TRF3765_15 [TI]

Integer-N/Fractional-N PLL With Integrated VCO;
TRF3765_15
型号: TRF3765_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Integer-N/Fractional-N PLL With Integrated VCO

文件: 总51页 (文件大小:1415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
Integer-N/Fractional-N PLL with Integrated VCO  
Check for Samples: TRF3765  
1
FEATURES  
DESCRIPTION  
The TRF3765 is a wideband Integer-N/Fractional-N  
frequency synthesizer with an integrated, wideband  
voltage-controlled oscillator (VCO). Programmable  
output dividers enable continuous frequency  
coverage from 300 MHz to 4.8 GHz. Four separate  
differential, open-collector RF outputs allow multiple  
devices to be driven in parallel without the need of  
external splitters.  
2
Output Frequencies: 300 MHz to 4.8 GHz  
Low-Noise VCO: 133 dBc/Hz  
(1-MHz Offset, fOUT = 2.65 GHz)  
13-/16-Bit Reference/Feedback Divider  
25-Bit Fractional-N and Integer-N PLL  
Low RMS Jitter: 0.35 ps  
Input Reference Frequency Range:  
0.5 MHz to 350 MHz  
The TRF3765 also accepts external VCO input  
signals and allows on/off control through  
a
Programmable Output Divide-by-1/-2/-4/-8  
Four Differential LO Outputs  
programmable control output. For maximum flexibility  
and wide reference frequency range, wide-range  
divide ratio settings are programmable and an  
off-chip loop filter can be used.  
External VCO Input with Programmable VCO  
On/Off Control  
The TRF3765 is available in an RHB-32 QFN  
package.  
APPLICATIONS  
Wireless Infrastructure  
Wireless Local Loop  
Point-to-Point Wireless Access  
Wireless MAN Wideband Transceivers  
STROBED ATA CLOCK  
LD  
VCCs  
EXTVCO_IN  
Lock  
Detect  
Serial  
Interface  
GNDs  
REF_IN  
R Div  
CP_OUT  
Charge  
Pump  
PFD  
VTUNE_IN  
Prescaler  
div p/p_+1  
RF  
Divider  
N-Divider  
From  
4WI  
SD  
Control  
From  
4WI  
From  
4WI  
Divide-by  
1/2/4/8  
RF4OUT  
RF3OUT  
RF2OUT  
RF1OUT  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20112012, Texas Instruments Incorporated  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
ORDERING NUMBER  
TRF3765IRHBT  
Tape and Reel, 250  
Tape and Reel, 3000  
TRF3765  
RHB-32  
RHB  
40°C to +85°C  
TRF3765IRHB  
TRF3765IRHBR  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
VALUE  
0.3 to +3.6  
0.3 to +5.5  
0.3 to VI + 0.5  
40 to +150  
40 to +85  
40 to +150  
1000  
UNIT  
V
All VCC pins except VCC_TK  
VCC_TK  
Supply voltage range(2)  
Digital I/O voltage range  
V
V
Operating virtual junction temperature range, TJ  
Operating ambient temperature range, TA  
Storage temperature range, Tstg  
°C  
°C  
°C  
V
Human body model, HBM  
Charged device model, CDM  
ESD ratings  
1500  
V
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
RECOMMENDED OPERATING CONDITIONS  
Over operating free-air temperature range (unless otherwise noted).  
MIN NOM  
MAX  
3.6  
UNIT  
V
VCC  
Power-supply voltage  
3.0  
3.0  
3.3  
3.3  
VCC_TK 3.3-V to 5.5-V power-supply voltage  
5.5  
V
TA  
TJ  
Operating ambient temperature range  
40  
40  
+85  
+150  
°C  
°C  
Operating virtual junction temperature range  
THERMAL INFORMATION  
TRF3765  
RHB  
32 PINS  
31.6  
THERMAL METRIC(1)  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
21.6  
5.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
5.5  
θJCbot  
1.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
ELECTRICAL CHARACTERISTICS  
At TA = +25°C and power supply = 3.3 V, unless otherwise noted.  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PARAMETERS  
Internal VCO, 1 output buffer on, divide-by-1  
Internal VCO, 4 output buffers on, divide-by-1  
Internal VCO, 1 output buffer on, divide-by-8  
Internal VCO, 4 output buffers on, divide-by-8  
External VCO mode, 1 output buffer on, divide-by-1  
115  
190  
120  
182  
89  
mA  
mA  
mA  
mA  
mA  
ICC  
Total supply current  
DIGITAL INTERFACE  
VIH  
VIL  
High-level input voltage  
2
0
3.3  
V
V
V
V
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
0.8  
VOH  
VOL  
Referenced to VCC_DIG  
Referenced to VCC_DIG  
0.8 × VCC  
0.2 × VCC  
REFERENCE OSCILLATOR PARAMETERS  
fREF  
Reference frequency  
0.5(1)  
0.2  
350(1)  
3.3  
MHz  
VPP  
pF  
Reference input sensitivity  
Parallel capacitance, 10 MHz  
Parallel resistance, 10 MHz  
2
Reference input impedance  
2500  
Ω
PLL  
fPFD  
PFD frequency  
0.5  
65(2)  
MHz  
mA  
ICP_OUT Charge pump current  
In-band normalized phase noise floor  
INTERNAL VCO  
4WI programmable; ICP[4..0] = 00000(3)  
Integer mode  
1.94  
221  
dBc/Hz  
fVCO  
KV  
VCO frequency range  
Divide-by-1  
VCP = 1 V  
At 10 kHz  
At 100 kHz  
At 1 MHz  
2400  
4800  
MHz  
VCO gain  
65  
82  
MHz/V  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
110  
130  
149  
155  
89  
VCC_TK = 3.3 V  
At 10 MHz  
At 40 MHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
VCO free-running  
phase noise,  
fVCO = 2650 MHz  
113  
133  
151  
156  
VCC_TK = 5 V  
At 10 MHz  
At 40 MHz  
CLOSED-LOOP PLL/VCO  
Integrated RMS jitter(4)  
RF OUTPUT/INPUT  
Fractional mode, fOUT = 2.6 GHz, fPFD = 30.72 MHz(5)  
Integer mode, fOUT = 2.6 GHz, fPFD = 1.6 MHz  
0.36  
0.52  
ps  
ps  
Divide-by-1  
Divide-by-2  
Divide-by-4  
Divide-by-8  
2400  
1200  
600  
4800  
2400  
1200  
600  
MHz  
MHz  
MHz  
MHz  
fOUT  
Output frequency range  
300  
Differential, divide-by-1, one output buffer on, maximum  
BUFOUT_BIAS  
PLO  
Output power(6)  
6.5  
dBm  
External VCO input maximum frequency  
External VCO input minimum frequency  
External VCO input level  
20-dB gain loss, VCO pass-through, no PLL  
9000  
15  
MHz  
MHz  
dBm  
20-dB gain loss, VCO pass-through, no PLL, divide-by-1  
0
(1) See Application Information section for discussion of VCO calibration clock limitations on reference clock frequency.  
(2) See Application Information section for discussion on PFD frequency selection and calibration logic frequency limitations.  
(3) See the 4WI Register Descriptions section for all possible programmable charge pump currents.  
(4) Integrated from 1 kHz to 10 MHz.  
(5) See Application Information section for information on loop filter characteristics.  
(6) See Application Information section for external output buffers details.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
DEVICE INFORMATION  
RHB PACKAGE  
QFN-32  
(TOP VIEW)  
GND_DIG  
VCC_DIG  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VTUNE_REF  
VTUNE_IN  
GND_OSC  
VCC_OSC  
DATA  
CLOCK  
VCC_TK  
STROBE  
EXTVCO_CTRL  
EXTVCO_IN  
GND_BUFF2  
READBACK  
VCC_DIV  
GND_BUFF1  
PIN FUNCTIONS  
PIN  
NAME  
CLOCK  
CP_OUT  
CP_REF  
DATA  
NO.  
4
I/O  
I
DESCRIPTION  
Serial programming interface, clock input  
26  
25  
3
O
Charge pump output  
Charge pump reference ground  
Serial programming interface, data input  
Digital control to enable/disable external VCO  
External VCO input  
I
O
I
EXTVCO_CTRL  
EXTVCO_IN  
GND  
19  
18  
29  
31  
8
Ground  
GND  
Ground  
GND_BUFF1  
GND_BUFF2  
GND_DIG  
GND_OSC  
LD  
Output buffer ground  
17  
1
Output buffer ground  
Digital ground  
22  
32  
10  
9
VCO core ground  
O
O
O
O
O
O
O
O
O
Lock detector output  
LO1_OUTM  
LO1_OUTP  
LO2_OUTM  
LO2_OUTP  
LO3_OUTM  
LO3_OUTP  
LO4_OUTM  
LO4_OUTP  
LO1 output: negative terminal  
LO1 output: positive terminal  
LO2 output: negative terminal  
LO2 output: positive terminal  
LO3 output: negative terminal  
LO3 output: positive terminal  
LO4 output: negative terminal  
LO4 output: positive terminal  
11  
12  
14  
13  
15  
16  
4
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
PIN FUNCTIONS (continued)  
PIN  
NAME  
READBACK  
REF_IN  
NO.  
6
I/O  
DESCRIPTION  
Serial programming interface, readback  
O
I
30  
5
Reference signal input  
Serial programming interface, latch enable  
Charge pump power supply  
Digital power supply  
STROBE  
I
VCC_CP  
27  
2
VCC_DIG  
VCC_DIV  
VCC_OSC  
VCC_PLL  
VCC_TK  
7
Divider power supply  
21  
28  
20  
23  
24  
VCO core power supply  
PLL power supply  
VCO LC tank power supply  
VCO control voltage  
VTUNE_IN  
VTUNE_REF  
VTUNE reference ground  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO1_OUTP (single-ended), PWD_BUFF2,3,4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
Table of Graphs  
Open-Loop Phase Noise  
Open-Loop Phase Noise  
Open-Loop Phase Noise  
Open-Loop Phase Noise  
vs Temperature(1)  
vs Voltage(1)  
Figure 1, Figure 2, Figure 3, Figure 4  
Figure 5, Figure 6, Figure 7, Figure 8  
Figure 9, Figure 10, Figure 11, Figure 12  
Figure 13, Figure 14, Figure 15, Figure 16  
vs Temperature(1)(2)  
vs Voltage(1)(2)  
Figure 17, Figure 18, Figure 19, Figure 20,  
Figure 21, Figure 22, Figure 23  
Closed-Loop Phase Noise  
Closed-Loop Phase Noise  
vs Temperature(3)  
Figure 24, Figure 25, Figure 26, Figure 27,  
Figure 28, Figure 29, Figure 30  
vs Temperature(2)(3)  
Closed-Loop Phase Noise  
Closed-Loop Phase Noise  
vs Divide Ratio(3)  
vs Divide Ratio(2)(3)  
Figure 31  
Figure 32  
Figure 33, Figure 34, Figure 35, Figure 36,  
Figure 37, Figure 38, Figure 39  
Closed-Loop Phase Noise  
Closed-Loop Phase Noise  
vs Temperature(4)  
Figure 40, Figure 41, Figure 42, Figure 43,  
Figure 44, Figure 45, Figure 46  
vs Temperature(2)(4)  
Closed-Loop Phase Noise  
Closed-Loop Phase Noise  
PFD Spurs  
vs Divide Ratio(4)  
vs Divide Ratio(2)(4)  
vs Temperature(4)  
Figure 47  
Figure 48  
Figure 49  
Multiples of PFD Spurs(4)  
Multiples of PFD Spurs(4)(5)  
Fractional Spurs  
Figure 50, Figure 51, Figure 52  
Figure 53  
vs LO Divider(3)  
Figure 54  
Fractional Spurs  
vs RF Divider and Prescaler(3)  
vs Temperature(3)  
Figure 55  
Fractional Spurs  
Figure 56  
Multiples of PFD Spurs(3)  
LO Harmonics(4)  
Figure 57  
Figure 58  
Output Power with Multiple Buffers(4)  
Figure 59, Figure 60  
Figure 61  
Output Power  
Output Power  
VCO Gain (Kv)  
vs Output Port(4)  
vs Buffer Bias(4)  
Figure 62  
vs Frequency  
Figure 63  
(1) VCO_TRIM = 32, VTUNE_IN = 1.1 V, CP_TRISTATE = 3 (3-state), and CAL_BYPASS = On.  
(2) VCO_BIAS = 600 µA.  
(3) Reference frequency = 61.44 MHz; PFD frequency = 30.72 MHz.  
(4) Reference frequency = 40 MHz; PFD frequency = 1.6 MHz.  
(5) Performance change at frequencies above 1500 MHz results from PLL_DIV_SEL changing from divide-by-1 to divide-by-2.  
6
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 0 and VCC_TK = 3.3 V)  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 1 and VCC_TK = 3.3 V)  
−10  
−20  
−10  
−20  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
−30  
−30  
−40  
−40  
VCO Frequency = 2650 MHz  
VCO_SEL = 0  
VCO Frequency = 3400 MHz  
VCO_SEL = 1  
−50  
−50  
VCC_TK = 3.3 V  
VCC_TK = 3.3 V  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 25°C  
1kHz = −49.8  
10kHz = −83  
100kHz = −109.6  
1MHz = −130.1  
10MHz = −149  
*See Note 1  
Note: At 25°C  
1kHz = −45.1  
10kHz = −81.6  
100kHz = −107.9  
1MHz = −128.1  
10MHz = −147.3  
*See Note 1  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G001  
G002  
Figure 1.  
Figure 2.  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 2 and VCC_TK = 3.3 V)  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 3 and VCC_TK = 3.3 V)  
−10  
−20  
−10  
−20  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
−30  
−30  
−40  
−40  
VCO Frequency = 4000 MHz  
VCO_SEL = 2  
VCO Frequency = 4800 MHz  
VCO_SEL = 3  
−50  
−50  
VCC_TK = 3.3 V  
VCC_TK = 3.3 V  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 25°C  
Note: At 25°C  
1kHz = −38.3  
10kHz = −70.6  
100kHz = −104.2  
1MHz = −125.5  
10MHz = −145.2  
*See Note 1  
1kHz = −50.7  
10kHz = −83.31  
100kHz = −107.9  
1MHz = −128.0  
10MHz = −146.9  
*See Note 1  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G003  
G004  
Figure 3.  
Figure 4.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 0)  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 1)  
−10  
−20  
−10  
−20  
Vcc = 3.0 V, Vcc_TK = 3.0 V  
Vcc = 3.3 V, Vcc_TK = 3.3 V  
Vcc = 3.6 V, Vcc_TK = 3.6 V  
Vcc = 3.0 V, Vcc_TK = 3.0 V  
Vcc = 3.3 V, Vcc_TK = 3.3 V  
Vcc = 3.6 V, Vcc_TK = 3.6 V  
−30  
−30  
−40  
−40  
VCO Frequency = 2650 MHz  
VCO_SEL = 0  
VCO Frequency = 3400 MHz  
VCO_SEL = 1  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 3.3 V  
Note: At 3.3 V  
1kHz = −45.1  
10kHz = −81.6  
100kHz = −107.7  
1MHz = −128.1  
10MHz = −147.3  
*See Note 1  
1kHz = −49.8  
10kHz = −83.0  
100kHz = −109.6  
1MHz = −130.1  
10MHz = −149.0  
*See Note 1  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G005  
G006  
Figure 5.  
Figure 6.  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 2)  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 3)  
−10  
−20  
−10  
−20  
Vcc = 3.0 V, Vcc_TK = 3.0 V  
Vcc = 3.3 V, Vcc_TK = 3.3 V  
Vcc = 3.6 V, Vcc_TK = 3.6 V  
Vcc = 3.0 V, Vcc_TK = 3.0 V  
Vcc = 3.3 V, Vcc_TK = 3.3 V  
Vcc = 3.6 V, Vcc_TK = 3.6 V  
−30  
−30  
−40  
−40  
VCO Frequency = 4000 MHz  
VCO_SEL = 2  
VCO Frequency = 4800 MHz  
VCO_SEL = 3  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 3.3 V  
Note: At 3.3 V  
1kHz = −50.7  
10kHz = −83.3  
100kHz = −107.9  
1MHz = −128.0  
10MHz = −147.4  
*See Note 1  
1kHz = −37.3  
10kHz = −71.0  
100kHz = −104.0  
1MHz = −125.5  
10MHz = −145.2  
*See Note 1  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G007  
G008  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 0 and VCC_TK = 5 V)  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 1 and VCC_TK = 5 V)  
−10  
−20  
−10  
−20  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
−30  
−30  
−40  
−40  
VCO Frequency = 2650 MHz  
VCO_SEL = 0  
VCO Frequency = 3400 MHz  
VCO_SEL = 1  
−50  
−50  
VCC_TK = 5.0 V  
VCC_TK = 5.0 V  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 25°C  
Note: At 25°C  
1kHz = −58.0  
10kHz = −89.0  
100kHz = −112.6  
1MHz = −133.1  
10MHz = −151.2  
*See Notes 1and 2  
1kHz = −48.8  
10kHz = −80.4  
100kHz = −110.5  
1MHz = −130.9  
10MHz = −149.7  
*See Notes 1and 2  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G009  
G010  
Figure 9.  
Figure 10.  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 2 and VCC_TK = 5 V)  
OPEN-LOOP PHASE NOISE vs TEMPERATURE  
(VCO_SEL = 3 and VCC_TK = 5 V)  
−10  
−20  
−10  
−20  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
−30  
−30  
−40  
−40  
VCO Frequency = 4000 MHz  
VCO_SEL = 2  
VCO Frequency = 4800 MHz  
VCO_SEL = 3  
−50  
−50  
VCC_TK = 5.0 V  
VCC_TK = 5.0 V  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 25°C  
Note: At 25°C  
1kHz = −54.3  
10kHz = −86.2  
100kHz = −97.2  
1MHz = −130.8  
10MHz = −149.0  
*See Notes 1and 2  
1kHz = −40.3  
10kHz = −73.1  
100kHz = −106.8  
1MHz = −128.4  
10MHz = −147.5  
*See Notes 1and 2  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G011  
G012  
Figure 11.  
Figure 12.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 0)  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 1)  
−10  
−20  
−10  
−20  
Vcc = 3.0 V, Vcc_TK = 4.5 V  
Vcc = 3.3 V, Vcc_TK = 5.0 V  
Vcc = 3.6 V, Vcc_TK = 5.5 V  
Vcc = 3.0 V, Vcc_TK = 4.5 V  
Vcc = 3.3 V, Vcc_TK = 5.0 V  
Vcc = 3.6 V, Vcc_TK = 5.5 V  
−30  
−30  
−40  
−40  
VCO Frequency = 2650 MHz  
VCO_SEL = 0  
VCO Frequency = 3400 MHz  
VCO_SEL = 1  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 3.3 V  
Note: At 3.3 V  
1kHz = −58.0  
10kHz = −88.4  
100kHz = −112.8  
1MHz = −133.1  
10MHz = −151.2  
*See Notes 1and 2  
1kHz = −48.8  
10kHz = −81.5  
100kHz = −110.5  
1MHz = −130.9  
10MHz = −149.8  
*See Notes 1and 2  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G013  
G014  
Figure 13.  
Figure 14.  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 2)  
OPEN-LOOP PHASE NOISE vs VOLTAGE  
(VCO_SEL = 3)  
−10  
−20  
−10  
−20  
Vcc = 3.0 V, Vcc_TK = 4.5 V  
Vcc = 3.3 V, Vcc_TK = 5.0 V  
Vcc = 3.6 V, Vcc_TK = 5.5 V  
Vcc = 3.0 V, Vcc_TK = 4.5 V  
Vcc = 3.3 V, Vcc_TK = 5.0 V  
Vcc = 3.6 V, Vcc_TK = 5.5 V  
−30  
−30  
−40  
−40  
VCO Frequency = 4000 MHz  
VCO_SEL = 2  
VCO Frequency = 4800 MHz  
VCO_SEL = 3  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
Note: At 3.3 V  
Note: At 3.3 V  
1kHz = −54.3  
10kHz = −86.2  
100kHz = −110.5  
1MHz = −131.2  
10MHz = −149.0  
*See Notes 1and 2  
1kHz = −40.3  
10kHz = −73.1  
100kHz = −106.7  
1MHz = −128.4  
10MHz = −147.5  
*See Notes 1and 2  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G015  
G016  
Figure 15.  
Figure 16.  
10  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(725 MHz, VCC_TK = 3.3 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(942.5 MHz, VCC_TK = 3.3 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 725 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 942.5 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 3  
*See Note 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G023  
G022  
Figure 17.  
Figure 18.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(1880 MHz, VCC_TK = 3.3 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2120 MHz, VCC_TK = 3.3 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 1880 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 2120 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 3  
*See Note 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G021  
G020  
Figure 19.  
Figure 20.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2650 MHz, VCC_TK = 3.3 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(3500 MHz, VCC_TK = 3.3 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 2650 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 3500 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 3  
*See Note 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G017  
G018  
Figure 21.  
Figure 22.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(4750 MHz, VCC_TK = 3.3 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(725 MHz, VCC_TK = 5 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 4750 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 725 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 3  
*See Notes 2 and 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G019  
G030  
Figure 23.  
Figure 24.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(942.5 MHz, VCC_TK = 5 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(1880 MHz, VCC_TK = 5 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 942.5 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 1880 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 3  
*See Notes 2 and 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G029  
G028  
Figure 25.  
Figure 26.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2120 MHz, VCC_TK = 5 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2650 MHz, VCC_TK = 5 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 2120 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 2650 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 3  
*See Notes 2 and 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G027  
G024  
Figure 27.  
Figure 28.  
12  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(3500 MHz, VCC_TK = 5 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(4750 MHz, VCC_TK = 5 V, Fractional Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 3500 MHz  
Fractional Mode (EN_FRAC = 1)  
LO_Out = 4750 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 3  
*See Notes 2 and 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G025  
G026  
Figure 29.  
Figure 30.  
CLOSED-LOOP PHASE NOISE vs DIVIDE RATIO  
(VCC_TK = 3.3 V, Fractional Mode)  
CLOSED-LOOP PHASE NOISE vs DIVIDE RATIO  
(VCC_TK = 5 V, Fractional Mode)  
−60  
−70  
−60  
−70  
Fractional Mode (EN_FRAC = 1)  
VCO Frequency = 3600 MHz  
LO_Div = 1  
LO_Div = 2  
LO_Div = 4  
LO_Div = 8  
Fractional Mode (EN_FRAC = 1)  
VCO Frequency = 3600 MHz  
LO_Div = 1  
LO_Div = 2  
LO_Div = 4  
LO_Div = 8  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 3  
*See Notes 2 and 3  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G031  
G032  
Figure 31.  
Figure 32.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(728 MHz, VCC_TK = 3.3 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(942.5 MHz, VCC_TK = 3.3 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 728 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 942.5 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 4  
*See Note 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G039  
G038  
Figure 33.  
Figure 34.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(1842.5 MHz, VCC_TK = 3.3 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2140 MHz, VCC_TK = 3.3 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 1842.5 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 2140 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 4  
*See Note 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G037  
G036  
Figure 35.  
Figure 36.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2600 MHz, VCC_TK = 3.3 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(3500 MHz, VCC_TK = 3.3 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 2600 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 3500 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 4  
*See Note 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G033  
G034  
Figure 37.  
Figure 38.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(4800 MHz, VCC_TK = 3.3 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(728 MHz, VCC_TK = 5 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 4800 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 728 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 4  
*See Notes 2 and 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G035  
G046  
Figure 39.  
Figure 40.  
14  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(942.5 MHz, VCC_TK = 5 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(1842.5 MHz, VCC_TK = 5 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 942.5 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 1842.5 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 4  
*See Notes 2 and 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G045  
G044  
Figure 41.  
Figure 42.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2140 MHz, VCC_TK = 5 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(2600 MHz, VCC_TK = 5 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 2140 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 2600 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 4  
*See Notes 2 and 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G043  
G040  
Figure 43.  
Figure 44.  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(3500 MHz, VCC_TK = 5 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs TEMPERATURE  
(4800 MHz, VCC_TK = 5 V, Integer Mode)  
−60  
−60  
TA = −40°C  
TA = 25°C  
TA = 85°C  
TA = −40°C  
TA = 25°C  
TA = 85°C  
Integer Mode (EN_FRAC = 0)  
LO_Out = 3500 MHz  
Integer Mode (EN_FRAC = 0)  
LO_Out = 4800 MHz  
−70  
−80  
−70  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Notes 2 and 4  
*See Notes 2 and 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G041  
G042  
Figure 45.  
Figure 46.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
CLOSED-LOOP PHASE NOISE vs DIVIDE RATIO  
(VCC_TK = 3.3 V, Integer Mode)  
CLOSED-LOOP PHASE NOISE vs DIVIDE RATIO  
(VCC_TK = 5 V, Integer Mode)  
−60  
−70  
−60  
−70  
Integer Mode (EN_FRAC = 0)  
VCO Frequency = 3600 MHz  
LO_Div = 1  
LO_Div = 2  
LO_Div = 4  
LO_Div = 8  
Integer Mode (EN_FRAC = 0)  
LO_Out = 3600 MHz  
LO_Div = 1  
LO_Div = 2  
LO_Div = 4  
LO_Div = 8  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
−100  
−110  
−120  
−130  
−140  
−150  
−160  
−170  
*See Note 4  
*See Notes 2 and 4  
1k  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
40M  
Frequency (Hz)  
Frequency (Hz)  
G047  
G048  
Figure 47.  
Figure 48.  
16  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
PFD SPURS vs TEMPERATURE  
(Integer Mode)  
MULTIPLES OF PFD SPURS  
(Integer Mode)  
−60  
−65  
−60  
−65  
TA = −40°C  
TA = 25°C  
TA = 85°C  
PFD Spur 1x = 1.6 MHz  
PFD Spur 2x = 3.2 MHz  
PFD Spur 3x = 4.8 MHz  
PFD Spur 4x = 6.4 MHz  
−70  
−70  
−75  
−75  
−80  
−80  
−85  
−85  
−90  
−90  
−95  
−95  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
Integer Mode (EN_FRAC = 0)  
PFD Spur = 1.6 MHz  
*See Note 4  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Frequency (MHz)  
Frequency (MHz)  
G049  
G050  
Figure 49.  
Figure 50.  
MULTIPLES OF PFD SPURS  
(LO_DIV = 8, Integer Mode)  
MULTIPLES OF PFD SPURS  
(LO_DIV = 4, Integer Mode)  
−60  
−65  
−60  
−65  
PFD Spur /8 = 0.2 MHz  
PFD Spur /4 = 0.4 MHz  
PFD Spur /2 = 0.8 MHz  
PFD Spur /1 = 1.6 MHz  
PFD Spur /4 = 0.4 MHz  
PFD Spur /2 = 0.8 MHz  
PFD Spur /1 = 1.6 MHz  
−70  
−70  
−75  
−75  
−80  
−80  
−85  
−85  
−90  
−90  
−95  
−95  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
Integer Mode (EN_FRAC = 0)  
LO_DIV = 8  
Integer Mode (EN_FRAC = 0)  
LO_DIV = 4  
*See Note 4  
350  
*See Note 4  
700  
300  
400 450 500  
Frequency (MHz)  
550  
600  
600  
800 900 1000  
Frequency (MHz)  
1100  
1200  
G051  
G052  
Figure 51.  
Figure 52.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
MULTIPLES OF PFD SPURS  
(LO_DIV = 2, Integer Mode)  
FRACTIONAL SPURS vs LO DIVIDER  
−60  
−65  
−45  
−50  
PFD Spur /2 = 0.8 MHz  
PFD Spur /1 = 1.6 MHz  
LO_Div = 1  
LO_Div = 2  
LO_Div = 4  
LO_Div = 8  
−55  
−70  
−60  
−75  
−65  
Fractional Mode (EN_FRAC = 1)  
VCO Frequency = 2703 at NFRAC = 0  
−80  
−70  
−75  
−85  
−80  
−90  
−85  
−95  
−90  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
−95  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
Integer Mode (EN_FRAC = 0)  
LO_DIV = 2  
*See Notes 4 and 5  
1200 1400 1600  
*See Note 3  
5M  
1800  
2000  
2200  
2400  
0
10M  
15M  
20M  
25M  
30M  
35M  
Frequency (MHz)  
Fractional PLL N Divider Value (NFRAC)  
G053  
G054  
Figure 53.  
Figure 54.  
FRACTIONAL SPURS vs RF DIVIDER AND PRESCALER  
FRACTIONAL SPURS vs TEMPERATURE  
−60  
−55  
−60  
TA = −40°C  
PLL_DIV_SEL = 0 (Div1), PRSC_SEL = 1 (8/9)  
PLL_DIV_SEL = 1 (Div2), PRSC_SEL = 1 (8/9)  
−65  
TA = 25°C  
TA = 85°C  
PLL_DIV_SEL = 2 (Div4), PRSC_SEL = 0 (4/5)  
−70  
−75  
−65  
Integer Mode (EN_FRAC = 0)  
Fractional Mode (EN_FRAC = 1)  
VCO Frequency = 2703 at NFRAC = 0  
VCO Frequency = 2703.36 at Div1,8/9  
VCO Frequency = 4730.88 at Div2,8/9  
VCO Frequency = 3686.40 at Div4,4/5  
−70  
−80  
−85  
−75  
−90  
−80  
−95  
−85  
−100  
−105  
−110  
−115  
−120  
−125  
−130  
−90  
−95  
−100  
−105  
−110  
*See Note 3  
5M  
*See Note 3  
5M  
0
10M  
15M  
20M  
25M  
30M  
35M  
0
10M  
15M  
20M  
25M  
30M  
35M  
Fractional PLL N Divider Value (NFRAC)  
Fractional PLL N Divider Value (NFRAC)  
G055  
G056  
Figure 55.  
Figure 56.  
18  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
MULTIPLES OF PFD SPURS  
(Fractional Mode)  
LO HARMONICS  
−80  
−82.5  
−85  
0
−5  
1xPFD Spur = 30.72 MHz  
2nd Harmonic  
3rd Harmonic  
4th Harmonic  
2xPFD Spur = 61.44 MHz  
3xPFD Spur = 92.16 MHz  
4xPFD Spur = 122.88 MHz  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−87.5  
−90  
−92.5  
−95  
−97.5  
−100  
Fractional Mode (EN_FRAC = 1)  
VCO Frequency = 2703 at NFRAC = 0  
*See Note 3  
5M  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
0
10M  
15M  
20M  
25M  
30M  
35M  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
Fractional PLL N Divider Value (NFRAC)  
LO_OUT Frequency (MHz)  
G057  
G058  
Figure 57.  
Figure 58.  
OUTPUT POWER ON LO1_OUTP  
WITH MULTIPLE BUFFERS  
OUTPUT POWER  
WITH MULTIPLE BUFFERS  
7
6
7
6
TA = −40°C  
TA = 25°C  
TA = 85°C  
PWD_BUFF1 = ON  
PWD_BUFF1,2 = ON  
PWD_BUFF1,2,3 = ON  
PWD_BUFF1,2,3,4 = ON  
5
5
4
4
3
3
2
2
1
1
0
0
−1  
−2  
−3  
−1  
−2  
−3  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
LO_OUT Frequency (MHz)  
LO_OUT Frequency (MHz)  
G059  
G060  
Figure 59.  
Figure 60.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VCC = 3.3 V, VCC_TK = 3.3 V, LO_Out_1 (single ended), buffer 2, 3, 4 = off, VCO_BIAS = 400 µA;  
BUFOUT_BIAS = 600 µA, all other registers set per recommended programming in Serial Programming Interface Register  
Definitions section, and standard operating condition, unless otherwise noted.  
OUTPUT POWER vs OUTPUT PORT  
OUTPUT POWER vs BUFFER BIAS  
7
6
8
7
BUFOUT_BIAS = 600µA  
LO1_OUT  
BUFOUT_BIAS = 500µA  
BUFOUT_BIAS = 400µA  
BUFOUT_BIAS = 300µA  
LO2_OUT  
LO3_OUT  
LO4_OUT  
6
5
5
4
4
3
2
3
1
2
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
1
0
−1  
−2  
−3  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
*See Note 4  
Integer Mode (EN_FRAC = 0)  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
LO_OUT Frequency (MHz)  
LO_OUT Frequency (MHz)  
G061  
G062  
Figure 61.  
Figure 62.  
VCO GAIN (Kv) vs FREQUENCY  
−30  
−35  
−40  
−45  
−50  
−55  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
VCO_SEL = 0  
VCO_SEL = 1  
VCO_SEL = 2  
VCO_SEL = 3  
VTUNE_IN = 1V  
CP_TRISTATE = 3  
2000 2400 2800 3200 3600 4000 4400 4800 5200  
VCO Frequency (MHz)  
G063  
Figure 63.  
20  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
SERIAL PROGRAMMING INTERFACE REGISTER DEFINITIONS  
OVERVIEW  
The TRF3765 features a four-wire serial programming interface (4WI) that controls an internal 32-bit shift  
register. There are a total of three signals that must be applied: the clock (CLOCK, pin 4); the serial data (DATA,  
pin 3); and the latch enable (STROBE, pin 5).  
The serial data (DB0-DB31) are loaded least significant bit (LSB) first, and read on the rising edge of CLOCK.  
STROBE is asynchronous to the CLOCK signal; at its rising edge, the data in the shift register are loaded into  
the selected internal register. Figure 64 shows the timing for the 4WI. Table 1 lists the 4WI timing for the write  
operation.  
t(CL)  
tsu1  
t(CLK)  
th  
t(CH)  
1st  
32nd  
Write  
Clock  
Pulse  
CLOCK  
Write  
Clock  
Pulse  
DB0 (LSB)  
Address Bit0  
DB1  
Address Bit1  
DB2  
Address Bit2  
DB3  
Address Bit3  
DB31 (MSB)  
DB29  
DB30  
DATA  
tsu3  
tsu2  
End of Write Cycle  
Pulse  
LATCH ENABLE  
tw  
Figure 64. 4WI Timing Diagram  
Table 1. 4WI Timing: Write Operation  
PARAMETER  
MIN  
MAX  
UNITS  
ns  
th  
Hold time, data to clock  
Setup time, data to clock  
Clock low duration  
Clock high duration  
Setup time, clock to enable  
Clock period  
20  
20  
20  
20  
20  
50  
50  
70  
tsu1  
t(CH)  
t(CL)  
tsu2  
t(CLK)  
tw  
ns  
ns  
ns  
ns  
ns  
Enable time  
ns  
tsu3  
Setup time, latch to data  
ns  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TRF3765  
 
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
PLL 4WI REGISTERS  
Register 1  
www.ti.com  
Table 2. PLL 4WI Register 1  
REGISTER ADDRESS  
REFERENCE CLOCK DIVIDER  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
VCO  
NEG  
CP  
DOUBLE  
VCO CAL CLK  
DIV/MULT  
REF CLOCK DIV  
Bit16 Bit17  
RSV  
REF INV  
CHARGE PUMP CURRENT  
Bit22 Bit23 Bit24  
RSV  
Bit18  
Bit19  
Bit20  
Bit21  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR_0  
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
RDIV_0  
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
1
0
Bit1  
Bit2  
Register address bits  
Bit3  
Bit4  
Bit5  
Bit6  
RDIV_1  
Bit7  
RDIV_2  
Bit8  
RDIV_3  
Bit9  
RDIV_4  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
RDIV_5  
RDIV_6  
13-bit Reference Divider value  
RDIV_7  
RDIV_8  
RDIV_9  
RDIV_10  
RDIV_11  
RDIV_12  
RSV  
Reserved  
Invert Reference Clock polarity; 1 = use falling edge  
REF_INV  
NEG_VCO  
ICP_0  
VCO polarity control; 1= negative slope (negative KV)  
ICP_1  
Program Charge Pump dc current, ICP  
1.94 mA, B[25..21] = [00 000]  
0.65 mA, B[25..21] = [11 111]  
ICP_2  
0.97 mA, default value, B[25..21] = [01 010]  
ICP_3  
ICP_4  
ICPDOUBLE  
CAL_CLK_SEL_0  
CAL_CLK _SEL_1  
CAL_CLK _SEL_2  
CAL_CLK _SEL_3  
RSV  
1 = Set ICP to double the current  
Multiplication or division factor to create VCO calibration  
clock from PFD frequency  
Fastest clock, B[25..21] = [00 000]  
Slowest clock, B[25..21] = [11 111]  
Reserved  
22  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
CAL_CLK_SEL[3..0]: Set the frequency divider value used to derive the VCO calibration clock from the phase  
detector frequency. Table 3 shows the calibration clock scale factors.  
Table 3. Calibration Clock Scale Factors  
CAL_CLK_SEL  
1111  
SCALING FACTOR  
1/128  
1/64  
1/32  
1/16  
1/8  
1/4  
1/2  
1
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0110  
2
0101  
4
0100  
8
0011  
16  
0010  
32  
0001  
64  
0000  
128  
ICP[4..0]: Set the charge pump current. Table 4 lists the charge pump current settings.  
Table 4. Charge Pump Current Settings  
ICP[4..0]  
00 000  
00 001  
00 010  
00 011  
00 100  
00 101  
00 110  
00 111  
01 000  
01 001  
01 010  
01 011  
01 100  
01 101  
01 110  
01 111  
10 000  
10 001  
10 010  
10 011  
10 100  
10 101  
10 110  
10 111  
11 000  
11 001  
11 010  
11 011  
11 100  
11 101  
11 110  
11 111  
CURRENT (mA)  
1.94  
1.76  
1.62  
1.49  
1.38  
1.29  
1.21  
1.14  
1.08  
1.02  
0.97  
0.92  
0.88  
0.84  
0.81  
0.78  
0.75  
0.72  
0.69  
0.67  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
0.54  
0.52  
0.51  
0.5  
0.48  
0.47  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TRF3765  
 
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Register 2  
Table 5. PLL 4WI Register 2  
REGISTER ADDRESS  
N-DIVIDER VALUE  
Bit10 Bit11  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit12  
Bit13  
Bit14  
Bit15  
PRE-  
SCALER  
SELECT  
VCO  
SEL  
MODE  
PLL DIVIDER  
SETTING  
N-DIVIDER VALUE  
RSV  
RSV  
VCO SELECT  
Bit26 Bit27  
CAL ACCURACY  
EN CAL  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit28  
Bit29  
Bit30  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR_0  
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
NINT_0  
0
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
Bit1  
Bit2  
Register address bits  
Bit3  
Bit4  
Bit5  
Bit6  
NINT_1  
Bit7  
NINT_2  
Bit8  
NINT_3  
Bit9  
NINT_4  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
NINT_5  
NINT_6  
NINT_7  
PLL N-divider division setting  
NINT_8  
NINT_9  
NINT_10  
NINT_11  
NINT_12  
NINT_13  
NINT_14  
NINT_15  
PLL_DIV_SEL0  
PLL_DIV_SEL1  
PRSC_SEL  
RSV  
Select division ratio of divider in front of prescaler  
Set prescaler modulus (0 4/5; 1 8/9)  
Reserved  
Reserved  
RSV  
VCO_SEL_0  
VCO_SEL_1  
VCOSEL_MODE  
CAL_ACC_0  
CAL_ACC_1  
Selects between the four integrated VCOs  
00 = lowest frequency VCO; 11= highest frequency VCO  
Single VCO auto-calibration mode (1 = active)  
Error count during the cap array calibration  
Recommended programming [00].  
Execute a VCO frequency auto-calibration. Set to '1' to  
initiate a calibration. Resets automatically.  
Bit31  
EN_CAL  
0
24  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
PLL_DIV <1.0>: Select division ratio of divider in front of prescaler, according to Table 6.  
Table 6. PLL_DIV Selection  
PLL_DIV  
FREQUENCY DIVIDER  
00  
01  
10  
1
2
4
VCOSEL_MODE: When VCOSEL_MODE is set to '1', the cap array calibration is executed on the VCO selected  
through bits VCO_SEL[1:0].  
Register 3  
Table 7. PLL 4WI Register 3  
REGISTER ADDRESS  
FRACTIONAL N-DIVIDER VALUE  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit28  
Bit13  
Bit29  
Bit14  
Bit15  
FRACTIONAL N-DIVIDER VALUE  
Bit21 Bit22 Bit23 Bit24  
RSV  
RSV  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit25  
Bit26  
Bit27  
Bit30  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR_0  
ADDR_1  
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit1  
Bit2  
ADDR_2  
Register address bits  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
NFRAC<0>  
NFRAC<1>  
NFRAC<2>  
NFRAC<3>  
NFRAC<4>  
NFRAC<5>  
NFRAC<6>  
NFRAC<7>  
NFRAC<8>  
NFRAC<9>  
NFRAC<10>  
NFRAC<11>  
NFRAC<12>  
NFRAC<13>  
NFRAC<14>  
NFRAC<15>  
NFRAC<16>  
NFRAC<17>  
NFRAC<18>  
NFRAC<19>  
NFRAC<20>  
NFRAC<21>  
NFRAC<22>  
NFRAC<23>  
NFRAC<24>  
RSV  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Fractional PLL N divider value  
0 to 0.99999  
Reserved  
Reserved  
RSV  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Register 4  
Table 8. PLL 4WI Register 4  
REGISTER ADDRESS  
PD PLL  
POWER-DOWN PLL BLOCKS  
POWER-DOWN OUTPUT BUFFERS  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit27  
Bit12  
Bit13  
Bit14  
Bit15  
EN  
FRACT  
MODE  
EXT VCO  
Bit16 Bit17  
PLL TESTS CONTROL  
Bit20 Bit21 Bit22  
ΔΣ MOD ORDER  
ΔΣ MOD CONTROLS  
Bit28 Bit29 Bit30  
Bit18  
Bit19  
Bit23  
Bit24  
Bit25  
Bit26  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR_0  
ADDR_1  
0
0
1
1
0
0
0
0
0
Bit1  
Bit2  
ADDR_2  
Register address bits  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
PWD_PLL  
PWD_CP  
Power-down all PLL blocks (1 = off)  
When 1, charge pump is off  
Bit6  
Bit7  
PWD_VCO  
PWD_VCOMUX  
When 1, VCO is off  
Bit8  
Power-down the four VCO mux blocks (1 = off)  
Power-down programmable RF divider in PLL feedback  
path (1 = off)  
Bit9  
PWD_DIV124  
0
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
PWD_PRESC  
PWD_LO_DIV  
PWD_BUFF_1  
PWD_BUFF_2  
PWD_BUFF_3  
PWD_BUFF_4  
EN_EXTVCO  
0
1
1
1
1
1
0
Power-down programmable prescaler (1 = off)  
Power-down LO divider block (1 = off)  
Power-down LO output buffer 1 (1 = off)  
Power-down LO output buffer 2 (1 = off)  
Power-down LO output buffer 3 (1 = off)  
Power-down LO output buffer 4 (1 = off)  
Enable external VCO input buffer (1 = enabled)  
Can be used to enable/disable an external VCO through  
pin EXTVCO_CTRL (1 = high).  
Bit17  
Bit18  
EXT_VCO_CTRL  
EN_ISOURCE  
0
0
Enable offset current at Charge Pump output (to be used  
in Fractional mode only; 1 = on).  
Bit19  
Bit20  
Bit21  
LD_ANA_PREC_0  
LD_ANA_PREC_1  
CP_TRISTATE_0  
0
0
0
Control precision of analog lock detector  
1 = low; 0 = high  
Set the charge pump output into 3-state mode.  
Normal, B[22..21] = [00]  
Down, B[22..21] = [01]  
Up, B[22..21] = [10]  
Bit22  
CP_TRISTATE_1  
0
3-state, B[22..21] = [11]  
Speed up PLL block by bypassing bias stabilizer  
capacitors.  
Bit23  
Bit24  
SPEEDUP  
0
0
Lock detector precision  
(increases sampling time if set to 1)  
LD_DIG_PREC  
Bit25  
Bit26  
EN_DITH  
1
0
Enable ΔΣ modulator dither (1 = on)  
MOD_ORD_0  
ΔΣ modulator order (1 through 4). Not used in Integer  
mode.  
First order, B[27..26] = [00]  
Second order, B[27..26] = [01]  
Third order, B[27..26] = [10]  
Fourth order, B[27..26] = [11]  
Bit27  
MOD_ORD_1  
1
Select dither mode for ΔΣ modulator  
(0 = pseudo-random; 1 = constant)  
Bit28  
DITH_SEL  
0
Bit29  
Bit30  
Bit31  
DEL_SD_CLK_0  
DEL_SD_CLK_1  
EN_FRAC  
0
1
0
ΔΣ modulator clock delay. Not used in Integer mode.  
Min delay = 00; Max delay = 11  
Enable Fractional mode (1 = fractional enabled)  
26  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
Register 5  
Table 9. PLL 4WI Register 5  
REGISTER ADDRESS  
VCO_R_TRIM  
PLL_R_TRIM  
VCO CURRENT  
Bit11 Bit12  
VCOBUF BIAS  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit13  
Bit14  
Bit15  
BIAS  
SEL  
VCO BIAS  
VOLTAGE  
EN_LD  
ISRC  
VCOMUX BIAS  
OUTBUF BIAS  
RSV  
RSV  
VCO CAL REF  
VCOMUX AMPL  
Bit26 Bit27  
RSV  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit28 Bit29  
Bit30  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
ADDR_0  
RESET VALUE  
DESCRIPTION  
1
0
1
1
0
0
0
1
0
1
0
0
0
Bit1  
ADDR_1  
Bit2  
ADDR_2  
Register address bits  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
VCOBIAS_RTRIM_0  
VCOBIAS_RTRIM_1  
VCOBIAS_RTRIM_2  
PLLBIAS_RTRIM_0  
PLLBIAS_RTRIM_1  
VCO_BIAS_0  
VCO_BIAS_1  
VCO_BIAS_2  
VCO bias resistor trimming.  
Recommended programming [100].  
Bit6  
Bit7  
Bit8  
PLL bias resistor trimming.  
Recommended programming [10].  
Bit9  
Bit10  
Bit11  
Bit12  
VCO bias reference current.  
300 μA, B[13..10] = [00 00]  
600 μA, B[13..10] = [11 11]  
Bias current varies directly with reference current  
Recommended programming:  
400 μA, B[13..10] = [0101] with VCC_TK = 3.3 V  
600 μA, B[13..10] = [1111] with VCC_TK = 5.0V  
Bit13  
Bit14  
VCO_BIAS_3  
1
0
VCOBUF_BIAS_0  
VCO buffer bias reference current.  
300 μA, B[15..14] = [00]  
600 μA, B[15..14] = [11]  
Bias current varies directly with reference current  
Recommended programming [10]  
Bit15  
Bit16  
Bit17  
VCOBUF _BIAS_1  
VCOMUX_BIAS_0  
VCOMUX _BIAS_1  
1
0
1
VCO muxing buffer bias reference current.  
300 μA, B[17..16] = [00]  
600 μA, B[17..16] = [11]  
Bias current varies directly with reference current  
Recommended programming [10]  
Bit18  
Bit19  
BUFOUT_BIAS_0  
BUFOUT_BIAS_1  
1
0
PLL output buffer bias reference current.  
300 μA, B[19..18] = [00]  
600 μA, B[19..18] = [11]  
Bias current varies directly with reference current  
Bit20  
Bit21  
RSV  
RSV  
0
1
Reserved  
Reserved  
Select bias current type for VCO calibration circuitry  
0 = PTAT; 1 = constant over temperature.  
Recommended programming [0].  
Bit22  
VCO_CAL_IB  
0
Bit23  
Bit24  
Bit25  
VCO_CAL_REF_0  
VCO_CAL_REF_1  
VCO_CAL_REF_2  
0
0
1
VCO calibration reference voltage trimming.  
0.9 V, B[25..23] = [000]  
1.4 V, B[25..23] = [111]  
Recommended programming 1.11 V, B[25..23] = [011]  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
BIT NUMBER  
BIT NAME  
RESET VALUE  
DESCRIPTION  
Bit26  
VCO_AMPL_CTRL_0  
0
Adjust the signal amplitude at the VCO mux input.  
[00] = maximum voltage swing  
[11] = minimum voltage swing  
Recommended programming [11]  
Bit27  
Bit28  
VCO_AMPL_CTRL_1  
VCO_VB_CTRL_0  
1
0
VCO core bias voltage control  
1.2 V, B[29..28] = [00]  
1.35 V, B[29..28] = [01]  
1.5 V, B[29..28] = [10]  
1.65 V, B[29..28] = [11]  
Recommended programming [01]  
Bit29  
Bit30  
VCO_VB_CTRL _1  
RSV  
1
0
Reserved  
Enable monitoring of LD to turn on ISOURCE when in  
frac-n mode (EN_FRAC=1).  
Bit31  
EN_LD_ISOURCE  
1
0 = ISOURCE set by EN_ISOURCE  
1 = ISOURCE set by LD  
Recommended programming [0]  
Register 6  
Table 10. PLL 4WI Register 6  
VCO  
LD  
TEST  
CAL  
REGISTER ADDRESS  
RSV  
RSV  
VCO CAP ARRAY CONTROL  
MODE  
MODE  
BYPASS  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
VCO  
BIAS  
SEL  
ISRC  
SINK  
MUX CONTROL  
Bit17  
OFFSET CURRENT ADJUST  
Bit20 Bit21 Bit22  
LO DIV  
LO DIV BIAS  
VCO MUX BIAS  
Bit27 Bit28  
DC OFF REF  
Bit16  
Bit18  
Bit19  
Bit23  
Bit24  
Bit25  
Bit26  
Bit29  
Bit30  
Bit31  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR_0  
ADDR_1  
0
1
1
1
0
0
0
0
0
0
0
0
1
Bit1  
Bit2  
ADDR_2  
Register address bits  
Bit3  
ADDR_3  
Bit4  
ADDR_4  
Bit5  
RSV  
Reserved  
Reserved  
Bit6  
RSV  
Bit7  
VCO_TRIM_0  
VCO_TRIM_1  
VCO_TRIM_2  
VCO_TRIM_3  
VCO_TRIM_4  
VCO_TRIM_5  
Bit8  
Bit9  
VCO capacitor array control bits; used in manual cal mode  
Bit10  
Bit11  
Bit12  
Initiate automatic calibration if LD indicates loss of lock.  
(1 = Initiate calibration if LD is low)  
Bit13  
Bit14  
EN_LOCKDET  
0
0
Counter mode: measure maximum/minimum frequency of each  
VCO  
VCO_TEST_MODE  
Bypass of VCO auto-calibration. When '1', VCO_TRIM and  
VCO_SEL bits are used to select the VCO and the capacitor array  
setting  
Bit15  
CAL_BYPASS  
0
Bit16  
Bit17  
MUX_CTRL_0  
MUX_CTRL_1  
1
0
Select signal for test output (pin 5, LD).  
[000] = Ground  
[001] = Lock detector  
[010] = NDIV counter output  
[011] = Ground  
[100] = RDIV counter output  
[101] = Ground  
[110] = A_counter output  
[111] = Logic high  
Bit18  
Bit19  
MUX_CTRL_2  
0
0
Charge pump offset current polarity. 0 = source  
ISOURCE current enabled by EN_ISOURCE.  
Recommended programming [0].  
ISOURCE_SINK  
28  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
BIT NUMBER  
Bit20  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ISOURCE_TRIM_0  
ISOURCE_TRIM_1  
ISOURCE_TRIM_2  
LO_DIV_SEL_0  
0
0
1
0
Adjust ISOURCE bias current.  
Minimum value, ISOURCE_TRIM = 0, B[22..20] = [000]  
Maximum value, ISOURCE_TRIM = 7, B[22..20] = [111]  
ISOURCE current enabled by EN_ISOURCE.  
Bit21  
Bit22  
Bit23  
Adjust LO path divider  
Divide-by-1, [B24..23] = [00]  
Divide-by-2, [B24..23] = [01]  
Divide-by-4, [B24..23] = [10]  
Divide-by-8, [B24..23] = [11]  
Bit24  
Bit25  
Bit26  
Bit27  
LO_DIV_SEL_1  
LO_DIV_IB_0  
0
0
0
0
Adjust LO divider bias current. [B26..25] =  
[00] = 25 μA  
[01] = 50 μA  
[10] = 75 μA  
[11] = 100 μA  
LO_DIV_IB_1  
DIV_MUX_REF<0>  
Sets reference bias current of DIV_MUX buffer when bit 31=1;  
[00] = 200 μA  
[01] = 300 μA  
[10] = 400 μA  
[11] = 500 μA  
Recommended programming [10]  
Bit28  
Bit29  
Bit30  
DIV_MUX_REF<1>  
DIV_MUX_OUT<0>  
DIV_MUX_OUT<1>  
1
0
1
Set multiply factor for DIV_MUX_REF current.  
x16, B[30..29] = 00  
x24, B[30..29] = 01  
x32, B[30..29] = 10  
x40, B[30..29] = 11  
Recommended programming [10]  
Overrides DIV_MUX auto-bias current control.  
When set to '1', DIV_MUX bias current is set by [B30..27].  
Bit31  
DIV_MUX_BIAS_OVRT  
0
READBACK MODE  
Register 0 functions as a readback register. The TRF3765 implements the capability to read back the content of  
any serial programming interface register by initializing Register 0.  
Each read-back operation consists of two phases: a write followed by the actual reading of the internal data. This  
sequence is described in the timing diagram (see Figure 65). During the write phase, a command is sent to  
TRF3765 Register 0 to set it to readback mode and to specify which register is to be read. In the proper reading  
phase, at each rising clock edge, the internal data are transferred to the READBACK pin where it can be read at  
the following falling edge (LSB first). The first clock after the latch enable STROBE, pin 5, goes high (that is, the  
end of the write cycle) is idle and the following 32 clock pulses transfer the internal register contents to the  
READBACK pin (pin 6).  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
tsu1  
t(CLK)  
t(CL)  
th  
t(CH)  
1st Write  
Clock  
Pulse  
31st  
Write  
Clock  
Pulse  
CLOCK  
DATA  
DB0 (LSB)  
Address Bit0  
DB1  
Address Bit1  
DB2  
Address Bit2  
DB3  
Address Bit3  
DB31 (MSB)  
DB29  
DB30  
LATCH ENABLE  
CLOCK  
tsu3  
32nd  
1st Read  
Clock  
Pulse  
2nd Read  
Clock  
Pulse  
32nd  
Read  
Clock  
Pulse  
33rd  
Read  
Clock  
Pulse  
Write  
Clock  
Pulse  
End of Write Cycle  
Pulse  
td  
LATCH ENABLE  
tsu2  
tw  
Readback  
Data Bit0  
Readback  
Data Bit30  
Readback  
Data Bit31  
Read  
back  
Read  
back  
READBACK DATA  
Data  
Bit1  
Data  
Bit29  
Figure 65. 4WI Readback Timing Diagram  
Table 11 lists the readback timing parameters.  
Table 11. Readback 4WI Timing  
PARAMETER  
MIN  
MAX  
UNITS  
COMMENTS  
Hold time, data to clock  
Setup time, data to clock  
Clock low duration  
th  
tsu1  
t(CH)  
t(CL)  
tsu2  
tsu3  
td  
20  
20  
20  
20  
20  
20  
10  
50  
50  
ns  
ns  
ns  
ns  
ns  
Clock high duration  
Setup time, clock to enable  
Setup time, enable to Readback clock  
Delay time, clock to Readback data output  
Enable time  
ns  
ns  
ns  
tw  
Equals Clock period  
Clock period  
t(CLK)  
READBACK FROM THE INTERNAL REGISTER BANKS  
The TRF3765 integrates eight registers: Register 0 (000) to Register 7 (111). Registers 1 through 6 are used to  
set up and control the TRF3765 functions, Register 7 is used for factory functions, and Register 0 is used for the  
readback function.  
Register 0 must be programmed with a specific command that sets the TRF3765 into readback mode and  
specifies the register to be read, according to the following parameters:  
Set B[31] to '1' to put TRF3765 into readback mode.  
Set B[30,28] equal to the address of the register to be read ('000' to '111').  
Set B27 to control the VCO frequency counter in VCO test mode.  
30  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
 
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
REGISTER 0  
Table 12. Register 0 Write  
REGISTER ADDRESS  
N/C  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit28  
Bit13  
Bit14  
Bit15  
COUNT_  
MODE_  
MUX_SEL  
RB_  
ENABLE  
N/C  
Bit21  
RB_REG  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit29  
Bit30  
Bit31  
Register 0 Write  
TYPE  
BIT NUMBER  
Bit0  
BIT NAME  
RESET VALUE  
DESCRIPTION  
ADDR<0>  
ADDR<1>  
ADDR<2>  
ADDR<3>  
ADDR<4>  
N/C  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit1  
Register 0 to be programmed to set the TRF3765 into  
readback mode.  
Address  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
N/C  
Bit7  
N/C  
Bit8  
N/C  
Bit9  
N/C  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
Data  
Field  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
Select Readback for VCO maximum frequency or  
minimum frequency.  
0 = Maximum  
COUNT_MODE  
_MUX_SEL  
Bit27  
0
1 = Minimum  
Bit28  
Bit29  
Bit30  
Bit31  
RB_REG<0>  
RB_REG<1>  
RB_REG<2>  
RB_ENABLE  
X
X
X
1
Three LSBs of the address for the register that is  
being read  
Register 1, B[30..28] = [000]  
Register 7, B[30..28] = [111]  
1 Put the device into readback mode  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Register 0 Read  
Table 13. Register 0 Read  
R_SAT_  
ERR  
REGISTER ADDRESS  
CHIP_ID  
NOT USED  
COUNT0-7/VCO_TRIM  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
COUNT8  
COUNT  
MODE  
MUX_SEL  
/
COUNT9-  
10/VCO_SEL  
COUNT0-7/VCO_TRIM  
NU  
COUNT11-17  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22 Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
RESET  
VALUE  
BIT NUMBER  
BIT NAME  
DESCRIPTION  
Bit0  
Bit1  
ADDR_0  
ADDR_1  
ADDR_2  
ADDR_3  
ADDR_4  
CHIP_ID  
NU  
0
0
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Bit2  
Register address bits  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
NU  
Bit8  
NU  
Bit9  
NU  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
NU  
NU  
R_SAT_ERR  
count_0/NU  
count_1/NU  
Error flag for calibration speed  
count_2/VCO_TRIM_0  
count_3/VCO_TRIM_1  
count_4/VCO_TRIM_2  
count_5/VCO_TRIM_3  
count_6/VCO_TRIM_4  
count_7/VCO_TRIM_5  
count_8/NU  
B[30..13] = VCO frequency counter high when  
COUNT_MODE_MUX_SEL = 0 and  
VCO_TEST_MODE = 1  
B[30..13] = VCO frequency counter low when  
COUNT_MODE_MUX_SEL = 1 and  
VCO_TEST_MODE = 1  
B[20..15] = Autocal results for VCO_TRIM  
B[23..22] = Autocal results for VCO_SEL when  
VCO_TEST_MODE = 0  
count_9/VCO_sel_0  
count_10/VCO_sel_1  
count<11>  
count<12>  
count<13>  
count<14>  
count<15>  
count<16>  
count<17>  
0 = Minimum frequency  
1 = Maximum frequency  
Bit31  
COUNT_MODE_MUX_SEL  
x
32  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
APPLICATION INFORMATION  
INTEGER AND FRACTIONAL MODE SELECTION  
The PLL is designed to operate in either Integer mode or Fractional mode. If the desired local oscillator (LO)  
frequency is an integer multiple of the phase frequency detector (PFD) frequency, fPFD, then Integer mode can be  
selected. The normalized in-band phase noise floor in Integer mode is lower than in Fractional mode. In Integer  
mode, the feedback divider is an exact integer, and the fraction is zero. While operating in Integer mode, the  
register bits corresponding to the fractional control are dont care.  
In Fractional mode, the feedback divider fractional portion is non-zero on average. With 25-bit fractional  
resolution, RF stepsize fPFD/225 is less than 1 Hz with a fPFD up to 33 MHz. The appropriate fractional control bits  
in the serial register must be programmed.  
PLL ARCHITECTURE  
Figure 66 shows a block diagram of the PLL loop.  
EXT_VCO  
LO1  
VCO0  
LO2  
fREF  
fPFD  
Divide by  
R
Phase Frequency  
Detector and  
Charge Pump  
REFIN  
Loop Filter  
Z(f)  
Divide-by  
1/2/4/8  
VCO1  
VCO2  
VCO3  
CP_OUT  
VTUNE  
LO3  
LO4  
fVCO  
fCOMP  
RF  
Divider  
Dig Divider  
fN  
Prescaler  
4/5 or 8/9  
Divide-by  
1/2/4  
Divide-by  
NF  
NINT and NFRAC Dividers  
Figure 66. PLL Loop  
The output frequency is given by Equation 1:  
fREF  
NFRAC  
225  
fVCO  
=
(PLL_DIV_SEL) NINT +  
RDIV  
(1)  
The rate at which phase comparison occurs is fREF/RDIV. In Integer mode, the fractional setting is ignored and  
Equation 2 is applied.  
fVCO  
= NINT ´ PLL_DIV_SEL  
fPFD  
(2)  
The feedback divider block consists of a programmable RF divider, a prescaler divider, and an NF divider. The  
prescaler can be programmed as either a 4/5 or an 8/9 prescaler. The NF divider includes an A counter and an  
M counter.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): TRF3765  
 
 
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Selecting PLL Divider Values  
Operation of the PLL requires the LO_DIV_SEL, RDIV, PLL_DIV_SEL, NINT, and NFRAC bits to be calculated.  
The LO or mixer frequency is related to fVCO according to divide-by-1/-2/-4/-8 blocks and the operating range of  
fVCO  
.
a. LO_DIV_SEL  
1
2
3
4
2400 MHz £ fRF £ 4800 MHz  
1200 MHz £ fRF £ 2400 MHz  
600 MHz £ fRF £ 1200 MHz  
300 MHz £ fRF £ 600 MHz  
LO_DIV_SEL =  
Therefore:  
fVCO = LO_DIV_SEL ´ fRF  
b. PLL_DIV_SEL  
Given fVCO, select the minimum value for PLL_DIV_SEL so that the programmable RF divider limits the input  
frequency into the prescaler block, fPM, to a maximum of 3000 MHz.  
PLL _ DIV _ SEL = min(1, 2, 4) such that fPM 3000 MHz  
This calculation can be restated as Equation 3.  
LO_DIV_SEL ´ fRF  
PLL_DIV_SEL = Ceiling  
(
3000 MHz  
(3)  
Higher values of fPFD correspond to better phase noise performance in Integer mode or Fractional mode.  
fPFD, along with PLL_DIV_SEL, determines the fVCO stepsize in Integer mode. Therefore, in Integer mode,  
select the maximum fPFD that allows for the required RF stepsize, as shown by Equation 4.  
fVCO, Stepsize  
f
RF, Stepsize ´ LO_DIV_SEL  
=
fPFD  
=
PLL_DIV_SEL  
PLL_DIV_SEL  
(4)  
In Fractional mode, a small RF stepsize is accomplished through the Fractional mode divider. A large fPFD  
should be used to minimize the effects of fractional controller noise in the output spectrum. In this case, fPFD  
may vary according to the reference clock and fractional spur requirements; for example, fPFD = 20 MHz.  
c. RDIV, NINT, NFRAC, PRSC_SEL  
fREF  
RDIV =  
fPFD  
fVCORDIV  
NINT = floor  
(
fREFPLL_DIV_SEL  
fVCORDIV  
NFRAC = floor  
- NINT 225  
(
(
fREFPLL_DIV_SEL  
(
34  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
 
 
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
The P/(P+1) programmable prescaler is set to 8/9 or 4/5 through the PRSC_SEL bit. To allow proper  
fractional control, set PRSC_SEL according to Equation 5.  
8
9
NINT ³ 75 in Fractional Mode or NINT ³ 72 in Integer mode  
PRSC_SEL =  
4
23 £ NINT < 75 in Fractional mode or 20 £ NINT < 72 in Integer mode  
5
(5)  
The PRSC_SEL limit at NINT < 75 applies to Fractional mode with third-order modulation. In Integer mode,  
the PRSC_SEL = 8/9 should be used with NINT as low as 72. The divider block accounts for either value of  
PRSC_SEL without requiring NINT or NFRAC to be adjusted. Then, calculate the maximum frequency to be  
input to the digital divider at fN. Use the lower of the possible prescaler divide settings, P = (4,8), as shown  
by Equation 6.  
fVCO  
fN,Max  
=
PLL_DIV_SEL ´ P  
(6)  
Verify that the frequency into the digital divider, fN, is less than or equal to 375 MHz. If fN exceeds 375 MHz,  
choose a larger value for PLL_DIV_SEL and recalculate fPFD, RDIV, NINT, NFRAC, and PRSC_SEL.  
Setup Example for Integer Mode  
Suppose the following operating characteristics are desired for Integer mode operation:  
fREF = 40 MHz (reference input frequency)  
Step at RF = 2 MHz (RF channel spacing)  
fRF = 1600 MHz (RF frequency)  
The VCO range is 2400 MHz to 4800 MHz. Therefore:  
LO_DIV_SEL = 2  
fVCO = LO_DIV_SEL × 1600 MHz = 3200 MHz  
In order to keep the frequency of the prescaler below 3000 MHz:  
PLL_DIV_SEL = 2  
The desired stepsize at RF is 2 MHz, so:  
fPFD = 2 MHz  
fVCO, stepsize = PLL_DIV_SEL × fPFD = 4 MHz  
Using the reference frequency along with the required fPFD gives:  
RDIV = 20  
NINT = 800  
NINT 75; therefore, select the 8/9 prescaler.  
fN,Max = 3200 MHz/(2 × 8) = 200 MHz < 375 MHz  
This example shows that Integer mode operation gives sufficient resolution for the required stepsize.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): TRF3765  
 
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Setup Example for Fractional Mode  
Suppose the following operating characteristics are desired for Fractional mode operation:  
fREF = 40 MHz (reference input frequency)  
Step at RF = 5 MHz (RF channel spacing)  
fRF = 1,600,000,045 Hz (RF frequency)  
The VCO range is 2400 MHz to 4800 MHz. Therefore:  
LO_DIV_SEL = 2  
fVCO = LO_DIV_SEL × 1,600,000,045 Hz = 3,200,000,090 Hz  
In order to keep the frequency of the prescaler below 3000 MHz:  
PLL_DIV_SEL = 2  
Using a typical fPFD of 20 MHz:  
RDIV = 20  
NINT = 80  
NFRAC = 75  
NINT 75; therefore, select the 8/9 prescaler.  
fN,Max = 3200 MHz/(2 × 8) = 200 MHz < 375 MHz  
The actual frequency at RF is:  
fRF = 1600000044.9419 Hz  
For a frequency error of 0.058 Hz.  
Fractional Mode Setup  
Optimal operation of the PLL in Fractional mode requires several additional register settings. Recommended  
values are listed in Table 14. Optimal performance may require tuning the MOD_ORD, ISOURCE_SINK, and  
ISOURCE_TRIM values according to the chosen frequency band.  
Table 14. Fractional Mode Register Settings  
REGISTER BIT  
EN_ISOURCE  
REGISTER ADDRESSING  
Reg4B18  
RECOMMENDED VALUE  
1
EN_DITH  
Reg4B25  
1
MOD_ORD  
Reg4B[27..26]  
Reg4B28  
B[27..26] = [10]  
DITH_SEL  
0
DEL_SD_CLK  
EN_FRAC  
Reg4B[30..29]  
Reg4B31  
B[30..29] = [10]  
1
0
0
EN_LD_ISOURCE  
ISOURCE_SINK  
Reg5B31  
Reg6B19  
B[22..20] = [100] or [111]; see  
Typical Characteristics  
ISOURCE_TRIM  
ICPDOUBLE  
Reg6B[22..20]  
Reg1B26  
0
36  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
 
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
SELECTING THE VCO AND VCO FREQUENCY CONTROL  
To achieve a broad frequency tuning range, the TRF3765 includes four VCOs. Each VCO is connected to a bank  
of coarse tuning capacitors that determine the valid operating frequency of each VCO. For any given frequency  
setting, the appropriate VCO and capacitor array must be selected.  
The device contains logic that automatically selects the appropriate VCO and capacitor bank. Set bit EN_CAL to  
initiate the calibration algorithm. During the calibration process, the device selects a VCO and a tuning capacitor  
state such that VTUNE matches the reference voltage set by VCO_CAL_REF_n. Accuracy of the resulting tuning  
word is increased through bits CAL_ACC_n at the expense of increased calibration time. A calibration begins  
immediately when EN_CAL is set; as a result, all registers must contain valid values before a calibration is  
initiated.  
The calibration logic is driven by a CAL_CLK clock derived from the phase frequency detector frequency scaled  
according to the setting in CAL_CLK_SEL. Faster CAL_CLK frequencies enable faster calibrations, but the logic  
is limited to clock frequencies up to 600 kHz. The flag R_SAT_ERR is evaluated during the calibration process to  
indicate calibration counter overflow errors, which occur if CAL_CLK runs too quickly. If R_SAT_ERR is set  
during a calibration, the resulting calibration is not valid and CAL_CLK_SEL must be used to slow the CAL_CLK.  
CAL_CLK frequencies should not be set below 0.05 MHz. Reference clock frequency is usually limited by the  
calibration logic. fREF × CAL_CLK_SEL scaling factor > 0.01 MHz and fREF/(CAL_CLK_SEL scaling factor × fPFD  
)
< 8000 are required. For example, with fREF = 61.44 MHz, fPFD = 30.72 MHz and CAL_CLK_SEL at 1/128,  
61.44/128 = 0.5 > 0.01 and 61.44/(30.72 × 1/128) = 256 < 8000.  
When VCOSEL_MODE is '0', the device automatically selects both the VCO and capacitor bank within 46  
CAL_CLK cycles. When VCOSEL_MODE is '1', the device uses the VCO selected in VCO_SEL_0 and  
VCO_SEL_1 and automatically selects the capacitor array within 34 CAL_CLK cycles. The VCO and capacitor  
array settings that result from a calibration cannot be read from the VCO_SEL_n and VCO_TRIM_n bits in  
Registers 2 and 7. These settings can only be read from Register 0.  
Automatic calibration can be disabled by setting CAL_BYPASS to '1'. In this manual calibration mode, the VCO is  
selected through register bits VCO_SEL_n, while the capacitor array is selected through register bits  
VCO_TRIM_n. Calibration modes are summarized in Table 15. After calibration is complete, the PLL is released  
from calibration mode and reaches phase lock.  
Table 15. VCO Calibration Modes  
MAX CYCLES  
CAL_CLK  
CAPACITOR  
ARRAY  
CAL_BYPASS  
VCOSEL_MODE  
VCO  
0
0
1
0
1
46  
34  
Automatic  
VCO_SEL_n  
VCO_SEL_n  
Automatic  
don't care  
N/A  
VCO_TRIM_n  
During the calibration process, the TRF3765 scans through many frequencies. RF and LO outputs should be  
disabled until calibration is complete. At power-up, the RF and LO output are disabled by default. Once a  
calibration has been performed at a given frequency setting, the calibration remains valid over all operating  
temperature conditions.  
EXTERNAL VCO  
An external LO or VCO signal may be applied. EN_EXTVCO powers the input buffer and selects the buffered  
external signal instead of an internal VCO. Dividers, phase-frequency detector, and charge pump remain enabled  
and may be used to control VTUNE or an external VCO. NEG_VCO must correspond to the sign of the external  
VCO tuning characteristic. EXT_VCO_CTRL = '1' asserts a logic 1 output level at the corresponding output pin.  
This configuration can be used to enable or disable the external VCO circuit or module.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
VCO_TEST_MODE  
Setting VCO_TEST_MODE forces the currently selected VCO to the edge of its frequency range by  
disconnecting the charge pump input from the phase detector and loop filter, and forcing its output high or low.  
The upper or lower edge of the VCO range is selected through COUNT_MODE_MUX_SEL.  
VCO_TEST_MODE also reports the value of a frequency counter in COUNT, which can be read back in Register  
0. COUNT reports the number of digital N divider cycles in the PLL, directly related to the period of fN, that occur  
during each CAL_CLK cycle. Counter operation is initiated through the bit EN_CAL. Table 16 summarizes the  
settings for VCO_TEST_MODE.  
Table 16. VCO_TEST_MODE Settings  
VCO_TEST_MODE  
COUNT_MODE_MUX_SEL  
VCO OPERATION  
REGISTER 0 B[30..13]  
B[30..24] = undefined  
B[23..22] = VCO_SEL selected during autocal  
B21 = undefined  
0
Don't care  
Normal  
B[20..15] = VCO_TRIM selected during autocal  
B[14..13] = undefined  
1
1
0
1
Max frequency  
Min frequency  
B[30..13] = Max frequency counter  
B[30..13] = Min frequency counter  
LOOP FILTER  
Loop filter design is critical for achieving low closed-loop phase noise. Some typical loop filter component values  
are given in Table 17, referenced to designators in Figure 67. These loop filters are designed using a charge  
pump current of 1.94 mA to minimize noise.  
Table 17. Typical Loop Filter Components  
fPFD (MHz)  
1.6  
C1 (pF)  
47  
C2 (pF)  
560  
R2 (kΩ)  
10  
C3 (pF)  
4.7  
R3 (kΩ)  
5
C4 (pF)  
open  
R4 (kΩ)  
0
30.72  
2200  
22000  
0.47  
220  
0.47  
220  
0.47  
R3  
R4  
CP_OUT  
VTUNE_IN  
C1  
C2  
C3  
C4  
R2  
CP_REF  
VTUNE_REF  
Figure 67. Loop Filter Component Reference Designators  
LOCK DETECT  
The lock detect signal is generated in the phase frequency detector by comparing the VCO target phase against  
the VCO actual phase. When the two compared phase signals remain aligned for several clock cycles, an  
internal signal goes high. The precision of this comparison is controlled through the LD_ANA_PREC bits. This  
internal signal is then averaged and compared against a reference voltage to generate the LD signal. The  
number of averages used is controlled through LD_DIG_PREC. Therefore, when the VCO is frequency locked,  
LD is high. When the VCO frequency is not locked, LD may pulse high or exhibit periodic behavior.  
38  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
 
 
 
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
By default, the internal lock detect signal is made available on the LD terminal. Register bits MUX_CTRL_n can  
be used to control a multiplexer to output other diagnostic signals on the LD output. The LD control signals are  
shown in Table 18. Table 19 shows the LD Control Signal Mode settings.  
Table 18. LD Control Signals  
ADJUSTMENT  
Lock detect precision  
Unlock detect precision  
LD averaging count  
Diagnostic output  
REGISTER BITS  
LD_ANA_PREC_0  
LD_ANA_PREC_1  
LD_DIG_PREC  
MUX_CTRL_n  
BIT ADDRESSING  
Reg4B19  
Reg4B20  
Reg4B24  
Reg6B[18..16]  
Table 19. LD Control Signal Mode Settings  
CONDITION  
RECOMMENDED SETTINGS  
LD_ANA_PREC_0 = 0  
LD_ANA_PREC_1 = 0  
LD_DIG_PREC = 0  
Integer mode  
LD_ANA_PREC_0 = 1  
LD_ANA_PREC_1 = 1  
LD_DIG_PREC = 0  
Fractional mode  
LO DIVIDER  
The LO divider is shown in Figure 68. It frequency divides the VCO output. Only one of the dividers operates at a  
time, and the appropriate output is selected by a mux. DIVn bits are controlled through LO_DIV_SEL_n. The  
output is buffered and provided on output pins LOn_OUT_P and LOn_OUT_N. Outputs are phase-locked but not  
phase-matched. The output level is controlled through BUFOUT_BIAS.  
BUFOUT_BIAS  
LO_OUT1  
DIV8  
DIV4  
DIV2  
DIV1  
PWD1  
PWD2  
PWD3  
PWD_LO_DIV  
LO_OUT2  
VCO, P/N  
Buffer  
Div2  
LO_OUT3  
LO_OUT4  
Div4  
Div8  
Speedup  
Bias  
LO_DIV_IB  
PWD4  
Figure 68. LO Divider  
LO_DIV_IB determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a  
stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should  
be disabled during normal operation.  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): TRF3765  
 
 
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
POWER-SUPPLY DISTRIBUTION  
Power-supply distribution for the TRF3765 is shown in Table 20. Proper isolation and filtering of the supplies are  
critical for low phase noise operation of the device. Each supply pin should be supplied with local decoupling  
capacitance and isolated with a ferrite bead.  
Table 20. Power-Supply Distribution  
PIN  
SUPPLY  
BLOCKS  
Fractional divider  
N-Divider  
2
VCC_DIG  
LO_OUT buffers  
7
VCC_DIV  
LO 1/2/4/8 divider  
VCO tank  
VCO bias  
Charge pump  
4WI  
20  
21  
27  
VCC_TK  
VCC_OSC  
VCC_CP  
LD  
Prescaler  
REF_IN buffer  
ISource  
28  
VCC_PLL  
RF-Divider  
R-Divider  
40  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
 
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
APPLICATION SCHEMATIC  
Figure 69 illustrates a typical application schematic for the TRF3765. Table 21 lists the pin termination  
requirements and interfacing for the circuit.  
+3.3 V  
+3.3 V  
FB  
1 kW  
FB  
1 kW  
Loop  
Filter  
R3  
C3  
R4  
C4  
4.7 pF  
1 mF  
1 mF  
4.7 pF  
C1  
C2  
R2  
22 pF  
REF_IN  
LD  
+3.3 V/  
5.0 V  
+3.3 V  
FB  
1 kW  
FB  
1 kW  
1 mF  
10 nF  
27 pF  
GND_DIG  
VCC_DIG  
VTUNE_REF  
VTUNE_IN  
GND_OSC  
VCC_OSC  
VCC_TK  
4.7 pF  
10 nF  
1 mF  
DATA  
CLOCK  
DATA  
+3.3 V  
CLOCK  
STROBE  
FB  
1 kW  
+3.3 V  
STROBE  
READBACK  
VCC_DIV  
FB  
1 kW  
EXTVCO_CTRL  
EXTVCO_IN  
READBACK  
EXTVCO_CTRL  
EXTVCO_IN  
4.7 pF  
10 nF  
1 mF  
GND_BUFF1  
GND_BUFF2  
4.7 pF  
1 mF  
10 nF  
4.7 pF  
+3.3 V  
+3.3 V  
FB  
1 kW  
FB  
1 kW  
1 mF  
10 nF  
27 pF  
27 pF  
10 nF  
1 mF  
100 W  
100 W  
100 W  
100 W  
47 pF  
47 pF  
LO1_OUTP  
LO1_OUTM  
LO4_OUTP  
LO4_OUTM  
+3.3 V  
+3.3 V  
FB  
1 kW  
FB  
1 kW  
47 pF  
47 pF  
1 mF  
10 nF  
27 pF  
27 pF  
10 nF  
1 mF  
100 W  
100 W  
100 W  
100 W  
47 pF  
47 pF  
LO2_OUTP  
LO2_OUTM  
LO3_OUTP  
LO3_OUTM  
47 pF  
47 pF  
Figure 69. TRF3765 Application Schematic  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): TRF3765  
 
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
Table 21. Pin Termination Requirements and Interfacing  
PIN  
3
NAME  
DATA  
DESCRIPTION  
4WI data input: digital input, high impedance  
4WI clock input: digital input, high impedance  
4WI latch enable: digital input, high impedance  
4
CLOCK  
STROBE  
5
Readback output; digital output pins can source or sink up to 8 mA  
of current  
6
READBACK  
Local oscillator output: open-collector output. A pull-up resistor is  
required, normally ac-coupled. Any unused output differential pairs  
may be left open.  
9 through 16  
LO_OUT  
18  
19  
30  
32  
EXTVCO_IN  
EXTVCO_CTRL  
REF_IN  
External local oscillator input: high impedance, normally ac-coupled  
Power-down control pin for optional external VCO; digital output pins  
can source or sink up to 8 mA of current  
Reference clock input: high impedance, normally ac-coupled  
Lock detector digital output, as configured by MUX_CTRL; digital  
output pins can source or sink up to 8 mA of current  
LD  
APPLICATION LAYOUT  
Layout of the application board significantly impacts the analog performance of the TRF3765 device. Noise and  
high-speed signals should be prevented from leaking onto power-supply pins or analog signals. Follow these  
recommendations:  
1. Place supply decoupling capacitors physically close to the device, on the same side of the board. Each  
supply pin should be isolated with a ferrite bead.  
2. Maintain a continuous ground plane in the vicinity of the device and as return paths for all high-speed signal  
lines. Place reference plane vias or decoupling capacitors near any signal line reference transition.  
3. The pad on the bottom of the device must be electrically grounded. Connect GND pins directly to the pad on  
the surface layer. Connect the GND pins and pad directly to surface ground where possible.  
4. Power planes should not overlap each other or high-speed signal lines.  
5. Isolate REF_IN routing from loop filter lines, control lines, and other high-speed lines.  
See Figure 70 for an example of critical component layout (for the top PCB layer).  
42  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
TRF3765  
www.ti.com  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
Figure 70. Layout of Critical TRF3765 Components  
Copyright © 20112012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): TRF3765  
TRF3765  
SLWS230C SEPTEMBER 2011REVISED JANUARY 2012  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (November 2011) to Revision C  
Page  
Changed Reference Oscillator Parameters, Reference input impedance parameter rows in Electrical Characteristics  
table ...................................................................................................................................................................................... 3  
44  
Submit Documentation Feedback  
Copyright © 20112012, Texas Instruments Incorporated  
Product Folder Link(s): TRF3765  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Dec-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TRF3765IRHBR  
TRF3765IRHBT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAGLevel-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAGLevel-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TRF3765IRHBR  
TRF3765IRHBT  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TRF3765IRHBR  
TRF3765IRHBT  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
338.1  
338.1  
338.1  
338.1  
20.6  
20.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TRF37A32

TRF37x32 Dual Down Converter Mixer With Integrated IF AMP
TI

TRF37A32IRTVR

具有集成的中频放大器和射频平衡-非平衡变压器的 400MHz 至 1700MHz 双路下变频器混频器 | RTV | 32 | -40 to 85
TI

TRF37A32IRTVT

具有集成的中频放大器和射频平衡-非平衡变压器的 400MHz 至 1700MHz 双路下变频器混频器 | RTV | 32 | -40 to 85
TI

TRF37A32_15

TRF37x32 Dual Down Converter Mixer With Integrated IF AMP
TI

TRF37A73

具有断电引脚的 1 至 6000MHz 12dB 射频增益块放大器
TI

TRF37A73IDSGR

具有断电引脚的 1 至 6000MHz 12dB 射频增益块放大器 | DSG | 8 | -40 to 85
TI

TRF37A73IDSGT

具有断电引脚的 1 至 6000MHz 12dB 射频增益块放大器 | DSG | 8 | -40 to 85
TI

TRF37A75

具有断电引脚的 40MHz 至 6000MHz 12dB 射频增益块放大器
TI

TRF37A75IDSGR

具有断电引脚的 40MHz 至 6000MHz 12dB 射频增益块放大器 | DSG | 8 | -40 to 85
TI

TRF37A75IDSGT

具有断电引脚的 40MHz 至 6000MHz 12dB 射频增益块放大器 | DSG | 8 | -40 to 85
TI

TRF37B32

TRF37x32 Dual Down Converter Mixer With Integrated IF AMP
TI

TRF37B32IRTVR

具有集成的中频放大器和射频平衡-非平衡变压器的 700MHz 至 2700MHz 双路下变频器混频器 | RTV | 32 | -40 to 85
TI