TPS92623QPWPRQ1 [TI]

具有热共享功能的汽车类三通道高侧 LED 驱动器 | PWP | 16 | -40 to 125;
TPS92623QPWPRQ1
型号: TPS92623QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有热共享功能的汽车类三通道高侧 LED 驱动器 | PWP | 16 | -40 to 125

驱动 驱动器
文件: 总38页 (文件大小:6261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
TPS92623-Q1 具有热共享控制功能的三通道、汽车类高LED 驱动器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
车外尾灯尾灯、中央高位刹车灯、侧标志灯  
车外小灯门把手、盲点检测指示灯、充电口  
车内灯顶灯、阅读灯  
– 温度等1: 40 ° C 125 ° C T A  
• 宽输入电压范围4.5V 40V  
• 通过外部分流电阻器实现热共享功能  
• 故障模式下具有低电源电流  
• 通LED 驱动器应用  
3 说明  
• 三通道高精度电流调节:  
TPS92623-Q1 三通道 LED 驱动器采用独特的热管理  
设计可减少器件温升。TPS92623-Q1 是由汽车电池  
直接供电的线性驱动器具有宽电压范围每个通道可  
输出高达 150mA 的全电流负载。外部分流电阻器可用  
来共享输出电流并由驱动器驱动。该器件具有全面的诊  
断功能包括 LED 开路、LED 接地短路和器件过热保  
护。  
– 每个通道的电流输出高150 mA  
– 在整个温度范围内精度±5%  
– 通过电阻器独立设置电流  
– 用于亮度控制的独PWM 引脚  
• 低压降:  
– 最大压降150 mA 600 mV  
• 诊断和保护  
LED 开路具有自动恢复功能  
LED 接地短路具有自动恢复功能  
– 支持诊断并具有可调阈值  
– 可配置为连带失效或仅失效通道关闭的故障总线  
(N-1)  
– 热关断  
TPS92623-Q1 的连带失效功能可与其他 LED 驱动器  
TPS9261x-Q1TPS9262x-Q1TPS92630/8-  
Q1 TPS92830-Q1 器件配合工作从而满足不同  
的要求。  
3-1. 器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
• 工作结温范围40°C 150°C  
TPS92623-Q1  
HTSSOP (16)  
4.40mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
4.5 V to 40 V  
4
TPS92623-Q1  
C(OUT1)  
C(OUT2)  
C(OUT3)  
R(RES1)  
R(RES2)  
R(RES3)  
P(DEVICE) R(RESx) = 82 W  
P(RESx) R(RESx) = 82 W  
P(DEVICE) R(RESx) = 64.9 W  
P(RESx) R(RESx) = 64.9 W  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
R(SNS3)  
3.2  
IN1  
C(SUPPLY)  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
IN2  
2.4  
IN3  
DIAGEN  
1.6  
0.8  
0
PWM1  
PWM2  
PWM3  
FAULT  
典型应用图  
4
8
12 16  
Supply Voltage (V)  
20  
24  
器件功耗  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFS4  
 
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Applications.................................................. 22  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................28  
10.1 Layout Guidelines................................................... 28  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 接收文档更新通知................................................... 29  
11.2 支持资源..................................................................29  
11.3 Trademarks............................................................. 29  
11.4 Electrostatic Discharge Caution..............................29  
11.5 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (June 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SUPPLY  
IN1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RES1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
IN2  
IN3  
Thermal  
Pad  
DIAGEN  
PWM1  
PWM2  
PWM3  
FAULT  
Not to scale  
5-1. PWP Package 16-Pin HTSSOP With PowerPADTop View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SUPPLY  
IN1  
NO.  
1
I
I
I
I
Device power supply  
2
Current input for channel 1  
Current input for channel 2  
Current input for channel 3  
IN2  
3
IN3  
4
Enable pin for LED open-circuit detection to avoid false open diagnostics during low-dropout  
operation.  
DIAGEN  
5
I
PWM1  
PWM2  
PWM3  
FAULT  
GND  
6
I
I
PWM input for OUT1 and RES1 current output ON and OFF control  
PWM input for OUT2 and RES2 current output ON and OFF control  
PWM input for OUT3 and RES3 current output ON and OFF control  
Fault output, support one-failsall-fail fault bus  
Ground  
7
8
I
9
I/O  
10  
11  
12  
13  
14  
15  
16  
O
O
O
O
O
O
OUT3  
RES3  
OUT2  
RES2  
OUT1  
RES1  
Current output for channel 3  
Current output for channel 3 with external thermal resistor  
Current output for channel 2  
Current output for channel 2 with external thermal resistor  
Current output for channel 1  
Current output for channel 1 with external thermal resistor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
40  
40  
MAX  
UNIT  
V
Supply  
SUPPLY  
45  
V(SUPPLY)+0.3  
V(SUPPLY)+0.3  
V(SUPPLY)+0.3  
150  
High-voltage input  
DIAGEN, IN1, IN2, IN3, PWM1, PWM2, PMW3  
OUT1, OUT2, OUT3, RES1, RES2, RES3  
FAULT  
V
High-voltage output  
V
Fault bus  
TJ  
V
Operating junction temperature  
Storage temperature  
°C  
°C  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 1C  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
CDM ESD Classification Level C4B  
Corner pins (SUPPLY, RES1,  
FAULT, PWM3, )  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY  
Device supply voltage  
Sense voltage  
4.5  
40  
V
V
V
V
IN1, IN2, IN3  
PWM1, PWM2, PWM3  
DIAGEN  
V
(SUPPLY) V(CS_REG)  
PWM inputs  
0
0
V(SUPPLY)  
V(SUPPLY)  
Diagnostics enable pin  
OUT1, OUT2, OUT3,  
RES1, RES2, RES3  
Driver output  
Fault bus  
0
0
V(SUPPLY)  
V
FAULT  
V(SUPPLY)  
125  
V
Operating ambient temperature, TA  
°C  
40  
6.4 Thermal Information  
TPS92623-Q1  
THERMAL METRIC(1)  
PWP  
16 PINS  
46.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.9  
Junction-to-board thermal resistance  
22.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ψJT  
22.8  
ψJB  
RθJC(bot)  
6.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
 
 
 
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
V(SUPPLY) = 5 V to 40 V, V(EN) = 5V, TJ = 40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BIAS  
V(POR_rising)  
V(POR_falling)  
I(Quiescent)  
I(FAULT)  
Supply voltage POR rising threshold  
Supply voltage POR falling threshold  
Device standby ground current  
3.6  
3.4  
4.0  
V
V
3.0  
PWM = HIGH  
1.6  
2.5  
mA  
mA  
Device supply current in fault mode  
PWM = HIGH, FAULT externally pulled LOW  
0.21  
0.350  
0.45  
LOGIC INPUTS (DIAGEN, PWM)  
VIL(DIAGEN)  
VIH(DIAGEN)  
VIL(PWM)  
Input logic-low voltage, DIAGEN  
1.045  
1.14  
1.1  
1.2  
1.1  
1.2  
1.155  
1.26  
V
V
V
V
Input logic-high voltage, DIAGEN  
Input logic-low voltage, PWM  
Input logic-high voltage, PWM  
1.045  
1.14  
1.155  
1.26  
VIH(PWM)  
CONSTANT-CURRENT DRIVER  
I(OUTx_Tot) Device output-current for each channel  
V(CS_REG)  
100% duty cycle  
5
150  
156  
+3  
mA  
mV  
%
Sense-resistor regulation voltage  
Channel to channel mismatch  
Device to device mismatch  
Sense-resistor range  
144  
150  
TA = 40°C to +125°C  
ALL ΔV(CS_c2c)  
ALL ΔV(CS_d2d)  
R(CS_REG)  
ΔV(CS_c2c) = 1 V(CS_REGx)/Vavg(CS_REG)  
ΔV(CS_d2d) = 1 Vavg(CS_REG)/Vnom(CS_REG)  
3  
4  
+4  
%
0.96  
31.2  
400  
600  
600  
900  
Ω
current setting of 100 mA  
200  
300  
280  
400  
Voltage dropout from INx to OUTx, RESx open  
mV  
current setting of 150 mA  
V(DROPOUT)  
current setting of 100 mA  
Voltage dropout from INx to RESx, OUTx open  
Ratio of RESx current to total current  
mV  
%
current setting of 150 mA  
I(RESx)  
95  
I(RESx)/I(OUTx_Tot), V(INx) V(RESx) > 1 V  
DIAGNOSTICS  
V(OPEN_th_rising)  
V(OPEN_th_falling)  
V(SG_th_rising)  
V(SG_th_falling)  
180  
300  
450  
1.2  
0.9  
420  
mV  
mV  
V
LED open rising threshold, V(IN) V(OUT)  
LED open falling threshold, V(IN) V(OUT)  
Channel output short-to-ground rising threshold  
Channel output short-to-ground falling threshold  
1.14  
1.26  
0.855  
0.945  
V
Channel output V(OUT) short-to-ground retry  
current  
I(Retry_OUTx)  
I(Retry_RESx)  
0.64  
0.64  
1.08  
1.08  
1.528  
1.528  
mA  
mA  
Channel output V(OUT) short-to-ground retry  
current  
FAULT  
VIL(FAULT)  
Logic input low threshold  
0.7  
V
V
VIH(FAULT)  
Logic input high threshold  
2
t(FAULT_rising)  
t(FAULT_falling)  
I(FAULT_pulldown)  
I(FAULT_pullup)  
I(FAULT_leakage)  
TIMING  
Fault detection rising edge deglitch time  
Fault detection falling edge deglitch time  
FAULT internal pulldown current  
FAULT internal pullup current  
FAULT leakage current  
10  
20  
µs  
µs  
mA  
µA  
µA  
V(FAULT) = 0.4 V  
V(FAULT) = 20 V  
2
6
3
4
14  
2
10  
0.01  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 1 and R(RESx) = 56 Ω  
3
3
µs  
µs  
µs  
µs  
PWM rising edge delay to 10% of output  
current, t1 as shown in 7-1  
t(PWM_delay_rising)  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 30 and R(RESx) = 56 Ω  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 1 and R(RESx) = 56 Ω  
3.8  
3.8  
PWM falling edge delay to 90% of output  
current, t2 as shown in 7-1  
t(PWM_delay_falling)  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 30 and R(RESx) = 56 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS92623-Q1  
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
V(SUPPLY) = 5 V to 40 V, V(EN) = 5V, TJ = 40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 1 and R(RESx) = 56 Ω  
2
µs  
Output current rising from 10% to 90%, t3 as  
shown in 7-1  
t(Current_rising)  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 30 and R(RESx) = 56 Ω  
1
5
µs  
µs  
µs  
µs  
µs  
µs  
µs  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 1 and R(RESx) = 56 Ω  
Output current falling from 90% to 10%, t4 as  
shown in 7-1  
t(Current_falling)  
V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
mV, R(SNSx) = 30 and R(RESx) = 56 Ω  
0.2  
85  
SUPPLY rising edge to 10% output current, t5 as V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG) = 150  
t(STARTUP)  
t(OPEN_deg)  
t(SG_deg)  
shown in 7-1  
mV, R(SNSx) = 1 and R(RESx) = 56 Ω  
LED-open fault detection deglitch time, t6 as  
shown in 7-4  
125  
125  
125  
Output short-to-ground detection deglitch time, t7  
as shown in 7-3  
Open and Short fault recovery deglitch time, t8  
as shown in 7-3 and 7-4  
t(Recover_deg)  
Fault recovery delay time, t9 as shown in 7-3  
and 7-4  
t(FAULT_recovery)  
t(TSD_deg)  
50  
50  
µs  
µs  
Thermal over temperature deglitch time  
THERMAL PROTECTION  
Thermal shutdown junction temperature  
threshold  
T(TSD)  
157  
172  
15  
187  
°C  
°C  
Thermal shutdown junction temperature  
hysteresis  
T(TSD_HYS)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 150 mA  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 150 mA  
50  
50  
25  
25  
0
4
8
12  
16  
20  
24  
0
-40  
Supply Voltage (V)  
-20  
0
20  
40  
60  
80  
100 120 140  
6-1. Output Current vs Supply Voltage  
Temperature (C)  
6-2. Output Current vs Temperature  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 150 mA -40 C  
I(OUTx_Tot) = 150 mA 25 C  
I(OUTx_Tot) = 150 mA 125 C  
I(OUTx_Tot) = 150 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 50 mA  
50  
50  
25  
25  
0
0
0
0.4  
0.8  
1.2  
1.6  
2
0
0.4  
0.8  
1.2  
1.6  
2
Dropout Voltage (V)  
Dropout Voltage (V)  
6-3. Output Current vs Dropout Voltage  
6-4. Output Current vs Dropout Voltage  
100  
50  
175  
150  
125  
100  
75  
30  
20  
10  
5
I(OUTx) R(RESx) = 34  
I(RESx) R(RESx) = 34   
I(OUTx) R(RESx) = 41   
I(RESx) R(RESx) = 41   
I(OUTx) R(RESx) = 55   
I(RESx) R(RESx) = 55   
I(OUTx) R(RESx) = 65   
I(RESx) R(RESx) = 65   
I(OUTx) R(RESx) = 80   
I(RESx) R(RESx) = 80   
3
2
1
50  
0.5  
0.3  
0.2  
25  
0
0.1  
5
10  
15  
20  
25  
30  
0.1 0.2 0.3 0.5  
1
2
3 4 567 10  
20 30 50 70100  
Supply Voltage (V)  
Input PWM Duty Cycle (%)  
6-6. Output Current Distribution vs Supply Voltage  
6-5. PWM Output Duty Cycle vs PWM Input Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
225  
200  
175  
150  
125  
100  
75  
9
I(OUTx) R(RESx) = 55 2LEDs  
P(Resx) R(RESx) = 34  
8
I(RESx) R(RESx) = 55 2LEDs  
I(OUTx) R(RESx) = 55 3LEDs  
I(RESx) R(RESx) = 55 3LEDs  
P(Device) R(RESx) = 34   
P(Resx) R(RESx) = 41   
7
P(Device R(RESx) = 41   
P(Resx) R(RESx) = 55   
6
P(Device R(RESx) = 55   
P(Resx) R(RESx) = 65   
5
P(Device) R(RESx) = 65   
P(Resx) R(RESx) = 80   
4
P(Device) R(RESx) = 80   
3
50  
2
1
0
25  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Supply Voltage (V)  
Supply Voltage (V)  
6-8. Output Current Distribution vs Supply Voltage  
6-7. Power Dissipation vs Supply Voltage  
5
4
3
2
1
0
P(RESx) R(RESx) = 55 3LEDs  
P(DEVICE) R(RESx) = 55 3LEDs  
P(RESx) R(RESx) = 55 2LEDs  
P(DEVICE) R(RESx) = 55 2LEDs  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
3
6
9
12  
15  
18  
21  
24  
27  
30  
Supply Voltage (V)  
6-10. Power Up Sequence  
6-9. Power Dissipation vs Supply Voltage  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-12. PWM Dimming at 200 Hz  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
6-11. Supply Dimming at 200 Hz  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
6-13. PWM Dimming at 1 kHz  
6-14. LED Open Protection  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-15. LED Open Protection Recovery  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-16. LED Short-Circuit Protection  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
6-17. LED Short-Circuit Protection Recovery  
6-18. Transient Undervoltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-19. Transient Overvoltage  
6-20. Slow Decrease and Quick Increase of Supply Voltage  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-21. Slow Decrease and Slow Increase of Supply Voltage  
6-22. Superimposed Alternating Voltage 15 Hz  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High when Supply > 8 V  
DIAGEN = High when Supply > 8 V  
6-23. Superimposed Alternating Voltage 1 kHz  
6-24. Jump Start  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92623-Q1 is a three-channel, high-side linear LED driver supporting external thermal sharing resistor to  
achieve the controllable junction temperature rising. The device can be directly powered by automotive battery  
and output full load up to 450-mA current to LED with limited power dissipation on the device. The current output  
at each channel can be independently set by external R(SNSx) resistors. Current flows from the supply through  
the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and RESx  
pin. TPS92623-Q1 device supports both supply control and PWM control to turn LED ON and OFF. The LED  
brightness is also adjustable by voltage duty cycle applied on either SUPPLY or PWMx pins with frequency  
above 100 Hz. The TPS92623-Q1 provides full diagnostics to keep the system operating reliably including LED  
open/short circuit detection, supply POR and thermal shutdown protection. TPS92623-Q1 device is in a  
HTSSOP package with total 16 leads. The TPS92623-Q1 can be used with other TPS9261x-Q1, TPS9262x-Q1,  
TPS9263x-Q1 and TPS92830-Q1 family devices together to achieve one-fails-all-fail protection by tying all  
FAULT pins together as a fault bus.  
7.2 Functional Block Diagram  
VSUPPLY  
R(SNS1)  
TPS92623-Q1  
Channel 1  
IN1  
SUPPLY  
DIAGEN  
PWM1  
RES1  
OUT1  
PWM2  
PWM3  
IN2  
RES2  
VCC  
Logic  
Channel 2  
OUT2  
IN3  
FAULT  
RES3  
Channel 3  
OUT3  
GND  
7.3 Feature Description  
7.3.1 Power Supply (SUPPLY)  
7.3.1.1 Power-On Reset (POR)  
The TPS92623-Q1 device has an internal power-on-reset (POR) function. When power is applied to the  
SUPPLY pin, the internal POR circuit holds the device in reset state until V(SUPPLY) is above V(POR_rising)  
.
7.3.1.2 Suppply Current in Fault Mode  
The TPS92623-Q1 device consumes minimal quiescent current, I(FAULT), into SUPPLY when the FAULT pin is  
externally pulled LOW. At the same time, the device shuts down all three output drivers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS92623-Q1  
 
 
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
If device detects an internal fault, it pulls down the FAULT pin by an internal typical 3-mA constant current as a  
fault indication to the fault bus.  
7.3.2 Enable and Shutdown  
The device starts to operate as long as the SUPPLY voltage is higher than V(POR_rising). The TPS92623-Q1 shuts  
down when SUPPLY voltage is lower than V(POR_falling)  
.
7.3.3 Constant-Current Output and Setting (INx)  
The TPS92623-Q1 device is a high-side current driver for driving LEDs. The device controls each output current  
through regulating the voltage drop on an external high-side current-sense resistor, R(SNSx) independently for  
each channel. An integrated error amplifier drives an internal power transistor to maintain the voltage drop on the  
current-sense resistor R(SNSx) to V(CS_REG) and therefore regulates the current output to target value. When the  
output current is in regulation, the current value for each channel can be calculated by using 方程1.  
V
(CS _REG)  
I(OUTx _ Tot)  
=
R(SNSx)  
(1)  
where  
V(CS_REG) = 150 mV  
x = 1, 2 or 3 for output channel 1, 2 or 3  
When the supply voltage drops below total LED string forward voltage plus required headroom voltage, the sum  
of V(DROPOUT) and V(CS_REG), the TPS92623-Q1 is not able to deliver enough current output as set by the value  
of R(SNSx), and the voltage across the current-sense resistor R(SNSx) is less than V(CS_REG)  
.
7.3.4 Thermal Sharing Resistor (OUTx and RESx)  
The TPS92623-Q1 device provides two current output paths for each channel. Current flows from the supply  
through the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and  
RESx pin. The current output on both OUTx pin and RESx pin is independently regulated to achieve total  
required current output. The summed current of OUTx and RESx is equal to the current through the R(SNSx)  
resistor in the channel. The OUTx connects to anode of LEDs load in serial directly, however RESx connects to  
the LEDs through an external resistor to share part of the power dissipation and reduce the thermal  
accumulation in TPS92623-Q1.  
The integrated independent current regulation in TPS92623-Q1 dynamically adjusts the output current on both  
OUTx and RESx output to maintain the stable summed current for LED. The TPS92623-Q1 always regulates the  
current output to the RESx pin as much as possible until the RESx current path is saturated, and the rest of  
required current is regulated out of the OUTx. As a result, the most of the current to LED outputs through the  
RESx pin when the voltage dropout is large between SUPPLY and LED required total forward voltage. In the  
opposite case, the most of the current to LED outputs through the OUTx pin when the voltage headroom is  
relative low between SUPPLY and LED required forward voltage.  
7.3.5 PWM Control (PWMx)  
The pulse width modulation (PWM) input of the TPS92623-Q1 functions as enable for the output current. When  
the voltage applied on the PWM pin is higher than VIH(PWM), the relevant output current is enabled. When the  
voltage applied on PWM pin is lower than VIL(PWM), the output current is disabled as well as the diagnostic  
features. Besides output current enable and disable function, the PWM input of TPS92623-Q1 also supports  
adjustment of the average current output for brightness control if the frequency of applied PWM signal is higher  
than 100 Hz, which is out of visible frequency range of human eyes. TI recommends a 200-Hz PWM signal with  
1% to 100% duty cycle input for brightness control. Please refer to 8-4 for typical PWM dimming application.  
The TPS92623-Q1 device has three PWM input pins: PWM1, PWM2, and PWM3 to control each of current  
output channel independently. PWM1 input controls the output channel1 for both OUT1 and RES1, PWM2 input  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
controls the output channel2 for both OUT2 and RES2, and PWM3 input controls the output channel3 for both  
OUT3 and RES3. 7-1 illustrates the timing for PWM input and current output.  
SUPPLY  
PWMx  
t1  
t2  
tt5t  
t3  
t4  
IOUTx  
7-1. Power On Sequence and PWM Dimming Timing  
The detailed information and value of each time period in 7-1 is described in Electrical Characteristics.  
7.3.6 Supply Control  
The TPS92623-Q1 can support supply control to turn ON and OFF output current. When the voltage applied on  
the SUPPLY pin is higher than the LED string forward voltage plus needed headroom voltage at required  
current, and the PWM pin voltage is high, the output current is turned ON and well regulated. However, if the  
voltage applied on the SUPPLY pin is lower than V(POR_falling), the output current is turned OFF. With this feature,  
the power supply voltage in designed pattern can control the output current ON and OFF. The brightness is  
adjustable if the ON and OFF frequency is fast enough. Because of the high accuracy design of PWM threshold  
in TPS92623-Q1, TI recommends a resistor divider on the PWM pin to set the SUPPLY threshold higher than  
LED forward voltage plus required headroom voltage as shown in 7-2. The headroom voltage is basically the  
summation of V(DROPOUT) and V(CS_REG). When the voltage on the PWM pin is higher than VIH(PWM), the output  
current is turned ON. However, when the voltage on the PWM is lower than VIL(PWM), the output current is turned  
OFF. The SUPPLY threshold voltage can be calculated by using 方程2.  
4.5 V to 40 V  
TPS92623-Q1  
R(RES1)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
R(SNS3)  
IN1  
C(SUPPLY)  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
R(RES2)  
IN2  
IN3  
R(RES3)  
DIAGEN  
PWM1  
PWM2  
PWM3  
R(UPPER)  
R(LOWER)  
FAULT  
*: 10 nF ceramic capacitor is recommended for each OUT to GND  
7-2. Application Schematic for Supply Control LED Brightness  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _PWM_ th _rising)  
IH(PWM)  
R(LOWER)  
(2)  
where  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS92623-Q1  
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
VIH(PWM) = 1.26 V (maximum)  
7.3.7 Diagnostics  
The TPS92623-Q1 device provides advanced diagnostics and fault-protection features for automotive exterior  
lighting systems. The device is able to detect and protect fault from LED-string short-to-GND, LED-string open-  
circuit and junction over-temperature scenarios. The device also supports a one-failsall-fail fault bus design  
that can flexibly fit different regulatory requirements.  
7.3.7.1 LED Short-to-GND Detection  
The TPS92623-Q1 device has LED short-to-GND detection. The LED short-to-GND detection monitors the  
output voltage when the output current is enabled. Once a short-to-GND LED failure is detected, the device turns  
off the faulty channel and retries automatically, regardless of the state of the PWM input. If the retry mechanism  
detects the removal of the LED short-to-GND fault, the device resumes to normal operation.  
The TPS92623-Q1 monitors both V(OUTx) voltage and V(RESx) voltage of each channel and compares it with the  
internal reference voltage to detect a short-to-GND failure. If V(OUTx) or V(RESx) voltage falls below V(SG_th_falling)  
longer than the deglitch time of t(SG_deg), the device asserts the short-to-GND fault and pulls low the FAULT pin.  
During the deglitching time period, if V(OUTx) and V(RESx) rises above V(SG_th_rising), the timer is reset.  
Once the TPS92623-Q1 has asserted a short-to-GND fault, the device turns off the faulty output channel and  
retries automatically with a small current. During retrying, the device sources a small current I(Retry) from  
SUPPLY to OUT and RES to pull up the LED loads continuously. After auto-retry detects output voltage rising  
above V(SG_th_rising), it clears the short-to-GND fault and resumes to normal operation. 7-3 illustrates the  
timing for LED short-circuit detection, protection, retry and recovery.  
SUPPLY  
PWMx  
Short  
Removed  
LED  
Short  
Short  
Removed  
VOUTx  
IOUTx  
LED  
Short  
tt7t  
tt7t  
tt7t  
I(retry)  
tt8t  
tt8t  
tt9t  
FAULT  
No external  
pullup  
7-3. LED Short-to-GND Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-3 is described in Electrical Characteristics.  
7.3.7.2 LED Open-Circuit Detection  
The TPS92623-Q1 device has LED open-circuit detection. The LED open-circuit detection monitors the output  
voltage when the current output is enabled. The LED open-circuit detection is only enabled when DIAGEN is  
HIGH. A short-to-battery fault is also detected and recognized as an LED open-circuit fault.  
The TPS92623-Q1 monitors dropout-voltage differences between the IN and OUT pins for each LED channel  
when PWM is HIGH. The voltage difference V(INx) V(OUTx) is compared with the internal reference voltage  
V(OPEN_th_rising) to detect an LED open-circuit incident. If V(OUTx) rises and causes V(INx) V(OUTx) less than the  
V(OPEN_th_rising) voltage longer than the deglitch time of t(OPEN_deg), the device asserts an open-circuit fault. After  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
a LED open-circuit failure is detected, the internal constant-current sink pulls down the FAULT pin voltage.  
During the deglitch time period, if V(OUTx) falls and makes V(INx) V(OUTx) larger than V(OPEN_th_falling), the  
deglitch timer is reset.  
The TPS92623-Q1 shuts down the output current regulation for the error channel after LED open-circuit fault is  
detected. The device sources a small current I(Retry) from SUPPLY to OUT and RES when DIAGEN input is logic  
High. After the fault condition is removed, the device resumes normal operation and releases the FAULT pin. 图  
7-4 illustrates the timing for LED open-circuit detection, protection, retry and recovery.  
SUPPLY  
PWMx  
Open  
Removed  
LED  
Open  
Open  
Removed  
VOUTx  
IOUTx  
LED  
Open  
tt6t  
tt6t  
tt6t  
I(retry)  
tt8t  
tt8t  
tt9t  
FAULT  
No external  
pullup  
7-4. LED Open-Circuit Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-4 is described in Electrical Characteristics.  
7.3.7.3 LED Open-Circuit Detection Enable (DIAGEN)  
The TPS92623-Q1 device supports the DIAGEN pin with an accurate threshold to disable the LED open-circuit.  
The DIAGEN pin can be used to enable or disable LED open-circuit detection based on SUPPLY pin voltage  
sensed by an external resistor divider as illustrated in 7-5. When the voltage applied on DIAGEN pin is higher  
than the threshold VIH(DIAGEN), the device enables LED open-circuit detection. When V(DIAGEN) is lower than the  
threshold VIL(DIAGEN), the device disables LED open-circuit detection.  
Only LED open-circuit detection can be disabled by pulling down the DIAGEN pin. The LED short-to-GND  
detection and overtemperature protection cannot be turned off by pulling down the DIAGEN pin. The SUPPLY  
threshold voltage can be calculated by using 方程3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
4.5 V to 40 V  
TPS92623-Q1  
R(RES1)  
R(RES2)  
R(RES3)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
R(SNS3)  
IN1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
C(SUPPLY)  
IN2  
IN3  
R(UPPER)  
DIAGEN  
PWM1  
PWM2  
PWM3  
R(LOWER)  
FAULT  
*: 10 nF ceramic capacitor is recommended for each OUT  
7-5. Application Schematic For DIAGEN  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _DIAGEN_ th _ falling)  
IL(DIAGEN)  
R(LOWER)  
(3)  
where  
VIL(DIAGEN) = 1.045 V (minimum)  
7.3.7.4 Overtemperature Protection  
The TPS92623-Q1 device monitors device junction temperature. When the junction temperature reaches  
thermal shutdown threshold T(TSD), the output shuts down. After the junction temperature falls below T(TSD)  
T(TSD_HYS), the device recovers to normal operation. During overtemperature protection, the FAULT pin is pulled  
low.  
7.3.7.5 Low Dropout Operation  
When the supply voltage drops below LED string total forward voltage plus headroom voltage at required  
current, the TPS92623-Q1 device operates in low-dropout conditions to deliver current output as close as  
possible to target value. The actual current output is less than preset value due to insufficient headroom voltage  
for power transistor. As a result, the voltage across the sense resistor fails to reach the regulation target. The  
headroom voltage is the summation of V(DROPOUT) and V(CS_REG)  
.
If the TPS92623-Q1 is designed to operate in low-dropout condition, the open-circuit diagnostics must be  
disabled by pulling the DIAGEN pin voltage lower than VIL(DIAGEN). Otherwise, the TPS92623-Q1 detects an  
open-circuit fault and reports a fault on the FAULT pin. The DIAGEN pin is used to avoid false diagnostics due to  
low supply voltage.  
7.3.8 FAULT Bus Output with One-Fails-All-Fail  
During normal operation, The FAULT pin of TPS92623-Q1 is weakly pulled up by an internal pullup current  
source, I(FAULT_pullup). If any fault scenario occurs, the FAULT pin is strongly pulled low by the internal pulldown  
current sink, I(FAULT_pulldown) to report out the fault alarm.  
Meanwhile, the TPS92623-Q1 also monitors the FAULT pin voltage internally. If the FAULT pin of the TPS92623-  
Q1 is pulled low by external current sink below VIL(FAULT), the current output is turned off even though there is no  
fault detected on owned outputs. The device does not resume to normal operation until the FAULT pin voltage  
rises above VIH(FAULT)  
.
Based on this feature, the TPS92623-Q1 device is able to construct a FAULT bus by tying FAULT pins from  
multiple TPS92623-Q1 devices to achieve one-fails-all-fail function as 7-6 showing. The lower side  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
TPS92623-Q1 (B) detects any kind of LED fault and pulls low the FAULT pin. The low voltage on FAULT pin is  
detected by upper side TPS92623-Q1 (A) because the FAULT pins are connected of two devices. The upper  
side TPS92623-Q1 (A) turns off all output current for each channel as a result. If the FAULT pins of each  
TPS92623-Q1 are all connected to drive the base of an external PNP transistor as illustrated in 7-7, the one-  
failsall-fail function is disabled and only the faulty channel device is turned off.  
TPS92623-Q1  
A
TPS92623-Q1  
A
VCC  
VCC  
VSUPPLY  
VSUPPLY  
10 k  
20 kΩ  
20 k  
FAULT  
FAULT  
10 kΩ  
Logic  
Logic  
10 kΩ  
TPS92623-Q1  
B
VCC  
TPS92623-Q1  
B
VCC  
FAULT  
FAULT  
Logic  
Logic  
7-7. FAULT Bus for One-Fails-Others-On  
7-6. FAULT Bus for One-Fails-All-Fail  
Application  
Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.9 FAULT Table  
7-1. Fault Table With DIAGEN = HIGH (Full Function)  
FAULT BUS  
STATUS  
DETECTION CONTROL DEGLITCH  
MECHANISM INPUT TIME  
FAULT HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
Constant-  
current  
pulldown  
Open-circuit or  
short-to-supply  
V
(IN) V(OUT) <  
PWMx = H t(OPEN_deg)  
Auto recovery  
V(OPEN_th_rising)  
V(OUT)  
V(SG_th_falling)  
OR  
V(RES)  
V(SG_th_falling)  
<
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
FAULT = H  
Constant-  
current  
pulldown  
Short-to-ground  
PWMx = H t(SG_deg)  
Auto recovery  
Auto recovery  
<
Constant-  
current  
pulldown  
Device turns all output  
channels off.  
Overtemperature TJ > T(TSD)  
t(TSD_deg)  
Device turns all remained channels off and keeps retry on the failed channels. After the Fault pin is  
released, all channels are turned on after t(FAULT_recovery) time.  
Fault is detected  
FAULT = L  
No fault is  
detected  
Device turns all output channels off.  
7-2. Fault Table With DIAGEN = LOW (Full Function)  
FAULT BUS  
STATUS  
DETECTION CURRENT DEGLITCH  
MECHANISM OUTPUT TIME  
FAULT HANDLING  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
ROUTINE  
Open-circuit or  
short-to-supply  
Ignored  
V(OUT)  
V(SG_th_falling)  
OR  
V(OUT)  
V(SG_th_falling)  
<
Device turns output off  
and retries with constant  
current I(retry), ignoring  
the PWM input.  
Constant-  
current  
pulldown  
Short-to-ground  
PWMx = H t(SG_deg)  
Auto recovery  
Auto recovery  
FAULT = H  
<
Constant-  
current  
pulldown  
Device turns all output  
channels off.  
Overtemperature TJ > T(TSD)  
t(TSD_deg)  
Device turns all remained channels off and keeps retry on the failed channels. After the Fault pin is  
released, all channels are turned on after t(FAULT_recovery) time.  
Fault is detected  
FAULT = L  
No fault is  
detected  
Device turns all output channels off.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.10 LED Fault Summary  
7-3. LED Connection Fault Summary  
Case 1  
Case 2  
Case 3  
Case 4  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
Case 5  
Case 6  
Case 7  
Case 8  
LED Open Fault  
No Fault  
LED Open Fault  
LED Open Fault  
Case 9  
Case 10  
Case 11  
Case 12  
No Fault  
No Fault  
LED Open Fault  
No Fault  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3.11 IO Pins Inner Connection  
SUPPLY  
SUPPLY  
PWMx  
DIAGEN  
GND  
GND  
7-8. PWMx Pins  
7-9. DIAGEN Pin  
SUPPLY  
INx  
FAULT  
OUTx  
GND  
GND  
7-10. FAULT Pin  
7-11. OUTx Pins  
INx  
SUPPLY  
RESx  
INx  
GND  
OUTx  
7-12. RESx Pins  
7-13. INx Pins  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)  
When the device is in undervoltage lockout status, the TPS92623-Q1 device disables all functions until the  
supply rises above the V(POR_rising) threshold.  
7.4.2 Normal Operation V(SUPPLY) 4.5 V  
The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the  
device is able to drive the output in constant-current mode.  
7.4.3 Low-Voltage Dropout Operation  
When the device drives an LED string in low-dropout operation, if the V(DROPOUT) is less than the open-circuit  
detection threshold, the device can report a false open-circuit fault. TI recommends only enabling the open-  
circuit detection when the voltage across the IN and OUTx is higher than the maximum voltage of LED open  
rising threshold to avoid a false open-circuit detection.  
7.4.4 Fault Mode  
When the TPS92623-Q1 detects a fault, the device tries to pull down the FAULT pin with a constant current. If  
the FAULT bus is pulled down, the device switches to fault mode and consumes a fault current of I(FAULT)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for  
linear LED drivers.  
The TPS92623-Q1 device is capable of detecting LED open-circuit and LED short-circuits. To increase current  
driving capability, the TPS92623-Q1 device supports using an external shunt resistor to help dissipate heat as  
the following section, Thermal Sharing Resistor (OUTx and RESx), describes. This method provides a low-cost  
solution of using external resistors to minimize thermal accumulation on the device itself due to large voltage  
difference between input voltage and LED string forward voltage, while still keeping high accuracy of the total  
current output.  
8.2 Typical Applications  
8.2.1 BCM Controlled Rear Lamp With One-Fails-All-Fail Setup  
The multiple TPS92623-Q1 devices are capable of driving different functions for automotive rear lamp including  
stop, turn indicator, tail, fog, reverse and center-high-mounted-stop-lamp. The one-fails-all-fail single lamp mode  
can be easily achieved by FAULT bus by shorting the FAULT pins.  
BCM_STOP  
TPS92623-Q1  
10 nF  
10 nF  
10 nF  
R(RES1)  
R(RES2)  
R(RES3)  
C(SUPPLY)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
R(SNS3)  
IN1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
IN2  
IN3  
R1  
R2  
DIAGEN  
PWM1  
PWM2  
PWM3  
V(SUPPLY)  
20 k  
R3  
R4  
FAULT  
8-1. Typical Application Schematic  
8.2.1.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 9 strings with 3 LEDs in each string are required to achieve  
stop function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, while the minimum forward  
voltage, VF_MIN is 1.9 V. The current requirement for each LED, I(LED) is 130 mA. The LED brightness and ON  
and OFF control is manipulated by body control module (BCM) directly by connecting and disconnecting the  
power supply to the LED load.  
8.2.1.2 Detailed Design Procedure  
Step 1: Determine the current sensing resistor, R(SNSx), by using 方程4.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
V
(CS _REG)  
R(SNSx)  
=
I(OUTx _ Tot)  
(4)  
where  
V(CS_REG) = 150 mV (typical)  
I(OUTx_Tot) = 130 mA  
According to design requirements, output current for each channel is same so that the R(SNS1) = R(SNS2)  
(SNS3) = 1.15 Ω. Two resistors in parallel can be used to achieve equivalent resistance when sense resistor is  
not a standard decade resistance value.  
=
R
Step 2: Design the current distribution between I(OUTx) and I(RESx), and calculate the current sharing resistor,  
R(RESx), by using 方程式 5. The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path. TI recommends the current sharing resistor R(RESx) to consume 50% of the total current at typical supply  
operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(5)  
where  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 130 mA  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) and R(RES3) is 85.4 Ω when V(OUTx) is  
typical 3 × 2.15 V = 6.45 V.  
Step 3: Design the threshold voltage of SUPPLY to enable the LED open-circuit diagnostics, and calculate  
voltage divider resistor value for R1 and R2 on DIAGEN pin.  
The maximum forward voltage of LED-string is 3 × 2.5 V = 7.5 V. To avoid the open-circuit fault reported in low-  
dropout operation conditions, additional headroom between SUPPLY and OUTx must be considered.  
TheTPS92623-Q1 device must disable open-circuit detection when the supply voltage is below LED-string  
maximum forward voltage plus V(OPEN_th_rising) and V(CS_REG). The voltage divider resistor, R1 and R2 value can  
be calculated by 方程6.  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(6)  
where  
V(OPEN_th_rising) = 420 mV (maximum)  
V(CS_REG) = 156 mV  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
The calculated result for R1 is 67.3 kΩwhen V(OUTx) maximum voltage is 7.5 V and V(CS_REG) is 156 mV.  
Step 4: Design the threshold voltage of SUPPLY to turn on and off each channel of LED, and calculate voltage  
divider resistor value for R3 and R4 on PWM input pin.  
The minimum forward voltage of LED string is 3 × 1.9 V = 5.7 V. To make sure the current output on each of  
LED-string is normal, each LED-string must be turned off when SUPPLY voltage is lower than LED minimum  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS92623-Q1  
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
required forward voltage plus dropout voltage between INx to OUTx and V(CS_REG). The voltage divider resistor,  
R3 and R4 value can be calculated by 方程7.  
÷
V
+ V  
+ V  
(DROPOUT)  
(CS _REG) (OUTx)  
R =  
-1 ìR  
«
÷
3
4
V
IH(PWM)  
(7)  
where  
V(DROPOUT) = 300 mV (typical)  
V(CS_REG) = 156 mV (maximum)  
VIH(PWM) = 1.26 V (maximum)  
R4 = 10 kΩ(recommended)  
The calculated result for R3 is 38.9 kΩwhen V(OUTx) minimum voltage is 5.7 V and V(CS_REG) is 156 mV.  
8.2.1.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
8-3. 200-Hz Supply Dimming 80% Brightness  
8-2. 200-Hz Supply Dimming 20% Brightness  
8.2.2 Independent PWM Controlled Rear Lamp By MCU  
The TPS92623-Q1 device is able to drive the each current output channel independently by PWM input at  
PWM1, PWM2 and PWM3 pins. The PWM input signals comes from MCU to achieve sequential turn indicator  
feature.  
BCM_TURN  
TPS92623-Q1  
10 nF  
10 nF  
10 nF  
R(RES1)  
R(RES2)  
R(RES3)  
C(SUPPLY)  
SUPPLY  
RES1  
R(SNS1)  
R(SNS2)  
R(SNS3)  
IN1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
IN2  
R1  
R2  
IN3  
DIAGEN  
PWM1  
PWM2  
PWM3  
VCC  
20 k  
GPIO  
GPIO  
GPIO  
GPIO  
FAULT  
MCU  
8-4. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.2.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 6 strings with 2 LEDs in each string are required to achieve  
turn indicator function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, however the minimum  
forward voltage, VF_MIN is 1.9 V. Each LED current is 130 mA and each output channel is independent controlled  
by MCU through individual GPIO.  
8.2.2.2 Detailed Design Procedure  
Step 1: Determine the current sensing resistor, R(SNSx) by using 方程8.  
V
(CS _REG)  
R(SNSx)  
=
I(OUTx _ Tot)  
(8)  
where  
V(CS_REG) = 150 mV (typical)  
I(OUTx_Tot) = 130 mA  
According to design requirements, output current for each channel is same so that the calculated R(SNS1)  
=
R(SNS2) = R(SNS3)= 1.15 Ω.  
Step 2: Design the current distribution between I(OUTx) and I(RESx), and calculate the current sharing resistor,  
R(RESx), by using 方程式 9. The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path, basic principle is to design the R(RESx) to consume appropriate 50% total power dissipation at typical  
supply operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(9)  
where  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 130 mA (maximum)  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) and R(RES3) is 117 Ω when V(OUTx) is  
typical 2 × 2.2 V = 4.4 V.  
Step 3: Design the threshold voltage of SUPPLY to enable the LED open-circuit, and calculate voltage divider  
resistor value for R1 and R2 on DIAGEN pin.  
The maximum forward voltage of LED-string is 2 × 2.5 V = 5 V. To avoid the open-circuit fault reported in low-  
dropout operation conditions, additional headroom between SUPPLY and OUTx must be considered.  
TheTPS92623-Q1 device must disable open-circuit detection when the supply voltage is below LED-string  
maximum forward voltage plus V(OPEN_th_rising) and V(CS_REG). The voltage divider resistor, R1 and R2 value can  
be calculated by 方程10.  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(10)  
where  
V(OPEN_th_rising) = 420 mV (maximum)  
V(CS_REG) = 156 mV (maximum)  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS92623-Q1  
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
The calculated result for R1 is 43.4 kΩwhen V(OUTx) maximum voltage is 5 V and V(CS_REG) is 156 mV.  
8.2.2.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(DIAGEN)  
Ch5 = I(OUT_Tot)  
Ch3 = V(PWM1)  
8-5. 200-Hz PWM Dimming at 80% Duty Cycle  
8-6. 600-Hz PWM Dimming at 20% Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS92623-Q1 is designed to operate from an automobile electrical power system within the range specified  
in Power Supply. The V(SUPPLY) input must be protected from reverse voltage and voltage dump condition over  
40 V. The impedance of the input supply rail must be low enough that the input current transient does not cause  
drop below LED string required forward voltage. If the input supply is connected with long wires, additional bulk  
capacitance can be required in addition to normal input capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS92623-Q1  
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92623-Q1 layout.  
TI recommends large thermal dissipation area in both top and bottom layers of PCB. The copper pouring  
area in same layer with TPS92623-Q1 footprint must directly cover the thermal pad land of the device with  
wide connection as much as possible. The copper pouring in opposite PCB layer or inner layers must be  
connected to thermal pad directly through multiple thermal vias.  
TI recommends to place R(RESx) resistors away from the TPS92623-Q1 device with more than 20-mm  
distance, because R(RESx) resistors are dissipating some amount of the power as well as the TPS92623-Q1.  
Place two heat source components apart to reduce the thermal accumulation concentrated at small PCB  
area. The large copper pouring area is also required surrounding the R(RESx) resistors for helping thermal  
dissipating.  
The noise immunity is the secondary consideration for TPS92623-Q1 layout.  
TI recommends to place the noise decoupling capacitors for SUPPLY pin as close as possible to the pins.  
TI recommends to place the R(SNSx) resistor as close as possible to the INx pins with the shortest PCB track  
to SUPPLY pin.  
10.2 Layout Example  
GND  
GND  
R(RES1)  
LED String1  
C(SUPPLY)  
GND  
SUPPLY  
IN1  
RES1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
R(RNS1)  
R(RNS2)  
R(RNS3)  
IN2  
R(RES2)  
LED String2  
IN3  
DIAGEN  
PWM1  
PWM2  
PWM3  
DIAGEN  
PWM1  
PWM2  
PWM3  
FAULT  
GND  
C(OUT3)  
R(RES3)  
LED String3  
GND  
GND  
10-1. TPS92623-Q1 Example Layout Diagram  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS92623-Q1  
 
 
 
 
 
 
TPS92623-Q1  
ZHCSLI9A DECEMBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS92623-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92623QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
92623Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92623QPWPRQ1 HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TPS92623QPWPRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
6.6  
6.2  
C
TYP  
A
PIN 1 INDEX  
AREA  
0.1 C  
SEATING  
PLANE  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
B
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
4X (0.3)  
8
9
2X 0.23 MAX  
NOTE 5  
2.31  
1.75  
17  
0.25  
GAGE PLANE  
1.2 MAX  
0.15  
0.05  
0.75  
0.50  
0 -8  
16  
1
A
20  
DETAIL A  
TYPICAL  
THERMAL  
PAD  
2.46  
1.75  
4224559/B 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.46)  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
1
16X (0.45)  
16  
(1.2) TYP  
(2.31)  
(R0.05) TYP  
SYMM  
17  
(5)  
NOTE 9  
(0.6)  
14X (0.65)  
(
0.2) TYP  
VIA  
9
8
SOLDER MASK  
DEFINED PAD  
(1) TYP  
SEE DETAILS  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224559/B 01/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.46)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
16  
16X (0.45)  
(R0.05) TYP  
SYMM  
(2.31)  
17  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.75 X 2.58  
2.46 X 2.31 (SHOWN)  
2.25 X 2.11  
0.125  
0.15  
0.175  
2.08 X 1.95  
4224559/B 01/2019  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92624-Q1

具有热共享功能的汽车类四通道高侧 LED 驱动器
TI

TPS92624QPWPRQ1

具有热共享功能的汽车类四通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92629-Q1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器
TI

TPS92629QDGNRQ1

具有热共享功能的汽车类单通道高电流 40V 高侧 LED 驱动器 | DGN | 8 | -40 to 125
TI

TPS92630-Q1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器
TI

TPS92630QPWPRQ1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92631QPWPRQ1

IC LED DISPLAY DRIVER, Display Driver
TI

TPS92633

具有热共享和非板载分级功能的三通道高侧 LED 驱动器
TI

TPS92633-Q1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器
TI

TPS92633MPWPR

具有热共享和非板载分级功能的三通道高侧 LED 驱动器 | PWP | 20 | -55 to 125
TI

TPS92633QPWPRQ1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92638-Q1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器
TI