TRF372017IRGZR [TI]

具有集成宽带 PLL/VCO 的 300MHz 至 4.8GHz 正交调制器 | RGZ | 48 | -40 to 85;
TRF372017IRGZR
型号: TRF372017IRGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成宽带 PLL/VCO 的 300MHz 至 4.8GHz 正交调制器 | RGZ | 48 | -40 to 85

电话 蜂窝 电信 电信集成电路 蜂窝电话电路 电信电路
文件: 总62页 (文件大小:2816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Integrated IQ Modulator PLL/VCO  
1
FEATURES  
Fully Integrated PLL/VCO and IQ Modulator  
LO Frequency from 300MHz to 4.8GHz  
76-dBc Single-Carrier WCDMA ACPR at –8dBm  
Channel Power  
PS  
RDBK  
1
2
3
4
5
6
7
8
9
36 EXT_VCO  
VCC_VCO1  
LO_OUT_P  
LO_OUT_N  
VCC_VCO2  
35  
34  
33  
32  
OIP3 of 26 dBm  
VCC_DIG  
GND_DIG  
LD  
P1dB of 11.5 dBm  
Integer/Fractional PLL  
GND  
31 GND  
Phase Noise –132 dBc/Hz  
(at 1MHz, fVCO of 2.3 GHz)  
VCC_LO1  
GND  
30 VCC_LO2  
29 GND  
Low Noise Floor: –160 dBm/Hz  
28 BBI_N  
27 BBI_P  
26 GND  
BBQ_N  
Input Reference Frequency Range: Up to  
160MHz  
BBQ_P 10  
GND 11  
GND 12  
25 GND  
VCO Frequency Divided by 1-2-4-8 Output  
APPLICATIONS  
Wireless Infrastructure  
CDMA: IS95, UMTS, CDMA2000, TD-SCDMA  
TDMA: GSM, IS-136, EDGE/UWC-136  
LTE  
Wireless Local Loop  
Point-to-Point Wireless Access  
Wireless MAN Wideband Transceivers  
DESCRIPTION  
TRF372017 is a high performance direct up-conversion device, integrating a high linearity, low noise IQ  
modulator and an integer-fractional PLL/VCO. The VCO uses integrated frequency dividers to achieve a wide,  
continuous tuning range of 300MHz–4800MHz. The LO is available as an output with independent frequency  
dividers. The device also accepts input from an external LO or VCO. The modulator baseband inputs can be  
biased either internally or externally. Internal DC offset adjustment enables carrier cancellation. The device is  
controlled through a 3 wire serial programming interface (SPI). A control pin invokes power-save mode to reduce  
power consumption while keeping the VCO locked for fast startup.  
FREQUENCY RANGE OPERATION  
VCO Frequency  
Div by 2  
Div by 4  
Div by 8  
Fmin  
2400  
Fmax  
4800  
Fmin  
1200  
Fmax  
2400  
Fmin  
600  
Fmax  
1200  
Fmin  
300  
Fmax  
600  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE DEVICE OPTIONS  
SPECIFIED  
OPERATING  
TEMPERATURE  
PACKAGE  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
MEDIA, QUANTITY  
TRF372017IRGZT  
TRF372017IRGZR  
QFN-48  
QFN-48  
RGZ  
RGZ  
–40°C to 85°C  
–40°C to 85°C  
TRF372017  
TRF372017  
Tape and Reel, 250  
Tape and Reel, 2500  
FUNCTIONAL BLOCK DIAGRAM  
BBQ  
From  
SPI  
CP_OUT  
Charge  
Pump  
Poly-  
Phase  
RFOUT  
PFD  
Div2/  
4/8  
S
LE  
From  
SPI  
DATA  
CLK  
From  
SPI  
From  
SPI  
LD  
BBI  
Figure 1. TRF372017 Block Diagram  
2
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
PIN FUNCTIONS  
PIN  
TYPE  
DESCRIPTION  
NAME  
PS  
NO  
1
I
Power saving mode enable (Low = normal mode; High = power saving mode)  
RDBK  
VCC_DIG  
GND_DIG  
LD  
2
O
SPI internal registers readback output  
3
3.3V digital power supply  
4
Digital ground  
5
O
PLL lock detect output  
GND  
6
Ground  
VCC_LO1  
GND  
7
3.3V Tx path local oscillator chain power supply  
8
Ground  
BBQ_N  
BBQ_P  
GND  
9
I
I
Base-band in-quadrature input: negative terminal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Base-band in-quadrature input: positive terminal  
Ground  
GND  
Ground  
GND  
Ground  
RSVD  
GND  
Reserved. Normally open.  
Ground  
GND  
Ground  
GND  
Ground  
RFOUT  
GND  
O
RF output  
Ground  
VCC_D2S  
VCC_MIX  
GND  
5V modulator output buffer power supply  
5V modulator power supply  
Ground  
GND  
Ground  
GND  
Ground  
GND  
Ground  
GND  
Ground  
BBI_P  
BBI_N  
GND  
I
I
Base-band in-phase input: positive terminal  
Base-band in-phase input: negative terminal  
Ground  
VCC_LO2  
GND  
3.3V output local oscillator chain power supply  
Ground  
VCC_VCO2  
LO_OUT_N  
LO_OUT_P  
VCC_VCO1  
EXT_VCO  
GND  
3.3 – 5.0V VCO power supply  
Local oscillator output: negative terminal  
Local oscillator output: positive terminal  
3.3V VCO power supply  
External local oscillator input  
Ground  
O
O
I
I
VTUNE  
GND  
VCO control voltage input  
Ground  
CP_OUT  
VCC_PLL  
GND  
O
Charge pump output  
3.3V PLL power supply  
Ground  
REFIN  
GND  
I
Reference clock input  
Ground  
LE  
I
I
SPI latch enable. Digital input  
SPI data input. Digital input  
DATA  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
PIN FUNCTIONS (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
CLK  
NO  
47  
I
I
SPI clock input. Digital input  
Internal testing mode. Connect to ground in normal operation  
SCAN_EN  
48  
THERMAL INFORMATION  
TRF372017  
THERMAL METRIC(1)  
RGZ  
UNITS  
48 PINS  
θJA  
Junction-to-ambient thermal resistance  
30  
10  
8
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
7
ψJB  
θJCbot  
0.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
VALUE  
–0.3 to 5.5  
UNIT  
V
Supply voltage range(3)  
Digital I/O voltage range  
–0.3 to VCC + 0.5  
–40 to 150  
V
Operating virtual junction temperature range, TJ  
Operating ambient temperature range, TA  
Storage temperature range, Tstg  
°C  
°C  
°C  
–40 to 85  
–40 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) ESD rating not valid for RF sensitive pins.  
(3) All voltage values are with respect to network ground terminal.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
VCC5V  
VCC3V  
5V Power supply voltage  
3.3V Power supply voltage  
4.5  
3.0  
5.0  
3.3  
3.3  
5.5  
3.6  
5.5  
85  
V
V
VCC_VCO2 3.3–5V Power supply voltage  
3.0  
V
TA  
TJ  
Operating ambient temperature range  
–40  
–40  
°C  
°C  
Operating virtual junction temperature range  
125  
4
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
ELECTRICAL CHARACTERISTICS  
VCC5V = 5.0V, VCC3V = 3.3V, VCC_VCO2 = 3.3V, TA = 25°C, internal LO, internal VCM (unless otherwise noted)  
PARAMETER  
DC PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.3V power supply, LO on  
200  
117  
3
250  
148  
5
mA  
mA  
mA  
mA  
mA  
mA  
ICC  
Total supply current, LO on(1)  
5V power supply, LO on  
VCC_DIG, LO on  
VCC_LO1 and VCC_LO2  
VCC_D2S  
121  
43  
130  
60  
VCC_MIX  
74  
90  
Supply current, LO on(1)  
VCC_VCO1  
20  
28  
mA  
VCC_VCO2  
17  
20  
LO_OUT_N and LO_OUT_P  
VCC_PLL  
17  
28  
mA  
mA  
mA  
mA  
mA  
mA  
24  
40  
3.3V power supply, LO off  
5V power supply, LO off  
3.3V power supply, PS on  
5V power supply, PS on  
165  
117  
65  
204  
149  
94  
Total supply current, LO off(1)  
Total supply current, PS on(1)  
51  
73  
BASEBAND INPUTS  
Externally generated  
Set internally  
1.7  
1.7  
1000  
5
V
V
Vcm  
BW  
ZI  
I and Q Input DC common voltage(2)  
1.6  
1.85  
1dB Input frequency bandwidth  
Input Impedance  
MHz  
kΩ  
pF  
Resistance  
Parallel Capacitance  
3
BASEBAND INPUT DC OFFSET CONTROL D/A(3)  
Number of bits  
Programmed via SPI  
8
|BBI_P - BBI_N| or |BBQ_P - BBQ_N|, 100-Ω  
differential load  
Programmable DC offset setting  
0.02  
V
DIGITAL INTERFACE  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
2
0
3.3  
V
V
V
V
0.8  
VOH  
VOL  
Referenced to VCC_DIG  
Referenced to VCC_DIG  
0.8xVcc  
0.2xVcc  
REFERENCE OSCILLATOR PARAMETERS  
Fref  
Reference Frequency  
160  
3.3  
MHz  
Vp-p  
pF  
Reference input sensitivity  
0.2  
Parallel capacitance  
Parallel resistance  
5
Reference input impedance  
3900  
Ω
PFD CHARGE PUMP  
PFD frequency(4)  
Charge pump current  
100  
MHz  
mA  
ICP  
SPI programmable  
1.94  
(1) Maximum current is worst-case over voltage, temperature, and expected process variations.  
(2) The TRF372017 can generate the input common voltage internally or can accept an external common mode voltage. The two modes  
are selectable via SPI  
(3) When the internal input common mode voltage is selected, it is possible to apply some dc offset with the integrated D/A  
(4) See Application Information for discussion on selection of PFD frequency.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TRF372017 ELECTRICAL CHARACTERISTICS  
VCC5V = 5.0V, VCC3V = 3.3V, VCC_VCO2 = 3.3V, TA = 25°C, internal LO, internal VCM (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IQ MODULATOR OUTPUT, FLO = 750 MHz  
G
Voltage gain  
Output rms voltage over se input I (or Q) rms voltage  
–4  
–3.2  
11  
–2.4  
–2.4  
–2  
dB  
P1dB  
IP3  
IP2  
Output compression point  
Output IP3  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
2 input tones at 4.5 and 5.5MHz  
2 input tones at 4.5 and 5.5MHz  
Unadjusted  
26  
Output IP2  
56.5  
–43.5  
–46  
10  
Carrier feedthrough  
Sideband suppression  
Output return loss  
Unadjusted  
DC only to BB inputs; 13 MHz offset from LO; Pout = –10  
dBm  
Output noise  
–162  
dBm/Hz  
IQ MODULATOR OUTPUT, FLO = 900 MHz  
G
Voltage Gain  
Output rms voltage over se input I (or Q) rms voltage  
–4  
–3.4  
11  
dB  
P1dB  
IP3  
IP2  
Output Compression Point  
Output IP3  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
2 input tones at 4.5 and 5.5 MHz  
2 input tones at 4.5 and 5.5 MHz  
Unadjusted  
26.5  
56.5  
–43  
–45  
10  
Output IP2  
Carrier Feedthrough  
Sideband suppression  
Output Return Loss  
Unadjusted  
DC only to BB inputs; 13 MHz offset from LO; Pout = –10  
dBm  
Output Noise  
–160  
dBm/Hz  
IQ MODULATOR OUTPUT, FLO = 2150 MHz  
G
Voltage Gain  
Output rms voltage over se input I (or Q) rms voltage  
–4.2  
–3.1  
11.5  
25  
dB  
P1dB  
IP3  
IP2  
Output Compression Point  
Output IP3  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
2 input tones at 4.5 and 5.5 MHz  
2 input tones at 4.5 and 5.5 MHz  
Unadjusted  
Output IP2  
56  
Carrier Feedthrough  
Sideband suppression  
Output Return Loss  
–40  
–32  
10  
Unadjusted  
DC only to BB inputs; 13 MHz offset from LO; Pout = –10  
dBm  
Output Noise  
–158  
dBm/Hz  
1 WCDMA signal; Pout = –8 dBm  
–75  
–71  
dBc  
dBc  
ACPR  
Adjacent-channel power ratio  
2 WCDMA signals; Pout = –11 dBm per carrier  
IQ MODULATOR OUTPUT, FLO = 2700 MHz  
G
Voltage gain  
Output rms voltage over se input I (or Q) rms voltage  
–4.1  
–2.7  
12  
–1.3  
dB  
P1dB  
IP3  
IP2  
Output compression point  
Output IP3  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
2 input tones at 4.5 and 5.5 MHz  
2 input tones at 4.5 and 5.5 MHz  
Unadjusted  
26.5  
50  
Output IP2  
Carrier feedthrough  
Sideband suppression  
Output return loss  
–43  
–41  
10  
Unadjusted  
DC only to BB inputs; 13 MHz offset from LO; Pout = –10  
dBm  
Output noise  
–153  
dBm/Hz  
6
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TRF372017 ELECTRICAL CHARACTERISTICS (continued)  
VCC5V = 5.0V, VCC3V = 3.3V, VCC_VCO2 = 3.3V, TA = 25°C, internal LO, internal VCM (unless otherwise noted)  
PARAMETER  
LOCAL OSCILLATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCO range  
2400  
1200  
600  
4800  
Divide by 2  
2400  
MHz  
1200  
FVCO  
Frequency Range  
Divide by 4  
Divide by 8  
300  
600  
Free running VCO  
10kHz  
–85  
–132  
–150  
–153  
3
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBm  
Phase Noise, Fout=2.3GHz  
1MHz  
10MHz  
50MHz  
PLO  
LO Output power(1)  
100 Ω differential, external load; single-ended  
–2.5  
(1) With VCO frequency at 4.6 GHz and LO in divide-by-2 mode at 2.3 GHz  
tsu1  
t(CL)  
th  
t(CLK)  
t(CH)  
32nd  
Write  
clock  
1st Write  
CLOCK  
clock  
pulse  
pulse  
DB0 (LSB)  
Address Bit0  
DB1  
Address Bit1  
DB2  
Address Bit2  
DB3  
Address Bit3  
DB29  
DB30  
DB31 (MSB)  
DATA  
tsu3  
tsu2  
tw  
End of  
Write  
Cycle pulse  
LATCH  
ENABLE  
Figure 2. SPI Write Timing Diagram  
Table 1. SPI Timing: Writing Phase  
PARAMETER  
MIN  
20  
20  
20  
20  
20  
50  
50  
70  
TYP  
MAX UNITS  
th  
Hold time, data to clock  
Setup time, data to clock  
Clock low duration  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU1  
T(CH)  
T(CL)  
tSU2  
t(CLK)  
tW  
Clock high duration  
Setup time, clock to enable  
Clock period  
Enable time  
tSU3  
Setup time, latch to Data  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
tsu1  
th  
t(CLK)  
T(CL)  
1st Write  
clock  
pulse  
T(CH)  
32nd Write  
clock pulse  
CLOCK  
DATA  
)
DB0 (LSB  
Address Bit0  
DB1  
Address Bit1  
DB2  
Address Bit2  
DB3  
Address Bit3  
)
DB31(MSB  
DB29  
DB30  
LATCH ENABLE  
nd  
32  
1st Read  
clock pulse  
2nd Read  
clock pulse  
32nd Read  
clock pulse  
33rdRead  
clock pulse  
tsu3  
Write  
clock  
pulse  
CLOCK  
“End of Write Cycle”  
pulse  
td  
LATCH ENABLE  
tw  
Read  
Back  
Data  
Bit1  
Read  
ReadBack  
Data Bit30  
ReadBack  
Data Bit 0  
ReadBack  
Data Bit31  
Back  
Data  
Bit29  
READBACK DATA  
Figure 3. SPI Read-Back Timing Diagram  
Table 2. SPI Timing Read-Back Phase  
PARAMETER  
Hold time, data to clock  
MIN  
20  
20  
20  
20  
20  
10  
50  
50  
TYP  
MAX UNITS COMMENTS  
th  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU1  
T(CH)  
T(CL)  
tSU2  
td  
Setup time, data to clock  
Clock low duration  
Clock High duration  
Setup time, clock to enable  
Delay time, clock to readback data output  
Enable Time  
tW  
Equals Clock period  
t(CLK)  
Clock period  
8
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
OPEN LOOP PHASE NOISE  
vs  
OPEN LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 3.35 GHz  
VCC = 3.3, 5 V  
F_LO_OUT = 2.6 GHz  
VCC = 3.3, 5 V  
-80  
-80  
TA = 85°C  
TA = 85°C  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G001  
G002  
Figure 4.  
Figure 5.  
TEXT  
TEXT  
OPEN LOOP PHASE NOISE  
vs  
OPEN LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 4.05 GHz  
VCC = 3.3, 5 V  
F_LO_OUT = 4.7 GHz  
VCC = 3.3, 5 V  
-80  
-80  
TA = 85°C  
TA = 85°C  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G003  
G004  
Figure 6.  
Figure 7.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
OPEN LOOP PHASE NOISE  
vs  
OPEN LOOP PHASE NOISE  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
FREQUENCY AND SUPPLY VOLTAGE  
-40  
-60  
-40  
-60  
F_LO_OUT = 2.6 GHz  
TA = 25°C  
F_LO_OUT = 3.35 GHz  
TA = 25°C  
-80  
-80  
VCC = 3.6 V  
VCC = 3.6 V  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
VCC = 3 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.3 V  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G005  
G006  
Figure 8.  
Figure 9.  
TEXT  
TEXT  
OPEN LOOP PHASE NOISE  
vs  
OPEN LOOP PHASE NOISE  
vs  
FREQUENCY AND SUPPLY VOLTAGE  
FREQUENCY AND SUPPLY VOLTAGE  
-40  
-60  
-40  
-60  
F_LO_OUT = 4.05 GHz  
TA = 25°C  
F_LO_OUT = 4.7 GHz  
TA = 25°C  
VCC = 3 V  
VCC = 3 V  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
VCC = 3.6 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3.3 V  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G007  
G008  
Figure 10.  
Figure 11.  
10  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 2.6 GHz  
CC = 3.3, 5 V  
Div 1 Mode  
F_LO_OUT = 1.3 GHz  
CC = 3.3, 5 V  
Div 2 Mode  
V
V
-80  
-80  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = -40èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G009  
G010  
Figure 12.  
Figure 13.  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 650 MHz  
CC = 3.3, 5 V  
Div 4 Mode  
F_LO_OUT = 325 MHz  
CC = 3.3, 5 V  
Div 8 Mode  
V
V
-80  
-80  
TA = 25èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 85èC  
TA = -40èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G011  
G012  
Figure 14.  
Figure 15.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 3.4 GHz  
CC = 3.3, 5 V  
Div 1 Mode  
F_LO_OUT = 1.7 GHz  
CC = 3.3, 5 V  
Div 2 Mode  
V
V
-80  
-80  
TA = 85èC  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G013  
G014  
Figure 16.  
Figure 17.  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 850 MHz  
CC = 3.3, 5 V  
Div 4 Mode  
F_LO_OUT = 425 MHz  
CC = 3.3, 5 V  
Div 8 Mode  
V
V
-80  
-80  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G015  
G016  
Figure 18.  
Figure 19.  
12  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 4 GHz  
CC = 3.3, 5 V  
Div 1 Mode  
F_LO_OUT = 2 GHz  
CC = 3.3, 5 V  
Div 2 Mode  
V
V
-80  
-80  
TA = 85èC  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G017  
G018  
Figure 20.  
Figure 21.  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 1 GHz  
CC = 3.3, 5 V  
Div 4 Mode  
F_LO_OUT = 500 MHz  
CC = 3.3, 5 V  
Div 8 Mode  
V
V
-80  
-80  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G019  
G020  
Figure 22.  
Figure 23.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 4.6 GHz  
CC = 3.3, 5 V  
Div 1 Mode  
F_LO_OUT = 2.3 GHz  
CC = 3.3, 5 V  
Div 2 Mode  
V
V
-80  
-80  
TA = 85èC  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = 25èC  
TA = -40èC  
TA = -40èC  
TA = 25èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G021  
G022  
Figure 24.  
Figure 25.  
TEXT  
TEXT  
CLOSED LOOP PHASE NOISE  
vs  
CLOSED LOOP PHASE NOISE  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE  
-40  
-60  
-40  
-60  
F_LO_OUT = 1.15 GHz  
CC = 3.3, 5 V  
Div 4 Mode  
F_LO_OUT = 575 MHz  
CC = 3.3, 5 V  
Div 8 Mode  
V
V
-80  
-80  
TA = 85èC  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G023  
G024  
Figure 26.  
Figure 27.  
14  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
NOISE AT 13-MHz OFFSET  
vs  
NOISE AT 13-MHz OFFSET  
vs  
FREQUENCY AND TEMPERATURE  
WITH INTERNAL VCO  
FREQUENCY AND SUPPLY VOLTAGE  
WITH INTERNAL VCO  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
VCC = 3.3, 5 V  
Internal VCO  
PO = -10 dBm  
TA = 25°C  
Internal VCO  
PO = -10dBm  
TA = 85°C  
VCC = 3 V  
VCC = 3.3 V  
TA = 25°C  
VCC = 3.6 V  
TA = -40°C  
350 700 1050 1400 1750 2100 2450 2800 3150 3500  
Frequency (MHz)  
350 700 1050 1400 1750 2100 2450 2800 3150 3500  
Frequency (MHz)  
G025  
G026  
Figure 28.  
Figure 29.  
TEXT  
TEXT  
NOISE AT 13-MHz OFFSET  
vs  
NOISE AT 13-MHz OFFSET  
vs  
FREQUENCY AND TEMPERATURE  
WITH EXTERNAL VCO  
FREQUENCY AND SUPPLY VOLTAGE  
WITH EXTERNAL VCO  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
VCC = 3.3, 5 V  
External VCO  
PO = -10dBm  
TA = 25°C  
External VCO  
PO = -10dBm  
TA = 85°C  
VCC = 3.3 V  
VCC = 3.6 V  
TA = 25°C  
VCC = 3 V  
TA = -40°C  
350 700 1050 1400 1750 2100 2450 2800 3150 3500  
Frequency (MHz)  
350 700 1050 1400 1750 2100 2450 2800 3150 3500  
Frequency (MHz)  
G027  
G028  
Figure 30.  
Figure 31.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
NOISE AT 13-MHz OFFSET  
vs  
VOLTAGE GAIN  
vs  
OUTPUT POWER AND FREQUENCY  
FREQUENCY AND TEMPERATURE  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-175  
-180  
2
1
VCC = 3.3, 5 V  
TA = 25°C  
f = 2140 MHz  
f = 3500 MHz  
f = 2700 MHz  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
TA = 25°C  
TA = -40°C  
f = 900 MHz  
f = 750 MHz  
f = 450 MHz  
TA = 85°C  
-15  
-10  
-5  
0
5
10  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
Output Power (dBm)  
G029  
G030  
Figure 32.  
Figure 33.  
TEXT  
TEXT  
VOLTAGE GAIN  
vs  
VOLTAGE GAIN  
vs  
FREQUENCY AND TEMPERATURE at 750 MHz  
FREQUENCY AND TEMPERATURE at 900 MHz  
-3  
-3.1  
-3.2  
-3.3  
-3.4  
-3.5  
-3.2  
-3.25  
-3.3  
TA = 25°C  
TA = -40°C  
-3.35  
-3.4  
TA = -40°C  
TA = 85°C  
-3.45  
-3.5  
TA = 25°C  
TA = 85°C  
-3.55  
-3.6  
720 725 730 735 740 745 750 755 760 765 770  
Frequency (MHz)  
880  
885  
890  
895  
900  
905  
910  
915  
920  
Frequency (MHz)  
G031  
G032  
Figure 34.  
Figure 35.  
16  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
VOLTAGE GAIN  
VOLTAGE GAIN  
vs  
vs  
FREQUENCY AND TEMPERATURE at 1500 MHz  
FREQUENCY AND TEMPERATURE at 2150 MHz  
-3.6  
-3.7  
-3.8  
-3.9  
-4  
-3.4  
-3.5  
-3.6  
-3.7  
-3.8  
-3.9  
-4  
TA = -40°C  
TA = -40°C  
TA = 25°C  
-4.1  
-4.2  
-4.3  
-4.4  
-4.1  
-4.2  
-4.3  
TA = 25°C  
TA = 85°C  
TA = 85°C  
1465 1470 1475 1480 1485 1490 1495 1500 1505 1510  
Frequency (MHz)  
2100  
2110  
2120  
2130  
Frequency (MHz)  
2140  
2150  
2160  
2170  
G033  
G034  
Figure 36.  
Figure 37.  
TEXT  
TEXT  
VOLTAGE GAIN  
VOLTAGE GAIN  
vs  
vs  
FREQUENCY AND TEMPERATURE at 2650 MHz  
COMMON-MODE VOLTAGE AND FREQUENCY  
-2.7  
-2.8  
-2.9  
-3  
-2.4  
-2.6  
-2.8  
-3  
f = 2700 MHz  
TA = -40°C  
f = 750 MHz  
TA = 25°C  
-3.2  
-3.4  
-3.6  
-3.8  
-4  
f = 900 MHz  
-3.1  
-3.2  
-3.3  
-3.4  
-3.5  
f = 2150 MHz  
TA = 85°C  
-4.2  
f = 1500 MHz  
-4.4  
2610 2620 2630 2640 2650 2660 2670 2680 2690  
Frequency (MHz)  
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
Common-Mode Voltage (V)  
G035  
G036  
Figure 38.  
Figure 39.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
VOLTAGE GAIN  
VOLTAGE GAIN  
vs  
vs  
BASEBAND VOLTAGE AMPLITUDE AND FREQUENCY  
FREQUENCY AND SUPPLY VOLTAGE  
-2.5  
1
0
f = 2700 MHz  
-2.7  
-2.9  
-3.1  
-3.3  
-3.5  
-3.7  
-3.9  
-4.1  
-4.3  
-4.5  
f = 750 MHz  
-1  
-2  
-3  
-4  
-5  
f = 900 MHz  
f = 2150 MHz  
VCC = 3.3 V  
VCC = 3.6 V  
f = 1500 MHz  
VCC = 3 V  
BB Voltage is Single-Ended RMS  
0
100 200 300 400 500 600 700 800 900 1000  
Baseband Voltage Amplitude (mV)  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
G037  
G038  
Figure 40.  
Figure 41.  
TEXT  
TEXT  
P1dB  
P1dB  
vs  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE at 750 MHz  
15  
14  
13  
12  
11  
10  
9
11.3  
11.2  
11.1  
11  
TA = 25°C  
TA = 25°C  
TA = 85°C  
10.9  
10.8  
10.7  
10.6  
10.5  
TA = 85°C  
TA = -40°C  
8
7
TA = -40°C  
6
5
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
700 710 720 730 740 750 760 770 780 790 800  
Frequency (MHz)  
G039  
G040  
Figure 42.  
Figure 43.  
18  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
P1dB  
P1dB  
vs  
vs  
FREQUENCY AND TEMPERATURE at 900 MHz  
FREQUENCY AND TEMPERATURE at 1500 MHz  
11.4  
11.3  
11.2  
11.1  
11  
11.5  
11.4  
11.3  
11.2  
11.1  
11  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
10.9  
10.8  
10.7  
10.6  
10.5  
10.9  
10.8  
10.7  
10.6  
10.5  
TA = -40°C  
TA = -40°C  
850 860 870 880 890 900 910 920 930 940 950  
Frequency (MHz)  
1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550  
Frequency (MHz)  
G041  
G042  
Figure 44.  
Figure 45.  
TEXT  
TEXT  
P1dB  
P1dB  
vs  
vs  
FREQUENCY AND TEMPERATURE at 2150 MHz  
FREQUENCY AND TEMPERATURE at 2700 MHz  
12.2  
12  
12.6  
12.4  
12.2  
12  
TA = 25°C  
TA = 25°C  
11.8  
11.6  
11.4  
11.2  
11  
TA = -40°C  
11.8  
11.6  
11.4  
11.2  
11  
TA = -40°C  
TA = 85°C  
TA = 85°C  
10.8  
2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200  
Frequency (MHz)  
2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750  
Frequency (MHz)  
G043  
G044  
Figure 46.  
Figure 47.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
P1dB  
P1dB  
vs  
vs  
COMMON-MODE VOLTAGE AND FREQUENCY  
FREQUENCY AND SUPPLY VOLTAGE  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
f = 2700 MHz  
f = 2150 MHz  
VCC = 3.6 V  
VCC = 3.3 V  
f = 1500 MHz  
f = 900 MHz  
VCC = 3 V  
8
f = 750 MHz  
7
8
6
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
Common-Mode Voltage (V)  
G045  
G046  
Figure 48.  
Figure 49.  
TEXT  
TEXT  
OIP3  
vs  
OIP3  
vs  
FREQUENCY AND TEMPERATURE  
TEMPERATURE AND FREQUENCY at 900 MHz  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
28  
27.5  
27  
TA = -40°C  
TA = 25°C  
TA = -40°C  
26.5  
26  
TA = 85°C  
TA = 25°C  
25.5  
25  
TA = 85°C  
24.5  
24  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
880  
885  
890  
895  
900  
905  
910  
915  
920  
Frequency (MHz)  
G047  
G048  
Figure 50.  
Figure 51.  
20  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
OIP3  
OIP3  
vs  
vs  
FREQUENCY AND TEMPERATURE at 1030 MHz  
FREQUENCY AND TEMPERATURE at 1650 MHz  
28  
27.5  
27  
26  
25.5  
25  
TA = 25°C  
TA = -40°C  
TA = -40°C  
26.5  
26  
24.5  
24  
TA = 25°C  
25.5  
25  
23.5  
23  
TA = 85°C  
TA = 85°C  
24.5  
22.5  
24  
22  
1000 1005 1010 1015 1020 1025 1030 1035 1040  
Frequency (MHz)  
1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670  
Frequency (MHz)  
G049  
G050  
Figure 52.  
Figure 53.  
TEXT  
TEXT  
OIP3  
OIP3  
vs  
vs  
FREQUENCY AND TEMPERATURE at 2850 MHz  
FREQUENCY AND TEMPERATURE at 2300 MHz  
30  
29  
28  
27  
26  
25  
24  
23  
27  
26  
25  
24  
23  
22  
21  
TA = -40°C  
TA = 25°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
2260  
2270  
2280  
2290  
2300  
2310  
2320  
2770 2780 2790 2800 2810 2820 2830 2840 2850  
Frequency (MHz)  
Frequency (MHz)  
G051  
G052  
Figure 54.  
Figure 55.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
OIP3  
OIP3  
vs  
vs  
BASEBAND VOLTAGE AMPLITUDE AND FREQUENCY  
COMMON-MODE VOLTAGE AND FREQUENCY  
29  
28  
27  
26  
25  
24  
23  
22  
21  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
f = 900 MHz  
f = 900 MHz  
f = 2700 MHz  
f = 2150 MHz  
f = 2700 MHz  
f = 2150 MHz  
f = 750 MHz  
f = 1500 MHz  
f = 1500 MHz  
f = 750 MHz  
TA = 25°C  
BB Voltage is Single-Ended RMS  
1.5  
1.55  
1.6  
1.65  
1.7  
1.75  
Common-Mode Voltage (V)  
1.8  
1.85  
1.9  
0
100 200 300 400 500 600 700 800 900 1000  
Baseband Voltage Amplitude (mV)  
G053  
G083  
Figure 56.  
Figure 57.  
TEXT  
TEXT  
OIP2  
vs  
OIP2  
vs  
FREQUENCY AND TEMPERATURE  
FREQUENCY AND TEMPERATURE at 750 MHz  
70  
58  
65  
60  
55  
50  
45  
40  
35  
30  
57.5  
57  
TA = -40°C  
TA = 85°C  
TA = 25°C  
56.5  
56  
TA = 25°C  
TA = 85°C  
TA = -40°C  
55.5  
55  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
730  
735  
740  
745  
750  
755  
760  
765  
770  
Frequency (MHz)  
G054  
G055  
Figure 58.  
Figure 59.  
22  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
OIP2  
OIP2  
vs  
vs  
FREQUENCY AND TEMPERATURE at 900 MHz  
FREQUENCY AND TEMPERATURE at 1500 MHz  
58  
57.5  
57  
58  
57.5  
57  
TA = -40°C  
TA = 85°C  
TA = 25°C  
56.5  
56  
56.5  
56  
55.5  
55  
TA = 25°C  
TA = 85°C  
55.5  
55  
TA = -40°C  
54.5  
54  
880  
885  
890  
895  
900  
905  
910  
915  
920  
1470 1475 1480 1485 1490 1495 1500 1505 1510  
Frequency (MHz)  
Frequency (MHz)  
G056  
G057  
Figure 60.  
Figure 61.  
TEXT  
TEXT  
OIP2  
vs  
OIP2  
vs  
FREQUENCY AND TEMPERATURE at 2150 MHz  
FREQUENCY AND TEMPERATURE at 2650 MHz  
57  
56.5  
56  
54  
53  
52  
51  
50  
49  
48  
47  
46  
TA = 85°C  
TA = -40°C  
TA = 25°C  
55.5  
55  
54.5  
54  
TA = 25°C  
TA = -40°C  
TA = 85°C  
53.5  
53  
2100 2110 2120 2130 2140 2150 2160 2170 2180  
Frequency (MHz)  
2620  
2630  
2640  
2650  
Frequency (MHz)  
2660  
2670  
2680  
2690  
G058  
G059  
Figure 62.  
Figure 63.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
UNADJUSTED SIDEBAND SUPPRESSION  
UNADJUSTED SIDEBAND SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE  
FRQUENCY AND TEMPERATURE at 900 MHz  
55  
50  
45  
40  
35  
30  
25  
46.5  
TA = 85°C  
TA = 25°C  
TA = -40°C  
46  
TA = 85°C  
45.5  
TA = 25°C  
TA = -40°C  
45  
880  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
885  
890  
895  
900  
905  
910  
915  
920  
Frequency (MHz)  
G060  
G061  
Figure 64.  
Figure 65.  
TEXT  
TEXT  
UNADJUSTED SIDEBAND SUPPRESSION  
UNADJUSTED SIDEBAND SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE at 1030 MHz  
FREQUENCY AND TEMPERATURE at 1650 MHz  
47  
46.5  
46  
43  
42.5  
42  
TA = -40°C  
TA = -40°C  
45.5  
45  
41.5  
41  
TA = 85°C  
TA = 25°C  
44.5  
44  
40.5  
40  
TA = 85°C  
TA = 25°C  
43.5  
39.5  
43  
39  
1000 1005 1010 1015 1020 1025 1030 1035 1040  
Frequency (MHz)  
1610  
1620  
1630  
1640  
1650  
1660  
1670  
Frequency (MHz)  
G062  
G063  
Figure 66.  
Figure 67.  
24  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
UNADJUSTED SIDEBAND SUPPRESSION  
UNADJUSTED SIDEBAND SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE at 2300 MHz  
FREQUENCY AND TEMPERATURE at 2850 MHz  
37  
36  
35  
34  
33  
32  
31  
30  
44  
43  
42  
41  
40  
39  
TA = -40°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
2250 2260 2270 2280 2290 2300 2310 2320 2330  
Frequency (MHz)  
2760 2770 2780 2790 2800 2810 2820 2830 2840 2850  
Frequency (MHz)  
G064  
G065  
Figure 68.  
TEXT  
Figure 69.  
TEXT  
UNADJUSTED CARRIER SUPPRESSION  
UNADJUSTED SIDEBAND SUPPRESSION  
vs  
vs  
FRQUENCY AND TEMPERATURE  
COMMON-MODE VOLTAGE AND FREQUENCY  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
-48  
-51  
50  
48  
46  
44  
42  
40  
38  
36  
34  
TA = 25°C  
f = 750 MHz  
TA = -40°C  
TA = 25°C  
f = 2700 MHz  
f = 900 MHz  
f = 1500 MHz  
f = 2150 MHz  
TA = 85°C  
300 800 1300 1800 2300 2800 3300 3800 4300 4800  
Frequency (MHz)  
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
Common-Mode Voltage (V)  
G066  
G067  
Figure 70.  
Figure 71.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
UNADJUSTED CARRIER SUPPRESSION  
UNADJUSTED CARRIER SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE at 900 MHz  
FRQUENCY AND TEMPERATURE at 1030 MHz  
-41  
-41.5  
-42  
-42  
-42.5  
-43  
TA = 25°C  
TA = -40°C  
TA = 25°C  
-42.5  
-43  
-43.5  
-44  
-43.5  
-44  
-44.5  
-45  
TA = -40°C  
-44.5  
-45  
TA = 85°C  
TA = 85°C  
-45.5  
-45.5  
-46  
-46  
880  
885  
890  
895  
900  
905  
910  
915  
920  
990  
1000  
1010  
1020  
1030  
1040  
1050  
Frequency (MHz)  
Frequency (MHz)  
G068  
G069  
Figure 72.  
Figure 73.  
TEXT  
TEXT  
UNADJUSTED CARRIER SUPPRESSION  
vs  
UNADJUSTED CARRIER SUPPRESSION  
vs  
FREQUENCY AND TEMPERATURE at 1650 MHz  
FREQUENCY AND TEMPERATURE at 2300 MHz  
-43  
-43.5  
-44  
-35  
-36  
-37  
-38  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
TA = -40°C  
TA = 25°C  
TA = 85°C  
-44.5  
-45  
-45.5  
-46  
TA = 25°C  
TA = 85°C  
-46.5  
TA = -40°C  
-47  
1610  
1620  
1630  
1640  
1650  
1660  
1670  
2250 2260 2270 2280 2290 2300 2310 2320 2330  
Frequency (MHz)  
Frequency (MHz)  
G070  
G071  
Figure 74.  
Figure 75.  
26  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
UNADJUSTED CARRIER SUPPRESSION  
UNADJUSTED CARRIER SUPPRESSION  
vs  
vs  
FREQUENCY AND TEMPERATURE at 2850 MHz  
COMMON- MODE VOLTAGE AND FREQUENCY  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-39  
-40  
-41  
-42  
-43  
-44  
-45  
-46  
-47  
-48  
-49  
TA = -40°C  
f = 2150 MHz  
f = 2700 MHz  
TA = 25°C  
TA = 85°C  
f = 900 MHz  
f = 1500 MHz  
f = 750 MHz  
TA = 25°C  
2760 2770 2780 2790 2800 2810 2820 2830 2840 2850  
Frequency (MHz)  
1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95  
Common-Mode Voltage (V)  
2
G073  
G072  
Figure 76.  
Figure 77.  
TEXT  
TEXT  
COMMON-MODE VOLTAGE  
BASEBAND VOLTAGE OFFSET  
vs  
vs  
VREF_SEL SETTING AND TEMPERATURE  
IOFF SETTING AND TEMPERATURE  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
20  
TA = -40°C  
TA = 25°C  
TA = 85°C  
15  
10  
5
TA = 25°C  
0
DCOFFSET_I = 1  
-5  
TA = -40°C  
-10  
-15  
-20  
-25  
-30  
TA = 85°C  
DCOFFSET_I = 3  
0
1
2
3
4
5
6
7
0
30  
60  
90  
120  
150  
180  
210  
240  
VREF_SEL Setting  
IOFF Setting  
G074  
G075  
Figure 78.  
Figure 79.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
TEXT  
GAIN at 2300 MHz DISTRIBUTION  
P1dB at 2300 MHz DISTRIBUTION  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
Voltage Gain (dB)  
P1dB (dBm)  
G078  
G079  
Figure 80.  
Figure 81.  
TEXT  
TEXT  
OIP3 at 2300 MHz DISTRIBUTION  
UNADJUSTED CARRIER SUPPRESSION  
at 2300 MHz DISTRIBUTION  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
OIP3 (dBm)  
G080  
Unadjusted Carrier Suppression (dBm)  
G081  
Figure 82.  
Figure 83.  
28  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
TYPICAL CHARACTERISTICS (continued)  
VCM = 1.7 V (internal), VinBB = 300 mVrms single-ended sine wave in quadrature, VCC3V = 3.3 V, VCC5V = 5 V, fBB = 4.5 MHz  
and 5.5 MHz, internal LO, TA = 25°C; FPFD = 1.6 MHz (unless otherwise noted).  
TEXT  
UNADJUSTED SIDEBAND SUPPRESSION  
at 2300 MHz DISTRIBUTION  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
Unadjusted Sideband Suppression (dBc)  
G082  
Figure 84.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
SERIAL INTERFACE PROGRAMMING REGISTERS DEFINITION  
The TRF372017 features a 3-wire serial programming interface (SPI) that controls an internal 32-bit shift register.  
There are a total of 3 signals that need to be applied: the clock (CLK, pin 47), the serial data (DATA, pin 46) and  
the latch enable (LE, pin 45). The TRF372017 has an additional pin (RDBK, pin 2) for read-back functionality.  
This pin is a digital pin and can be used to read-back values of different internal registers.  
The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The LE is  
asynchronous to the CLOCK and at its rising edge the data in the shift register gets loaded onto the selected  
internal register. The 5 LSB of the Data field are the address bits to select the available internal registers.  
PLL SPI REGISTERS  
Register 1  
Register address  
Bit1 Bit2 Bit3  
Reference Clock Divider  
Bit0  
Bit4  
VCO  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
RSV  
….  
RSV  
REF  
INV  
Charge Pump Current  
CP  
VCO Cal CLK div/Mult  
NEG  
DOUBLE  
Bit16 Bit17 Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Register 1  
Bit0  
Name  
Reset Value  
Description  
Register address bits  
ADDR_0  
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
RDIV_0  
RDIV_1  
RDIV_2  
RDIV_3  
RDIV_4  
RDIV_5  
RDIV_6  
RDIV_7  
RDIV_8  
RDIV_9  
RDIV_10  
RDIV_11  
RDIV_12  
RSV  
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
1
0
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
13-bit Reference Divider value  
(minimum value Rmin= 1, B[17..5] = [00 0000 0000 001];  
maximum value Rmax=8191, B[17..5] = [11 1111 1111 111];  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
REF_INV  
NEG_VCO  
ICP_0  
Invert Reference Clock polarity; 1 = use falling edge  
VCO polarity control; 1= negative slope (negative Kv)  
Program Charge Pump dc current, ICP  
1.94mA, B[25..21] = [00 000]  
0.47mA, B[25..21] = [11 111]  
ICP_1  
0.97mA, default value, , B[25..21] = [01 010]  
ICP_2  
ICP_3  
ICP_4  
ICPDOUBLE  
1 = set ICP to double the current  
CAL_CLK_SEL_0  
CAL_CLK _SEL_1  
CAL_CLK _SEL_2  
CAL_CLK _SEL_3  
RSV  
Multiplication or division factor to create VCO calibration clock from PFD frequency  
30  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
CAL_CLK_SEL[3..0]: Set the frequency divider value used to derive the VCO calibration clock from the phase  
detector frequency  
CAL_CLK_SEL  
1111  
Scaling Factor  
1/128  
1/64  
1/32  
1/16  
1/8  
1/4  
½
1110  
1101  
1100  
1011  
1010  
1001  
1000  
1
0110  
2
0101  
4
0100  
8
0011  
16  
0010  
32  
0001  
64  
0000  
128  
ICP[4..0]: Set the charge pump current  
ICP[4..0]  
00 000  
00 001  
00 010  
00 011  
00 100  
00 101  
00 110  
00 111  
01 000  
01 001  
01 010  
01 011  
01 100  
01 101  
01 110  
01 111  
10 000  
10 001  
10 010  
10 011  
10 100  
10 101  
10 110  
10 111  
11 000  
11 001  
11 010  
11 011  
Current (mA)  
1.94  
1.76  
1.62  
1.49  
1.38  
1.29  
1.21  
1.14  
1.08  
1.02  
0.97  
0.92  
0.88  
0.84  
0.81  
0.78  
0.75  
0.72  
0.69  
0.67  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
0.54  
0.52  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
ICP[4..0]  
11 100  
11 101  
11 110  
11 111  
Current (mA)  
0.51  
0.5  
0.48  
0.47  
Register 2  
Register address  
N-divider value  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
CAL  
...  
PLL divider  
setting  
Prescaler RSV  
Select  
RSV  
VCO select  
FCO  
sel  
Cal accuracy  
mode  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24 Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Register 2 Name  
Reset Value Description  
Register address bits  
Bit0  
Bit1  
ADDR_0  
0
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
NINT_0  
NINT_1  
NINT_2  
NINT_3  
NINT_4  
NINT_5  
NINT_6  
NINT_7  
NINT_8  
NINT_9  
NINT_10  
NINT_11  
NINT_12  
NINT_13  
NINT_14  
NINT_15  
Bit2  
Bit3  
Bit4  
Bit5  
PLL N-divider division setting  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
PLL_DIV_SEL0  
PLL_DIV_SEL1  
PRSC_SEL  
RSV  
Select division ratio of divider in front of prescaler  
Set prescaler modulus (0 4/5; 1 8/9)  
RSV  
VCO_SEL_0  
Selects between the four integrated VCO's  
00 = lowest frequency VCO; 11 = highest frequency VCO  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
VCO_SEL_1  
VCOSEL_MODE  
CAL_ACC_0  
CAL_ACC_1  
EN_CAL  
1
0
0
0
0
Single VCO auto-calibration mode (1 = active)  
Error count during the cap array calibration  
Recommended programming [00]  
Execute a VCO frequency auto-calibration. Set to 1 to initiate a calibration. Resets  
automatically.  
32  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
PLL_DIV<1,0>: Select division ratio of divider in front of prescaler  
PLL DIV  
Frequency Divider  
00  
01  
10  
1
2
4
VCOSEL_MODE<0>: when it is 1, the cap array calibration is run on the VCO selected through bits  
VCO_SEL<2,1>  
Register 3  
Register address  
Fractional N-divider value…  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit28  
Bit13  
Bit29  
Bit14  
Bit15  
...  
RSV  
RSV  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit30  
Bit31  
Register 3 Name  
Reset Value  
Description  
Register address bits  
Bit0  
Bit1  
ADDR_0  
ADDR_1  
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit2  
ADDR_2  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
NFRAC<0>  
NFRAC<1>  
NFRAC<2>  
NFRAC<3>  
NFRAC<4>  
NFRAC<5>  
NFRAC<6>  
NFRAC<7>  
NFRAC<8>  
NFRAC<9>  
NFRAC<10>  
NFRAC<11>  
NFRAC<12>  
NFRAC<13>  
NFRAC<14>  
NFRAC<15>  
NFRAC<16>  
NFRAC<17>  
NFRAC<18>  
NFRAC<19>  
NFRAC<20>  
NFRAC<21>  
NFRAC<22>  
NFRAC<23>  
NFRAC<24>  
RSV  
Fractional PLL N divider value 0 to 0.99999.  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
RSV  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Register 4  
Register address  
PD  
Power Down PLL blocks  
PD  
PLL  
VCM  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
PD DC EXT  
PLL Test Control  
ΣΔ Mode order  
ΣΔ Mode controls  
EN  
off  
VCO  
Bit17  
Fract  
mode  
Bit16  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Register 4 Name  
Reset Value  
Description  
Bit0  
Bit1  
ADDR_0  
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
Register address bits  
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
PWD_PLL  
PWD_CP  
PWD_VCO  
Bit2  
Bit3  
Bit4  
Bit5  
Power down all PLL blocks (1 = off)  
When 1, charge pump is off  
When 1, VCO is off  
Bit6  
Bit7  
Bit8  
PWD_VCOMUX  
PWD_DIV124  
PWD_PRESC  
RSV  
Power down the 4 VCO mux block (1 = Off)  
Bit9  
Power down programmable RF divider in PLL feedback path (1 = off)  
Power down programmable prescaler (1 = off)  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
PWD_OUT_BUFF  
PWD_LO_DIV  
PWD_TX_DIV  
PWD_BB_VCM  
PWD_DC_OFF  
EN_EXTVCO  
EN_ISOURCE  
Power down LO output buffer (1 = off).  
Power down frequency divider in LO output chain 1 (1 = off)  
Power down frequency divider in modulator chain (1 = off)  
Power down baseband input DC common block (1 = off)  
Power down baseband input DC offset control block (1 = off)  
Enable external LO/VCO input buffer (1 = enabled)  
Enable offset current at Charge Pump output (to be used in fractional mode only, 1 =  
on).  
Bit19  
Bit20  
Bit21  
Bit22  
LD_ANA_PREC_0  
LD_ANA_PREC_1  
CP_TRISTATE_0  
CP_TRISTATE_1  
0
0
0
0
Control precision of analog lock detector (1 1 = low; 0 0 = high). See LOCK DETECT  
section of Application Information for usage details.  
Set the charge pump output in Tristate mode.  
Normal, B[22..21] = [00]  
Down, B[22..21] = [01]  
Up, B[22..21] = [10]  
Tristate, B[22..21] = [11]  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
SPEEDUP  
0
0
1
0
1
Speed up PLL and Tx blocks by bypassing bias stabilizer capacitors.  
Lock detector precision (increases sampling time if set to 1)  
Enable ΔΣ modulator dither (1=on)  
LD_DIG_PREC  
EN_DITH  
MOD_ORD_0  
MOD_ORD_1  
ΔΣ modulator order (1 through 4). Not used in integer mode.  
1st order, B[27..26] = [00]  
2nd order, B[27..26] = [01]  
3rd order, B[27..26] = [10]  
4th order, B[27..26] = [11]  
Bit28  
Bit29  
Bit30  
DITH_SEL  
0
0
1
Select dither mode for ΔΣ modulator (0 = const; 1 = pseudo-random)  
DEL_SD_CLK_0  
DEL_SD_CLK_1  
ΔΣ modulator clock delay. Not used in integer mode.  
Min delay = 00  
Max delay = 11  
Bit31  
EN_FRAC  
0
Enable fractional mode (1 = fractional enabled)  
34  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Register 5  
Register address  
Bit1 Bit2 Bit3  
VCO_R Trim  
Bit6  
PLL_R_Trim  
Bit8 Bit9  
VCO Current  
Bit11 Bit12  
VCOBUF BIAS  
Bit14 Bit15  
Bit0  
VCOMUX BIAS OUTBUF BIAS  
Bit4  
Bit5  
RSV  
Bit7  
VCO CAL REF  
Bit10  
Bit13  
BIAS  
SEL  
VCOMUX  
VCO Bias  
RSV EN_LD  
ISRC  
AMPL Voltage  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26 Bit27 Bit28 Bit29  
Bit30  
Bit31  
Register 5 Name  
Reset Value  
Description  
Register address bits  
Bit0  
Bit1  
ADDR_0  
1
0
1
1
0
0
0
1
0
1
0
0
0
1
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
Bit2  
Bit3  
Bit4  
Bit5  
VCOBIAS_RTRIM_0  
VCOBIAS_RTRIM_1  
VCOBIAS_RTRIM_2  
PLLBIAS_RTRIM_0  
PLLBIAS_RTRIM_1  
VCO_BIAS_0  
VCO bias resistor trimming. Recommended programming [100].  
PLL bias resistor trimming. Recommended programming [10].  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
VCO bias reference current.  
300 µA, B[13..10] = [00 00]  
600 µA, B[13..10] = [11 11]  
Bias current varies directly with reference current  
Recommended programming  
VCO_BIAS_1  
VCO_BIAS_2  
VCO_BIAS_3  
400 µA, B[13..10] = [0101] with VCC_VCO2 = 3.3 V  
600 µA, B[13..10] = [1111] with VCC_VCO2 = 5.0 V  
Bit14  
Bit15  
VCOBUF_BIAS_0  
VCOBUF_BIAS_1  
0
1
VCO buffer bias reference current.  
300 µA, B[15..14] = [00]  
600 µA, B[15..14] = [11]  
Bias current varies directly with reference current  
Recommended programming [10]  
Bit16  
Bit17  
VCOMUX_BIAS_0  
VCOMUX_BIAS_1  
0
1
VCO’s muxing buffer bias reference current.  
300 µA, B[17..16] = [00]  
600 µA, B[17..16] = [11]  
Bias current varies directly with reference current  
Recommended programming [11]  
Bit18  
Bit19  
BUFOUT_BIAS_0  
BUFOUT_BIAS_1  
0
1
PLL output buffer bias reference current.  
300 µA, B[19..18] = [00]  
600 µA, B[19..18] = [11]  
Bias current varies directly with reference current  
Bit20  
Bit21  
Bit22  
RSV  
0
1
0
RSV  
VCO_CAL_IB  
Select bias current type for VCO calibration circuitry  
0 = PTAT; 1 = constant over temperature  
Recommended programming [0]  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
VCO_CAL_REF_0  
VCO_CAL_REF_1  
VCO_CAL_REF_2  
VCO_AMPL_CTRL_0  
VCO_AMPL_CTRL_1  
VCO_VB_CTRL_0  
VCO_VB_CTRL _1  
0
0
1
0
1
0
1
VCO calibration reference voltage trimming.  
0.9 V, B[25..23] = [000]  
1.4 V, B[25..23] = [111]  
Recommended programming [010]  
Adjust the signal amplitude at the VCO mux input  
Recommended programming [11]  
VCO core bias voltage control  
1.2 V, B[29..28] = [00]  
1.35 V, B[29..28] = [01]  
1.5 V, B[29..28] = [10]  
1.65 V, B[29..28] = [11]  
Recommended programming [00]  
Bit30  
RSV  
0
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Register 5 Name  
Reset Value  
Description  
Bit31  
EN_LD_ISOURCE  
1
Enable monitoring of LD to turn on Isource when in frac-n mode (EN_FRAC=1).  
0 = ISource set by EN_ISOURCE.  
1 = ISource set by LD.  
Recommended programming [0]  
Register 6  
Register address  
BB DC OFFSET  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
TXDIV SEL  
Bit24 Bit25  
Bit9  
Bit10  
LODIV SEL  
Bit26 Bit27  
Bit11  
Bit12  
TXDIV BIAS  
Bit28 Bit29  
Bit13  
Bit14  
LODIV BIAS  
Bit30 Bit31  
Bit15  
BB DC OFFSET  
VREF SEL  
Bit22  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit23  
Register 6 Name  
Reset Value Description  
Register address bits  
Bit0  
Bit1  
ADDR_0  
0
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
IOFF_0  
Bit2  
Bit3  
Bit4  
Bit5  
Adjust Iref current used for defining I DC offset.  
Full range, 2 × Iref, B[12..5] = [1 1111 111]  
Mid scale, Iref B[12..5] = [1 0000 000]  
Bit6  
IOFF_1  
Bit7  
IOFF_2  
Bit8  
IOFF_3  
Bit9  
IOFF_4  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
IOFF_5  
IOFF_6  
IOFF_7  
QOFF_0  
QOFF_1  
QOFF_2  
QOFF_3  
QOFF_4  
QOFF_5  
QOFF_6  
QOFF_7  
VREF_SEL_0  
VREF_SEL_1  
VREF_SEL_2  
Adjust Iref current used for defining Q DC offset.  
Full range, 2 × Iref, B[20..13] = [1 1111 111]  
Mid scale, Iref B[20..13] = [1 0000 000]  
Adjust Vref in baseband common mode generation circuit.  
0.65 V, B[23..21] = [000]  
1 V, B[23..21] = [111]  
Modulator common mode is Vref + Vbe.  
Recommended programming [100]  
Bit24  
Bit25  
TX_DIV_SEL_0  
TX_DIV_SEL_1  
0
0
Adjust Tx path divider.  
Div1, [B25..24] = [00]  
Div2, [B25..24] = [01]  
Div4, [B25..24] = [10]  
Div8, [B25..24] = [11]  
Bit26  
Bit27  
LO_DIV_SEL_0  
LO_DIV_SEL_1  
0
0
Adjust LO path divider  
Div1, [B28..27] = [00]  
Div2, [B28..27] = [01]  
Div4, [B28..27] = [10]  
Div8, [B28..27] = [11]  
Bit28  
Bit29  
TX_DIV_BIAS_0  
TX_DIV_BIAS_1  
0
1
TX divider bias reference current  
25 µA, [B29..28] = [00]  
37.5 µA, [B29..28] = [01]  
50 µA, [B29..28] = [10]  
62.5 µA, [B29..28] = [11]  
Bias current varies directly with reference current  
36  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Register 6 Name  
Reset Value Description  
Bit30  
Bit31  
LO_DIV_BIAS_0  
0
1
LO divider bias reference current  
25 µA, [B29..28] = [00]  
37.5 µA, [B29..28] = [01]  
50 µA, [B29..28] = [10]  
62.5 µA, [B29..28] = [11]  
LO_DIV_BIAS_1  
Bias current varies directly with reference current  
Register 7  
Register address  
VCO CAP ARRAY CONTROL  
RSV  
VCO  
test  
CAL  
bypass  
mode  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
MUX CONTROL  
ISRC  
SINK  
OFFSET CURRENT  
ADJUST  
LP PD  
VCM  
Bias  
MIX LO VCM  
DC OFF REF  
VCO  
BIAS  
SEL  
TimeConst  
Bit23 Bit24  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Register 7 Name  
Reset Value  
Description  
Register address bits  
Bit0  
Bit1  
ADDR_0  
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
RSV  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
RSV  
Bit7  
VCO_TRIM_0  
VCO_TRIM_1  
VCO_TRIM_2  
VCO_TRIM_3  
VCO_TRIM_4  
VCO_TRIM_5  
RSV  
VCO capacitor array control bits, used in manual cal mode  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
VCO_TEST_MODE  
CAL_BYPASS  
Counter mode: measure max/min frequency of each VCO  
Bypass of VCO auto-calibration. When ‘1’ VCO_TRIM and VCO_SEL bits are  
used to select the VCO and the cap array setting  
Bit16  
Bit17  
Bit18  
MUX_CTRL_0  
MUX_CTRL_1  
MUX_CTRL_2  
1
0
0
Select signal for test output (pin 5, LD).  
[000] = Ground  
[001] = Lock detector  
[010] = NDIV counter output  
[011] = Ground  
[100] = RDIV counter output  
[101] = Ground  
[110] = A_counter output  
[111] = Logic high;  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
ISOURCE_SINK  
ISOURCE_TRIM_0  
ISOURCE_TRIM_1  
ISOURCE_TRIM_2  
PD_TC_0  
0
0
0
1
0
0
Charge pump offset current polarity.  
Adjust isource bias current in frac-n mode.  
Time constant control for PWD_OUT_BUFF  
[00] = Minimum time constant  
[11] = Maximum time constant  
PD_TC_1  
Bit25  
IB_VCM_SEL  
0
Select constant/ptat current for Common mode bias generation block  
0 = PTAT  
1 = const  
Bit26  
RSV  
0
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Register 7 Name  
Reset Value  
Description  
Bit27  
Bit28  
Bit29  
Bit30  
RSV  
0
1
0
1
RSV  
DCOFFSET_I_0  
DCOFFSET_I_1  
Adjust BB input DC offset Iref  
50 µA, B[27..26] = [00]  
100 µA, B[27..26] = [01]  
150 µA, B[27..26] = [10]  
200 µA, B[27..26] = [11]  
Bit31  
VCO_BIAS_SEL  
0
Select VCO_BIAS trim settings stored in EEPROM  
0 = Use EEPROM settings if parity check is 1; otherwise, use SPI settings  
1 = Use SPI settings  
Recommended programming [1]  
READBACK MODE  
Register 0 functions as a Readback register. TRF372017 implements the capability to read-back the content of  
any serial programming interface register by initializing register 0.  
Each read-back is composed by two phases: writing followed by the actual reading of the internal data. This is  
shown in the timing diagram in Figure 3. During the writing phase a command is sent to TRF372017 register 0 to  
set it in read-back mode and to specify which register is to be read. In the proper reading phase, at each rising  
clock edge, the internal data is transferred into the RDBK pin and can be read at the following falling edge (LSB  
first). The first clock after the LE goes high (end of writing cycle) is idle and the following 32 clocks pulses will  
transfer the internal register content to the RDBK pin.  
Readback From the Internal Registers Banks  
TRF372017 integrates 8 registers: Register 0 (000) to Register 7 (111). Registers 1 through 7 are used to set-up  
and control the TRF372017 functionalities, while register 0 is used for the readback function.  
The latter register needs to be programmed with a specific command that sets TRF372017 in read-back mode  
and specifies the register to be read:  
set B[31] to 1 to put TRF372017 in read-back mode.  
set B[30,28] equal to the address of the register to be read (000 to 111).  
Set B27 to control the VCO frequency counter in VCO test mode.  
Register 0 Write  
Name  
ADDR<0>  
ADDR<1>  
ADDR<2>  
ADDR<3>  
ADDR<4>  
N/C  
Reset Value  
Description  
Address  
Bits  
B0  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register 0 to be programmed to set TRF372017 in readback mode.  
B1  
B2  
B3  
B4  
Data Field  
B5  
B6  
N/C  
B7  
N/C  
B8  
N/C  
B9  
N/C  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
38  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Name  
Reset Value  
Description  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
N/C  
0
0
0
0
0
0
0
0
0
0
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
COUNT_MODE_MUX_SEL  
Select Readback for VCO maximum frequency or minimum  
frequency.  
0 = Max  
1 = Min  
B28  
B29  
B30  
B31  
RB_REG<0>  
RB_REG<1>  
RB_REG<2>  
RB_ENABLE  
X
X
X
1
3 LSB’s of the address for the register that is being read  
Reg 1, B[30..28] = [000]  
Reg 7, B[30..28] = [111]  
1 Put the device in Readback Mode  
The contents of any register specified in RB_REG can be read back during the read cycle, including register 0.  
Register address  
Bit1 Bit2  
CHIP_ID  
Bit5  
NU  
R_SAT_ERR  
Bit12  
Bit0  
Bit3  
COUNT0-7/VCO_TRM  
Bit4  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
COUNT8-10/VCO_SEL  
COUNT11-17  
Bit13 Bit14 Bit15 Bit16 Bit17 Bit18 Bit19 Bit20  
Bit21  
Bit22  
Bit23  
Bit24 Bit25 Bit26 Bit27 Bit28 Bit29 Bit30  
COUNT_MODE-MUX-SEL  
Bit31  
Register 0 Name  
Reset Value  
Description  
Bit0  
Bit1  
ADDR_0  
0
0
0
1
0
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register address bits  
ADDR_1  
Bit2  
ADDR_2  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
CHIP_ID_0  
CHIP_ID_1  
NU  
Bit6  
Bit7  
Bit8  
NU  
Bit9  
NU  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
NU  
NU  
R_SAT_ERR  
count_0/NU  
count_1/NU  
count_2/VCO_TRIM_0  
count_3/VCO_TRIM_1  
count_4/VCO_TRIM_2  
count_5/VCO_TRIM_3  
count_6/VCO_TRIM_4  
count_7/VCO_TRIM_5  
Error flag for calibration speed  
B[30..13] = VCO frequency counter high when  
COUNT_MODE_MUX_SEL = 0 and VCO_TEST_MODE = 1  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Register 0 Name  
Reset Value  
Description  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
count_8/NU  
x
x
x
x
x
x
x
x
x
x
x
B[30..13] = VCO frequency counter low when  
COUNT_MODE_MUX_SEL = 1 and VCO_TEST_MODE = 1  
count_9/VCO_sel_0  
count_10/VCO_sel_1  
count<11>  
B[20..15] = Autocal results for VCO_TRIM,  
B[23..22] = Autocal results for VCO_SEL when  
VCO_TEST_MODE = 0  
count<12>  
count<13>  
count<14>  
count<15>  
count<16>  
count<17>  
COUNT_MODE_MUX_SEL  
0 = Minimum frequency  
1 = Maximum frequency  
40  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
APPLICATION INFORMATION  
INTEGER AND FRACTIONAL MODE SELECTION  
The PLL is designed to operate in either Integer mode or Fractional mode. If the desired local oscillator (LO)  
frequency is an integer multiple of the phase frequency detector (PFD) frequency, fPFD, then Integer mode can be  
selected. The normalized in-band phase noise floor in Integer mode is lower than in Fractional mode. In Integer  
mode, the feedback divider is an exact integer, and the fraction is zero. While operating in Integer mode, the  
register bits corresponding to the fractional control are don’t care.  
In Fractional mode, the feedback divider fractional portion is non-zero on average. With 25-bit fractional  
resolution, RF stepsize fPFD/225 is less than 1 Hz with a fPFD up to 33 MHz. The appropriate fractional control bits  
in the serial register must be programmed.  
DESCRIPTION OF PLL STRUCTURE  
EXT_VCO  
VCO0  
fLO  
fREF  
fPFD  
Divide by  
1/2/4/8  
Divide  
by R  
PHASE  
LOP,LON  
VCO1  
VCO2  
VCO3  
LOOP  
FILTER  
Z(f)  
REFIN  
FREQUENCY  
DETECTOR +  
CHARGE PUMP  
CP_OUT  
VTUNE  
fComp  
fVCO  
fmixer  
Divide by  
1/2/4/8  
RF Div  
Dig Div  
fN  
fPM  
Divide  
by N.f  
Divide  
by 1/2/4  
Prescaler  
4/5 or 8/9  
NINT & NFRAC Div  
Figure 85. Block Diagram of the PLL Loop  
The output frequency is given by Equation 1:  
fREF  
NFRAC  
225  
fVCO  
=
(PLL_DIV_SEL) NINT +  
RDIV  
(1)  
The rate at which phase comparison occurs is fREF/RDIV. In Integer mode, the fractional setting is ignored and  
Equation 2 is applied.  
fVCO  
= NINT ´ PLL_DIV_SEL  
fPFD  
(2)  
The feedback divider block consists of a programmable RF divider, a prescaler divider, and an NF divider. The  
prescaler can be programmed as either a 4/5 or an 8/9 prescaler. The NF divider includes an A counter and an  
M counter.  
Selecting PLL Divider Values  
Operation of the PLL requires the LO_DIV_SEL, RDIV, PLL_DIV_SEL, NINT, and NFRAC bits to be calculated.  
The LO or mixer frequency is related to fVCO according to divide-by-1/-2/-4/-8 blocks and the operating range of  
fVCO  
.
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
 
 
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
a. LO_DIV_SEL  
1
2
3
4
2400 MHz £ fRF £ 4800 MHz  
1200 MHz £ fRF £ 2400 MHz  
600 MHz £ fRF £ 1200 MHz  
300 MHz £ fRF £ 600 MHz  
LO_DIV_SEL =  
Therefore:  
fVCO = LO_DIV_SEL ´ fRF  
b. PLL_DIV_SEL  
Given fVCO, select the minimum value for PLL_DIV_SEL so that the programmable RF divider limits the input  
frequency into the prescaler block, fPM, to a maximum of 3000 MHz.  
PLL _ DIV _ SEL = min(1, 2, 4) such that fPM 3000 MHz  
This calculation can be restated as Equation 3.  
LO_DIV_SEL ´ fRF  
PLL_DIV_SEL = Ceiling  
(
3000 MHz  
(3)  
Higher values of fPFD correspond to better phase noise performance in Integer mode or Fractional mode.  
fPFD, along with PLL_DIV_SEL, determines the fVCO stepsize in Integer mode. Therefore, in Integer mode,  
select the maximum fPFD that allows for the required RF stepsize, as shown by Equation 4.  
fVCO, Stepsize  
f
RF, Stepsize ´ LO_DIV_SEL  
=
fPFD  
=
PLL_DIV_SEL  
PLL_DIV_SEL  
(4)  
In Fractional mode, a small RF stepsize is accomplished through the Fractional mode divider. A large fPFD  
should be used to minimize the effects of fractional controller noise in the output spectrum. In this case, fPFD  
may vary according to the reference clock and fractional spur requirements; for example, fPFD = 20 MHz.  
c. RDIV, NINT, NFRAC, PRSC_SEL  
fREF  
RDIV =  
fPFD  
fVCORDIV  
NINT = floor  
(
fREFPLL_DIV_SEL  
fVCORDIV  
NFRAC = floor  
- NINT 225  
(
(
fREFPLL_DIV_SEL  
(
42  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
The P/(P+1) programmable prescaler is set to 8/9 or 4/5 through the PRSC_SEL bit. To allow proper  
fractional control, set PRSC_SEL according to Equation 5.  
8
9
NINT ³ 75 in Fractional Mode or NINT ³ 72 in Integer mode  
PRSC_SEL =  
4
23 £ NINT < 75 in Fractional mode or 20 £ NINT < 72 in Integer mode  
5
(5)  
The PRSC_SEL limit at NINT < 75 applies to Fractional mode with third-order modulation. In Integer mode,  
the PRSC_SEL = 8/9 should be used with NINT as low as 72. The divider block accounts for either value of  
PRSC_SEL without requiring NINT or NFRAC to be adjusted. Then, calculate the maximum frequency to be  
input to the digital divider at fN. Use the lower of the possible prescaler divide settings, P = (4,8), as shown  
by Equation 6.  
fVCO  
fN,Max  
=
PLL_DIV_SEL ´ P  
(6)  
Verify that the frequency into the digital divider, fN, is less than or equal to 375 MHz. If fN exceeds 375 MHz,  
choose a larger value for PLL_DIV_SEL and recalculate fPFD, RDIV, NINT, NFRAC, and PRSC_SEL.  
Setup Example for Integer Mode  
Suppose the following operating characteristics are desired for Integer mode operation:  
fREF = 40 MHz (reference input frequency)  
Step at RF = 2 MHz (RF channel spacing)  
fRF = 1600 MHz (RF frequency)  
The VCO range is 2400 MHz to 4800 MHz. Therefore:  
LO_DIV_SEL = 2  
fVCO = LO_DIV_SEL × 1600 MHz = 3200 MHz  
In order to keep the frequency of the prescaler below 3000 MHz:  
PLL_DIV_SEL = 2  
The desired stepsize at RF is 2 MHz, so:  
fPFD = 2 MHz  
fVCO, stepsize = PLL_DIV_SEL × fPFD = 4 MHz  
Using the reference frequency along with the required fPFD gives:  
RDIV = 20  
NINT = 800  
NINT 75; therefore, select the 8/9 prescaler.  
fN,Max = 3200 MHz/(2 × 8) = 200 MHz < 375 MHz  
This example shows that Integer mode operation gives sufficient resolution for the required stepsize.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
 
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Setup Example for Fractional Mode  
Suppose the following operating characteristics are desired for Fractional mode operation:  
fREF = 40 MHz (reference input frequency)  
Step at RF = 5 MHz (RF channel spacing)  
fRF = 1,600,000,045 Hz (RF frequency)  
The VCO range is 2400 MHz to 4800 MHz. Therefore:  
LO_DIV_SEL = 2  
fVCO = LO_DIV_SEL × 1,600,000,045 Hz = 3,200,000,090 Hz  
In order to keep the frequency of the prescaler below 3000 MHz:  
PLL_DIV_SEL = 2  
Using a typical fPFD of 20 MHz:  
RDIV = 2  
NINT = 80  
NFRAC = 75  
NINT 75; therefore, select the 8/9 prescaler.  
fN,Max = 3200 MHz/(2 × 8) = 200 MHz < 375 MHz  
The actual frequency at RF is:  
fRF = 1600000044.9419 Hz  
For a frequency error of –0.058 Hz.  
Fractional Mode Setup  
Optimal operation of the PLL in fractional mode requires several additional register settings. Recommended  
values are listed in Table 3. Optimal performance may require tuning the MOD_ORD, ISOURCE_SINK, and  
ISOURCE_TRIM values according to the chosen frequency band.  
Table 3. Fractional Mode Register Settings  
REGISTER BIT  
EN_ISOURCE  
REGISTER ADDRESSING  
Reg4B18  
RECOMMENDED VALUE  
1
1
EN_DITH  
Reg4B25  
MOD_ORD  
Reg4B[27..26]  
Reg4B28  
B[27..26] = [10]  
DITH_SEL  
0
DEL_SD_CLK  
EN_LD_ISOURCE  
ISOURCE_SINK  
ISOURCE_TRIM  
Reg4B[30..29]  
Reg5B31  
B[30..29] = [10]  
0
Reg7B19  
0
Reg7B[22..20]  
B[22..20] = [100]  
SELECTING THE VCO AND VCO FREQUENCY CONTROL  
To achieve a broad frequency tuning range, the TRF372017 includes four VCOs. Each VCO is connected to a  
bank of capacitors that determine its valid operating frequency. For any given frequency setting, the appropriate  
VCO and capacitor array must be selected.  
The device contains logic that will automatically select the appropriate VCO and capacitor bank. Set bit EN_CAL  
to initiate the calibration algorithm. During the calibration process, the device will select a VCO and a capacitor  
state so that VTune matches the reference voltage set by VCO_CAL_REF_n. Accuracy of the tune is increased  
through bits CAL_ACC_n. Since a calibration begins immediately when EN_CAL is set, all registers must contain  
valid value prior to initiating calibration.  
44  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Calibration logic is driven by a CAL_CLK clock derived from the phase frequency detector frequency scaled  
according to the setting in CAL_CLK_SEL. Faster CAL_CLK frequency enables faster calibration, but the logic is  
limited to clock frequencies around 1MHz. Table 4 provides suggested CAL_CLK_SEL scaling recommendations  
for several phase frequency detector frequencies. The flag R_SAT_ERR is evaluated during the calibration  
process to indicate calibration counter overflow errors, which will occur if CAL_CLK runs too fast. If R_SAT_ERR  
is set during a calibration, the resulting calibration is not valid and CAL_CLK_SEL must be used to slow the  
CAL_CLK. CAL_CLK frequencies should not be set below 0.1MHz.  
Table 4. Example CAL_CLK_SEL Scaling  
PFD FREQUENCY  
MHz  
CAL_CLK_SEL  
SCALING  
CAL_CLK FREQUENCY  
MHz  
20  
1
1/32  
1
0.625  
1
0.1  
8
0.8  
When VCOSEL_MODE is 0, the device will automatically select both the VCO and capacitor bank within 23  
CAL_CLK cycles. When VCOSEL_MODE is 1, the device will use the VCO selected in VCO_SEL_0 and  
VCO_SEL_1 and automatically select the capacitor array within 17 CAL_CLK cycles. The VCO and capacitor  
array settings resulting from calibration cannot be read from the VCO_SEL_n and VCO_TRIM_n bits in registers  
2 and 7. They can only be read from register 0.  
Automatic calibration can be disabled by setting CAL_BYPASS to 1. In this manual cal mode, the VCO is  
selected through register bits VCO_SEL_n, while the capacitor array is selected through register bits  
VCO_TRIM_n. Calibration modes are summarized in Table 5. After calibration is complete, the PLL is released  
from calibration mode to reach an analog lock.  
During the calibration process, the TRF372017 will scan through many frequencies. RF and LO outputs should  
be disabled until calibration is complete. At power up the RF and LO output will be disabled by default.  
Once a calibration has been performed at a given frequency setting, the calibration is valid over all operating  
temperature conditions.  
Table 5. VCO Calibration Modes  
CAL_BYPASS VCOSEL_MODE  
MAX CYCLES  
CAL_CLK  
VCO  
CAPACITOR ARRAY  
Automatic  
0
0
1
0
1
46  
34  
na  
VCO_SEL_n  
VCO_SEL_n  
automatic  
don't care  
VCO_TRIM_n  
EXTERNAL VCO  
An external LO or VCO signal may be applied. EN_EXTVCO powers the input buffer and selects the buffered  
external signal instead of an internal VCO. Dividers, the pfd, and the charge pump remain enabled and may be  
used to drive an external VCO. NEG_VCO must correspond to the gain of the external VCO.  
VCO TEST MODE  
Setting VCO_TEST_MODE forces the currently selected VCO to the edge of its frequency range by  
disconnecting the charge pump input from the pfd and loop filter and forcing its output high or low. The upper or  
lower edge of the VCO range is selected through COUNT_MODE_MUX_SEL.  
VCO_TEST_MODE also reports the value of a frequency counter in COUNT, which can be read back in register  
0. COUNT reports the number of digital N divider cycles in the PLL, directly related to the period of fN, that occur  
during each CAL_CLK cycle. Counter operation is initiated through the bit EN_CAL.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
 
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
Table 6. VCO Test Mode  
VCO_TEST_MODE  
COUNT_MODE_MUX_SEL  
VCO Operation  
Register 0 B[30..13]  
B[30..24] = undefined  
B[23..22] = VCO_SEL selected during autocal  
B21 = undefined  
0
don't care  
Normal  
B[20..13] = VCO_TRIM selected during autocal  
1
1
0
1
Max frequency  
Min frequency  
B[30..13] = Max frequency counter  
B[30..13] = Min frequency counter  
LOOP FILTER  
Loop filter design is critical for achieving low closed loop phase noise. Some typical loop filter component values  
are given in Table 7, referenced to designators in Figure 86. These loop filters are designed using charge pump  
current of 1.94mA to minimize noise.  
Table 7. Typical Loop Filter Components  
fPFD (MHz)  
40  
C1 (pF)  
1000  
47  
C2 (pF)  
10000  
560  
R2 (kΩ)  
0.47  
10  
C3 (pF)  
39  
R3 (kΩ)  
C4 (pF)  
1.8  
R4 (kΩ)  
1.4  
5
3.3  
1.6  
4.7  
open  
open  
open  
220  
0
0
6.4  
100  
1000  
5
20  
5
10  
270  
4700  
1.5  
4700  
220  
1.5  
0.475  
0
30.72  
2200  
20000  
0.47  
0.475  
R3  
R4  
VTUNE  
CP_OUT  
C1  
C2  
R2  
C3  
C4  
Figure 86. Loop Filter Component Reference Designators  
LOCK DETECT  
The lock detect signal is generated in the phase frequency detector by comparing the VCO target frequency  
against the VCO actual frequency. When the phase of the two compared frequencies remains aligned for several  
clock cycles, an internal signal goes high. The precision of this comparison is controlled through the  
LD_ANA_PREC bits. This internal signal is then averaged and compared against a reference voltage to generate  
the LD signal. The number of averages used is controlled through LD_DIG_PREC. Therefore, when the VCO is  
frequency locked, LD is high. When the VCO frequency is not locked, LD may pulse high or exhibit periodic  
behavior.  
By default, the internal lock detect signal is driven on the LD terminal. Register bits MUX_CTRL_n can be used  
to control a mux to output other diagnostic signals on the LD output. The LD control signals are shown in  
Table 8.  
Table 8. LD Control Signals  
ADJUSTMENT  
REGISTER BITS  
LD_ANA_PREC_0  
LD_ANA_PREC_1  
LD_DIG_PREC  
MUX_CTRL_n  
BIT ADDRESSING  
Register 4 Bit 19  
Register 4 Bit 20  
Register 4 Bit 24  
Register 7 Bits 18..16  
Lock detect precision  
Unlock detect precision  
LD averaging count  
Diagnostic Output  
46  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Table 9. LD Control Signal Mode Settings  
CONDITION  
RECOMMENDED SETTINGS  
Integer Mode  
LD_ANA_PREC_0 = 0  
LD_ANA_PREC_1 = 0  
LD_DIG_PREC = 1  
Fractional Mode  
LD_ANA_PREC_0 = 1  
LD_ANA_PREC_1 = 1  
LD_DIG_PREC = 1  
Tx DIVIDER  
The Tx divider, illustrated in Figure 87, converts the differential output of the VCO into differential I and Q mixer  
components. The divide by 1 differential quadrature phases are provided through a polyphase. Divide by 2, 4,  
and 8 differential quadrature phases are provided through flip-flop dividers. Only one of the dividers operates at a  
time, and the appropriate output is selected by a mux. DIVn bits are controlled through TX_DIV_SELn.  
TX_DIV_I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a  
stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should  
be disabled during normal operation.  
DIV8  
DIV4  
DIV2  
DIV1  
PWD_TX_DIV  
VCO P/N  
Polyphase  
Imix P/N  
Div2  
Div4  
Qmix P/N  
Div8  
Speedup  
bias  
Tx_DIV_I  
Figure 87. Tx Divider  
LO DIVIDER  
The LO divider is shown in Figure 88. It frequency divides the VCO output. Only one of the dividers operates at a  
time, and the appropriate output is selected by a mux. DIVn bits are controlled through LO_DIV_SELn. The  
output is buffered and provided on output pins LO_OUT_P and LO_OUT_N. The output level is controlled  
through BUFOUT_BIASn.  
LO_DIV_I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a  
stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should  
be disabled during normal operation. Although SPEEDUP controls both the Tx and LO divider biases, the Tx and  
LO divider biases are generated independently.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
DIV8  
DIV4  
DIV2  
DIV1  
PWD_LO_DIV  
Buffer  
VCO P/N  
BUFOUT_BIASn  
Div2  
LO_OUT_P/N  
Div4  
PWD_OUT_BUFF  
Div8  
Speedup  
bias  
LO_DIV_I  
Figure 88. LO Divider  
LO OUTPUTS  
The LO outputs are open collector outputs. They require a pull-up to VCC. 75Ω pull-up resistors to VCC with  
local decoupling provides a good broadband match and is shown in an example circuit in Figure 89. An inductor  
pull-up in parallel with a cap can provide a tuned load for excellent narrowband load matching.  
+3.3 V  
75  
LO_OUT_P  
47 pF  
75  
LO_OUT_N  
47 pF  
Figure 89. Example LO_OUT Circuit for Broadband Operation  
MIXER  
A diagram of the mixer is shown in Figure 90. The mixer is followed by a differential to single-ended converter  
and buffer for output.  
48  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Imix P  
Imix N  
BBI_P  
BBI_N  
Diff2Single  
RFOUT  
Qmix N  
Qmix P  
BBQ_N  
BBQ_P  
Figure 90. Mixer  
DISABLING OUTPUTS  
RF frequency outputs are generated at the RFOUT and LO* terminals. Unused RF frequency outputs should be  
disabled to minimize power consumption and noise generation. Table 10 lists settings used to disable the  
outputs. Power save mode can also be used to disable outputs.  
Table 10. Register Controls for Disabling Outputs  
DISABLED OUTPUT  
REGISTER BIT  
PWD_TX_DIV  
SETTING  
RFOUT  
1
1
1
PWD_OUT_BUFF  
PWD_LO_DIV  
LOP and LON  
POWERSAVE MODE  
Powersave mode can be used to put the device into a low power consumption mode. The PLL block remains  
active in Powersave mode, reducing the time required for startup. However, the modulator, dividers, output  
buffers and baseband common mode generation blocks are powered down. The SPI block remains active, and  
registers are addressable. Use the PS pin to activate powersave mode.  
POWER SUPPLY DISTRIBUTION  
Power supply distribution for the TRF372017 is shown in Figure 91. Proper isolation and filtering of the supplies  
is critical for low noise operation of the device. Each supply pin should be supplied with local decoupling  
capacitance and isolated with a ferrite bead. VCC_VCO2 is tolerant of 5V supply voltages to permit additional  
supply filtering.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
IQ  
Offset  
Buffer  
Bias  
AN DIG VCO Tank  
Divider  
Buffer  
PLL  
LODIV  
BB VCM Gen  
VCC  
VCC  
Mixer  
Buffer  
SPI &  
EEPROM  
TxDIV  
Mod  
Figure 91. Power Supply Distribution  
DAC INTERFACING WITH EXTERNAL BASEBAND BIAS VOLTAGE  
Common mode voltage on the baseband inputs can be generated either internally or externally. An external  
interface should provide 1.7V dc and any necessary filtering. A typical interface to a DAC device is shown in  
Figure 92.  
+5 V  
1mF  
68 nH  
125 Ω  
450 Ω  
60.4 Ω  
500 Ω  
10 nH  
2.2 pF  
DNI  
90.9 Ω  
+5 V  
2.7 pF  
GND  
DAC3283  
TRF3720  
1mF  
10 nH  
125 Ω  
450 Ω  
60.4 Ω  
500 Ω  
68 nH  
GND  
Figure 92. DAC to TRF372017 Interface With External VCM Generation  
INTERNAL BASEBAND BIAS VOLTAGE GENERATION  
The TRF372017 has the ability to generate DC voltage levels for its baseband inputs internally. Register settings  
in the device allow the user to adjust common mode voltage of the I and Q signals separately. There are three  
adjustment factors for the baseband inputs. These are described in Table 1.  
50  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
Table 11. Baseband Adjustment Factors  
ADJUSTMENT  
VCM setting  
VCM Enable  
Bias select  
REGISTER BITS  
VREF_SEL_n  
PWD_BB_VCM  
IB_VCM_SEL  
BIT ADDRESSING  
Register 6 Bits 23..21  
Register 4 Bit 15  
Register 7 Bit 25  
Each baseband input pair includes the circuitry depicted in Figure 93. The Vref set voltage impacts all four  
terminals: IP, IN, QP, and QN. The effect of changing the reference voltage is shown in Figure 78. Each node  
also includes a programmable current DAC that injects current into the positive and negative terminals of each  
input.  
IDAC  
IDAC  
100 (external)  
external  
external  
IN  
IP  
5000  
Vref Set  
5000  
Figure 93. Block Diagram of the Baseband I Input Nodes  
A typical DAC to TRF372017 interface using internal VCM generation is shown in Figure 94.  
+5 V  
68 nH  
115  
1 mF  
60.4  
634  
10 nH  
2.2 pF  
DNI  
90.9  
2.7 pF  
+5 V  
GND  
DAC3283  
TRF3720  
10 nH  
115  
1 mF  
60.4  
634  
68 nH  
GND  
Figure 94. DAC to TRF372017 Interface With Internal VCM Generation  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
 
 
 
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
CARRIER FEEDTHROUGH CANCELLATION  
The structure of the baseband current DAC is shown in Figure 95. For each input pair, there is a programmable  
reference current. The reference current for each pair (I and Q) is identical and is programmed through the same  
register bits, but the reference current source itself is duplicated in the device for both I and Q inputs. This  
current can be set to change the total current flowing into the P and N nodes, which in turn changes the offset  
programmability range.  
The reference current is then mirrored and multiplied before getting injected into the input node. The total  
mirrored current will be routed into the two sides of the differential pair and routed according to eight  
programmable bits. As the 8 bit setting is changed, current is shifted from one side of the pair into the other side  
for each of the I and Q input pairs. In practical usage, the offset current routing distributes the adjustment for  
each side of the pair, while the reference current sets the range of adjustment. This effect can be seen in  
Figure 79, which shows that the gain of the current routing is greater when the reference current setting is higher.  
However the step size also increases with increase in range. Figure 79 shows the effect on common mode  
voltage of varying the DAC reference current. Adjustment register bits are shown in Table 12.  
Offset adjustment may be provided by an external source, such as a DAC QMC block, for dc-coupled systems.  
Current Mirror  
I/Q Offset Ref Current, 8 bit  
Iref  
-----  
1
Iref  
-----  
2
Iref  
-----  
128  
B8  
Iref  
-----  
1
Iref  
-----  
2
Iref  
-----  
128  
B0  
...  
...  
DC Offset Iref  
B0  
B1  
B8  
B7  
IP  
IN  
Figure 95. Block Diagram of the Programmable Current DAC  
Table 12. Baseband Differential Offset Adjustment Factors  
ADJUSTMENT  
REGISTER BITS  
BIT ADDRESS  
I input differential offset programmability  
I Offset Ref Curr  
IOFF_n  
Register 6  
Bits 12..5  
Q input differential offset programmability  
Offset Programmability Range  
Q Offset Ref Curr  
DCoffset_I_n  
QOFF  
Register 6  
Bits 20..13  
Register 7  
Bits 30..29  
ESD SENSITIVITY  
RF devices may be extremely sensitive to electrostatic discharge (ESD) (see ABSOLUTE MAXIMUM RATINGS  
table). To prevent damage from electrostatic discharge (ESD), devices should be stored and handled in a way  
that prevents the build up of electrostatic voltages that exceed the rated level. Rated electrostatic discharge  
(ESD) levels shall also not be exceeded while the device is installed on a PC board.  
52  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
APPLICATION SCHEMATIC  
+3.3 V  
Loop Filter:  
values described  
in table  
FB-1K  
R3  
C3  
R4  
C4  
C1  
C2  
1 mF  
4.7 pF  
REFIN  
R2  
22 pF  
LE  
DATA  
CLK  
RDBK  
+3.3 V  
4.7 pF  
+3.3 V  
EXT_VCO  
FB-1K  
+3.3 V/+5.0 V  
FB-1K  
+3.3V  
FB-1K  
FB-1K  
1 mF  
100 pF  
+3.3 V  
PS  
LD  
1 mF  
4.7 pF  
PS  
RDBK  
VCC_DIG  
EXT_VCO  
FB-1K  
1 mF  
4.7 pF  
VCC_VCO1  
LO_OUT_P  
LO_OUT_N  
VCC_VCO2  
GND  
4.7 pF  
100 pF  
GND_DIG  
LD  
GND  
100 pF  
4.7 pF  
VCC_LO2  
GND  
VCC_LO1  
GND  
BBI_N  
BBI_P  
Baseband interface  
BBQ_N  
described in application information BBQ_P  
BBI_N  
BBQ_N  
BBQ_P  
GND  
Baseband interface  
described in application information  
BBI_P  
GND  
GND  
+3.3 V  
+3.3 V  
GND  
1.8 pF  
1000 pF  
1 mF  
1.8 pF  
4.7 pF  
1000 pF  
1 mF  
NC  
75  
75  
LO_OUT_P  
LO_OUT_N  
22 pF  
RFOUT  
4.7 pF  
+5.0 V  
+5.0 V  
FB-1K  
FB-1K  
100 pF  
4.7 pF  
100 pF  
4.7 pF  
Figure 96. Application Schematic  
Table 13. Pin Termination Requirements and Limitations  
NAME  
RDBK  
LD  
PIN NO  
DESCRIPTION  
2
5
SPI Readback output. Digital output pins can source or sink up to 8mA of current.  
Lock detector digital output, as configured by MUX_CTRL. Digital output pins can source or sink up to 8mA of  
current.  
BBQ_N  
BBQ_P  
9
Base-band in-quadrature input: negative terminal. Internal 5kΩ to VCM generator. If VCM is internally generated  
(PWD_BB_VCM = 0), external AC coupling caps and 100Ω differential termination to BBQ_P is required.  
10  
Base-band in-quadrature input: positive terminal. Internal 5KΩ to VCM generator. If VCM is internally generated  
(PWD_BB_VCM = 0), external AC coupling caps and 100Ω differential termination to BBQ_N is required.  
RSVD  
RFOUT  
BBI_P  
14  
18  
27  
Reserved. Normally open.  
RF output. Internally matched to 50Ω output. Normally AC coupled.  
Base-band in-phase input: positive terminal. Internal 5kΩ to VCM generator. If VCM is internally generated  
(PWD_BB_VCM = 0), external AC coupling caps and 100Ω differential termination to BBI_N is required.  
BBI_N  
28  
Base-band in-phase input: negative terminal. Internal 5kΩ to VCM generator. If VCM is internally generated  
(PWD_BB_VCM = 0), external AC coupling caps and 100Ω differential termination to BBI_P is required.  
LO_OUT_N  
LO_OUT_P  
EXT_VCO  
REFIN  
33  
34  
36  
43  
45  
46  
47  
48  
Local oscillator output: negative terminal. Open collector output. A pull-up is required. Normally AC coupled.  
Local oscillator output: positive terminal. Open collector output. A pull-up is required. Normally AC coupled.  
External local oscillator input. High impedance. Normally AC coupled.  
Reference clock input. High impedance. Normally AC coupled.  
LE  
SPI latch enable. Digital input. High impedance.  
DATA  
SPI data input. Digital input. High impedance.  
CLK  
SPI clock input. Digital input. High impedance.  
SCAN_EN  
Internal testing mode digital input. Connect to ground in normal operation.  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
TRF372017  
SLWS224C AUGUST 2010REVISED MAY 2012  
www.ti.com  
APPLICATION LAYOUT  
Layout of the application board significantly impacts the analog performance of the TRF372017 device. Noise  
and high-speed signals should be prevented from leaking onto power-supply pins or analog signals. Follow these  
recommendations:  
1. Place supply decoupling capacitors physically close to the device, on the same side of the board. Each  
supply pin should be isolated with a ferrite bead.  
2. Maintain a continuous ground plane in the vicinity of the device and as return paths for all high-speed signal  
lines. Place reference plane vias or decoupling capacitors near any signal line reference transition.  
3. The pad on the bottom of the device must be electrically grounded. Connect GND pins directly to the pad on  
the surface layer. Connect the GND pins and pad directly to surface ground where possible.  
4. Power planes should not overlap each other or high-speed signal lines.  
5. Isolate REF_IN routing from loop filter lines, control lines, and other high-speed lines.  
See Figure 97 for an example of critical component layout (for the top PCB layer).  
Figure 97. Critical Layout of the TRF372017 EVM Board  
54  
Submit Documentation Feedback  
Copyright © 2010–2012, Texas Instruments Incorporated  
 
 
TRF372017  
www.ti.com  
SLWS224C AUGUST 2010REVISED MAY 2012  
REVISION HISTORY  
Note: Page numbers of current version may differ from previous versions.  
Changes from Revision A (August 2010) to Revision B  
Page  
Deleted Comments column from Table 1 ............................................................................................................................. 7  
Changed graphic entities in Figures 12 through Figure 27 ................................................................................................ 11  
Changed column heading from "Default Value" to "Reset Value" in Register tables 1, 2, 3, 4, 5, 6 and 7 ....................... 30  
Added "Recommended programming [xx]" to various Description statements in Register 2,5,6, and 7. ......................... 32  
Changed Register 4, Bit21/Bit22 Description statement from "Off" to "Normal" ................................................................ 34  
Changed Column heading from "Default Value to "Reset Value" in READBACK MODE section, Register 0 ................... 38  
Changed Column heading from "Default Value to "Reset Value" in READBACK MODE section, Register 0 ................... 39  
Changed Bit5 name from "CHIP_ID" to "CHIP_ID _0" and changed Bit6 name from "NU" to "CHIP_ID_1", Reset  
Value to 1 ............................................................................................................................................................................ 39  
Changed Bit5 name from "CHIP_ID" to "CHIP_ID _0" and changed Bit6 name from "NU" to "CHIP_ID_1", Reset  
Value to 1 ............................................................................................................................................................................ 40  
Changed the text under INTEGER and FRACTIONAL MODE SELECTION through sub section "Practical Limit on  
Maximum PFD Frequency" for clarification. ....................................................................................................................... 41  
Changed "RDIV = 20" to "RDIV = 2" in the Setup Example for Fractional Mode paragraph ......................................... 44  
Changed EN_LD_ISOURCE Recommended Value from 1 to 0 in Table 3, ...................................................................... 44  
Changed the graphic entity in Figure 94 for clarification. ................................................................................................... 51  
Changed the text in the APPLICATION LAYOUT section, and added crossreference to Figure 97 ................................. 54  
Changes from Revision B (March 2012) to Revision C  
Page  
Added graph titles to Figure 56 and 57 that were missing in Rev B .................................................................................. 22  
Copyright © 2010–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Apr-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TRF372017IRGZR  
TRF372017IRGZT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Apr-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TRF372017IRGZR  
TRF372017IRGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
330.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Apr-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TRF372017IRGZR  
TRF372017IRGZT  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
336.6  
336.6  
336.6  
336.6  
28.6  
28.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TRF372017IRGZT

具有集成宽带 PLL/VCO 的 300MHz 至 4.8GHz 正交调制器 | RGZ | 48 | -40 to 85
TI

TRF3722

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器
TI

TRF3722IRGZR

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器 | RGZ | 48 | -40 to 85
TI

TRF3722IRGZT

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器 | RGZ | 48 | -40 to 85
TI

TRF3750

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IPW

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IPWR

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGP

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGPG4

PLL FREQUENCY SYNTHESIZER, 2400MHz, PQCC20, 4 X 4 MM, GREEN, PLASTIC, QFN-20
TI

TRF3750IRGPR

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGPRG4

TRF3750: High Performance Integer-N PLL Frequency Synthesizer 20-QFN -40 to 85
TI

TRF3750_14

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI