TPS92622-Q1 [TI]

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器;
TPS92622-Q1
型号: TPS92622-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器

驱动 驱动器
文件: 总35页 (文件大小:6904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
TPS92622-Q1 具有热共享功能的汽车类双通道高LED 驱动器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
车外尾灯尾灯、中央高位刹车灯、侧标志灯  
车外小灯门把手、盲点检测指示灯、充电口  
车内灯顶灯、阅读灯  
– 温度等1: 40 ° C 125 ° C T A  
• 宽输入电压范围4.5V 40V  
• 通过外部分流电阻器实现热共享功能  
• 故障模式下具有低电源电流  
• 通LED 驱动器应用  
3 说明  
• 双通道高精度电流调节:  
TPS92622-Q1 双通道 LED 驱动器采用独特的热管理  
设计可减少器件温升。TPS92622-Q1 是由汽车电池  
直接供电的线性驱动器具有宽电压范围每个通道可  
输出高达 150mA 的全电流负载。外部分流电阻器可用  
来共享输出电流并由驱动器驱动。该器件具有全面的诊  
断功能包括 LED 开路、LED 接地短路和器件过热保  
护。  
– 每个通道的电流输出高150mA  
– 在整个温度范围内精度±5%  
– 通过电阻器独立设置电流  
– 用于亮度控制的独PWM 引脚  
• 低压降:  
– 最大压降150mA 350mV  
• 诊断和保护  
LED 开路具有自动恢复功能  
LED 接地短路具有自动恢复功能  
– 支持诊断并具有可调阈值  
– 可配置为连带失效或仅失效通道关闭的故障总线  
(N-1)  
– 热关断  
TPS92622-Q1 的连带失效功能可与其他 LED 驱动器  
TPS9261x-Q1TPS9262x-Q1TPS9263x-Q1  
TPS92830-Q1 器件配合工作从而满足不同的要  
求。  
封装信息  
封装(1)  
封装尺寸标称值)  
4.00mm × 3.00mm  
3.00mm × 3.00mm  
器件型号  
• 工作结温范围40°C 150°C  
DGNHVSSOP,  
12(2)  
TPS92622-Q1  
DRRWSON12)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布。  
4.5 V to 40 V  
3
C(OUT1)  
R(RES1)  
TPS92622-Q1  
P(DEVICE) R(RESx) = 55 2LEDs  
P(RESx) R(RESx) = 55 2LEDs  
RES1  
OUT1  
RES2  
OUT2  
GND  
SUPPLY  
R(SNS1)  
R(SNS2)  
P(DEVICE) R(RESx) = 55 3LEDs  
IN1  
2.5  
C(SUPPLY)  
R(RES2)  
P(RESx) R(RESx) = 55 3LEDs  
C(OUT2)  
IN2  
2
DIAGEN  
PWM1  
PWM2  
1.5  
1
FAULT  
典型应用图  
0.5  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Supply Voltage (V)  
器件功耗  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGW4  
 
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Applications.................................................. 22  
8.3 Power Supply Recommendations.............................26  
8.4 Layout....................................................................... 26  
9 Device and Documentation Support............................28  
9.1 接收文档更新通知..................................................... 28  
9.2 支持资源....................................................................28  
9.3 Trademarks...............................................................28  
9.4 Electrostatic Discharge Caution................................28  
9.5 术语表....................................................................... 28  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD 等级.................................................................... 4  
6.3 建议运行条件.............................................................. 4  
6.4 热性能信息..................................................................4  
6.5 电气特性......................................................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2022  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SUPPLY  
IN1  
1
2
3
4
5
6
12  
11  
10  
9
RES1  
OUT1  
RES2  
OUT2  
GND  
IN2  
Thermal  
Pad  
DIAGEN  
PWM1  
PWM2  
8
7
FAULT  
Not to scale  
A. HVSSOP is product preview.  
5-1. DGN Package 12-Pin HVSSOP With PowerPADIntegrated Circuit Package (Top View)  
12  
11  
10  
9
1
2
3
4
5
6
RES1  
OUT1  
RES2  
OUT2  
GND  
SUPPLY  
IN1  
IN2  
Thermal  
Pad  
DIAGEN  
8
PWM1  
PWM2  
7
FAULT  
Not to scale  
5-2. DRR Package 12-Pin WSON With PowerPADIntegrated Circuit Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SUPPLY  
IN1  
NO.  
1
I
I
I
Device power supply  
2
Current input for channel 1  
Current input for channel 2  
IN2  
3
Enable pin for LED open-circuit detection to avoid false open diagnostics during low-dropout  
operation.  
DIAGEN  
4
I
PWM1  
PWM2  
FAULT  
GND  
5
6
I
I
PWM input for OUT1 and RES1 current output ON and OFF control  
PWM input for OUT2 and RES2 current output ON and OFF control  
Fault output, support one-failsall-fail fault bus  
Ground  
7
I/O  
8
O
O
O
O
OUT2  
RES2  
OUT1  
RES1  
9
Current output for channel 2  
10  
11  
12  
Current output for channel 2 with external thermal resistor  
Current output for channel 1  
Current output for channel 1 with external thermal resistor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
最小值  
0.3  
0.3  
0.3  
0.3  
-40  
最大值  
单位  
45  
V(SUPPLY) + 0.3  
V(SUPPLY) + 0.3  
V(SUPPLY) + 0.3  
150  
V
电源  
电源  
V
V
DIAGENIN1IN2PWM1PWM2  
OUT1OUT2RES1RES2  
FAULT  
高压输入  
高电压输出  
V
故障总线  
TJ  
°C  
°C  
工作结温  
存储温度  
Tstg  
-40  
150  
(1) 超出绝对最大额定值运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条  
件下能够正常运行。如果超出建议运行条件但在绝对最大额定值范围内使用器件可能不会完全正常运行这可能影响器件的可靠性、  
功能和性能并缩短器件寿命。  
6.2 ESD 等级  
单位  
人体放电模(HBM)AEC Q100-002(1)  
HBM ESD 分类等1C  
±2000  
±500  
±750  
V(ESD)  
V
静电放电  
所有引脚  
充电器件模(CDM)AEC Q100011  
CDM ESD 分类等C4B  
转角引脚SUPPLYRES1、  
FAULTPWM2)  
(1) AEC Q100-002 指示应当按ANSI/ESDA/JEDEC JS-001 规范执HBM 应力测试。  
6.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
最小值  
标称值  
最大值  
单位  
4.5  
40  
V
电源  
器件电源电压  
检测电压  
V(SUPPLY) - V(CS_REG)  
V
V
V
IN1IN2  
PWM1PWM2  
DIAGEN  
0
0
V(SUPPLY)  
V(SUPPLY)  
PWM 输入  
诊断使能引脚  
OUT1OUT2RES1、  
RES2  
0
0
V(SUPPLY)  
V
驱动器输出  
故障总线  
FAULT  
V(SUPPLY)  
125  
V
-40  
°C  
工作环境温度TA  
6.4 热性能信息  
TPS92622-Q1  
DRR (WSON) DGN (HVSSOP)  
热指标(1)  
单位  
12 引脚  
51.2  
50.7  
25.2  
1.3  
12 引脚  
39.7  
60.9  
15.5  
2.6  
RθJA  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
RθJC(top)  
RθJB  
结至外壳顶部热阻  
结至电路板热阻  
ψJT  
结至顶部特征参数  
25.2  
9.4  
15.5  
2.6  
ψJB  
结至电路板特征参数  
结至外壳底部热阻  
RθJC(bot)  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指应用报告。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
 
 
 
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.5 电气特性  
V(SUPPLY) = 5V 40VTJ = 40°C +150°C除非另有说明)  
参数  
测试条件  
最小值 典型值 最大值  
单位  
BIAS  
V(POR_rising)  
V(POR_falling)  
I(Quiescent)  
I(FAULT)  
3.6  
3.4  
4.0  
V
V
电源电POR 上升阈值  
电源电POR 下降阈值  
器件待机接地电流  
3.0  
1.2  
1.6  
mA  
mA  
PWM = 高电平  
0.21  
0.32  
0.45  
PWM = 高电平FAULT 从外部下拉至低电平  
故障模式下的器件电源电流  
逻辑输入DIAGENPWM)  
VIL(DIAGEN)  
VIH(DIAGEN)  
VIL(PWM)  
1.045  
1.14  
1.1  
1.2  
1.1  
1.2  
1.155  
1.26  
V
V
V
V
输入逻辑低电平电压DIAGEN  
输入逻辑高电平电压DIAGEN  
输入逻辑低电平电压PWM  
输入逻辑高电平电压PWM  
1.045  
1.14  
1.155  
1.26  
VIH(PWM)  
恒流驱动器  
I(OUTx_Tot)  
5
144  
-3  
150  
156  
+3  
mA  
mV  
%
100% 占空比  
每个通道的器件输出电流  
检测电阻调节电压  
通道间失配  
V(CS_REG)  
150  
TA = -40°C +125°C  
ΔV(CS_c2c)  
ΔV(CS_d2d)  
R(CS_REG)  
ΔV(CS_c2c) = 1 V(CS_REGx) / Vavg(CS_REG)  
ΔV(CS_d2d) = 1 Vavg(CS_REG) / Vnom(CS_REG)  
+4  
%
4  
器件间失配  
0.96  
31.2  
250  
350  
450  
700  
检测电阻范围  
Ω
120  
180  
230  
350  
mV  
100mA 的电流设置  
150mA 的电流设置  
100mA 的电流设置  
150mA 的电流设置  
INx OUTx 的压降RESx 开路  
mV  
mV  
mV  
V(DROPOUT)  
INx RESx 的压降OUTx 开路  
RESx 电流与总电流之比  
I(RESx)/I(OUTx_Tot), V(INx) V(RESx) > 1V,  
Itotal=150mA  
I(RESx)  
95  
%
诊断  
V(OPEN_th_rising)  
180  
300  
450  
1.2  
420  
mV  
mV  
V
LED 开路上升阈值V(IN) V(OUT)  
LED 开路下降阈值V(IN) V(OUT)  
通道输出接地短路上升阈值  
V(OPEN_th_falling)  
V(SG_th_rising)  
V(SG_th_falling)  
I(Retry_OUTx)  
I(Retry_RESx)  
FAULT  
1.14  
0.855  
0.64  
1.26  
0.945  
1.528  
1.528  
0.9  
V
通道输出接地短路下降阈值  
1.14  
1.14  
mA  
mA  
通道输V(OUT) 接地短路重试电流  
通道输V(RES) 接地短路重试电流  
0.64  
VIL(FAULT)  
0.7  
V
V
逻辑输入低电平阈值  
VIH(FAULT)  
2
逻辑输入高电平阈值  
t(FAULT_rising)  
t(FAULT_falling)  
I(FAULT_pulldown)  
I(FAULT_pullup)  
I(FAULT_leakage)  
10  
20  
µs  
µs  
mA  
µA  
µA  
故障检测上升沿抗尖峰脉冲时间  
故障检测下降沿抗尖峰脉冲时间  
FAULT 内部下拉电流  
FAULT 内部上拉电流  
FAULT 漏电流  
V(FAULT) = 0.4V  
V(FAULT) = 40V  
2
6
3
4
14  
2
10  
0.01  
时序  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 1R(RESx) = 68Ω  
=
=
=
=
3.7  
2.2  
4.0  
3.6  
µs  
µs  
µs  
µs  
PWM 上升沿到输出电10% 的延迟7-1  
所示t1  
t(PWM_delay_rising)  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 30R(RESx) = 56Ω  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 1R(RESx) = 68Ω  
PWM 下降沿到输出电90% 的延迟7-1  
所示t2  
t(PWM_delay_falling)  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 30R(RESx) = 56Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS92622-Q1  
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.5 电气特(continued)  
V(SUPPLY) = 5V 40VTJ = 40°C +150°C除非另有说明)  
参数  
测试条件  
最小值 典型值 最大值  
单位  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 1R(RESx) = 68Ω  
=
=
=
=
=
=
1.8  
1.8  
5.7  
0.3  
96  
µs  
输出电流10% 上升90%7-1 所示的  
t(Current_rising)  
t(Current_falling)  
t(STARTUP)  
t3  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 30R(RESx) = 56Ω  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 1R(RESx) = 68Ω  
输出电流90% 下降10%7-1 所示的  
t4  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 30R(RESx) = 56Ω  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 1R(RESx) = 68Ω  
电源上升沿10% 输出电流7-1 所示t5  
V(SUPPLY) = 12VV(OUT) = 6VV(CS_REG)  
150mVR(SNSx) = 30R(RESx) = 56Ω  
85  
LED 开路故障检测抗尖峰脉冲时间7-4 所  
t6  
t(OPEN_deg)  
125  
125  
125  
输出接地短路检测抗尖峰脉冲时间7-3 所  
t7  
t(SG_deg)  
开路和短路故障恢复抗尖峰脉冲时间7-4  
7-3 所示t8  
t(Recover_deg)  
t(FAULT_deg)  
t(FAULT_recovery)  
t(TSD_deg)  
20  
50  
50  
µs  
µs  
µs  
故障引脚抗尖峰脉冲时间  
故障恢复延迟时间7-4 7-3 所示t9  
过热抗尖峰脉冲时间  
过热保护  
T(TSD)  
157  
172  
15  
187  
°C  
°C  
热关断结温阈值  
热关断结温迟滞  
T(TSD_HYS)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 150 mA  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 150 mA  
50  
50  
25  
25  
0
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
3
6
9
12  
15  
18  
21  
24  
27  
30  
Temperature (C)  
Supply Voltage (V)  
6-2. Output Current vs Temperature  
6-1. Output Current vs Supply Voltage  
300  
250  
200  
150  
100  
50  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 150 mA  
I(OUTx_Tot) = 50 mA  
50  
I(OUTx_Tot) = 250 mA -40 o  
C
I(OUTx_Tot) = 250 mA 25 o  
C
25  
I(OUTx_Tot) = 250 mA 125 o  
C
0
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Dropout Voltage (V)  
Dropout Voltage (V)  
6-3. Output Current vs Dropout Voltage  
6-4. Output Current vs Dropout Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
175  
150  
125  
100  
75  
I(OUTx) R(RESx) = 34  
I(RESx) R(RESx) = 34   
I(OUTx) R(RESx) = 41   
I(RESx) R(RESx) = 41   
I(OUTx) R(RESx) = 55   
I(RESx) R(RESx) = 41   
I(OUTx) R(RESx) = 65   
I(RESx) R(RESx) = 65   
I(OUTx) R(RESx) = 80   
I(RESx) R(RESx) = 80   
50  
25  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
3
6
9
12  
15  
18  
21  
24  
27  
30  
Input PWM Duty Cycle ()  
Supply Voltage (V)  
6-5. PWM Output Duty Cycle vs PWM Input Duty Cycle  
6-6. Output Current Distribution vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
5
225  
200  
175  
150  
125  
100  
75  
I(OUTx) R(RESx) = 55 2LEDs  
P(DEVICE) R(RESx) = 34  
P(Resx) R(RESx) = 34   
P(DEVICE) R(RESx) = 41   
P(Resx) R(RESx) = 41   
P(DEVICE) R(RESx) = 55   
P(Resx) R(RESx) = 55   
P(DEVICE) R(RESx) = 65   
P(Resx) R(RESx) = 65   
P(DEVICE) R(RESx) = 80   
P(Resx) R(RESx) = 80   
I(RESx) R(RESx) = 55 2LEDs  
I(OUTx) R(RESx) = 55 3LEDs  
I(RESx) R(RESx) = 55 3LEDs  
4
3
2
1
0
50  
25  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
3
3
6
9
12  
15  
18  
21  
24  
27  
30  
Supply Voltage (V)  
Supply Voltage (V)  
6-8. Output Current Distribution vs Supply Voltage  
6-7. Power Dissipation vs Supply Voltage  
P(DEVICE) R(RESx) = 55 2LEDs  
P(RESx) R(RESx) = 55 2LEDs  
P(DEVICE) R(RESx) = 55 3LEDs  
P(RESx) R(RESx) = 55 3LEDs  
2.5  
2
1.5  
1
0.5  
0
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
3
6
9
12  
15  
18  
21  
24  
27  
30  
Supply Voltage (V)  
6-10. Power-Up Sequence  
6-9. Power Dissipation vs Supply Voltage  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-12. PWM Dimming at 200 Hz  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
6-11. Supply Dimming at 200 Hz  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
6-13. PWM Dimming at 1 kHz  
6-14. LED Open Protection  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-15. LED Open Protection Recovery  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-16. LED Short-Circuit Protection  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
6-17. LED Short-Circuit Protection Recovery  
6-18. Transient Undervoltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-19. Transient Overvoltage  
6-20. Slow Decrease and Quick Increase of Supply Voltage  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-21. Slow Decrease and Slow Increase of Supply Voltage  
6-22. Superimposed Alternating Voltage 15 Hz  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-23. Superimposed Alternating Voltage 1 kHz  
6-24. Jump Start  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92622-Q1 is a two-channel, high-side linear LED driver supporting external thermal sharing resistor to  
achieve the controllable junction temperature rising. The device can be directly powered by automotive battery  
and output full load up to 300-mA current to LED with limited power dissipation on the device. The current output  
at each channel can be independently set by external R(SNSx) resistors. Current flows from the supply through  
the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and RESx  
pin. TPS92622-Q1 device supports both supply control and PWM control to turn LED ON and OFF. The LED  
brightness is also adjustable by voltage duty cycle applied on either SUPPLY or PWMx pins with frequency  
above 100 Hz. The TPS92622-Q1 provides full diagnostics to keep the system operating reliably including LED  
open and short-circuit detection, supply POR and thermal shutdown protection. TPS92622-Q1 device is in a  
HTSSOP package with total 16 leads. The TPS92622-Q1 can be used with other TPS9261x-Q1, TPS9262x-Q1,  
TPS9263x-Q1 and TPS92830-Q1 family devices together to achieve one-fails-all-fail protection by tying all  
FAULT pins together as a fault bus.  
7.2 Functional Block Diagram  
VSUPPLY  
R(SNS1)  
TPS92622-Q1  
Channel 1  
IN1  
SUPPLY  
DIAGEN  
PWM1  
PWM2  
RES1  
OUT1  
VCC  
IN2  
Logic  
RES2  
FAULT  
Channel 2  
OUT2  
GND  
7.3 Feature Description  
7.3.1 Power Supply (SUPPLY)  
7.3.1.1 Power-On Reset (POR)  
The TPS92622-Q1 device has an internal power-on-reset (POR) function. When power is applied to the  
SUPPLY pin, the internal POR circuit holds the device in reset state until V(SUPPLY) is above V(POR_rising)  
.
7.3.1.2 Suppply Current in Fault Mode  
The TPS92622-Q1 device consumes minimal quiescent current, I(FAULT), into SUPPLY when the FAULT pin is  
externally pulled LOW. At the same time, the device shuts down all three output drivers.  
If device detects an internal fault, it pulls down the FAULT pin by an internal typical 3-mA constant current as a  
fault indication to the fault bus.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS92622-Q1  
 
 
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7.3.2 Enable and Shutdown  
The device starts to operate as long as the SUPPLY voltage is higher than V(POR_rising). The TPS92622-Q1 shuts  
down when SUPPLY voltage is lower than V(POR_falling)  
.
7.3.3 Constant-Current Output and Setting (INx)  
The TPS92622-Q1 device is a high-side current driver for driving LEDs. The device controls each output current  
through regulating the voltage drop on an external high-side current-sense resistor, R(SNSx) independently for  
each channel. An integrated error amplifier drives an internal power transistor to maintain the voltage drop on the  
current-sense resistor R(SNSx) to V(CS_REG) and therefore regulates the current output to target value. When the  
output current is in regulation, use 方程1 to calculate the current value for each channel.  
V
(CS _REG)  
I(OUTx _ Tot)  
=
R(SNSx)  
(1)  
where  
V(CS_REG) = 150 mV  
x = 1, or 2 for output channel 1 or 2  
When the supply voltage drops below total LED string forward voltage plus required headroom voltage, the sum  
of V(DROPOUT) and V(CS_REG), the TPS92622-Q1 is not able to deliver enough current output as set by the value  
of R(SNSx), and the voltage across the current-sense resistor R(SNSx) is less than V(CS_REG)  
.
7.3.4 Thermal Sharing Resistor (OUTx and RESx)  
The TPS92622-Q1 device provides two current output paths for each channel. Current flows from the supply  
through the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and  
RESx pin. The current output on both OUTx pin and RESx pin is independently regulated to achieve total  
required current output. The summed current of OUTx and RESx is equal to the current through the R(SNSx)  
resistor in the channel. The OUTx connects to anode of LEDs load in serial directly, however RESx connects to  
the LEDs through an external resistor to share part of the power dissipation and reduce the thermal  
accumulation in TPS92622-Q1.  
The integrated independent current regulation in TPS92622-Q1 dynamically adjusts the output current on both  
OUTx and RESx output to maintain the stable summed current for LED. The TPS92622-Q1 always regulates the  
current output to the RESx pin as much as possible until the RESx current path is saturated, and the rest of  
required current is regulated out of the OUTx. As a result, the most of the current to LED outputs through the  
RESx pin when the voltage dropout is large between SUPPLY and LED required total forward voltage. In the  
opposite case, the most of the current to LED outputs through the OUTx pin when the voltage headroom is  
relative low between SUPPLY and LED required forward voltage.  
7.3.5 PWM Control (PWMx)  
The pulse width modulation (PWM) input of the TPS92622-Q1 functions as enable for the output current. When  
the voltage applied on the PWM pin is higher than VIH(PWM), the relevant output current is enabled. When the  
voltage applied on PWM pin is lower than VIL(PWM), the output current is disabled as well as the diagnostic  
features. Besides output current enable and disable function, the PWM input of TPS92622-Q1 also supports  
adjustment of the average current output for brightness control if the frequency of applied PWM signal is higher  
than 100 Hz, which is out of visible frequency range of human eyes. TI recommends a 200-Hz PWM signal with  
1% to 100% duty cycle input for brightness control. Please refer to 8-4 for typical PWM dimming application.  
The TPS92622-Q1 device has two PWM input pins: PWM1, PWM2 to control each of current output channel  
independently. PWM1 input controls the output channel 1 for both OUT1 and RES1, PWM2 input controls the  
output channel 2 for both OUT2 and RES2. 7-1 illustrates the timing for PWM input and current output.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
SUPPLY  
PWMx  
t1  
t2  
tt5t  
t3  
t4  
IOUTx  
7-1. Power-On Sequence and PWM Dimming Timing  
The detailed information and value of each time period in 7-1 is described in TIMING section of the Electrical  
Characteristics.  
7.3.6 Supply Control  
The TPS92622-Q1 can support supply control to turn ON and OFF output current. When the voltage applied on  
the SUPPLY pin is higher than the LED string forward voltage plus needed headroom voltage at required  
current, and the PWM pin voltage is high, the output current is turned ON and well regulated. However, if the  
voltage applied on the SUPPLY pin is lower than V(POR_falling), the output current is turned OFF. With this feature,  
the power supply voltage in designed pattern can control the output current ON and OFF. The brightness is  
adjustable if the ON and OFF frequency is fast enough. Because of the high accuracy design of PWM threshold  
in TPS92622-Q1, TI recommends a resistor divider on the PWM pin to set the SUPPLY threshold higher than  
LED forward voltage plus required headroom voltage as shown in 7-2. The headroom voltage is basically the  
summation of V(DROPOUT) and V(CS_REG). When the voltage on the PWM pin is higher than VIH(PWM), the output  
current is turned ON. However, when the voltage on the PWM is lower than VIL(PWM), the output current is turned  
OFF. Use 方程2 to calculate the SUPPLY threshold voltage.  
4.5 V to 40 V  
TPS92622-Q1  
R(RES1)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
IN1  
OUT1  
RES2  
C(SUPPLY)  
R(RES2)  
IN2  
R(UPPER)  
DIAGEN  
OUT2  
GND  
PWM1  
PWM2  
R(LOWER)  
FAULT  
*: 10 nF ceramic capacitor is recommended for each OUT  
7-2. Application Schematic for Supply Control LED Brightness  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _PWM_ th _rising)  
IH(PWM)  
R(LOWER)  
(2)  
where  
VIH(PWM) = 1.26 V (maximum)  
7.3.7 Diagnostics  
The TPS92623-Q1 device provides advanced diagnostics and fault-protection features for automotive exterior  
lighting systems. The device can detect and protect fault from LED-string short-to-GND, LED-string open-circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS92622-Q1  
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
and junction overtemperature scenarios. The device also supports a one-failsall-fail fault bus design that can  
flexibly fit different regulatory requirements.  
7.3.7.1 LED Short-to-GND Detection  
The TPS92622-Q1 device has LED short-to-GND detection. The LED short-to-GND detection monitors the  
output voltage when the output current is enabled. After a short-to-GND LED failure is detected, the device turns  
off the faulty channel and retries automatically, regardless of the state of the PWM input. If the retry mechanism  
detects the removal of the LED short-to-GND fault, the device resumes to normal operation.  
The TPS92622-Q1 monitors both V(OUTx) voltage and V(RESx) voltage of each channel and compares it with the  
internal reference voltage to detect a short-to-GND failure. If V(OUTx) or V(RESx) voltage falls below V(SG_th_falling)  
longer than the deglitch time of t(SG_deg), the device asserts the short-to-GND fault and pulls low the FAULT pin.  
During the deglitching time period, if V(OUTx) and V(RESx) rises above V(SG_th_rising), the timer is reset.  
After the TPS92622-Q1 has asserted a short-to-GND fault, the device turns off the faulty output channel and  
retries automatically with a small current. During retrying, the device sources a small current I(Retry) from  
SUPPLY to OUT and RES to pull up the LED loads continuously. After auto-retry detects output voltage rising  
above V(SG_th_rising), it clears the short-to-GND fault and resumes to normal operation. 7-3 illustrates the  
timing for LED short-circuit detection, protection, retry and recovery.  
SUPPLY  
PWMx  
Short  
Removed  
LED  
Short  
Short  
Removed  
VOUTx  
IOUTx  
LED  
Short  
tt7t  
tt7t  
tt7t  
I(retry)  
tt8t  
tt8t  
tt9t  
FAULT  
No external  
pullup  
7-3. LED Short-to-GND Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-3 is described in TIMING section of the Electrical  
Characteristics.  
7.3.7.2 LED Open-Circuit Detection  
The TPS92622-Q1 device has LED open-circuit detection. The LED open-circuit detection monitors the output  
voltage when the current output is enabled. The LED open-circuit detection is only enabled when DIAGEN is  
HIGH. A short-to-battery fault is also detected and recognized as an LED open-circuit fault.  
The TPS92622-Q1 monitors dropout-voltage differences between the IN and OUT pins for each LED channel  
when PWM is HIGH. The voltage difference V(INx) V(OUTx) is compared with the internal reference voltage  
V(OPEN_th_rising) to detect an LED open-circuit incident. If V(OUTx) rises and causes V(INx) V(OUTx) less than the  
V(OPEN_th_rising) voltage longer than the deglitch time of t(OPEN_deg), the device asserts an open-circuit fault. After  
a LED open-circuit failure is detected, the internal constant-current sink pulls down the FAULT pin voltage.  
During the deglitch time period, if V(OUTx) falls and makes V(INx) V(OUTx) larger than V(OPEN_th_falling), the  
deglitch timer is reset.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
The TPS92622-Q1 shuts down the output current regulation for the error channel after LED open-circuit fault is  
detected. The device sources a small current I(Retry) from SUPPLY to OUT and RES when DIAGEN input is logic  
High. After the fault condition is removed, the device resumes normal operation and releases the FAULT pin. 图  
7-4 illustrates the timing for LED open-circuit detection, protection, retry and recovery.  
SUPPLY  
PWMx  
Open  
Removed  
LED  
Open  
Open  
Removed  
VOUTx  
IOUTx  
LED  
Open  
tt6t  
tt6t  
tt6t  
I(retry)  
tt8t  
tt8t  
tt9t  
FAULT  
No external  
pullup  
7-4. LED Open-Circuit Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-4 is described in TIMING section of the Electrical  
Characteristics.  
7.3.7.3 LED Open-Circuit Detection Enable (DIAGEN)  
The TPS92622-Q1 device supports the DIAGEN pin with an accurate threshold to disable the LED open-circuit.  
The DIAGEN pin can be used to enable or disable LED open-circuit detection based on SUPPLY pin voltage  
sensed by an external resistor divider as illustrated in 7-5. When the voltage applied on DIAGEN pin is higher  
than the threshold VIH(DIAGEN), the device enables LED open-circuit detection. When V(DIAGEN) is lower than the  
threshold VIL(DIAGEN), the device disables LED open-circuit detection.  
Only LED open-circuit detection can be disabled by pulling down the DIAGEN pin. The LED short-to-GND  
detection and overtemperature protection cannot be turned off by pulling down the DIAGEN pin. Use 方程式 3 to  
calculate the SUPPLY threshold voltage.  
4.5 V to 40 V  
TPS92622-Q1  
R(RES1)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
IN1  
OUT1  
RES2  
C(SUPPLY)  
R(RES2)  
IN2  
R(UPPER)  
DIAGEN  
OUT2  
GND  
PWM1  
PWM2  
R(LOWER)  
FAULT  
*: 10 nF ceramic capacitor is recommended for each OUT  
7-5. Application Schematic For DIAGEN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS92622-Q1  
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _DIAGEN_ th _ falling)  
IL(DIAGEN)  
R(LOWER)  
(3)  
where  
VIL(DIAGEN) = 1.045 V (minimum)  
7.3.7.4 Overtemperature Protection  
The TPS92622-Q1 device monitors device junction temperature. When the junction temperature reaches  
thermal shutdown threshold T(TSD), the output shuts down. After the junction temperature falls below T(TSD)  
T(TSD_HYS), the device recovers to normal operation. During overtemperature protection, the FAULT pin is pulled  
low.  
7.3.7.5 Low Dropout Operation  
When the supply voltage drops below LED string total forward voltage plus headroom voltage at required  
current, the TPS92622-Q1 device operates in low-dropout conditions to deliver current output as close as  
possible to target value. The actual current output is less than preset value due to insufficient headroom voltage  
for power transistor. As a result, the voltage across the sense resistor fails to reach the regulation target. The  
headroom voltage is the summation of V(DROPOUT) and V(CS_REG)  
.
If the TPS92622-Q1 is designed to operate in low-dropout condition, the open-circuit diagnostics must be  
disabled by pulling the DIAGEN pin voltage lower than VIL(DIAGEN). Otherwise, the TPS92622-Q1 detects an  
open-circuit fault and reports a fault on the FAULT pin. The DIAGEN pin is used to avoid false diagnostics due to  
low supply voltage.  
7.3.8 FAULT Bus Output With One-Fails-All-Fail  
During normal operation, The FAULT pin of TPS92622-Q1 is weakly pulled up by an internal pullup current  
source, I(FAULT_pullup). If any fault scenario occurs, the FAULT pin is strongly pulled low by the internal pulldown  
current sink, I(FAULT_pulldown) to report out the fault alarm.  
Meanwhile, the TPS92622-Q1 also monitors the FAULT pin voltage internally. If the FAULT pin of the TPS92622-  
Q1 is pulled low by external current sink below VIL(FAULT), the current output is turned off even though there is no  
fault detected on owned outputs. The device does not resume to normal operation until the FAULT pin voltage  
rises above VIH(FAULT)  
.
Based on this feature, the TPS92622-Q1 device is able to construct a FAULT bus by tying FAULT pins from  
multiple TPS92622-Q1 devices to achieve one-fails-all-fail function as 7-6 showing. The lower side  
TPS92622-Q1 (B) detects any kind of LED fault and pulls low the FAULT pin. The low voltage on FAULT pin is  
detected by upper side TPS92622-Q1 (A) because the FAULT pins are connected of two devices. The upper  
side TPS92622-Q1 (A) turns off all output current for each channel as a result. If the FAULT pins of each  
TPS92622-Q1 are all connected to drive the base of an external PNP transistor as illustrated in 7-7, the one-  
failsall-fail function is disabled and only the faulty channel device is turned off.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
TPS92622-Q1  
A
TPS92622-Q1  
VCC  
VCC  
VSUPPLY  
10 k  
VSUPPLY  
A
20 k  
20 kΩ  
FAULT  
FAULT  
10 kΩ  
Logic  
Logic  
10 kΩ  
TPS92622-Q1  
VCC  
TPS92622-Q1  
B
VCC  
B
FAULT  
FAULT  
Logic  
Logic  
7-7. FAULT Bus for One-Fails-Others-On  
7-6. FAULT Bus for One-Fails-All-Fail  
Application  
Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7.3.9 FAULT Table  
7-1. Fault Table With DIAGEN = HIGH (Full Function)  
FAULT BUS  
STATUS  
DETECTION CONTROL DEGLITCH  
MECHANISM INPUT TIME  
FAULT HANDLING  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
ROUTINE  
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
Constant-  
current  
pulldown  
Open circuit or  
short-to-supply  
V
(IN) V(OUT) <  
PWMx = H t(OPEN_deg)  
Auto recovery  
V(OPEN_th_rising)  
V(OUT)  
V(SG_th_falling)  
OR  
V(RES)  
V(SG_th_falling)  
<
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
FAULT = H  
Constant-  
current  
pulldown  
Short-to-ground  
PWMx = H t(SG_deg)  
Auto recovery  
Auto recovery  
<
Constant-  
current  
pulldown  
Device turns all output  
channels off.  
Overtemperature TJ > T(TSD)  
t(TSD_deg)  
Device turns all remained channels off and keeps retry on the failed channels. After the Fault pin is  
released, all channels are turned on after t(FAULT_recovery) time.  
Fault is detected  
FAULT = L  
No fault is  
detected  
Device turns all output channels off.  
7-2. Fault Table With DIAGEN = LOW (Full Function)  
FAULT BUS  
STATUS  
DETECTION CURRENT DEGLITCH  
MECHANISM OUTPUT TIME  
FAULT HANDLING  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
ROUTINE  
Open circuit or  
short-to-supply  
Ignored  
V(OUT)  
V(SG_th_falling)  
OR  
V(OUT)  
V(SG_th_falling)  
<
Device turns output off  
and retries with constant  
current I(retry), ignoring  
the PWM input.  
Constant-  
current  
pulldown  
Short-to-ground  
PWMx = H t(SG_deg)  
Auto recovery  
Auto recovery  
FAULT = H  
<
Constant-  
current  
pulldown  
Device turns all output  
channels off.  
Overtemperature TJ > T(TSD)  
t(TSD_deg)  
Device turns all remained channels off and keeps retry on the failed channels. After the Fault pin is  
released, all channels are turned on after t(FAULT_recovery) time.  
Fault is detected  
FAULT = L  
No fault is  
detected  
Device turns all output channels off.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7.3.10 LED Fault Summary  
7-3. LED Connection Fault Summary  
Case 1  
Case 2  
Case 3  
Case 4  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
Case 5  
Case 6  
Case 7  
Case 8  
LED Open Fault  
No Fault  
LED Open Fault  
LED Open Fault  
Case 9  
Case 10  
Case 11  
Case 12  
No Fault  
No Fault  
LED Open Fault  
No Fault  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7.3.11 IO Pins Inner Connection  
SUPPLY  
SUPPLY  
PWMx  
DIAGEN  
GND  
GND  
7-8. PWMx Pins  
7-9. DIAGEN Pin  
SUPPLY  
INx  
FAULT  
OUTx  
GND  
GND  
7-10. FAULT Pin  
7-11. OUTx Pins  
INx  
SUPPLY  
RESx  
INx  
GND  
OUTx  
7-12. RESx Pins  
7-13. INx Pins  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)  
When the device is in undervoltage lockout status, the TPS92622-Q1 device disables all functions until the  
supply rises above the V(POR_rising) threshold.  
7.4.2 Normal Operation V(SUPPLY) 4.5 V  
The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the  
device can drive the output in constant-current mode.  
7.4.3 Low-Voltage Dropout Operation  
When the device drives an LED string in low-dropout operation, if the V(DROPOUT) is less than the open-circuit  
detection threshold, the device can report a false open-circuit fault. TI recommends only enabling the open-  
circuit detection when the voltage across the IN and OUTx is higher than the maximum voltage of LED open  
rising threshold to avoid a false open-circuit detection.  
7.4.4 Fault Mode  
When the TPS92622-Q1 detects a fault, the device tries to pull down the FAULT pin with a constant current. If  
the FAULT bus is pulled down, the device switches to fault mode and consumes a fault current of I(FAULT)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS92622-Q1  
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for  
linear LED drivers.  
The TPS92622-Q1 device is capable of detecting LED open-circuit and LED short-circuits. To increase current  
driving capability, the TPS92622-Q1 device supports using an external shunt resistor to help dissipate heat as  
the following section, Thermal Sharing Resistor (OUTx and RESx), describes. This method provides a low-cost  
solution of using external resistors to minimize thermal accumulation on the device itself due to large voltage  
difference between input voltage and LED string forward voltage, while still keeping high accuracy of the total  
current output.  
8.2 Typical Applications  
8.2.1 BCM Controlled Rear Lamp With One-Fails-All-Fail Setup  
The multiple TPS92622-Q1 devices are capable of driving different functions for automotive rear lamp including  
stop, turn indicator, tail, fog, reverse and center-high-mounted-stop-lamp. The one-fails-all-fail single lamp mode  
can be easily achieved by FAULT bus by shorting the FAULT pins.  
BCM_STOP  
TPS92622-Q1  
10 nF  
R(RES1)  
C(SUPPLY)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
IN1  
OUT1  
RES2  
OUT2  
GND  
10 nF  
R(RES2)  
IN2  
DIAGEN  
V(SUPPLY)  
20 k  
R1  
R2  
PWM1  
PWM2  
FAULT  
R3  
R4  
8-1. Typical Application Schematic  
8.2.1.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 6 strings with 3 LEDs in each string are required to achieve  
stop function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, while the minimum forward  
voltage, VF_MIN is 1.9 V. The current requirement for each LED, I(LED) is 130 mA. The LED brightness and ON  
and OFF control is manipulated by body control module (BCM) directly by connecting and disconnecting the  
power supply to the LED load.  
8.2.1.2 Detailed Design Procedure  
Step 1: Use 方程4 to determine the current sensing resistor, R(SNSx)  
.
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
V
(CS _REG)  
R(SNSx)  
=
I(OUTx _ Tot)  
(4)  
where  
V(CS_REG) = 150 mV (typical)  
I(OUTx_Tot) = 130 mA  
According to design requirements, output current for each channel is same so that the R(SNS1) = R(SNS2) = 1.15  
Ω. Two resistors in parallel can be used to achieve equivalent resistance when sense resistor is not a standard  
decade resistance value.  
Step 2: Design the current distribution between I(OUTx) and I(RESx), and use 方程式 5 to calculate the current  
sharing resistor, R(RESx). The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path. TI recommends the current sharing resistor R(RESx) to consume 50% of the total current at typical supply  
operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(5)  
where  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 130 mA  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) is 85.4 Ω when V(OUTx) is typical 3 ×  
2.15 V = 6.45 V.  
Step 3: Design the threshold voltage of SUPPLY to enable the LED open-circuit diagnostics, and calculate  
voltage divider resistor value for R1 and R2 on DIAGEN pin.  
The maximum forward voltage of LED-string is 3 × 2.5 V = 7.5 V. To avoid the open-circuit fault reported in low-  
dropout operation conditions, additional headroom between SUPPLY and OUTx must be considered. The  
TPS92622-Q1 device must disable open-circuit detection when the supply voltage is below LED-string maximum  
forward voltage plus V(OPEN_th_rising) and V(CS_REG). Use 方程6 to calculate the voltage divider resistor, R1 and  
R2 value.  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(6)  
where  
V(OPEN_th_rising) = 420 mV (maximum)  
V(CS_REG) = 156 mV  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
The calculated result for R1 is 67.3 kΩwhen V(OUTx) maximum voltage is 7.5 V and V(CS_REG) is 156 mV.  
Step 4: Design the threshold voltage of SUPPLY to turn on and off each channel of LED, and calculate voltage  
divider resistor value for R3 and R4 on PWM input pin.  
The minimum forward voltage of LED string is 3 × 1.9 V = 5.7 V. To make sure the current output on each of  
LED-string is normal, each LED-string must be turned off when SUPPLY voltage is lower than LED minimum  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS92622-Q1  
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
required forward voltage plus dropout voltage between INx to OUTx and V(CS_REG). Use 方程7 to calculate the  
voltage divider resistor, R3 and R4 value.  
÷
V
+ V  
+ V  
(DROPOUT)  
(CS _REG) (OUTx)  
R =  
-1 ìR  
«
÷
3
4
V
IH(PWM)  
(7)  
where  
V(DROPOUT) = 300 mV (typical)  
V(CS_REG) = 156 mV (maximum)  
VIH(PWM) = 1.26 V (maximum)  
R4 = 10 kΩ(recommended)  
The calculated result for R3 is 38.9 kΩwhen V(OUTx) minimum voltage is 5.7 V and V(CS_REG) is 156 mV.  
8.2.1.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
8-3. 200-Hz Supply Dimming 80% Brightness  
8-2. 200-Hz Supply Dimming 20% Brightness  
8.2.2 Independent PWM Controlled Rear Lamp By MCU  
The TPS92622-Q1 device can drive the each current output channel independently by PWM input at PWM1,  
PWM2 and PWM3 pins. The PWM input signals comes from MCU to achieve sequential turn indicator feature.  
BCM_TURN  
TPS92622-Q1  
10 nF  
R(RES1)  
C(SUPPLY)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
IN1  
OUT1  
RES2  
OUT2  
GND  
10 nF  
R(RES2)  
IN2  
R1  
R2  
DIAGEN  
VCC  
20 k  
PWM1  
PWM2  
FAULT  
GPIO  
GPIO  
GPIO  
MCU  
8-4. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
8.2.2.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 2 strings with 2 LEDs in each string are required to achieve  
turn indicator function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, however the minimum  
forward voltage, VF_MIN is 1.9 V. Each LED current is 130 mA and each output channel is independent controlled  
by MCU through individual GPIO.  
8.2.2.2 Detailed Design Procedure  
Step 1: Use 方程8 to determine the current sensing resistor, R(SNSx)  
.
V
(CS _REG)  
R(SNSx)  
=
I(OUTx _ Tot)  
(8)  
where  
V(CS_REG) = 150 mV (typical)  
I(OUTx_Tot) = 130 mA  
According to design requirements, output current for each channel is same so that the calculated R(SNS1)  
=
R(SNS2) = 1.15 Ω.  
Step 2: Design the current distribution between I(OUTx) and I(RESx), and use 方程式 9 to calculate the current  
sharing resistor, R(RESx). The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path, basic principle is to design the R(RESx) to consume appropriate 50% total power dissipation at typical  
supply operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(9)  
where  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 130 mA (maximum)  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) is 117 Ωwhen V(OUTx) is typical 2 × 2.2  
V = 4.4 V.  
Step 3: Design the threshold voltage of SUPPLY to enable the LED open circuit, and calculate voltage divider  
resistor value for R1 and R2 on the DIAGEN pin.  
The maximum forward voltage of LED-string is 2 × 2.5 V = 5 V. To avoid the open-circuit fault reported in low-  
dropout operation conditions, additional headroom between SUPPLY and OUTx must be considered. The  
TPS92622-Q1 device must disable open-circuit detection when the supply voltage is below LED-string maximum  
forward voltage plus V(OPEN_th_rising) and V(CS_REG). Use 方程式 10 to calculate the voltage divider resistor, R1  
and R2 value.  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(10)  
where  
V(OPEN_th_rising) = 420 mV (maximum)  
V(CS_REG) = 156 mV (maximum)  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS92622-Q1  
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
The calculated result for R1 is 43.4 kΩwhen V(OUTx) maximum voltage is 5 V and V(CS_REG) is 156 mV.  
8.2.2.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
8-5. 200-Hz PWM Dimming at 80% Duty Cycle  
8-6. 600-Hz PWM Dimming at 20% Duty Cycle  
8.3 Power Supply Recommendations  
The TPS92622-Q1 is designed to operate from an automobile electrical power system within the range specified  
in Power Supply. The V(SUPPLY) input must be protected from reverse voltage and voltage dump condition over  
40 V. The impedance of the input supply rail must be low enough that the input current transient does not cause  
drop below LED string required forward voltage. If the input supply is connected with long wires, additional bulk  
capacitance can be required in addition to normal input capacitor.  
8.4 Layout  
8.4.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92622-Q1 layout.  
TI recommends large thermal dissipation area in both top and bottom layers of PCB. The copper pouring  
area in same layer with TPS92622-Q1-Q1 footprint must directly cover the thermal pad land of the device  
with wide connection as much as possible. The copper pouring in opposite PCB layer or inner layers must be  
connected to thermal pad directly through multiple thermal vias.  
TI recommends to place R(RESx) resistors away from the TPS92622-Q1 device with more than 20-mm  
distance, because R(RESx) resistors are dissipating some amount of the power as well as the TPS92622-Q1.  
Place two heat source components apart to reduce the thermal accumulation concentrated at small PCB  
area. The large copper pouring area is also required surrounding the R(RESx) resistors for helping thermal  
dissipating.  
The noise immunity is the secondary consideration for TPS92622-Q1 layout.  
TI recommends to place the noise decoupling capacitors for SUPPLY pin as close as possible to the pins.  
TI recommends to place the R(SNSx) resistor as close as possible to the INx pins with the shortest PCB track  
to SUPPLY pin.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
GND  
R(RES1)  
LED String1  
C(SUPPLY)  
GND  
SUPPLY  
IN1  
RES1  
OUT1  
R(RNS1)  
R(RNS2)  
IN2  
RES2  
OUT2  
GND  
R(RES2)  
LED String2  
DIAGEN  
PWM1  
PWM2  
DIAGEN  
PWM1  
PWM2  
FAULT  
GND  
8-7. TPS92622-Q1 Example Layout Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS92622-Q1  
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS92622-Q1  
 
 
 
 
 
 
TPS92622-Q1  
ZHCSQI1 NOVEMBER 2022  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS92622-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92622QDRRRQ1  
ACTIVE  
WSON  
DRR  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
92622Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRR0012C  
WSON - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.5±0.1  
(0.1) TYP  
10X 0.5  
6
7
2X  
13  
SYMM  
2.5±0.1  
2.5  
1
12  
0.3  
12X  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.2  
0.1  
0.05  
C A B  
0.5  
0.3  
12X  
4222932/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRR0012C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
12X (0.6)  
(R0.05) TYP  
12  
SYMM  
1
12X (0.25)  
13  
SYMM  
(2.5)  
(1)  
10X (0.5)  
6
7
(0.5)  
(
0.2) VIA  
TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222932/A 05/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRR0012C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
12X (0.6)  
2X (1.38)  
1
12  
12X (0.25)  
2X (1.11)  
SYMM  
(0.66)  
10X (0.5)  
7
6
SYMM  
(2.8)  
13  
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 13  
81.7% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222932/A 05/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92622QDRRRQ1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92623-Q1

具有热共享功能的汽车类三通道高侧 LED 驱动器
TI

TPS92623QPWPRQ1

具有热共享功能的汽车类三通道高侧 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92624-Q1

具有热共享功能的汽车类四通道高侧 LED 驱动器
TI

TPS92624QPWPRQ1

具有热共享功能的汽车类四通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92629-Q1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器
TI

TPS92629QDGNRQ1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器 | DGN | 8 | -40 to 125
TI

TPS92630-Q1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器
TI

TPS92630QPWPRQ1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92631QPWPRQ1

IC LED DISPLAY DRIVER, Display Driver
TI

TPS92633

具有热共享和非板载分级功能的三通道高侧 LED 驱动器
TI

TPS92633-Q1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器
TI