TPS92613-Q1 [TI]

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器;
TPS92613-Q1
型号: TPS92613-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器

驱动 驱动器
文件: 总31页 (文件大小:2439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
TPS92613-Q1 汽车单通道 LED 驱动器  
1 特性  
2 应用  
1
符合面向汽车 应用的 AEC-Q100 标准:  
温度等级 1–40°C +125°CTA  
提供功能安全  
可帮助创建功能安全系统设计的文档  
车内照明:顶灯、阅读灯  
车外照明 - 小灯:车门把手、盲点检测指示灯、充  
电口  
车外照明 - 后灯:尾灯、中央高位刹车灯、侧标志  
宽输入电压范围:4.5V 40V  
低静态电流和低故障模式电流:典型值 200µA  
单路高精度电流调节:  
通用 LED 驱动器 应用  
3 说明  
在整个结温范围内精度为 ±4.6%  
可通过外部感应电阻器调节的恒定电流  
高达 600mA 的最大电流  
随着 LED 在汽车 应用中广泛使用,简单的 LED 驱动  
器越来越受欢迎。与分立式解决方案相比,低成本单片  
解决方案可降低系统级组件数量,并显著提高电流精度  
和可靠性。  
通过输入 PWM 占空比进行亮度控制  
与外部电阻器实现热共享  
TPS92613-Q1 器件是一款单通道、高侧 LED 驱动  
器,由汽车电池供电。这是一种简单而巧妙的解决方  
案,能够为单个 LED 灯串提供恒定电流,并具有全面  
LED 诊断功能。连带失效功能可与其他 LED 驱动  
器(如 TPS9261x-Q1TPS9263x-Q1 TPS92830-  
Q1 器件)一起工作,从而满足不同的要求。  
低压降电压(包含感应电阻器压降):  
最大压降:10mA 时为 150mV  
最大压降:70mA 时为 400mV  
最大压降:150mA 时为 700mV  
最大压降:300mA 时为 1.3V  
诊断和保护:  
器件信息(1)  
具有自动恢复功能的 LED 开路与短路检测  
在低压降运行情况下支持诊断并具有可调阈值  
器件型号  
封装  
封装尺寸(标称值)  
多达 15 个器件的故障总线,可配置为连带失  
仅关闭失效的通道”(N-1)  
TPS92613-Q1  
TO-263 (7)  
10.16mm × 9.85mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
热关断  
工作结温范围:–40°C +150°C  
典型应用图  
4.5 V to 40 V  
TPS92613 œ Q1  
C(SUPPLY)  
SUPPLY  
R(SNS)  
DIAGEN  
PWM  
DIAGEN  
PWM  
IN  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEC4  
 
 
 
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications ................................................ 16  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Timing Requirements................................................ 5  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 文档支持 ............................................................... 24  
11.2 接收文档更新通知 ................................................. 24  
11.3 支持资源................................................................ 24  
11.4 ....................................................................... 24  
11.5 静电放电警告......................................................... 24  
11.6 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
Changes from Revision A (December 2019) to Revision B  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Original (April 2019) to Revision A  
Page  
将数据表状态从预告信息更改为生产数据” ......................................................................................................................... 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
5 Pin Configuration and Functions  
NDR Package  
7-Pin TO-263 With Exposed Thermal Pad  
Top View  
Thermal  
Pad  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Enable pin for LED open-circuit detection to avoid false open diagnostics during low-  
dropout operation  
1
DIAGEN  
I
2
PWM  
FAULT  
GND  
I
I/O  
O
I
PWM input for current output ON/OFF control  
Fault output, support one-fails–all-fail fault bus  
Ground  
3
4
5
OUT  
Constant-current output, connect to anode of the top LED in LED-string  
Current input  
6
IN  
7
SUPPLY  
I
Device supply voltage  
Thermal pad  
Thermal pad, connect to ground  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
UNIT  
V
High-voltage input  
High-voltage output  
Fault bus  
DIAGEN, IN, PWM, SUPPLY  
OUT  
45  
V
FAULT  
22  
V
IN to OUT  
V(IN) – V(OUT)  
V(SUPPLY) – V(IN)  
45  
V
SUPPLY to IN  
1
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Device HBM ESD Classification Level H2  
All pins  
±2000  
V(ESD)  
Electrostatic discharge  
V
All pins  
±500  
±750  
Charged-device model (CDM), per AEC Q100-011  
Device CDM ESD Classification Level C3B  
Corner pins (1 and 7)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
4.4  
0
NOM  
MAX  
40  
UNIT  
V
SUPPLY  
IN  
Device supply voltage  
Sense voltage  
PWM inputs  
40  
V
PWM  
40  
V
DIAGEN  
OUT  
Diagnostics enable pin  
Driver output  
0
40  
V
0
40  
V
FAULT  
Fault bus  
0
7
V
Operating ambient temperature, TA  
–40  
125  
°C  
6.4 Thermal Information  
TPS92613-Q1  
THERMAL METRIC(1)  
NDR (TO-263)  
UNIT  
7 PINS  
28.4  
23.1  
10.1  
4.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
9.9  
RθJC(bot)  
3.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
V(SUPPLY) = 5 V to 40 V, TJ = –40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BIAS  
V(POR_rising)  
Supply voltage POR rising threshold  
3.2  
4
V
4
Copyright © 2019–2020, Texas Instruments Incorporated  
 
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Electrical Characteristics (continued)  
V(SUPPLY) = 5 V to 40 V, TJ = –40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
0.1  
0.1  
TYP  
3
MAX UNIT  
V(POR_falling)  
I(Quiescent)  
I(FAULT)  
Supply voltage POR falling threshold  
Device standby current  
V
PWM = HIGH  
0.2  
0.2  
0.25  
0.25  
mA  
mA  
Device current in fault mode  
PWM = HIGH, FAULT externally pulled LOW  
LOGIC INPUTS (DIAGEN, PWM)  
VIL(DIAGEN)  
VIH(DIAGEN)  
VIL(PWM)  
Input logic-low voltage, DIAGEN  
1.045  
1.16  
1.1  
1.2  
1.1  
1.2  
1.155  
1.24  
V
V
V
V
Input logic-high voltage, DIAGEN  
Input logic-low voltage, PWM  
Input logic-high voltage, PWM  
1.045  
1.16  
1.155  
1.24  
VIH(PWM)  
CONSTANT-CURRENT DRIVER  
I(OUT)  
Device output-current range  
100% duty cycle  
4
94  
600  
102  
mA  
mV  
Ω
TA = 25°C, V(SUPPLY) = 4.5 V to 18 V  
TA = –40°C to +125°C, V(SUPPLY) = 4.5 V to 18 V  
98  
98  
V(CS_REG)  
R(CS_REG)  
Sense-resistor regulation voltage  
Sense-resistor range  
93.5  
0.16  
102.5  
50  
V(CS_REG) voltage included, current setting of 10 mA  
V(CS_REG) voltage included, current setting of 70 mA  
120  
250  
150  
400  
V(CS_REG) voltage included, current setting of 150  
mA  
V(DROPOUT)  
Voltage dropout from SUPPLY to OUT  
mV  
430  
800  
700  
V(CS_REG) voltage included, current setting of 300  
mA  
1300  
DIAGNOSTICS  
V(OPEN_th_rising)  
V(OPEN_th_falling)  
LED open rising threshold, V(IN) – V(OUT)  
LED open falling threshold, V(IN) – V(OUT)  
235  
70  
290  
100  
335  
135  
mV  
mV  
Channel output V(OUT) short-to-ground  
rising threshold  
V(SG_th_rising)  
V(SG_th_falling)  
I(Retry)  
1.14  
0.82  
0.64  
1.2  
0.865  
1.08  
1.26  
0.91  
V
V
Channel output V(OUT) short-to-ground  
falling threshold  
Channel output V(OUT) short-to-ground  
retry current  
1.528  
mA  
FAULT  
VIL(FAULT)  
Logic input low threshold  
0.7  
V
V
VIH(FAULT)  
Logic input high threshold  
Logic output low threshold  
Logic output high threshold  
FAULT internal pulldown current  
FAULT internal pullup current  
2
VOL(FAULT)  
VOH(FAULT)  
I(FAULT_pulldown)  
I(FAULT_pullup)  
With 500-µA external pullup  
0.4  
7
V
With 1-µA external pulldown, V(SUPPLY) = 12 V  
5
500  
5
V
750  
8
1000  
12  
µA  
µA  
THERMAL PROTECTION  
Thermal shutdown junction temperature  
threshold  
T(TSD)  
157  
172  
15  
187  
°C  
°C  
Thermal shutdown junction temperature  
hysteresis  
T(TSD_HYS)  
6.6 Timing Requirements  
MIN NOM MAX UNIT  
PWM rising edge delay, 50% PWM voltage to 10% of output current closed loop, t2 - t1 as shown  
in Figure 1  
t(PWM_delay_rising)  
t(PWM_delay_falling)  
t(DEVICE_STARTUP)  
10  
15  
17  
21  
25  
30  
µs  
µs  
µs  
PWM falling edge delay, 50% PWM voltage to 90% of output current open loop, t5 - t4 as shown  
in Figure 1  
SUPPLY rising edge to 10% output current at 200-mA set current and 14 V, t8 - t7 as shown  
in Figure 1  
100  
150  
t(OPEN_deg)  
t(SG_deg)  
t(TSD_deg)  
t(Recover_deg)  
LED-open fault-deglitch time  
80  
80  
125  
125  
50  
175  
175  
µs  
µs  
µs  
µs  
Output short-to-ground detection deglitch time  
Thermal over temperature deglitch timer  
Fault recovery deglitch timer  
8.5  
16  
25  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
SUPPLY  
Input duty-cycle  
PWM  
90%  
90%  
IOUT  
Output duty-cycle  
10%  
t1  
10%  
t6  
10%  
t8  
t7  
t2  
t3  
t4  
t5  
1. Output Timing Diagram  
6
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
6.7 Typical Characteristics  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I(OUT) setting = 300 mA  
I(OUT) setting = 150 mA  
I(OUT) setting = 300 mA  
I(OUT) setting = 150 mA  
0
0
8
0
0
12  
16  
Supply Voltage (V)  
20  
24  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (oC)  
D001  
D002  
2. Output Current vs Supply Voltage  
3. Output Current vs Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
I(OUT) setting = 300 mA  
I(OUT) setting = 200 mA  
I(OUT) setting = 150 mA  
I(OUT) setting = 150 mA -40oC  
I(OUT) setting = 150 mA 25oC  
I(OUT) setting = 150 mA 125oC  
0
0
0.5  
1 1.5  
Dropout Voltage (V)  
2
2.5  
0
0.5  
1 1.5  
Dropout Voltage (V)  
2
2.5  
D003  
D004  
4. Output Current vs Dropout Voltage  
5. Output Current vs Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100%  
I(OUT) setting = 300 mA -40oC  
I(OUT) setting = 300 mA 25oC  
I(OUT) setting = 300 mA 125oC  
10%  
1%  
0.5%  
0
1%  
10%  
PWM Duty Cycle (%)  
100%  
0.5  
1 1.5  
Dropout Voltage (V)  
2
2.5  
D006  
D005  
7. PWM Output Duty Cycle vs Input Duty Cycle  
6. Output Current vs Dropout Voltage  
版权 © 2019–2020, Texas Instruments Incorporated  
7
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
Ch. 1 = V(SUPPLY)  
ƒ(PWM) = 200 Hz  
Ch. 3 = V(PWM)  
Ch. 4 = I(OUT)  
Ch. 1 = V(SUPPLY)  
ƒ(PWM) = 2 kHz  
Ch. 3 = V(PWM)  
Ch. 4 = I(OUT)  
Duty cycle = 50%  
Duty cycle = 50%  
8. PWM Dimming at 200 Hz  
9. PWM Dimming at 2 kHz  
Ch. 1 = V(SUPPLY)  
Ch. 4 = I(OUT)  
Ch. 2 = FAULT  
Ch. 3 = V(OUT)  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
f(PWM) = 1000 Hz  
Duty cycle = 30%  
FAULT floating  
SUPPLY dimming between 2.5 V and 12 V  
10. Supply Dimming at 1 kHz  
11. Transient Undervoltage  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
12. Transient Overvoltage  
13. Jump Start  
8
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Typical Characteristics (接下页)  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
14. Superimposed Alternating Voltage, 15 Hz  
15. Superimposed Alternating Voltage, 1 kHz  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
Ch. 1 = SUPPLY  
Ch. 4 = I(OUT)  
Ch. 2 = V(OUT)  
Ch. 3 = FAULT  
17. Slow Decrease and Slow Increase of Supply Voltage  
16. Slow Decrease and Quick Increase of Supply Voltage  
Ch. 1 = V(OUT)  
Ch. 2 = FAULT  
Ch. 4 = I(OUT)  
Ch. 1 = V(OUT)  
Ch. 2 = FAULT  
Ch. 4 = I(OUT)  
18. LED Open-Circuit Protection and Recovery  
19. LED Short-Circuit Protection and Recovery  
版权 © 2019–2020, Texas Instruments Incorporated  
9
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92613-Q1 is one device of single-channel linear LED driver family including TPS92610-Q1, TPS92611-  
Q1 and TPS92612-Q1. The family provides a simple solution for automotive LED applications. Different package  
options in the family provide variable current ranges and diagnostic options. The TPS92613-Q1 device in a TO-  
263 package supports both LED open-circuit detection and short-to-ground detection. The TPS92613-Q1 can be  
used with other TPS9261x-Q1, TPS9263x-Q1 and TPS92830-Q1 family devices together to realize one-fails-all-  
fail protection by tying all FAULT pins together as a fault bus.  
The current output at OUT pin can be set by an external R(SNS) resistor. Current flows from the supply through  
the R(SNS) resistor into the integrated current regulation circuit and to the LEDs through OUT pin.  
7.2 Functional Block Diagram  
4.5 œ 40V  
TPS92613-Q1  
R(SNS)  
IN  
SUPPLY  
DIAGEN  
Supply  
and  
Control  
PWM  
Output Driver  
OUT  
FAULT  
LED Diagnostics  
GND  
7.3 Feature Description  
7.3.1 Power Supply  
7.3.1.1 Power-On Reset (POR)  
The TPS92613-Q1 device has an internal power-on-reset (POR) function. When power is applied to the SUPPLY  
pin, the internal POR circuit holds the device in reset state until V(SUPPLY) is above V(POR_rising)  
.
7.3.1.2 Low-Quiescent-Current  
The TPS92613-Q1 device consumes minimal quiescent current, less than 250 µA into SUPPLY when the FAULT  
pin is externally pulled LOW. At the same time, the device shuts down the output driver.  
If device detects an internal fault, it pulls down the FAULT pin by an internal typical 750-µA constant current as a  
fault indication to the fault bus.  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Feature Description (接下页)  
7.3.2 Constant-Current Driver  
The TPS92613-Q1 device is a high-side current driver for driving LEDs. The device controls the output current  
through regulating the voltage drop on an external high-side current-sense resistor, R(SNS). An integrated error  
amplifier drives an internal power transistor to maintain the voltage drop on the current-sense resistor R(SNS) to  
V(CS_REG) and therefore regulates the current output to target value. When the output current is in regulation, the  
current value can be calculated by using 公式 1.  
V
(CS _REG)  
I(OUT)  
=
R(SNS)  
where  
V(CS_REG) = 98 mV (typical)  
(1)  
When the supply voltage drops below total LED string forward voltage plus required dropout voltage, V(DROPOUT)  
,
the TPS92613-Q1 is not able to deliver enough current output as set by the value of R(SNS), and the voltage  
across the current-sense resistor R(SNS) is less than V(CS_REG)  
.
7.3.3 PWM Control  
The pulse width modulation (PWM) input of the TPS92613-Q1 functions as enable for the output current. When  
the voltage applied on the PWM pin is higher than VIH(PWM), the output current is enabled. When the voltage  
applied on PWM pin is lower than VIL(PWM), the output current is disabled as well as the diagnostic features.  
Besides output current enable and disable function, the PWM input of TPS92613-Q1 also supports adjustment of  
the average current output for brightness control if the frequency of applied PWM signal is higher than 100 Hz,  
which is out of visible frequency range of human eyes. TI recommends a 200-Hz PWM signal with 1% to 100%  
duty cycle input for brightness control. See to 20 for typical PWM dimming application.  
4.5 œ 40V  
TPS92613 œ Q1  
C(SUPPLY)  
SUPPLY  
R(SNS)  
DIAGEN  
DIAGEN  
PWM  
IN  
PWM  
1%~100%@200Hz  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
20. Typical Application Schematic for PWM Dimming  
7.3.4 Supply Control  
The TPS92613-Q1 supports supply control to turn ON and OFF output current. When the voltage applied on the  
SUPPLY pin is higher than the LED string forward voltage plus needed V(DROPOUT) at required current, and the  
PWM pin voltage is high, the output current is turned ON and well regulated. However, if the voltage applied on  
the SUPPLY pin is lower than V(POR_falling), the output current is turned OFF. With this feature, the power-supply  
voltage in the designed pattern controls the output current ON/OFF. The brightness can be adjustable if the  
ON/OFF frequency is fast enough. Because of the high accuracy design of PWM threshold in TPS92613-Q1, TI  
recommends a resistor divider on the PWM pin to set the SUPPLY threshold higher than LED forward voltage  
plus V(DROPOUT) as shown in 21. When the voltage on the PWM pin is higher than VIH(PWM), the output current  
is turned ON. However, when the voltage on the PWM is lower than VIL(PWM), the output current is turned OFF.  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
 
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
TPS92613 œ Q1  
SUPPLY  
C(SUPPLY)  
R(SNS)  
DIAGEN  
PWM  
DIAGEN  
PWM  
IN  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
21. Typical Application Schematic for SUPPLY Control  
7.3.5 Diagnostics and Protection  
The TPS92613-Q1 device provides advanced diagnostics and fault-protection features for automotive exterior  
lighting systems. The device is able to detect and protect fault from LED-string short-to-GND, LED-string open-  
circuit and junction overtemperature scenarios. It also supports a one-fails–all-fail fault bus design that can  
flexibly fit different regulatory requirements.  
7.3.5.1 Open-Circuit Detection  
The TPS92613-Q1 device has LED open-circuit detection. The LED open-circuit detection monitors the output  
voltage when the current output is enabled. The LED open-circuit detection is only enabled when DIAGEN is  
HIGH. A short-to-battery fault is also detected and recognized as an LED open-circuit fault.  
The TPS92613-Q1 monitors dropout-voltage differences between the IN and OUT pins when PWM is HIGH. The  
voltage difference V(IN) – V(OUT) is compared with the internal reference voltage V(OPEN_th_falling) to detect an LED  
open-circuit incident. If V(IN) – V(OUT) falls below the V(OPEN_th_falling) voltage longer than the deglitch time of  
t(OPEN_deg), the device asserts an open-circuit fault. Once an LED open-circuit failure is detected, the internal  
constant-current sink pulls down the FAULT pin voltage. During the deglitch time period, if V(IN) – V(OUT) rises  
above V(OPEN_th_rising), the deglitch timer is reset.  
The TPS92613-Q1 keeps the current output enabled to retry after LED open-circuit fault is detected if the PWM  
input is HIGH; the device sources a small current I(retry) from IN to OUT when PWM input is LOW. In either  
scenario, once the fault condition is removed, the device resumes normal operation and releases the FAULT pin.  
7.3.5.2 Short-to-GND Detection  
The TPS92613-Q1 device has LED short-to-GND detection. The LED short-to-GND detection monitors the  
output voltage when the output current is enabled. Once a short-to-GND LED failure is detected, the device turns  
off the output channel and retries automatically, regardless of the state of the PWM input. If the retry mechanism  
detects the removal of the LED short-to-GND fault, the device resumes to normal operation.  
The TPS92613-Q1 monitors the V(OUT) voltage and compares it with the internal reference voltage to detect a  
short-to-GND failure. If V(OUT) falls below V(SG_th_falling) longer than the deglitch time of t(SG_deg), the device asserts  
the short-to-GND fault and pulls low the FAULT pin. During the deglitching time period, if V(OUT) rises above  
V(SG_th_rising), the timer is reset.  
Once the TPS92613-Q1 has asserted a short-to-GND fault, the device turns off the output channel and retries  
automatically with a small current. During retrying the device sources a small current I(retry) from IN to OUT to pull  
up the LED loads continuously. Once auto-retry detects output voltage rising above V(SG_th_falling), it clears the  
short-to-GND fault and resumes to normal operation.  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Feature Description (接下页)  
7.3.5.3 Overtemperature Protection  
The TPS92613-Q1 device monitors device junction temperature. When the junction temperature reaches thermal  
shutdown threshold T(TSD), the output shuts down. Once the junction temperature falls below T(TSD) – T(TSD_HYS)  
the device recovers to normal operation. During overtemperature protection, the FAULT pin is pulled low.  
,
7.3.5.4 DIAGEN  
The TPS92613-Q1 device supports the DIAGEN pin with an accurate threshold to disable the LED open-circuit  
diagnostic functions. The DIAGEN pin can be used to enable or disable LED open-circuit protection based on  
SUPPLY pin voltage sensed by an external resistor divider. When the voltage applied on DIAGEN pin is higher  
than the threshold VIH(DIAGEN), the device enables LED open-circuit diagnosis. When V(DIAGEN) is lower than the  
threshold VIL(DIAGEN), the device disables LED-open-circuit detection.  
Only LED open-circuit detection can be disabled by pulling down the DIAGEN pin. The LED short-to-GND  
detection and overtemperature protection cannot be turned off by pulling down the DIAGEN pin.  
7.3.5.5 Low-Dropout Operation  
When the supply voltage drops below LED string total forward voltage plus V(DROPOUT) at required current, the  
TPS92613-Q1 device operates in low-dropout conditions to deliver current output as close as possible to target  
value. The actual current output is less than preset value due to insufficient headroom voltage for power  
transistor. As a result, the voltage across the sense resistor fails to reach the regulation target.  
If the TPS92613-Q1 is designed to operate in low-dropout condition, and the open-circuit diagnostics must be  
disabled by pulling the DIAGEN pin voltage lower than VIL(DIAGEN). Otherwise, the TPS92613-Q1 detects an  
open-circuit fault and reports a fault indication on the FAULT pin. The DIAGEN pin is used to avoid false  
diagnostics due to low supply voltage.  
In low-dropout operation, a diode in parallel with the sense resistor is recommended to clamp the voltage  
between SUPPLY and IN (across the sense resistor) in case of a large current pulse during recovery.  
7.3.6 FAULT Bus Output With One-Fails–All-Fail  
During normal operation, The FAULT pin of TPS92613-Q1 is weakly pulled up by an internal pullup current  
source, I(FAULT_pullup) higher than VOH(FAULT). If any fault scenario occurs, the FAULT pin is strongly pulled low by  
the internal pulldown current sink, I(FAULT_pulldown) to report out the fault alarm.  
Meanwhile, the TPS92613-Q1 also monitors the FAULT pin voltage internally. If the FAULT pin of the  
TPS92613-Q1 is pulled low by external current sink below VIL(FAULT), the current output is turned off even though  
there is no fault detected on owned output. The device does not resume to normal operation until the FAULT pin  
voltage rises above VIH(FAULT)  
.
4.5 œ 40V  
TPS92613 œ Q1  
TPS92613 œ Q1  
C(SUPPLY)  
C(SUPPLY)  
B
A
SUPPLY  
SUPPLY  
R(SNS)  
R(SNS)  
DIAGEN  
PWM  
DIAGEN  
PWM  
DIAGEN  
PWM  
IN  
DIAGEN  
PWM  
IN  
OUT  
OUT  
FAULT  
FAULT  
FAULT  
GND  
FAULT  
GND  
C(OUT)  
C(OUT)  
FAULT  
BUS  
22. Typical Application Schematic for One-Fails-All-Fail  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
Based on this feature, the TPS92613-Q1 device is able to construct a FAULT bus by tying FAULT pins from  
multiple TPS9261x-Q1, TPS9263x-Q1 or TPS92830-Q1 devices to realize one-fails-all-fail function as 22  
showing. The right side TPS92613-Q1 (B) detects either LED open-circuit fault or LED short-to-GND fault and  
pulls low the FAULT pin. The low voltage on FAULT pin is detected by left side TPS92613-Q1 (A) because the  
FAULT pins are connected of two devices. The left TPS92613-Q1 (A) turns off the output current as a result.  
If the FAULT pin is externally pulled up with a current larger than I(FAULT_pulldown), the one-fails–all-fail function is  
disabled and only the faulty channel is turned off.  
The FAULT bus is able to support up to 15 pieces of TPS9261x-Q1, TPS9263x-Q1, or TPS92830-Q1 devices.  
7.3.7 Fault Table  
1. Fault Table With DIAGEN = HIGH  
FAULT BUS  
STATUS  
DETECTION CURRENT DEGLITCH  
FAULT HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
MECHANISM  
OUTPUT  
TIME  
Device works normally  
with FAULT pin pulled  
low. Device sources  
I(retry) current when  
PWM is LOW. Device  
keeps output normal  
when PWis HIGH.  
Constant-  
current  
pulldown  
Open-circuit or  
short-to-supply  
V(IN) – V(OUT)  
V(OPEN_th_falling)  
<
On  
t(OPEN_deg)  
Auto recovery  
Auto recovery  
FAULT floating  
or externally  
pulled up  
Device turns output off  
and retries with  
Constant-  
current  
pulldown  
V(OUT)  
<
Short-to-ground  
On  
t(SG_deg)  
V(SG_th_falling)  
constant current I(retry)  
,
ignoring the PWM input.  
Constant-  
current  
Overtemperature TJ > T(TSD)  
On or off  
t(TSD_deg)  
Device turns output off. Auto recovery  
pulldown  
Externally  
pulled low  
Device turns output off  
2. Fault Table With DIAGEN = LOW  
FAULT BUS  
STATUS  
DETECTION CURRENT DEGLITCH  
FAULT BUS  
FAULT HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT TYPE  
MECHANISM  
OUTPUT  
TIME  
Open-circuit or  
short-to-supply  
Ignored  
Device turns output off  
and retries with  
Constant-  
current  
pulldown  
FAULT floating  
or externally  
pulled up  
VOUT  
V(SG_th_falling)  
<
Short-to-ground  
On  
t(SG_deg)  
Auto recovery  
constant current I(retry)  
,
ignoring the PWM input.  
Constant-  
current  
Overtemperature TJ > T(TSD)  
On or off  
t(TSD_deg)  
Device turns output off. Auto recovery  
pulldown  
Externally  
pulled low  
Device turns output off  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)  
When the device is in undervoltage lockout status, the TPS92613-Q1 device disables all functions until the  
supply rises above the V(POR_rising) threshold.  
7.4.2 Normal Operation V(SUPPLY) 4.5 V  
The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the  
device is able to drive the output in constant-current mode.  
7.4.3 Low-Voltage Dropout Operation  
When the device drives an LED string in low-dropout operation, if the voltage drop is less than the open-circuit  
detection threshold, the device may report a false open-circuit fault. TI recommends only enabling the open-  
circuit detection when SUPPLY voltage is enough higher than LED string voltage to avoid a false open-circuit  
detection.  
7.4.4 Fault Mode  
When the device detects an open circuit or a shorted LED, the device tries to pull down the FAULT pin with a  
constant current. If the FAULT bus is pulled down, the device switches to fault mode and consumes a fault  
current of I(FAULT)  
.
版权 © 2019–2020, Texas Instruments Incorporated  
15  
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for  
linear LED drivers.  
The TPS92613-Q1 device is capable of detecting LED open-circuit and LED short-circuits. To increase current-  
driving capability, the TPS92613-Q1 device supports using an external parallel resistor to help dissipate heat as  
following section Single-Channel LED Driver With Heat Sharing describes. This method provides a low-cost  
solution of using external resistors to minimize thermal accumulation on the device itself due to large voltage  
difference between input voltage and LED string forward voltage, while still keeping high accuracy of the total  
current output. Note that the one-fails–all-fail feature is not supported by this topology.  
8.2 Typical Applications  
8.2.1 Single-Channel LED Driver With Diagnostics  
The TPS92613-Q1 is an easy-to-use solution for LED driver applications with diagnostics requirements.  
9 œ 16V  
TPS92613 œ Q1  
C(SUPPLY)  
SUPPLY  
R2  
R(SNS)  
DIAGEN  
DIAGEN  
PWM  
IN  
R1  
PWM  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
23. Typical Application Diagram  
8.2.1.1 Design Requirements  
Input voltage range is from 9 V to 16 V, LED maximum forward voltage VF_MAX = 2.5 V, minimum forward voltage  
VF_MIN = 1.9 V, current I(LED) = 250 mA. PWM input is adopted for LED brightness adjust and LED ON/OFF  
control.  
8.2.1.2 Detailed Design Procedure  
STEP 1: Determine the current setting resistor, R(SNS) value by using 公式 2.  
V
(CS _REG)  
R(SNS)  
=
= 0.392W  
I(LED)  
where  
V(CS_REG) = 98 mV (typical.)  
I(LED) = 250 mA  
(2)  
16  
版权 © 2019–2020, Texas Instruments Incorporated  
 
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Typical Applications (接下页)  
STEP 2: Design the threshold voltage for SUPPLY to enable the LED open-circuit diagnostics and calculate the  
resistor divider value.  
LED-string maximum forward voltage = 3 × 2.5 V = 7.5 V. To avoid the open-circuit fault reported in low-dropout  
operation conditions, additional headroom between SUPPLY and OUT needs to be considered. The TPS92613-  
Q1 device must disable open-circuit detection when the supply voltage is below LED-string maximum forward  
voltage plus maximum V(OPEN_th_rising) and maximum V(CS_REG). The voltage divider resistor, R1 and R2 value can  
be calculated by 公式 3.  
V
+ V(CS _REG) + V  
R1 + R2  
ìR1  
(
(OUT)  
)
OPEN_ th_rising  
(
)
V
=
IL(DIAGEN)  
where  
VIL(DIAGEN) = 1.045 V (minimum)  
V(OPEN_th_rising) = 335 mV (maximum)  
V(CS_REG) = 102.5 mV (maximum)  
R1 = 10 kΩ recommended  
(3)  
The calculated result for R2 is 65.7 kΩ when V(OUT) maximum voltage is 7.5 V.  
STEP 3: Thermal analysis for the worst application conditions.  
Normally the thermal analysis is necessary for linear LED-driver applications to ensure that the operation junction  
temperature of TPS92613-Q1 is well managed. The total power consumption on the TPS92613-Q1 itself is one  
important factor determining operation junction temperature, and it can be calculated by using 公式 4. Based on  
the worst-case analysis for maximum power consumption on device, consider either optimizing PCB layout for  
better power dissipation as Layout describes or adding an extra heat-sharing resistor as described in Single-  
Channel LED Driver With Heat Sharing.  
PDEV = V  
- V CS _REG - V OUT ìI  
+ V(SUPPLY ìI(Quiescent  
) ) )  
(
)
SUPPLY  
LED  
(
)
(
)
(
)
(
)
(
PDEV _ MAX = 16 - 3 ì1.9 - 0.098 ì0.25 +16 ì0.00025 = 2.55W  
(
)
(
)
where  
V(CS_REG) = 98 mV (typical)  
I(Quiescent) = 250 µA (maximum)  
(4)  
In this application, the calculated result for maximum power consumption on the TPS92613-Q1 is 2.55 W at  
V(SUPPLY) = 16 V and I(LED) = 250 mA conditions.  
TI recommends to add capacitors C(SUPPLY) at SUPPLY and C(OUT)at OUT. TI recommends one 1-μF capacitor  
plus one 100-nF decoupling ceramic capacitor close to the SUPPLY pin for C(SUPPLY) and a 10-nF ceramic  
capacitor close to the OUT pin for C(OUT). The larger capacitor for C(SUPPLY) or C(OUT) is helpful for EMI and ESD  
immunity; however, large C(OUT) takes a longer time to charge up the capacitor and may affect PWM dimming  
performance.  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
 
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.3 Application Curves  
Ch. 1 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
Ch. 1 = V(OUT)  
Ch. 2 = V(PWM)  
Ch. 4 = I(OUT)  
24. Output Current With PWM Input  
25. Output Current With PWM Input  
8.2.2 Single-Channel LED Driver With Heat Sharing  
Using parallel resistors, thermal performance can be improved by balancing current between the TPS92613-Q1  
device and the external resistors as follows. As the current-sense resistor controls the total LED string current,  
the LED string current I(LED) is set by V(CS_REG) / R(SNS), while the TPS92613-Q1 current I(DRIVE) and parallel  
resistor current I(P) combine to the total current.  
TPS92613 œ Q1  
C(SUPPLY)  
SUPPLY  
R2  
R4  
R(SNS)  
I(DRIVE)  
I(LED)  
R1  
R3  
DIAGEN  
DIAGEN  
PWM  
IN  
R(P)  
I(P)  
PWM  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
26. Supply Control With Heat Sharing Resistor  
8.2.2.1 Design Requirements  
Input voltage range is 9 V to 16 V, LED maximum forward voltage VF_MAX= 2.5 V, minimum forward voltage  
VF_MIN = 1.9 V, current I(LED) = 500 mA. And supply control is adopted for LED brightness adjust and LED  
ON/OFF control. The high level of V(SUPPLY) is 9 V to 16 V, and the low level of V(SUPPLY) is between 0 V to 3 V.  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Typical Applications (接下页)  
8.2.2.2 Detailed Design Procedure  
Note that the parallel resistor path cannot be shut down by PWM or fault protection. If PWM control is required,  
TI recommends an application circuit as described in 27.  
In linear LED driver applications, the large input voltage variation generates the most of the thermal concerns.  
The resistor current, as indicated by Ohm's law, depends on the voltage across the external resistors. The  
TPS92613-Q1 controls the driver current I(DRIVE) to attain the desired total current. If I(P) increases, the  
TPS92613-Q1 device decreases I(DRIVE) to compensate, and vice versa.  
While in low-dropout operation, the voltage across the R(P) resistor may be close to zero, so that almost no  
current can flow through the external resistor R(P)  
.
When the input voltage is high, the parallel-resistor current I(P) is proportional to the voltage across the parallel  
resistor R(P). The parallel resistor R(P) takes the majority of the total string current, generating maximum heat.  
In this case, the parallel resistor value must be carefully calculated to ensure that 1) enough output current is  
achieved in low-dropout operation, 2) thermal dissipation for both the TPS92613-Q1 device and the resistor is  
within their thermal dissipation limits, and 3) device current in the high-voltage mode is above the minimal output-  
current requirement.  
STEP 1: Determine the current setting resistor, R(SNS) value by using 公式 5.  
V
(CS _REG)  
R(SNS)  
=
= 0.196W  
I(LED)  
where  
V(CS_REG) = 98 mV (typical)  
I(LED) = 500 mA  
(5)  
The calculated result for R(SNS) is 0.196 Ω.  
STEP 2: Calculate the parallel resistor, R(P) value by using 公式 6.  
The parallel resistor R(P) is recommended to consume 50% of the total current at maximum supply voltage.  
V
- V  
- V  
16 - 0.098 - 3ì1.9  
0.5ì0.5  
(SUPPLY)  
(CS _REG) (OUT)  
R(P)  
=
=
ö 40W  
0.5ìI(LED)  
where  
V(CS_REG) = 98 mV (typical)  
I(LED) = 500 mA  
(6)  
The calculated result for R(P) is about 40 Ω at V(SUPPLY) = 16 V.  
STEP 3: Design the threshold voltage for SUPPLY to enable the LED open-circuit diagnostics and calculate  
voltage divider resistor value for R1 and R2.  
LED-string maximum forward voltage = 3 × 2.5 V = 7.5 V. To avoid the open-circuit fault reported in low-dropout  
operation conditions, additional headroom between SUPPLY and OUT needs to be considered. The TPS92613-  
Q1 device must disable open-circuit detection when the supply voltage is below LED-string maximum forward  
voltage plus maximum V(OPEN_th_rising) and maximum V(CS_REG). The voltage divider resistor, R1 and R2 value can  
be calculated by 公式 7.  
V
+ V(CS _REG) + V  
R1 + R2  
ìR1  
(
(OUT)  
)
OPEN_ th_rising  
(
)
V
=
IL(DIAGEN)  
where  
VIL(DIAGEN) = 1.045 V (minimum)  
V(OPEN_th_rising) = 335 mV (maximum)  
V(CS_REG) = 102.5 mV (maximum)  
R1 = 10 kΩ recommended  
(7)  
19  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
The calculated result for R2 is 65.7 kΩ when V(OUT) maximum voltage is 7.5 V.  
STEP 4: Design the threshold voltage for PWM to enable current output and calculate voltage divider resistor  
value for R3 and R4.  
Because the supply control is adopted for the LED ON/OFF and brightness control, a pulse square voltage with  
power capability is applied on the SUPPLY pin to enable and disable current output to OUT. In order to ensure  
the current output of TPS92613-Q1 is fully enabled when applied voltage on SUPPLY pin is high enough and the  
current output is truly shutdown when the applied voltage goes low. A voltage divider from supply to control PWM  
needs to be designed to setup a threshold of supply voltage. The resistor R3 and R4 of voltage divider can be  
calculated by 公式 8.  
V (  
) ìR3  
R3 + R4  
SUPPLY  
V
=
IL(PWM)  
where  
VIL(PWM) = 1.24 V (maximum)  
R3 = 10 kΩ recommended  
(8)  
The calculated result for R4 is 30.5 kΩ if LED must be turned on when V(SUPPLY) voltage is higher than 5 V.  
STEP 5: Thermal analysis for the worst application conditions.  
The total device power consumption can be calculated by 公式 9.  
÷
V(SUPPLY - V(CS _REG - V(OUT  
)
)
)
PDEV = V  
- V CS _REG - V OUT ì I  
-
LED  
+ V(SUPPLY ìI(Quiescent  
)
(
)
SUPPLY  
(
)
(
)
(
)
(
)
(
)
)
R(P  
÷
)
«
16 - 0.098 - 3ì1.9  
40  
PDEV _MAX = 16 - 0.098 - 3ì1.9 ì 0.5 -  
+16ì0.00025 = 2.50W  
(
)
÷
(
)
«
where  
V(CS_REG) = 98 mV (typical)  
I(Quiescent) = 250 µA (maximum)  
(9)  
The calculated maximum power consumption on the TPS61193-Q1 is 2.5 W at V(SUPPLY) = 16 V, V(OUT) = 3 × 1.9  
V = 5.7 V and I(LED) = 500 mA.  
The power consumption on resistor R(P) can be calculated through 公式 10.  
2
V
(SUPPLY) - V(CS _REG) - V  
(
)
(OUT)  
P
=
(RP)  
R(P)  
2
16 - 3 ì1.9 - 0.098  
(
)
P
=
= 2.6W  
(RP _MAX)  
40  
where  
V(CS_REG) = 98 mV (Typ.)  
(10)  
The calculated maximum power consumption on the 40 Ω, R(P) parallel resistor is 2.6 W at V(SUPPLY) = 16 V and  
V(OUT) = 3 × 1.9 V = 5.7 V.  
TI recommends adding capacitors C(SUPPLY) at SUPPLY and C(OUT)at OUT. One 1-μF capacitor plus one 100-nF  
decoupling ceramic capacitor close to the SUPPLY pin is recommended for C(SUPPLY), and a 10-nF ceramic  
capacitor close to the OUT pin is recommended for C(OUT). The larger capacitor for C(SUPPLY) or C(OUT) is helpful  
for EMI and ESD immunity, however large C(OUT) takes a longer time to charge up the capacitor and could affect  
PWM dimming performance.  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
 
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
Typical Applications (接下页)  
9 œ 16V  
TPS92613 œ Q1  
SUPPLY  
C(SUPPLY)  
R2  
R1  
R(SNS)  
I(DRIVE)  
I(LED)  
DIAGEN  
PWM  
DIAGEN  
PWM  
IN  
R(P)  
I(P)  
OUT  
FAULT  
FAULT  
GND  
C(OUT)  
R5  
PWM  
PWM  
27. PWM Control With Heat Sharing Resistor  
For PWM control scenarios, a NPN bipolar transistor with a base current-limiting resistor, R5 can modulate the  
output current together with the device PWM function as 27. The resistor value of R5 needs to be calculated  
based on the applied PWM voltage and β value of selected NPN transistor.  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.2.3 Application Curves  
Ch. 1 = V(SUPPLY)  
Ch. 4 = I(LED)  
Ch. 2 = V(OUT)  
Ch. 3 = I(P)  
Ch. 1 = V(SUPPLY)  
Ch. 4 = I(LED)  
Ch. 2 = V(OUT)  
Ch. 3 = I(P)  
Duty Cycle = 30%  
F(SUPPLY) = 200 Hz  
V(SUPPLYLO) = 2.5V  
Duty Cycle = 5%  
F(SUPPLY) = 200 Hz  
V(SUPPLYLO) = 2.5V  
V(SUPPLYHI) = 12V  
V(SUPPLYHI) = 12V  
28. Pulse Supply Control Output Current (D = 5%)  
29. Pulse Supply Control Output Current (D = 30%)  
700  
600  
500  
400  
300  
200  
100  
0
I(OUT) setting = 500 mA -40oC  
I(OUT) setting = 500 mA 25oC  
I(OUT) setting = 500 mA 125oC  
I(OUT) setting = 600 mA -40oC  
I(OUT) setting = 600 mA 25oC  
I(OUT) setting = 600 mA 125oC  
0
0.5  
1
1.5  
2
2.5  
Current Output (mA)  
3
3.5  
4
D007  
Ch. 1 = V(SUPPLY)  
Ch. 4 = I(LED)  
Ch. 2 = V(OUT)  
Ch. 3 = I(P)  
V(SUPPLY) increases from 9 V to 16 V  
30. Constant Output Current With Supply Voltage  
31. Output Current vs Dropout Voltage  
Increasing  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
TPS92613-Q1  
www.ti.com.cn  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
9 Power Supply Recommendations  
The TPS92613-Q1 is designed to operate from an automobile electrical power system within the range specified  
in the Recommended Operating Conditions. The V(SUPPLY) input must be protected from reverse voltage and  
voltage dump condition over 40 V. The impedance of the input supply rail must be low enough that the input  
current transient does not cause drop below LED string required forward voltage. If the input supply is connected  
with long wires, additional bulk capacitance may be required in addition to normal input capacitor.  
10 Layout  
10.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92613-Q1 layout. TI recommends large thermal  
dissipation area connected to thermal pads with multiple thermal vias.  
10.2 Layout Example  
GND  
SUPPLY  
DIAGEN  
IN  
PWM  
FAULT  
GND  
OUT  
32. TPS92613-Q1 Example Layout Diagram  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
TPS92613-Q1  
ZHCSJM3B APRIL 2019REVISED JANUARY 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
TPS92610-Q1 汽车单通道线性 LED 驱动器》  
TPS92611-Q1 汽车单通道线性 LED 驱动器》  
TPS92612-Q1 汽车单通道线性 LED 驱动器》  
TPS92610-Q1 EVM 用户指南》  
《如何在汽车外部照明应用中计算 TPS92630-Q1 最大输出 电流》  
《适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计》  
《适用于中央高位刹车灯 (CHMSL) 的汽车线性 LED 驱动器参考设计指南》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92613QNDRRQ1  
ACTIVE  
TO-263  
NDR  
7
1000 RoHS & Green  
SN  
Level-3-260C-168 HR  
-40 to 125  
TPS92613Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92613QNDRRQ1  
TO-263  
NDR  
7
1000  
330.0  
24.4  
10.6  
15.4  
2.45  
12.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TO-263 NDR  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
TPS92613QNDRRQ1  
7
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NDR0007A  
TO-263 - 2.25 mm max height  
S
C
A
L
E
1
.
0
0
0
TO-263  
10.1  
9.6  
A
0.735  
0.635  
7X  
B
PIN 1 ID  
0.25  
C A B  
1
10.41  
9.91  
7.62  
7
6X 1.27  
14.36  
13.66  
12.45  
11.95  
R0.7  
MAX TYP  
10.76  
10.26  
2.1  
1.9  
0.508  
7X  
C
0.381  
0 -6  
0.15  
7
1.05  
0.95  
0-0.15  
STAND-OFF  
NOTE 5  
ALL AROUND  
7.1  
6.5  
6.11  
5.85  
EXPOSED PAD  
(OUTLINE DOES NOT  
INCLUDE MOLD FLASH)  
5.75  
5.40  
4.1 6.6  
3.9 6.3  
1.05  
0.65  
6.5  
6.1  
(2.66)  
4219872/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Features may not exist and shape may vary per different assembly sites.  
4. Reference JEDEC registration TO-279B.  
5. Under all conditions, leads must not be above Datum C  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NDR0007A  
TO-263 - 2.25 mm max height  
TO-263  
7X (2.41)  
1
(6.35)  
7X (0.91)  
6X (1.27)  
SYMM  
8
(7.62)  
(5.59)  
7
(8.28)  
(0.91)  
PKG  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219872/A 04/2019  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers  
SLMA002(www.ti.com/lit/slm002) and SLMA004 (www.ti.com/lit/slma004).  
7. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NDR0007A  
TO-263 - 2.25 mm max height  
TO-263  
7X (2.41)  
7X (0.91)  
EXPOSED METAL  
TYP  
1
(1.2) TYP  
(0.29)  
6X (1.27)  
(1.33) TYP  
R(0.05) TYP  
SYMM  
(0.665)  
8
(7.62)  
20X (1.13)  
20X (1)  
7
(8.28)  
0.91  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
64% PRINTED SOLDER COVERAGE BY AREA  
SCALE:7X  
4219872/A 04/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS92613QNDRRQ1

具有 600mA 输出、开路和短路检测功能的汽车类单通道 LED 驱动器 | NDR | 7 | -40 to 125
TI

TPS92620-Q1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器
TI

TPS92620QDRRRQ1

具有热共享功能的汽车类双通道高电流 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92622-Q1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器
TI

TPS92622QDRRRQ1

具有热共享功能的汽车类双通道 40V 高侧 LED 驱动器 | DRR | 12 | -40 to 125
TI

TPS92623-Q1

具有热共享功能的汽车类三通道高侧 LED 驱动器
TI

TPS92623QPWPRQ1

具有热共享功能的汽车类三通道高侧 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92624-Q1

具有热共享功能的汽车类四通道高侧 LED 驱动器
TI

TPS92624QPWPRQ1

具有热共享功能的汽车类四通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92629-Q1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器
TI

TPS92629QDGNRQ1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器 | DGN | 8 | -40 to 125
TI

TPS92630-Q1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器
TI