HIGH  
0.1  
0.1  
0.2  
0.25  
mA  
EN = HIGH, PWM = HIGH, FAULT  
externally pulled LOW  
I(FAULT)  
Device current in fault mode  
0.2  
0.25  
mA  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Electrical Characteristics (continued)  
V(SUPPLY) = 5 V – 40 V, TJ = –40°C–150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INPUTS (DIAGEN, PWM, EN)  
VIL(DIAGEN)  
VIH(DIAGEN)  
VIL(PWM)  
VIH(PWM)  
VIL(EN)  
Input logic-low voltage, DIAGEN  
1.045  
1.14  
1.1  
1.2  
1.1  
1.2  
1.155  
1.26  
1.155  
1.26  
0.7  
V
V
Input logic-high voltage, DIAGEN  
Input logic-low voltage, PWM  
Input logic-high voltage, PWM  
Input logic-low voltage, EN  
Input logic-high voltage, EN  
EN pin pulldown current  
1.045  
1.14  
V
V
V
VIH(EN)  
2
V
IPD(EN)  
V(EN) = 12 V  
1.5  
3.3  
4.5  
µA  
CONSTANT-CURRENT DRIVER  
I(OUT)  
Device output-current range  
100% duty-cycle  
4
450  
102  
mA  
mV  
Ω
TA = 25°C, V(SUPPLY) = 4.5 V to 18 V  
94  
98  
98  
V(CS_REG)  
R(SNS)  
Sense-resistor regulation voltage  
Sense-resistor range  
TA = –40°C to 125°C, V(SUPPLY) = 4.5 V to  
18 V  
93.5  
102.5  
24.5  
150  
V(CS_REG) voltage included, current setting  
= 10 mA  
120  
250  
430  
800  
V(CS_REG) voltage included, current setting  
= 70 mA  
400  
700  
Voltage dropout from SUPPLY to  
OUT  
V(DROPOUT)  
mV  
V(CS_REG) voltage included, current setting  
= 150 mA  
V(CS_REG) voltage included, current setting  
= 300 mA  
1300  
DIAGNOSTICS  
LED open rising threshold, V(IN)  
V(OUT)  
V(OPEN_th_rising)  
70  
235  
100  
290  
1.2  
135  
335  
mV  
mV  
V
LED open falling threshold, V(IN)  
V(OUT)  
V(OPEN_th_falling)  
V(SG_th_falling)  
V(SG_th_rising)  
I(Retry)  
Channel output V(OUT) short-to-  
ground falling threshold  
1.14  
1.26  
Channel output V(OUT) short-to-  
ground rising threshold  
0.82  
0.64  
140  
0.865  
1.08  
190  
0.91  
1.528  
235  
V
Channel output retry current  
V(OUT) = 0 V  
mA  
mV  
Single-LED short-detection high-  
side threshold  
V(SSH_th)  
V(SSL) – V(SSH)  
Single-LED short-detection low-  
side threshold  
V(SSL_th)  
0.8  
0.86  
0.91  
0.7  
V
FAULT  
VIL(FAULT)  
VIH(FAULT)  
VOL(FAULT)  
Logic-input low threshold  
Logic-input high threshold  
Logic-output low voltage  
V
V
V
2
5
With 500-µA external pullup  
0.4  
7
With 1-µA external pulldown, V(SUPPLY)  
12 V  
=
VOH(FAULT)  
Logic-output high voltage  
V
I(FAULT_pulldown)  
I(FAULT_pullup)  
FAULT internal pulldown current  
FAULT internal pullup current  
500  
5
750  
8
1000  
12  
µA  
µA  
THERMAL PROTECTION  
Thermal shutdown junction  
temperature threshold  
T(TSD)  
167  
172  
15  
178  
°C  
°C  
Thermal shutdown junction  
temperature hysteresis  
T(TSD_HYS)  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
MAX UNIT  
6.6 Timing Requirements  
MIN  
NOM  
PWM rising edge delay, 50% PWM voltage to 10% of output current, t2 – t1  
as shown in 1  
t(PWM_delay_rising)  
10  
17  
25  
30  
µs  
PWM falling edge delay, 50% PWM voltage to 90% of output current, t5 – t4  
as shown in 1  
t(PWM_delay_falling)  
t(TSD_deg)  
15  
21  
60  
µs  
µs  
µs  
Thermal overtemperature deglitch time  
EN rising edge to 10% output current at 150-mA set current and 12-V supply  
voltage  
t(DEVICE_STARTUP)  
100  
150  
t(OPEN_deg)  
t(SG_deg)  
LED open-circuit fault-deglitch time  
Channel-output short-to-ground detection deglitch time  
Single-LED short-detection deglitch time  
Recovery deglitch time  
80  
80  
80  
125  
125  
125  
16  
175  
175  
175  
µs  
µs  
µs  
µs  
t(SS_deg)  
t(Recover_deg)  
Input duty-cycle  
PWM  
90%  
90%  
Channel  
Current  
IOUT  
Output duty-cycle  
10%  
t1  
10%  
t6  
t2  
t3  
t4  
t5  
Copyright © 2017, Texas Instruments Incorporated  
1. Output Timing Diagram  
6
版权 © 2017–2020, Texas Instruments Incorporated  
 
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
6.7 Typical Characteristics  
250  
200  
150  
100  
50  
500  
I(OUT) setting = 10 mA  
I(OUT) setting = 70 mA  
I(OUT) setting = 150 mA  
300  
200  
100  
70  
50  
30  
20  
10  
7
5
3
2
0
4
10  
16  
22  
Supply Voltage (V)  
28  
34  
40  
0.2 0.3 0.5 0.7  
1
2
3
4 5 6 78 10  
20 30 50  
R(SNS) (W)  
D001  
D001  
2. Output Current vs Supply Voltage  
3. Output Current vs Current-Sense Resistor  
240  
200  
160  
120  
80  
180  
150  
120  
90  
I(OUT) setting = 10 mA  
I(OUT) setting = 70 mA  
I(OUT) setting = 150 mA  
60  
-40èC  
25èC  
125èC  
40  
30  
0
0
0
0.5  
1
Dropout Voltage (V)  
1.5  
2
0
0.5  
1
Dropout Voltage (V)  
1.5  
2
D002  
D003  
4. Output Current vs Dropout Voltage  
5. Output Current vs Temperature  
250  
100  
100%  
-40èC, I(Shutdown)  
25èC, I(Shutdown)  
125èC, I(Shutdown)  
-40èC, I(FAULT)  
25èC, I(FAULT)  
125èC, I(FAULT)  
-40èC, I(Quiescent)  
25èC, I(Quiescent)  
125èC, I(Quiescent)  
10%  
10  
1%  
0.5%  
2
1%  
10%  
PWM Duty Cycle  
100%  
4
10  
16  
22  
Supply Voltage (V)  
28  
34  
40  
D005  
D004  
7. PWM Output Duty Cycle vs Input Duty Cycle  
6. Shutdown, Quiescent, and Fault Current vs Supply  
Voltage  
版权 © 2017–2020, Texas Instruments Incorporated  
7
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
Ch. 1 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
Ch. 1 = V(SUPPLY)  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Duty cycle = 30%  
FAULT floating  
ƒ(PWM) = 200 Hz  
Duty cycle = 50%  
f(PWM) = 1000 Hz  
SUPPLY dimming between 2.5 V and 12 V  
8. PWM Dimming via External Input  
9. PWM Dimming via Power Supply  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 4 = I(OUT)  
11. Transient Overvoltage  
10. Transient Undervoltage  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
13. Superimposed Alternating Voltage, 15 Hz  
12. Jump Start  
8
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Typical Characteristics (接下页)  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
14. Superimposed Alternating Voltage, 1 kHz  
15. Slow Decrease, Quick Increase of Supply Voltage  
Ch. 1 = V(OUT)  
Ch. 2 = FAULT  
Ch. 4 = I(OUT)  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
17. LED Open-Circuit Protection and Recovery  
16. Slow Decrease and Slow Increase of Supply Voltage  
Ch. 1 = V(OUT)  
Ch. 2 = FAULT  
Ch. 4 = I(OUT)  
Ch. 1 = V(SSH)  
Ch. 4 = I(OUT)  
Ch. 2 = FAULT  
Ch. 3 = V(SSL)  
18. LED Short-Circuit Protection and Recovery  
19. Single-LED-Short Protection and Recovery  
版权 © 2017–2020, Texas Instruments Incorporated  
9
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92610-Q1 device is one of a family of single-channel linear LED drivers. The family provides a simple  
solution for automotive LED applications. Different package options in the family provide a variety of current  
ranges and diagnostic options. The TPS92610-Q1 device in an HTSSOP-14 package supports LED open-circuit  
detection and short-to-ground detection. Unique single-LED-short detection in the TPS92610-Q1 device can help  
diagnose if one LED within a string is shorted. A one-fails–all-fail fault bus allows the TPS92610-Q1 device to be  
used together with the TPS9261x-Q1, TPS9263x-Q1, and TPS9283x-Q1 families.  
The output current can be set by an external R(SNS) resistor. Current flows from the supply through the R(SNS)  
resistor into the internal current source and to the LEDs.  
7.2 Functional Block Diagram  
TPS92610-Q1  
R(SNS)  
SUPPLY  
IN  
EN  
DIAGEN  
OUT  
SSH  
SSL  
Output Driver  
Supply &  
Control  
PWM  
LED Diagnostics  
FAULT  
GND  
Copyright ©2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Device Bias  
7.3.1.1 Power-On Reset (POR)  
The TPS92610-Q1 device has an internal power-on-reset (POR) function. When power is applied to SUPPLY,  
the internal POR holds the device in the reset state until V(SUPPLY) is above V(POR_rising)  
.
7.3.1.2 Low-Quiescent-Current Fault Mode  
The TPS92610-Q1 device consumes minimal quiescent current when its FAULT pin is externally pulled LOW. At  
the same time, the device shuts down the output driver.  
10  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Feature Description (接下页)  
If device detects an internal fault, it pulls the FAULT output LOW with constant current to signal a fault alarm on  
the one-fails–all-fail fault bus.  
7.3.2 Constant-Current Driver  
The TPS92610-Q1 device has a high-side constant-current integrated driver. The device senses channel current  
with an external high-side current-sense resistor, R(SNS). A current regulation loop drives an internal transistor  
and regulates the current-sense voltage at the current-sense resistor to V(CS_REG). When the output driver is in  
regulation, the output current can be set using the following equation.  
V
(CS _REG)  
I(OUT)  
=
R(SNS)  
(1)  
7.3.3 Device Enable  
The TPS92610-Q1 device has an enable input, EN. When EN is low, the device is in sleep mode with ultralow  
quiescent current I(Shutdown). This low current helps to save system-level current consumption in applications  
where battery voltage directly connects to the device without high-side switches.  
7.3.4 PWM Dimming  
The TPS92610-Q1 device supports PWM output dimming via PWM input dimming and supply dimming.  
The PWM input functions as an enable for the output current. When the PWM input is low, the device also  
disables the diagnostic features.  
Supply dimming applies PWM dimming on the power input. For an accurate PWM threshold, TI recommends  
using a resistor divider on the PWM input to set the PWM threshold higher than V(POR_rising)  
.
7.3.5 Diagnostics  
The TPS92610-Q1 device provides advanced diagnostics and fault protection features for automotive exterior  
lighting systems. The device is able to detect and protect from LED string short-to-GND, LED string open-circuit,  
and single-LED-short scenarios. It also supports a one-fails–all-fail fault bus that could flexibly fit different  
legislative requirements.  
7.3.5.1 DIAGEN  
The TPS92610-Q1 device supports the DIAGEN pin with an accurate threshold to disable the open-circuit and  
single-LED-short diagnostic functions. With a resistor divider, the DIAGEN pin can be used to sense SUPPLY  
voltage with a resistor-programmable threshold. With the DIAGEN feature, the device is able to avoid false error  
reports due to low-dropout voltage and to drive maximum current in low-dropout mode when the input voltage is  
not high enough for current regulation.  
When V(DIAGEN) is higher than the threshold VIH(DIAGEN), the device enables LED open-circuit and single-LED-short  
diagnostics. When V(DIAGEN) is lower than the threshold VIL(DIAGEN), the device disables LED-open-circuit and  
single-LED-short diagnostics.  
7.3.5.2 Low-Dropout Mode  
When the supply voltage drops, the TPS92610-Q1 device tries to regulate current by driving internal transistors  
in the linear region, also known as low-dropout mode, because the voltage across the sense resistor fails to  
reach the regulation target.  
In low-dropout mode, the open-circuit diagnostic must be disabled. Otherwise, the device treats the low-dropout  
mode as an open-circuit fault. The DIAGEN pin is used to avoid false diagnostics on the output channel due to  
low supply voltage.  
When the DIAGEN voltage is low, single-LED short- and open-circuit detection is ignored. When the DIAGEN  
voltage is high, single-LED short- and open-circuit detection return to normal operation.  
In dropout mode, a diode in parallel with the sense resistor is recommended to clamp the voltage between  
SUPPLY and IN (across the sense resistor) in case of a large current pulse during recovery.  
版权 © 2017–2020, Texas Instruments Incorporated  
11  
 
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5.3 Open-Circuit Detection  
The TPS92610-Q1 device has LED open-circuit detection. Open-circuit detection monitors the output voltage  
when the channel is in the ON state. Open-circuit detection is only enabled when DIAGEN is HIGH. A short-to-  
battery fault is also detected as an LED open-circuit fault.  
The device monitors dropout-voltage differences between the IN and OUT pins when PWM is HIGH. The voltage  
difference V(IN) – V(OUT) is compared with the internal reference voltage V(OPEN_th_rising) to detect an LED open-  
circuit failure. If V(IN) – V(OUT) falls below the V(OPEN_th_rising) voltage longer than the deglitch time of t(OPEN_deg), the  
device asserts an open-circuit fault. Once an LED open-circuit failure is detected, the constant-current source  
pulls the fault bus down. During the deglitch time period, if V(IN) – V(OUT) rises above V(OPEN_th_falling), the deglitch  
timer is reset.  
When the device is in auto-retry, the device keeps the output ON to retry if the PWM input is HIGH; the device  
sources a small current I(retry) from IN to OUT when PWM input is LOW. In either scenario, once a faulty channel  
recovers, the device resumes normal operation and releases the FAULT pulldown.  
7.3.5.4 Short-to-GND Detection  
The TPS92610-Q1 device has LED short-to-GND detection. Short-to-GND detection monitors the output voltage  
when the channel is in the ON state. Once a short-to-GND LED failure is detected, the device turns off the output  
channel and retries automatically, ignoring the PWM input. If the retry mechanism detects removal of the LED  
short-to-GND fault, the device resumes normal operation.  
The device monitors the V(OUT) voltage and compares it with the internal reference voltage to detect a short-to-  
GND failure. If V(OUT) falls below V(SG_th_rising) longer than the deglitch time of t(SG_deg), the device asserts the  
short-to-GND fault and pulls FAULT low. During the deglitching time period, if V(OUT) rises above V(SG_th_falling), the  
timer is reset.  
Once the device has asserted a short-to-GND fault, the device turns OFF the output channel and retries  
automatically with a small current. When retrying, the device sources a small current I(retry) from IN to OUT to pull  
up the LED loads continuously. Once auto-retry detects output voltage rising above V(SG_th_falling), it clears the  
short-to-GND fault and resumes normal operation.  
7.3.5.5 Single-LED-Short Detection  
The TPS92610-Q1 device supports single-LED-short detection by using the SSH and SSL pins. In case there is  
no need of this feature, SSH and SSL must be tied together to a resistor divider to avoid false alarms as shown  
in 21.  
The TPS92610-Q1 device has integrated a precision comparator to monitor a single-LED-short failure. The  
comparator uses the bottom LED forward voltage V(SSL) as a reference and monitors the string voltage V(OUT)  
with resistor divider R1 and R2 at V(SSH)  
.
If a single-LED short is detected, the device turns off the output channel and retries with a small current I(RETRY)  
.
Once the fault is removed, the device automatically resumes normal operation.  
OUT  
R2  
SSH  
R1  
SSL  
VSSL – VSSH > V(SSH_th)  
+
V(SSL_th)  
VSSL < V(SSL_th)  
+
Copyright © 2017, Texas Instruments Incorporated  
20. Single-LED Short Detection  
12  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Feature Description (接下页)  
Use the following equation to calculate the ratio of R1 and R2.  
R2 = (No. of LEDs - 1) ´ R1  
(2)  
By using the resistor divider with values calculated in 公式 2, the voltages of SSH and SSL are then equal to the  
forward voltage of a single LED. With built-in comparators, the device can report failure if any of the LEDs is  
shorted within this string.  
An internal resistor string on SSL and resistors R1 and R2 draw current from OUT. TI recommends total  
resistance of R1 and R2 greater than 100-kΩ, so the current has negligible effect on LED luminance.  
Even within the same batch of LEDs, the LED forward voltage may vary from one to another. Taking account of  
forward voltage differences is necessary to avoid any false faults.  
4.5 œ 40V  
4.5 œ 40V  
TPS92610 œ Q1  
TPS92610 œ Q1  
EN  
EN  
SUPPLY  
SUPPLY  
EN  
EN  
R(SNS)  
R(SNS)  
DIAGEN  
DIAGEN  
DIAGEN  
PWM  
IN  
DIAGEN  
PWM  
IN  
PWM  
PWM  
OUT  
OUT  
R2  
R1  
R2  
R1  
FAULT  
GND  
FAULT  
GND  
FAULT  
GND  
SSH  
SSL  
FAULT  
GND  
SSH  
SSL  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
21. Bypass Single-LED Short Detection  
22. With Single-LED Short Detection  
7.3.5.6 Overtemperature Protection  
The TPS92610-Q1 device monitors device junction temperature. When the junction temperature reaches thermal  
shutdown threshold T(TSD), the output shuts down. Once the junction temperature falls below T(TSD) – T(TSD_HYS)  
the device resumes normal operation. During overtemperature protection, the FAULT bus is pulled low.  
,
7.3.6 FAULT Bus Output With One-Fails–All-Fail  
The TPS92610-Q1 device has a FAULT bus for diagnostics output. In normal operation, FAULT is weakly pulled  
up by an internal pullup current source I(FAULT_pullup) higher than VOH(FAULT). If any fault scenario occurs, the  
FAULT bus is strongly pulled low by the internal pulldown current source I(FAULT_pulldown). Once V(FAULT) falls below  
VIL(FAULT), all outputs shut down for protection. The faulty channel keeps retrying until the fault scenario is  
removed.  
If FAULT is externally pulled up with a current larger than I(FAULT_pulldown), the one-fails–all-fail function is disabled  
and only the faulty channel is turned off.  
The FAULT bus is able to support up to 15 pieces of TPS9261x-Q1, TPS9263x-Q1, or TPS9283x-Q1 devices.  
版权 © 2017–2020, Texas Instruments Incorporated  
13  
 
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
1. Fault Table With DIAGEN = HIGH  
FAULT BUS  
STATUS  
FAULT TYPE  
DETECTION  
MECHANISM  
CHANNEL  
STATE  
DEGLITCH  
TIME  
FAULT BUS  
FAULT  
HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT floating Open-circuit or V(IN) – V(OUT)  
<
On  
t(OPEN_deg)  
Constant-  
current  
pulldown  
Device works  
normally with  
FAULT pin  
Auto recover  
or externally  
pulled up  
short-to-supply V(OPEN_th_rising)  
pulled low.  
Device sources  
I(retry) current  
when PWM is  
LOW. Device  
keeps output  
normal when  
PWis HIGH.  
Short-to-ground V(OUT)  
<
On  
t(SG_deg)  
t(SS_deg)  
t(TSD_deg)  
Constant-  
current  
pulldown  
Device turns  
output off and  
retries with  
constant  
Auto recover  
Auto recover  
Auto recover  
V(SG_th_rising)  
current I(retry)  
ignoring the  
PWM input.  
,
Single-LED  
short  
V(SSL) – V(SSH) On  
> V(SS_th) or  
Constant-  
current  
pulldown  
Device turns  
output off and  
retry with  
V(SSL)  
V(SSL_th)  
<
constant  
current I(retry)  
ignoring the  
PWM input.  
,
Overtemperatur TJ > T(TSD)  
e
On or off  
Constant-  
current  
Devices turns  
output off.  
pulldown  
Externally  
pulled low  
Device turns output off  
2. Fault Table With DIAGEN = LOW  
FAULT BUS  
STATUS  
FAULT TYPE  
DETECTION  
MECHANISM  
CHANNEL  
STATE  
DEGLITCH  
TIME  
FAULT BUS  
FAULT  
HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT floating Open-circuit or  
Ignored  
or externally  
pulled up  
short-to-supply  
Short-to-ground VOUT  
V(SG_th_rising)  
<
On  
t(SG_deg)  
Constant-  
current  
pulldown  
Device turns  
output off and  
retries with  
constant  
Auto recover  
current I(retry)  
ignoring the  
PWM input.  
,
Single-LED  
short  
Ignored  
Overtemperatur TJ > T(TSD)  
e
On or off  
t(TSD_deg)  
Constant-  
current  
Device turns  
output off.  
Auto recover  
pulldown  
Externally  
pulled low  
Device turns output off  
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY)<V(POR_rising)  
When the device is in undervoltage lockout mode, the TPS92610-Q1 device disables all functions until the supply  
rises above the UVLO-rising threshold.  
14  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Device Functional Modes (接下页)  
7.4.2 Normal Operation V(SUPPLY) 4.5 V  
The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the  
device is able to drive the output in constant-current mode.  
7.4.3 Low-Voltage Dropout  
When the device drives an LED string in low-dropout mode, if the voltage drop is less than open-circuit detection  
threshold, the device may report a false open-circuit fault. Set the DIAGEN threshold higher than LED string  
voltage to avoid a false open-circuit detection.  
7.4.4 Fault Mode  
When the device detects an open circuit or a shorted LED, the device tries to pull down the FAULT pin with a  
constant current. If the FAULT bus is pulled down, the device switches to fault mode and consumes a fault  
current of I(FAULT)  
.
版权 © 2017–2020, Texas Instruments Incorporated  
15  
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for  
linear LED drivers.  
The TPS92610-Q1 device is capable of detecting LED open-circuit, LED short-circuit and single-LED short  
failures. To increase current-driving capability, the TPS92610-Q1 device supports using an external a parallel  
resistor to help dissipate heat as shown in the following application, 25. This technique provides the low-cost  
solution of using external resistors to dissipate heat due to high input voltage, and still keeps high accuracy of the  
total current output. Note that the one-fails–all-fail feature is not supported by this topology.  
8.2 Typical Application  
8.2.1 Single-Channel LED Driver With Full Diagnostics  
The TPS92610-Q1 device is a potential choice for LED driver for applications with diagnostics requirements. In  
many cases, single-LED short diagnostics are mandatory for applications such as sequential turn indicators.  
SUPPLY  
TPS92610 œ Q1  
EN  
SUPPLY  
IN  
EN  
R4  
R3  
I(LED)  
R(SNS)  
DIAGEN  
PWM  
DIAGEN  
PWM  
OUT  
R2  
R1  
FAULT  
GND  
FAULT  
GND  
SSH  
SSL  
Copyright © 2017, Texas Instruments Incorporated  
23. Typical Application Diagram  
8.2.1.1 Design Requirements  
Input voltage ranges from 9 V to 16 V, LED maximum forward voltage Vfmax = 2.5 V, minimum forward voltage  
Vfmin = 1.9 V, current I(LED) = 50 mA.  
8.2.1.2 Detailed Design Procedure  
Current setting by sense resistor is as described in公式 1.  
R(CS _REG)  
R(SNS)  
=
= 1.96 W  
I(LED)  
(3)  
LED-string maximum forward voltage = 3 × 2.5 V = 7.5 V.  
16  
版权 © 2017–2020, Texas Instruments Incorporated  
 
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Typical Application (接下页)  
With 400-mV headroom reserved for the TPS92610-Q1 device between SUPPLY and OUT, the TPS92610-Q1  
device must disable open-circuit detection when the supply voltage is below 7.9 V by using the DIAGEN feature.  
7.9´R3  
VIL(DIAG,min)  
=
R3 + R4  
(4)  
(5)  
(6)  
Set R4 = 10 kΩ, R3 = 65.6 kΩ.  
The single-LED short-detection resistor ratio can be calculated as follows.  
R2  
= 2  
R1  
If R1 = 50 kΩ, R2 = 100 kΩ  
Total device power consumption at worst case is with 16-V input and LEDs at minimal froward voltage.  
P
= (V  
- V  
- V(OUT) )´I(LED) + V(SUPPLY) ´I(Quiescent)  
(Max)  
(SUPPLY)  
(CS _REG)  
= (16 - 3´1.9 - 0.098)´0.05 +16 ´0.00025 = 0.5141 W  
8.2.1.3 Application Curve  
Ch. 1 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
24. Output Current With PWM Input  
版权 © 2017–2020, Texas Instruments Incorporated  
17  
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2 Single-Channel LED Driver With Heat Sharing  
SUPPLY  
TPS92610 œ Q1  
EN  
SUPPLY  
IN  
EN  
I(LED)  
R(SNS)  
I(DRIVE)  
DIAGEN  
DIAGEN  
PWM  
I(P)  
R(P)  
PWM  
OUT  
FAULT  
GND  
FAULT  
GND  
SSH  
SSL  
Copyright © 2017, Texas Instruments Incorporated  
25. Heat Sharing With a Parallel Resistor  
8.2.2.1 Design Requirements  
Input voltage range is 9 V to 16 V, LED maximum forward voltage Vfmax= 2.5 V, minimum forward voltage Vfmin  
=
1.9 V, current I(LED) = 200 mA.  
8.2.2.2 Detailed Design Procedure  
Using parallel resistors, thermal performance can be improved by balancing current between the TPS92610-Q1  
device and the external resistors as follows. As the current-sense resistor controls the total LED string current,  
the LED string current I(LED) is set by V(CS_REG) / R(SNS), while the TPS92610-Q1 current I(DRIVE) and parallel  
resistor current I(P) combine to the total current.  
Note that the parallel resistor path cannot be shut down by PWM or fault protection. If PWM or one-fails–all-fail  
feature is required, TI recommends an application circuit as described in Single-Channel LED Driver With Full  
Diagnostics.  
In linear LED driver applications, the input voltage variation contributes to most of the thermal concerns. The  
resistor current, as indicated by Ohm’s law, depends on the voltage across the external resistors. The  
TPS92610-Q1 controls the driver current I(DRIVE) to attain the desired total current. If I(P) increases, the  
TPS92610-Q1 device decreases I(DRIVE) to compensate, and vice versa.  
While in low-dropout mode, the voltage across the R(P) resistor may be close to zero, so that almost no current  
can flow through the external resistor R(P)  
.
When the input voltage is high, the parallel-resistor current I(P) is proportional to the voltage across the parallel  
resistor R(P). The parallel resistor R(P) takes the majority of the total string current, generating maximum heat.  
The device must prevent current from draining out to ensure current regulation capability.  
In this case, the parallel resistor value must be carefully calculated to ensure that 1) enough output current is  
achieved in low-dropout mode, 2) thermal dissipation for both the TPS92610-Q1 device and the resistor is within  
their thermal dissipation limits, and 3) device current in the high-voltage mode is above the minimal output-  
current requirement.  
Current setting by sense resistor is as described in 公式 7.  
18  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
Typical Application (接下页)  
V
(CS _REG)  
R(SNS)  
=
= 0.49W  
I(LED)  
(7)  
LED-string maximum forward voltage = 3 × 2.5 V = 7.5 V.  
Parallel resistor R(P) is recommended to consume 50% of the total current at maximum supply voltage.  
V
(SUPPLY) - V  
- V  
16 - 3ì1.9 - 0.098  
0.5ì0.2  
(CS _REG) (OUT)  
R(P)  
=
=
ö 100W  
0.5ìI(LED)  
(8)  
Total device power consumption is maximum at 16 V input and LED minimal forward voltage.  
æ
ö
÷
÷
ø
V(SUPPLY) - V(CS _ REG) - V(OUT)  
P
= (V(SUPPLY) - V(CS _ REG) - V(OUT) )´ I  
-
+ V(SUPPLY) ´I(Quiescent)  
ç
ç (LED)  
(DEV _ MAX)  
R(P)  
è
= (16 - 3 ´1.9 - 0.098)´ 0.1+ 16 ´ 0.00025 = 1.0242 W  
(9)  
Resistor R(P) maximum power consumption is at 16-V input.  
2
2
V(SUPPLY) - V  
- V  
(
)
16 - 3ì1.9 - 0.098  
(
)
(CS _REG) (OUT)  
P
=
=
= 1.04W  
(RP _MAX)  
R(P)  
100  
(10)  
Users must consider the maximum power of both of the device and the parallel resistor.  
版权 © 2017–2020, Texas Instruments Incorporated  
19  
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
Typical Application (接下页)  
8.2.2.3 Application Curve  
Ch. 1 = V(SUPPLY)  
Ch. 2 = V(OUT)  
Ch. 3 = I(P)  
Ch. 4 = I(LED) V(SUPPLY) increases from 9 V to 16 V  
26. Constant Output Current With Increasing Supply Voltage  
20  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
9 Layout  
9.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92610-Q1 layout. TI recommends good thermal  
dissipation area connected to thermal pads with thermal vias.  
9.2 Layout Example  
SUPPLY  
TPS92610-Q1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
EN  
SUPPLY  
DIAGEN  
NC  
IN  
NC  
PWM  
NC  
OUT  
NC  
FAULT  
GND  
SSH  
SSL  
8
GND  
Copyright © 2017, Texas Instruments Incorporated  
27. TPS92610-Q1 Example Layout Diagram  
版权 © 2017–2020, Texas Instruments Incorporated  
21  
TPS92610-Q1  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
www.ti.com.cn  
10 器件和文档支持  
10.1 文档支持  
10.1.1 相关文档  
请参阅如下相关文档:  
TPS92610-Q1 EVM 用户指南》  
《如何在汽车外部照明应用中计算 TPS92630-Q1 最大输出 电流》  
《适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计》  
《用户指南:适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计》  
10.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
22  
版权 © 2017–2020, Texas Instruments Incorporated  
TPS92610-Q1  
www.ti.com.cn  
ZHCSH65B OCTOBER 2017REVISED JANUARY 2020  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
版权 © 2017–2020, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92610QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TP92610  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jan-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92610QPWPRQ1 HTSSOP PWP  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Jan-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS92610QPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92611-Q1

具有 300mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器
TI

TPS92611QDGNRQ1

具有 300mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器 | DGN | 8 | -40 to 125
TI

TPS92612

150mA 单通道 LED 线性驱动器
TI

TPS92612-Q1

具有 150mA 输出和短路检测功能的汽车类单通道 LED 驱动器
TI

TPS92612DBVR

150mA 单通道 LED 线性驱动器 | DBV | 5 | -40 to 125
TI

TPS92612QDBVRQ1

具有 150mA 输出和短路检测功能的汽车类单通道 LED 驱动器 | DBV | 5 | -40 to 125
TI

TPS92613-Q1

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器
TI

TPS92613QNDRRQ1

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器 | NDR | 7 | -40 to 125
TI

TPS92620-Q1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器
TI

TPS92620QDRRRQ1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92622-Q1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器
TI

TPS92622QDRRRQ1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI