TPSM84424MOLR [TI]

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、4A 电源模块 | MOL | 24 | -40 to 105;
TPSM84424MOLR
型号: TPSM84424MOLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、4A 电源模块 | MOL | 24 | -40 to 105

开关 输出元件 电源电路
文件: 总34页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
TPSM84424 4.5V 17V 输入、0.6V 10V 输出、4A 电源模块  
1 特性  
3 说明  
1
集成电感器电源解决方案  
TPSM84424 电源模块是一款易于使用的集成式电源,  
它在一个小型 QFM 封装内整合了一个带有功率  
MOSFET 4A 直流/直流转换器、一个屏蔽式电感器  
和多个无源器件。该电源解决方案仅使用了 6 个外部  
组件,同时仍能够调整关键参数以满足特定的设计要  
求。通过使用 TurboTrans™功能可实现超快速瞬态响  
应。TurboTrans 允许对瞬态响应进行优化,以减少输  
出电压偏离,并降低所需的输出电容。  
7.5mm × 7.5mm × 5.3mm QFM 封装  
所有引脚均分布在封装外围  
输入电压范围:4.5V 17V  
宽输出电压范围:0.6V 10V  
效率高达 96%  
可调节固定开关频率  
200kHz 1.6MHz)  
支持与外部时钟同步  
7.5mm × 7.5mm × 5.3mm24 引脚 QFM 封装易于焊  
接到印刷电路板上,并且具有出色的功率耗散能力。  
TPSM84424 极具灵活性且具有很多 特性, 包括正常  
电源、可编程 UVLO、跟踪、预偏置启动以及过流和  
过热保护,从而使其成为向各种器件和系统供电的理想  
之选。  
超快速负载阶跃响应 (TurboTrans™)  
电源正常输出  
符合 EN55011 B 类辐射发射限制  
工作环境温度范围:-40°C +105°C  
工作 IC 结温范围:-40°C +150°C  
使用 TPSM84424 并借助 WEBENCH® Power  
Designer 创建定制设计方案  
器件信息(1)  
器件型号  
TPSM84424  
封装  
QFM (24)  
封装尺寸(标称值)  
2 应用  
7.50mm × 7.50mm  
电信和无线基础设施  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
工业自动化测试设备  
企业交换和存储 应用  
高密度分布式电源系统  
空白  
空白  
空白  
空白  
简化原理图  
瞬态响应  
PGOOD  
VOUT  
VIN  
VIN  
VOUT  
RT/CLK  
EN  
CIN  
TPSM84424  
RRT  
RFBT  
COUT  
FB  
TT  
RTT  
AGND  
PGND  
RFBB  
Copyright © 2018, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSEJ2  
 
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics (VIN = 12 V).......................... 8  
6.8 Typical Characteristics (VIN = 5 V)............................ 9  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 20  
8
9
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Examples................................................... 24  
10.3 EMI........................................................................ 25  
10.4 Package Specifications......................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持 ............................................................... 27  
11.2 开发支持................................................................ 27  
11.3 接收文档更新通知 ................................................. 27  
11.4 社区资源................................................................ 27  
11.5 ....................................................................... 27  
11.6 静电放电警告......................................................... 27  
11.7 术语表 ................................................................... 27  
12 机械、封装和可订购信息....................................... 28  
12.1 Tape and Reel Information ................................... 28  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2018) to Revision A  
Page  
已添加 inductor value to the block diagram ......................................................................................................................... 10  
已更改 VOUT Range vs Switching Frequency table .............................................................................................................. 12  
已添加 270 µF capacitor to the Allowable Polymer Capacitor table .................................................................................... 15  
已添加 EMI section .............................................................................................................................................................. 25  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
5 Pin Configuration and Functions  
MOL Package  
24-Pin QFM  
Top View  
24  
23  
22  
21  
1
20  
PGND  
VOUT  
19  
18  
PGND  
PGND  
FB  
AGND  
DNC  
2
3
4
5
6
7
17  
16  
15  
14  
SW  
TT  
SW  
SS/TR  
PGOOD  
PGND  
PGND  
PGND  
8
VOUT  
13  
12  
10  
11  
9
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Analog ground. Zero voltage reference for internal references and logic. These pins should be  
connected to one another externally using an analog ground plane on the PCB. Do not connect  
this pin to PGND; the connection is made internal to the device.  
AGND  
3, 9, 23  
G
Do Not Connect. Do not connect this pin to AGND, PGND, or to any other voltage. This pin is  
connected to internal circuitry.  
DNC  
4
Enable. Float or pull high to enable the device. Connect a resistor divider to this pin to implement  
adjustable undervoltage lockout and hysteresis.  
EN  
FB  
10  
2
I
I
Feedback input of the regulator. Connect the output voltage feedback resistor divider to this pin.  
Power ground. This is the return current path for the power stage of the device. Connect these  
pins to the input source, the load, and to the bypass capacitors associated with VIN and VOUT  
using power ground planes on the PCB. Connect pads 12 and 21 to the ground planes using  
multiple vias for improved thermal performance.  
12, 13, 14,  
15, 18, 19,  
20, 21  
PGND  
G
O
Power-good flag. This open drain output asserts low if the output voltage is outside of the PGOOD  
thresholds, VIN is lower than its UVLO threshold, EN is low, device is in thermal shutdown or  
device is in soft-start. Use a 10-kΩ to 100-kΩ pullup resistor to logic rail or other DC voltage no  
higher than 6.5 V.  
PGOOD  
7
Switching frequency setting pin. In RT mode, an external timing resistor adjusts the switching  
frequency. In CLK mode, the device synchronizes to an external clock input to this pin.  
RT/CLK  
SS/TR  
24  
6
I
I
Soft start and tracking pin. Connecting an external capacitor to this pin adjusts the output voltage  
soft-start ramp slower than its 1.25-ms default setting. A voltage applied to this pin allows for  
tracking and sequencing control.  
(1) G = Ground, I = Input, O = Output  
Copyright © 2018, Texas Instruments Incorporated  
3
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Switch node. Do not place any external components on these pins or tie them to a pin of another  
function.  
SW  
16, 17  
O
I
TurboTrans pin. Internal loop compensation network. Connect the required TurboTrans resistor  
between this pin and AGND. See TurboTrans (TT) for the value of the resistor. Do not leave this  
pin floating.  
TT  
5
Input voltage. Supplies voltage to the power switches of the converter and all of the internal  
circuitry. Connect these pins to the input source and connect external input capacitors between  
these pins and PGND, close to the device. Connect these pins to internal VIN layers using multiple  
vias for improved thermal performance.  
VIN  
11, 22  
I
Output voltage. These pins are connected to the internal output inductor. Connect these pins to  
the output load and connect external output capacitors between these pins and PGND, close to  
the device. Connect these pins to internal VOUT layers using multiple vias for improved thermal  
performance.  
VOUT  
1, 8  
O
4
Copyright © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–1  
MAX  
19  
UNIT  
V
VIN  
Input voltage  
EN, PGOOD, SS/TRK, RT/CLK, FB  
6.5  
V
AGND to PGND  
0.3  
V
SW  
VIN + 1  
VIN + 3  
VIN  
V
Output voltage  
SW (< 10-ns transients)  
–3  
V
VOUT  
–0.3  
V
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
500  
G
Mechanical vibration  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
10  
G
(2)  
Operating IC junction temperature, TJ  
–40  
–40  
–40  
150  
°C  
°C  
°C  
(2)  
Operating ambient temperature, TA  
Storage temperature, Tstg  
105  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extendedperiods may affect device reliability.  
(2) The ambient temperature is the air temperature of the surroundingenvironment. The junction temperature is the temperature of the  
internal power IC when the deviceis powered. Operating below the maximum ambient temperature, as shown in the safe  
operatingarea(SOA) curves in the typical characteristics sections, ensures that the maximum junctiontemperature of any component  
inside the module is never exceeded.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1250  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
MAX  
17  
UNIT  
V
Input voltage, VIN  
4.5(1)  
0.6  
0
Output voltage, VOUT  
10  
V
EN voltage, VEN  
5.5  
5.5  
1
V
PGOOD pullup voltage, VPGOOD  
PGOOD sink current, IPGOOD  
RT/CLK voltage range, VCLK  
Output current, IOUT  
V
mA  
V
0
0
5.5  
4
A
Operating ambient temperature, TA  
–40  
105  
°C  
(1) For output voltages 0.6 V to < 5.5 V, the recommended minimum VIN is 4.5 V or (VOUT + 1 V), whichever is greater. For output  
voltages 5.5 V to < 9 V, the recommended minimum VIN is (VOUT + 2 V). For output voltages 9 V to 10 V, the recommended minimum  
VIN is (VOUT + 3 V).  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
6.4 Thermal Information  
TPSM84424  
MOL (QFN)  
24 PINS  
22  
THERMAL METRIC(1)  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance(2)  
Junction-to-top characterization parameter(3)  
Junction-to-board characterization parameter(4)  
°C/W  
°C/W  
°C/W  
2.1  
ψJB  
13.6  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 100 mm × 100 mm, 4-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Over –40°C to +105°C ambient temperature, VIN = 12 V, VOUT = 1.2 V, IOUT = IOUTmax, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2× 10-µF, 25-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4× 47-µF, 10-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
4.5(1)  
3.7  
TYP  
MAX UNIT  
INPUT VOLTAGE (VIN  
)
VIN  
Input voltage  
Over IOUT range  
VIN increasing  
VIN decreasing  
VEN = 0 V  
17  
V
V
4.1  
3.9  
3
4.3  
UVLO  
ISHDN  
VIN undervoltage lockout  
Shutdown supply current  
V
11  
10  
µA  
OUTPUT VOLTAGE (VOUT  
)
VOUT(ADJ) Output voltage adjust  
Over IOUT range  
0.6  
V
VOUT(Ripple) Output voltage ripple  
20-MHz bandwidth  
16  
mV  
FEEDBACK  
TA = 25°C, IOUT = 0 A  
0.596  
0.595  
0.6  
0.6  
0.1  
0.8  
0.604  
0.605  
V
V
Feedback voltage(2)  
–40°C TJ 125°C, IOUT = 0 A  
Over VIN range, TA = 25°C, IOUT = 0 A  
Over IOUT range, TA = 25°C  
VFB  
Line regulation  
mV  
mV  
Load regulation  
CURRENT  
Output current  
IOUT  
Natural convection, TA = 25°C  
0
4
A
A
Overcurrent threshold  
11  
PERFORMANCE  
VOUT = 5 V, fSW = 1.2 MHz  
VOUT = 3.3 V, fSW = 1.0 MHz  
94%  
93%  
91%  
87%  
86%  
VIN = 12 V,  
IOUT = 4 A  
ƞ
Efficiency  
VOUT = 1.8 V, fSW = 600 kHz  
VOUT = 1.2 V, fSW = 450 kHz  
VOUT = 1 V, fSW = 400 kHz  
25% to 75% load step, 2A/µs slew rate,  
RTT = 4.02 kΩ,  
COUT = 200-µF ceramic + 220-µF polymer  
27  
35  
mV  
mV  
Transient response  
voltage deviation  
25% to 75% load step, 2A/µs slew rate,  
RTT = 3.40 kΩ, COUT = 200-µF ceramic  
(1) For output voltages 0.6 V to < 5.5 V, the recommended minimum VIN is 4.5 V or (VOUT + 1 V), whichever is greater. For output  
voltages 5.5 V to < 9 V, the recommended minimum VIN is (VOUT + 2 V). For output voltages 9 V to 10 V, the recommended minimum  
VIN is (VOUT + 3 V).  
(2) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
6
Copyright © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
Electrical Characteristics (continued)  
Over –40°C to +105°C ambient temperature, VIN = 12 V, VOUT = 1.2 V, IOUT = IOUTmax, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2× 10-µF, 25-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4× 47-µF, 10-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SOFT START  
tSS  
Internal soft start time  
1.25  
5
ms  
µA  
ISS  
Soft start charge current  
THERMAL  
Shutdown temperature  
170  
15  
°C  
°C  
TSHDN  
Thermal shutdown  
Hysteresis  
ENABLE (EN)  
VEN-H  
EN rising threshold  
1.2  
1.15  
1.2  
1.26  
V
V
VEN-HYS  
EN falling threshold  
1.1  
VEN = 1.1 V  
VEN = 1.3 V  
µA  
µA  
IEN  
EN pin sourcing current  
3.6  
POWER GOOD (PGOOD)  
VOUT rising (fault)  
VOUT falling (good)  
108%  
106%  
91%  
89%  
0.7  
VPGOOD  
PGOOD thresholds  
VOUT rising (good)  
VOUT falling (fault)  
Minimum VIN for valid PGOOD VPGOOD < 0.5 V, IPGOOD = 2 mA  
1
V
V
PGOOD low voltage  
CAPACITANCE  
2-mA pullup, VEN = 0 V  
0.3  
Ceramic type  
20(3)  
µF  
µF  
µF  
CIN  
External input capacitance  
External output capacitance  
Non-ceramic type  
100(3)  
COUT  
min(4)  
1500(5)  
(3) A minimum of 20-µF ceramic input capacitance is required for proper operation. An additional 100 µF of bulk capacitance is  
recommended for applications with transient load requirements. See the Input Capacitor section for further guidance.  
(4) The minimum amount of required output capacitance varies depending on the output voltage (see Standard Component Values Table).  
A minimum amount of ceramic output capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or  
non-ceramic capacitance close to the load improves the response of the regulator to load transients.  
(5) The maximum output capacitance can be made up of all ceramic type or a combination of ceramic and a single non-ceramic type. See  
the Low-ESR Output Capacitors Section for requirements of non-ceramic output capacitors.  
6.6 Switching Characteristics  
Over operating ambient temperature range (unless otherwise noted)  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm, and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SW  
tON_MIN  
tOFF_MIN  
Minimum on-time  
Minimum off-time  
140  
100  
ns  
ns  
FREQUENCY (RT) and SYNCHRONIZATION (EN/SYNC)  
Default switching frequency  
RT pin = 110 kΩ  
400  
200  
2
450  
500  
kHz  
kHz  
V
fSW  
Switching frequency range  
1600  
VCLK-H  
VCLK-L  
Logic high input voltage  
Logic low input voltage  
Minimum CLK pulse width  
0.8  
V
TCLK-MIN  
35  
ns  
Copyright © 2018, Texas Instruments Incorporated  
7
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 12 V)  
TA = 25°C, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
2.5  
2
VOUT, FSW  
9.0 V, 1.3 MHz  
7.5 V, 1.3 MHz  
5.0 V, 1.3 MHz  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 400 kHz  
1.0 V, 350 kHz  
0.8 V, 300 kHz  
1.5  
1
VOUT, FSW  
65  
60  
55  
50  
45  
40  
9.0 V, 1.3 MHz  
7.5 V, 1.3 MHz  
5.0 V, 1.3 MHz  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 400 kHz  
1.0 V, 350 kHz  
0.8 V, 300 kHz  
0.5  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D001  
D002  
1. Efficiency vs Output Current  
2. Power Dissipation vs Output Current  
35  
30  
25  
20  
15  
10  
5
115  
105  
95  
VOUT, FSW  
9.0 V, 1.3 MHz  
7.5 V, 1.3 MHz  
5.0 V, 1.3 MHz  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 400 kHz  
1.0 V, 350 kHz  
0.8 V, 300 kHz  
85  
75  
65  
55  
45  
Airflow  
Nat Conv  
35  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D003  
D004  
COUT = 200 µF ceramic  
3. Ripple Voltage vs Output Current  
VOUT 3.0 V  
4. Safe Operating Area  
115  
105  
95  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
85  
75  
65  
55  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
45  
Airflow  
100LFM  
Nat Conv  
35  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D005  
D006  
VOUT = 3.3 V  
fSW = 1 MHz  
VOUT = 5 V  
fSW = 1.2 MHz  
5. Safe Operating Area  
6. Safe Operating Area  
8
版权 © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
6.8 Typical Characteristics (VIN = 5 V)  
TA = 25°C, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
1
0.8  
0.6  
0.4  
0.2  
0
VOUT, FSW  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 450 kHz  
1.0 V, 400 kHz  
0.8 V, 300 kHz  
60  
55  
50  
45  
40  
VOUT, FSW  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 450 kHz  
1.0 V, 400 kHz  
0.8 V, 300 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D007  
D008  
7. Efficiency vs Output Current  
8. Power Dissipation vs Output Current  
35  
30  
25  
20  
15  
10  
5
115  
105  
95  
VOUT, FSW  
3.3 V, 1.0 MHz  
2.5 V, 800 kHz  
1.8 V, 600 kHz  
1.2 V, 450 kHz  
1.0 V, 400 kHz  
0.8 V, 300 kHz  
85  
75  
65  
55  
45  
Airflow  
35  
Nat Conv  
25  
0.0  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D009  
D010  
COUT = 200 µF ceramic  
9. Ripple Voltage vs Output Current  
All VOUT  
10. Safe Operating Area  
版权 © 2018, Texas Instruments Incorporated  
9
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM84424 is a full-featured 4.5-V to 17-V input, 4-A, synchronous step-down converter with PWM,  
MOSFETs, inductor, and control circuitry integrated into a low-profile package. The device integration enables  
small designs, while still leaving the ability to adjust key parameters to meet specific design requirements. The  
TPSM84424 provides an output voltage range of 0.6 V to 10 V. An external resistor divider is used to adjust the  
output voltage to the desired output. The switching frequency is also adjustable by using an external resistor or a  
synchronization clock to accommodate various input and output voltage conditions and to optimize efficiency.  
The TPSM84424 includes the TurboTrans feature which optimizes the transient response of the converter while  
simultaneously reducing the quantity of external output capacitors required to meet a target voltage deviation  
specification.  
The TPSM84424 has been designed for safe start-up into pre-biased loads. The default start up is when VIN is  
typically 4.1 V. The EN pin has an internal pullup current source that can be used to adjust the input voltage  
undervoltage lockout (UVLO) with two external resistors. In addition, the internal pullup current of the EN pin  
allows the device to operate with the EN pin floating. The EN pin can also be pulled low to put the device in  
standby mode to reduce input quiescent current. The device provides a power-good (PGOOD) signal to indicate  
when the output voltage is within regulation. Thermal shutdown and current limit features protect the device  
during an overload condition. A 24-pin QFN package that includes exposed bottom pads provides a thermally  
enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Shutdown  
Logic  
PGOOD  
EN  
PGOOD  
Logic  
Thermal  
Shutdown UVLO  
VIN  
OCP  
FB  
VIN  
SW  
5µA  
SS/TR  
+
+
10nF  
VREF  
0.85µH  
Comp  
Power  
Stage  
and  
VOUT  
PGND  
TT  
DNC  
Control  
Logic  
Oscillator  
with PLL  
RT/CLK  
AGND  
TPSM84424  
Copyright © 2018, Texas Instruments Incorporated  
10  
版权 © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 2) programs the output voltage of the TPSM84424. The output  
voltage adjustment range is from 0.6 V to 10 V. 11 shows the feedback resistor connection for setting the  
output voltage. The recommended value of RFBT is 10 kΩ. The value for RFBB can be calculated using 公式 1 or  
simply selected from the range of values given in 1. 1 also includes the recommended switching frequency  
and minimum required output capacitance for each output voltage.  
6
(k)  
RFBB  
=
(VOUT œ 0.6)  
(1)  
VOUT  
RFBT  
10 k  
FB  
RFBB  
AGND  
11. Setting the Output Voltage  
1. Standard Component Values  
Minimum Required COUT(µF)(1)(2)  
RECOMMENDED  
RRT (kΩ)  
VOUT (V)  
RFBB (k)  
fSW (kHz)  
CERAMIC  
400  
400  
300  
200  
200  
200  
200  
200  
200  
150  
150  
150  
100  
100  
100  
100  
47  
POLYMER(3)  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.5  
3.3  
5.0  
6.0  
7.5  
9.0  
10  
open  
60.4  
30.1  
20.0  
15.0  
12.1  
10.0  
8.66  
7.50  
6.65  
6.04  
5.49  
4.99  
4.64  
4.32  
3.16  
2.21  
1.37  
1.10  
0.866  
0.715  
0.634  
250  
250  
300  
350  
400  
400  
450  
500  
500  
550  
550  
600  
600  
650  
700  
800  
1000  
1200  
1200  
1300  
1300  
1300  
200  
200  
220  
220  
165  
220  
143  
220  
124  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
124  
110  
97.6  
97.6  
88.7  
88.7  
82.5  
82.5  
75.0  
69.8  
60.4  
48.7  
40.2  
40.2  
36.5  
36.5  
36.5  
47  
47  
47  
22  
22  
(1) Additional capacitance above the minimum can be ceramic or polymer type.  
(2) Load transients with > 2 A/µs slew rates may require additional capacitance, see TurboTrans.  
(3) See Low-ESR Output Capacitors for details on polymer capacitors.  
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.3.2 Switching Frequency (RT)  
The switching frequency range of the TPSM84424 is 200 kHz to 1.6 MHz. The switching frequency can easily be  
set by connecting a resistor (RRT) between the RT pin and AGND. Use 公式 2 to calculate the RRT value for a  
desired frequency or simply select from 2.  
The switching frequency must be selected based on the output voltage setting of the device and the operating  
input voltage. See 2 for the allowable output voltage range for a given switching frequency.  
58650 × fSW (kHz)-1.028 (k)  
RRT  
=
(2)  
2. VOUT Range vs Switching Frequency  
VIN = 5 V (±10%)  
VOUT RANGE (V)  
VIN = 12 V (±5%)  
VOUT RANGE (V)  
VIN = 15 V (±5%)  
VOUT RANGE (V)  
SWITCHING  
FREQUENCY  
min  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.7  
0.7  
0.9  
1
max  
0.9  
0.9  
1.0  
1.2  
1.8  
2.0  
2.2  
2.5  
3.0  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
min  
0.6  
0.6  
0.7  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.8  
2.0  
2.2  
2.3  
2.4  
2.6  
2.8  
max  
0.8  
0.9  
1.0  
1.2  
1.5  
1.8  
2.0  
2.5  
2.7  
3.0  
3.3  
3.6  
4.0  
6.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
min  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.4  
1.5  
1.6  
1.7  
1.8  
2.0  
2.2  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
max  
0.8  
0.9  
1.0  
1.2  
1.5  
1.8  
2.0  
2.3  
2.5  
2.8  
3.0  
3.3  
4.0  
4.8  
6.0  
8.0  
10  
250 kHz  
300 kHz  
350 kHz  
400 kHz  
450 kHz  
500 kHz  
550 kHz  
600 kHz  
650 kHz  
700 kHz  
750 kHz  
800 kHz  
900 kHz  
1.0 MHz  
1.1 MHz  
1.2 MHz  
1.3 MHz  
1.4 MHz  
1.5 MHz  
1.6 MHz  
1.1  
1.1  
1.2  
1.3  
1.4  
10  
10  
10  
7.3.3 Synchronization (CLK)  
The TPSM84424 switching frequency can also be synchronized to an external clock from 200 kHz to 1.6 MHz.  
Not all VIN, VOUT, and IOUT conditions can be set to all of the frequencies in this range due to on-time or off-time  
limitations. See 2 for the allowable operating ranges.  
An internal Phase Locked Loop (PLL) has been implemented to allow synchronization and to easily switch from  
RT mode to CLK mode. To implement the synchronization feature, connect a square wave clock signal to the  
RT/CLK pin (pin 24) with a duty cycle from 20% to 80%. The clock signal amplitude must transition lower than  
0.8 V and higher than 2 V. The start of the switching cycle is synchronized to the falling edge of the RT/CLK pin.  
Before the external clock is present the device operates in RT mode and the switching frequency is set by the  
RT resistor, RRT. Select RRT to set the frequency close to the external synchronization frequency. When the  
external clock is present, the CLK mode overrides the RT mode. The first time the CLK pin is pulled above the  
RT/CLK high threshold (2 V), the device switches from the RT mode to the CLK mode and the RT/CLK pin  
becomes high impedance as the PLL starts to lock onto the frequency of the external clock.  
During operation, if the external clock is removed, the internal clock frequency begins to drop. After 10 μs without  
receiving a clock pulse, the device returns to RT mode. Output undershoot can occur while the switching  
frequency drops and returns to the frequency set by the RT resistor.  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
7.3.4 Output On/Off Enable (EN)  
The EN pin provides electrical ON/OFF control of the device. Once the EN pin voltage exceeds the threshold  
voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters low operating current state. The EN pin has an internal pullup current source allowing  
the user to float the EN pin for enabling the device.  
If an application requires controlling the EN pin, either drive it directly with a logic input or use an open  
drain/collector device to interface with the pin. Applying a low voltage to the enable control (EN) pin disables the  
output of the supply, shown in 12. When the EN pin voltage exceeds the threshold voltage, the supply  
executes a soft-start power-up sequence, as shown in 13.  
12. Enable Turnoff  
13. Enable Turnon  
7.3.5 Input Capacitor Selection  
The TPSM84424 requires a minimum input capacitance of 20 µF of ceramic type. Use only high-quality ceramic  
type X5R or X7R capacitors with sufficient voltage rating. TI recommends an additional 100 µF of non-ceramic  
capacitancefor applications with transient load requirements. The voltage rating of input capacitors must be  
greater than the maximum input voltage. To compensate the derating of ceramic capactors, a voltage rating of  
twice the maximum input voltage is recommended. At worst case, when operating at 50% duty cycle and  
maximum load, the combined ripple current rating of the input capacitors must be at least 2 A(rms). 3 includes  
a preferred list of capacitors by vendor.  
3. Recommended Input Capacitors(1)  
CAPACITOR CHARACTERISTICS  
(2)  
(3)  
VENDOR  
SERIES  
PART NUMBER  
CAPACITANCE  
(µF)  
ESR  
WORKING VOLTAGE (V)  
(m)  
TDK  
X7R  
X7R  
ZA  
C3225X7R1E106K250AC  
GRM32DR71E106KA12L  
EEHZA1H101P  
25  
25  
50  
50  
10  
10  
2
Murata  
2
Panasonic  
Panasonic  
100  
100  
28  
FC  
EEUFC1H101B  
162  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR @ 100 kHz, 25°C.  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.3.6 Output Capacitor Selection  
The minimum required output capacitance of the TPSM84424 is a function of the output voltage and is shown in  
1. The required capacitance can be comprised of all ceramic capacitors or a combination of ceramic and low-  
ESR polymer type capacitors. When adding additional capacitors, low-ESR capacitors like the ones  
recommended in Low-ESR Output Capacitors are required. The required capacitance above the minimum is  
determined by actual transient deviation requirements. See TurboTrans (TT) for typical transient response values  
for several output voltage and capacitance combinations. See 4 for recommended output capacitors.  
4. Recommended Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
CAPACITANCE(2)  
(µF)  
ESR(3)  
(m)  
VENDOR  
SERIES  
PART NUMBER  
WORKING  
VOLTAGE (V)  
TDK  
X7R  
X7R  
C3225X7R1C226K  
16  
16  
22  
22  
2
2
Murata  
TDK  
GCJ32ER71C226K  
C3225X5R1C226M  
GRM32ER61C226K  
GCM32ER70J476K  
GRM32ER71A476K  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
4TPE220MF  
X5R  
16  
22  
2
Murata  
Murata  
Murata  
Murata  
TDK  
X5R  
16  
22  
2
X7R  
6.3  
10  
47  
2
X7R  
47  
2
X5R  
16  
47  
3
X5R  
6.3  
6.3  
10  
100  
100  
100  
220  
220  
330  
330  
470  
470  
2
Murata  
Murata  
Panasonic  
Kemet  
X5R  
2
X5R  
2
POSCAP  
T520  
POSCAP  
T520  
POSCAP  
T520  
4.0  
6.3  
6.3  
6.3  
2.5  
2.5  
15  
15  
10  
10  
7
T520D227M006ATE015  
6TPE330MAA  
Panasonic  
Kemet  
T520D337M006ATE010  
2R5TPE470M7  
Panasonic  
Kemet  
T520D477M2R5ATE007  
7
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR @ 100 kHz, 25°C.  
14  
版权 © 2018, Texas Instruments Incorporated  
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
7.3.7 TurboTrans (TT)  
The TPSM84424 includes the TurboTrans feature which optimizes the transient response of the converter while  
simultaneously reducing the quantity of external output capacitors required to meet a target voltage deviation  
specification. A TurboTrans resistor, RTT, is required between the TT pin and AGND to properly set the response  
of the TPSM84424 based on the amount and type of output capacitors. The value of RTT can be calculated using  
公式 3. In order to calculate the RTT value, a TurboTrans constant, KTT, is required. See 5 for the KTT value  
when using only ceramic output capacitors. See 6 for the KTT value when using a combination of ceramic and  
polymer output capacitors. Applications operating from input voltages above 14 V, must reduce the calculated  
RTT value by 20%. Also, the value of CO used in 公式 3 is the total effective output capacitance, which takes into  
account the effects of applied voltage and temperature.  
KTT × VOUT × CO(eff)(µF)  
(k)  
-2  
]
RTT  
=
)
[(  
50  
(3)  
5. KTT Values (Ceramic Only Output Capacitors)  
VOUT (V)  
KTT  
1 - < 1.2  
1.2 - < 1.5  
1.5 - < 1.8  
1.8 - < 2  
2 - < 2.5  
2.5 - < 3.3  
3.3 - < 7.5  
7.5 - 10  
1
1.12  
1.4  
1.5  
1.65  
1.8  
2.0  
2.25  
6. KTT Values (Ceramic + Polymer Output Capacitors)  
VOUT (V)  
KTT  
0.6 - < 0.7  
0.7 - < 0.9  
0.65  
0.9 - < 1  
1 - < 2.5  
2.5 - < 3.3  
3.3 - < 5  
5 - < 6  
6 - < 7.5  
7.5 - 10  
0.6  
0.7  
0.6  
0.72  
0.9  
1.2  
1.5  
1.8  
7.3.7.1 Low-ESR Output Capacitors  
When selecting non-ceramic output capacitors, the quality of the capacitor is important to maintain stable  
operation and optimize transient performance. The capacitance rating and the ESR rating are important when  
selecting these capacitors. Polymer type capacitors with capacitance and ESR in the range shown in 7 are  
required. Capacitors with lower ESR than the minimum listed in 7 can be used, however using capacitors with  
an ESR in the range listed will provide optimal transient performance.  
If using a combination of ceramic and polymer type of output capacitance, only a single polymer capacitor can  
be used. Depending on the output voltage setting, only capacitors that meet the specifications listed in 7 can  
be used.  
7. Allowable Polymer Capacitor  
ESR (mΩ)  
VOUT RANGE  
Capacitance (µF)  
min  
12  
9
max  
15  
12  
10  
25  
15  
12  
10  
220  
270  
330(1)  
0.6 V to < 3.3 V(1)  
7
150  
15  
12  
9
220  
3.3 V to 10 V  
270  
330  
7
(1) Applications operating at input voltages > 15 V, output voltages <  
3.3V, and temperatures below 0°C, the 330-µF capacitor is not  
recommended.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.3.7.2 Transient Response  
The TPSM84424 transient response is listed in 8 for several common output voltages with different capacitor  
combinations. The calculated RTT value is included in the table along with the typical voltage deviation for a 1 A  
and 2 A load step. All data was taken at the recommended switching frequency for each output voltage.  
8. Output Voltage Transient Response  
VIN = 12 V, CIN1 = 2x 10 µF Ceramic, CIN2 = 100 µF Electrolytic, TA = 25°C  
VOLTAGE DEVIATION  
VOUT (V)  
COUT1 Ceramic  
COUT2 BULK  
RTT (kΩ)  
1 A LOAD STEP  
11 mV . (1.4%)  
9 mV . (1.1%)  
15 mV . (1.5%)  
12 mV . (1.2%)  
11 mV . (1.1%)  
10 mV . (1.0%)  
17 mV . (1.4%)  
13 mV . (1.1%)  
11 mV . (0.9%)  
9 mV . (0.8%)  
27 mV . (1.6%)  
11 mV . (0.6%)  
12 mV . (0.7%)  
30 mV . (0.9%)  
16 mV . (0.5%)  
22 mV . (0.7%)  
42 mV . (0.9%)  
16 mV . (0.3%)  
24 mV . (0.5%)  
56 mV . (0.8%)  
18 mV . (0.3%)  
2 A LOAD STEP  
22 mV . (2.7%)  
18 mV . (2.2%)  
30 mV . (3%)  
300 µF  
400 µF  
200 µF  
200 µF  
400 µF  
400 µF  
200 µF  
200 µF  
400 µF  
400 µF  
100 µF  
300 µF  
100 µF  
100 µF  
100 µF  
200 µF  
100 µF  
100 µF  
200 µF  
100 µF  
47 µF  
220 µF  
3.40  
5.36  
2.00  
3.01  
6.04  
5.49  
3.40  
4.02  
8.87  
6.98  
3.40  
14.3  
4.87  
8.66  
31.6  
19.1  
10.0  
31.6  
22.1  
10.5  
28.0  
0.8(1)  
330 µF  
-
220 µF  
24 mV . (2.4%)  
23 mV . (2.3%)  
20 mV . (2%)  
1(1)  
-
220 µF  
-
35 mV . (2.9%)  
27 mV . (2.2%)  
22 mV . (1.8%)  
18 mV . (1.5%)  
56 mV . (3.1%)  
22 mV . (1.2%)  
24 mV . (1.3%)  
60 mV . (1.8%)  
32 mV . (1.0%)  
43 mV . (1.3%)  
83 mV . (1.7%)  
32 mV . (0.6%)  
48 mV . (1%)  
220 µF  
1.2(1)  
-
220 µF  
-
1.8(1)  
3.3(2)  
-
220 µF  
-
220 µF  
-
-
5(2)  
220 µF  
-
-
112 mV . (1.5%)  
36 mV . (0.5%)  
7.5(2)  
220 µF  
(1) Load step slew rate of 2 A/µs  
(2) Load step slew rate of 1 A/µs  
16  
版权 © 2018, Texas Instruments Incorporated  
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
7.3.7.2.1 Transient Waveforms (VIN = 12 V)  
VOUT = 0.8 V  
COUT = 300 µF ceramic + 220 µF polymer  
14. VOUT = 0.8 V, 2-A Load Step  
VOUT = 0.8 V  
COUT = 300 µF ceramic + 330 µF polymer  
15. VOUT = 0.8 V, 2-A Load Step  
VOUT = 1 V  
COUT = 400 µF ceramic  
16. VOUT = 1 V, 2-A Load Step  
VOUT = 1 V  
COUT = 200 µF ceramic + 220 µF polymer  
17. VOUT = 1 V, 2-A Load Step  
VOUT = 1.2 V  
COUT = 200 µF ceramic  
18. VOUT = 1.2 V, 2-A Load Step  
VOUT = 1.2 V  
COUT = 200 µF ceramic + 220 µF polymer  
19. VOUT = 1.2 V, 2-A Load Step  
版权 © 2018, Texas Instruments Incorporated  
17  
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.3.8 Undervoltage Lockout (UVLO)  
The TPSM84424 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 4.1 V (typical)  
with a typical hysteresis of 200 mV.  
Applications may require a higher UVLO threshold to prevent early turnon, for sequencing requirements, or to  
prevent input current draw at lower input voltages. An external resistor divider can be added to the EN pin to  
adjust the UVLO threshold higher. The external resistor divider can be configured as shown in 20. 9 lists  
standard values for RUVLO1 and RUVLO2 to adjust the UVLO voltage higher.  
VIN  
RUVLO1  
EN  
RUVLO2  
PGND  
20. Adjustable UVLO  
9. Standard Resistor Values for Adjusting UVLO  
VIN UVLO (V)  
RUVLO1 (kΩ)  
4.5  
68.1  
24.3  
385  
5
6
7
8
9
10  
11  
12  
68.1  
21.5  
400  
68.1  
16.9  
430  
68.1  
14  
68.1  
12.1  
500  
68.1  
10.5  
530  
68.1  
9.31  
565  
68.1  
8.45  
600  
68.1  
7.50  
640  
RUVLO2 (kΩ)  
Hysteresis (mV)  
465  
7.3.9 Soft Start (SS/TR)  
Leaving SS/TR pin open enables the internal soft-start time interval of approximately 1.25 ms. Adding additional  
capacitance between the SS pin and AGND increases the soft-start time. Increasing the soft-start time reduces  
inrush current seen by the input source and reduces the current seen by the device when charging the output  
capacitors. To avoid the activation of current limit and ensure proper start-up, the SS capacitor may need to be  
increased when operating near the maximum output capacitance limit.  
See 10 for several SS capacitor values and timing interval or use 公式 4 to calculate the value.  
0.6V × (CSS + 10nF)  
tSS  
=
5 µA  
(4)  
10. Soft-Start Capacitor Values and Soft-Start Time  
CSS (nF)  
SS Time (ms)  
open  
10  
15  
22  
47  
1.25  
2.4  
3
3.8  
6.8  
During soft-start, the output voltage increases from its starting voltage and rises into regulation. The device is  
allowed to skip pulses as needed whenever the application conditions exceed the minimum on-time of the  
device. This behavior is a function of input voltage, output voltage, switching frequency, and load current. During  
the initial rise of the output voltage, adding an additional non-ceramic output capacitor in parallel with the  
required ceramic capacitance will improve the output voltage ramp-up.  
When testing soft start performance with an electronic load, the output voltage noise can  
be exaggerated due to the control loop of the load. Testing with a pure resistive load is a  
better way to quantify the device performance.  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
7.3.10 Sequencing (SS/TR)  
Many of the common power supply sequencing methods can be implemented using the SS/TR, EN and PGOOD  
pins. The sequential method is illustrated in 21 using two TPSM84424 devices. The PGOOD pin of the first  
device is coupled to the EN pin of the second device which enables the second power supply once the primary  
supply reaches regulation.  
EN  
VOUT1  
VOUT  
PGOOD  
EN  
VOUT2  
VOUT  
PGOOD  
21. Sequencing Schematic  
Simultaneous power supply sequencing can be implemented by connecting the resistor network of R1 and R2  
shown in 22 to the output of the power supply that needs to be tracked or to another voltage reference source.  
Use 公式 5 and 公式 6 to calculate the values of R1 and R2.  
(VOUT2 × 5)  
(k)  
R1 =  
0.6  
(5)  
(6)  
0.6 × R1  
(k)  
R2 =  
(VOUT2 œ 0.6)  
VOUT1  
VOUT  
EN  
VOUT2  
VOUT  
SS/TR  
EN  
R1  
R2  
22. Simultaneous Tracking Schematic  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.3.11 Power Good (PGOOD)  
The PGOOD pin is an open-drain output requiring an external pullup resistor to output a high signal. Once the  
output voltage is between 91% and 106% of the setpoint voltage and SS/TR is greater than 0.75 V, the PGOOD  
pin pulldown is released and the pin floats. A pullup resistor between the values of 10 kΩ and 100 kΩ to a  
voltage source of 6.5 V or less is recommended. The PGOOD pin is pulled low when the output voltage is lower  
than 89% or greater than 108% of the setpoint voltage.  
7.3.12 Safe Start-up into Pre-Biased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output. During  
monotonic pre-biased start-up, the low-side MOSFET is not allowed to sink current until the SS/TR pin voltage is  
higher than the FB pin voltage and the high-side MOSFET begins to switch.  
7.3.13 Overcurrent Protection  
For protection against load faults, the TPSM84424 is protected from overcurrent conditions by cycle-by-cycle  
current limiting. In an extended overcurrent condition the device enters hiccup mode to reduce power dissipation.  
In hiccup mode, the module continues in a cycle of successive shutdown and power up until the load fault is  
removed. During this period, the average current flowing into the fault is significantly reduced, which reduces  
power dissipation. Once the fault is removed, the module automatically recovers and returns to normal operation.  
7.3.14 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
170°C typically. The device reinitiates the power up sequence when the junction temperature drops below 155°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The TPSM84424 is in active mode when VIN is above the UVLO threshold and the EN pin voltage is above the  
EN high threshold. The EN pin has an internal current source to enable the output when the EN pin is left  
floating. If the EN pin is pulled low the device is put into a low quiescent current state.  
7.4.2 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPSM84424. When the EN pin voltage is below the  
EN low threshold, the device is in shutdown mode. In shutdown mode the device is put into a low quiescent  
current state. The TPSM84424 also employs undervoltage lockout protection. If VIN is below the UVLO level, the  
output of the regulator turns off.  
20  
版权 © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPSM84424 is a fixed-frequency, synchronous step-down DC-DC power module. It is used to convert a  
higher DC voltage to a lower DC voltage with a maximum output current of 4 A. The following design procedure  
can be used to select components for the TPSM84424. Alternately, the WEBENCH® software may be used to  
generate complete designs. When generating a design, the WEBENCH software utilizes an iterative design  
procedure and accesses comprehensive databases of components. See www.ti.com/webench for more details.  
8.2 Typical Application  
The TPSM84424 requires only a few external components to convert from a wide input voltage supply range to a  
wide range of output voltages. 23 shows a typical TPSM84424 schematic with only the minimum required  
components.  
VIN = 12V  
VIN  
EN  
PGOOD  
VOUT  
VOUT = 1.2 V  
10 µF  
25 V  
10 µF  
25 V  
TPSM84424  
10 kO  
10 kO  
220 µF  
15 mO  
100 µF  
6.3 V  
100 µF  
6.3 V  
RT/CLK  
TT  
FB  
110 kO  
4.12 kO  
AGND  
PGND  
Copyright © 2018, Texas Instruments Incorporated  
23. TPSM84424 Typical Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 11 and follow the design procedures below.  
11. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
12 V typical  
Output voltage VOUT  
1.2 V  
Output current rating  
Key care-abouts  
4 A  
Small solution size, good transient response  
3% voltage deviation, 2-A load step, 1-A/µs slew rate  
Transient response requirements  
版权 © 2018, Texas Instruments Incorporated  
21  
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM84424 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM84424 device is externally adjustable using a two resistor divider (RFBT and  
RFBB). The recommended value of RFBT is 10 kΩ. Select the value of RFBB from 1 or calculate using 公式 7:  
6
(k)  
RFBB  
=
(VOUT œ 0.6)  
(7)  
To set the output voltage to 1.2 V, the RFBB value is 10 kΩ.  
8.2.2.3 Setting the Switching Frequency  
To set the switching frequency of the TPSM84424 a resistor (RRT) between the RT/CLK pin and AGND is  
required. Select the value of RRT from 1 or calculate using 公式 8:  
58650 × fSW (kHz)-1.028 (k)  
RRT  
=
(8)  
The recommended switching frequncy for a 1.2 V output is 450 kHz. To set the switching frequency to 450 kHz,  
the RRT value is 110 kΩ.  
8.2.2.4 Input Capacitors  
For this design, two 10-μF ceramic capacitors rated for 25 V are used for the input decoupling capacitors.  
8.2.2.5 Output Capacitors  
The minimum required output capacitance for a 1.2-V output is 200 μF of ceramic capacitance, as listed in 1.  
For this design, two 100-μF ceramic capacitors plus a 220 μF, 15 mΩ polymer capacitor where used to meet the  
transient requirement specification.  
8.2.2.6 TurboTrans Resistor  
A TurboTrans resistor (RTT) is required between the TT pin and AGND. The value of RTT can be calulated using  
公式 9. When calculating the RTT value, the total effective output capacitance which takes into account the  
effects of applied voltage and temperature.  
KTT × VOUT × CO(eff)(µF)  
(k)  
-2  
]
RTT  
=
)
[(  
50  
(9)  
The calulated value for RTT for this application is 4.12 kΩ.  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
8.2.2.7 Application Waveforms  
25. Transient Response Waveforms  
24. Output Ripple and SW Waveforms  
9 Power Supply Recommendations  
The TPSM84424 is designed to operate from an input voltage supply range between 4.5 V and 17 V. This input  
supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPSM84424 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the TPSM84424 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. Typically, a 47-µF or 100-μF electrolytic capacitor will  
suffice.  
版权 © 2018, Texas Instruments Incorporated  
23  
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. The following guidelines will help users design a PCB with the best power conversion performance,  
thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 26 thru 29,  
shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another. The connection is made internal to the device.  
Place RFBB, RRT, and CSS as close as possible to their respective pins.  
Use multiple vias to connect the power planes (VIN, VOUT, and PGND) to internal layers.  
10.2 Layout Examples  
26. Typical Top-Layer Layout  
27. Typical Layer-2 Layout  
29. Typical Bottom-Layer Layout (Bottom View)  
28. Typical Layer-3 Layout  
24  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
10.3 EMI  
The TPSM84424 is compliant with EN55011 Class B radiated emissions. 30 and 31 show typical examples  
of radiated emissions plots for the TPSM84424. The graphs include the plots of the antenna in the horizontal and  
vertical positions.  
10.3.1 EMI Plots  
EMI plots were measured using the standard TPSM84424EVM with no input filter.  
30. Radiated Emissions 12-V Input, 1.2-V Output, 4-A Load (EN55011 Class B)  
31. Radiated Emissions 12-V Input, 5-V Output, 4-A Load (EN55011 Class B)  
版权 © 2018, Texas Instruments Incorporated  
25  
 
 
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
10.4 Package Specifications  
TPSM84424  
VALUE  
UNIT  
Weight  
0.90  
grams  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
73.5  
MHrs  
26  
版权 © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 开发支持  
11.2.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,借助 WEBENCH® Power Designer 并使用 TPSM84424 器件创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
TurboTrans, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018, Texas Instruments Incorporated  
27  
TPSM84424  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
12.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPSM84424MOLR  
QFM  
MOL  
24  
500  
330.0  
16.0  
7.8  
7.8  
5.81  
12.0  
16.0  
Q2  
28  
版权 © 2018, Texas Instruments Incorporated  
TPSM84424  
www.ti.com.cn  
ZHCSHN0A FEBRUARY 2018REVISED APRIL 2018  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
QFM  
Package Drawing Pins  
MOL 24  
SPQ  
Length (mm) Width (mm)  
383.0 353.0  
Height (mm)  
TPSM84424MOLR  
500  
58.0  
版权 © 2018, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-May-2019  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
TPSM84424MOLR  
ACTIVE  
QFM  
MOL  
24  
500  
RoHS Exempt  
& Green  
NIAU  
Level-3-260C-168 HR  
-40 to 105  
TPSM84424  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
MOL0024A  
QFM - 5.4 mm max height  
S
C
A
L
E
1
.
5
0
0
QUAD FLAT MODULE  
7.6  
7.4  
A
B
PIN 1  
INDEX AREA  
7.6  
7.4  
5.4 MAX  
C
SEATING PLANE  
0.08 C  
6.4  
PKG  
1.4  
1.2  
4X  
13  
(0.05) TYP  
2X 0.15  
12  
8
3.4  
4X  
3.2  
4X  
2.05  
2X  
5.9  
SYMM  
2X  
3.25  
6.4  
0.45  
0.25  
16X  
0.1  
C A B  
0.05  
ALL PADS  
12X 0.65  
20  
1
PIN 1 ID  
(OPTIONAL)  
1.6  
1.4  
24  
22  
4X  
1.1  
0.9  
20X  
2X 1.425  
2X 1.6  
4223723/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MOL0024A  
QFM - 5.4 mm max height  
QUAD FLAT MODULE  
4X (1.3)  
Cu KEEP OUT AREA  
(1.8 X 5.3)  
4X (1.2)  
24  
21  
1
20  
4X (1.7)  
4X (3.05)  
4X (3.5)  
4X (2)  
4X (1.3)  
16X  
(0.35)  
0.000  
SYMM  
12X (0.65)  
16X (1.2)  
4X (1.15)  
4X (2.15)  
6X (2.7)  
8
4X (3.15)  
6X (3.4)  
4X (3.3)  
13  
(
0.2) VIA  
TYP  
9
11  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:12X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK DETAIL  
4223723/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to the thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MOL0024A  
QFM - 5.4 mm max height  
QUAD FLAT MODULE  
16X (3.3)  
4X (1.6)  
2X (1.425)  
4X (0.15)  
4X (1.1)  
(R0.05)  
TYP  
24  
21  
1
20  
12X (1.6)  
8X (3.05)  
16X (0.35)  
4X  
(1.25)  
SYMM  
16X (0.65)  
4X (3.3)  
16X (1.2)  
EXPOSED  
METAL  
TYP  
8
13  
9
11  
PKG  
8X (1.2)  
SOLDER MASK EDGE  
TYP  
METAL UNDER  
SOLDER MASK  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8, 13 & 20: 86%  
PADS 11, 12, 21 & 22: 84%  
SCALE:15X  
4223723/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  

相关型号:

TPSM84624

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、6A 电源模块
TI

TPSM84624MOLR

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、6A 电源模块 | MOL | 24 | -40 to 105
TI

TPSM846C23

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A PMBus 电源模块
TI

TPSM846C23MOLR

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A PMBus 电源模块 | MOL | 59 | -40 to 105
TI

TPSM846C24

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A 电源模块
TI

TPSM846C24MOLR

4.5V 至 15V 输入、0.35V 至 2.0V 输出、35A 电源模块 | MOL | 59 | -40 to 105
TI

TPSM84824

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、8A 电源模块
TI

TPSM84824MOLR

采用紧凑型 7.5x7.5mm 封装尺寸的 4.5V 至 17V 输入、0.6V 至 10V 输出、8A 电源模块 | MOL | 24 | -40 to 105
TI

TPSM84A21

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块
TI

TPSM84A21MOJR

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块 | MOJ | 20 | -40 to 85
TI

TPSM84A21MOJT

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块 | MOJ | 20 | -40 to 85
TI

TPSM84A22

具有集成输入和输出电容器的 8V 至 14V 输入、1.2V 至 2.05V 输出、10A 电源模块
TI